YJCTB:3311

Journal of Combinatorial Theory, Series B ese (ess0) ooo—see

Contents lists available at ScienceDirect =
Journal of
o o Combinatorial
Journal of Combinatorial Theory, Theory

Series B

ELE]E www.elsevier.com /locate/jctb -z

Flows on flow-admissible signed graphs

Matt DeVos?, Jiaao Li™!, You Lu“?, Rong Luo¢,
Cun-Quan Zhang -, Zhang Zhang ¢

2 Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada
V5A 156

b School of Mathematical Sciences and LPMC, Nankai University, Ttianjin 300071,
China

¢ School of Mathematics and Statistics, Northwestern Polytechnical University,
Xi’an, Shaanzt 710072, China

d Department of Mathematics, West Virginia University, Morgantown, WV 26506,
USA

ARTICLE INFO ABSTRACT
Article history: In 1983, Bouchet proposed a conjecture that every flow-
Received 20 September 2018 admissible signed graph admits a nowhere-zero 6-flow. Bouchet

Available online xxxx himself proved that such signed graphs admit nowhere-zero

216-flows and Zyka further proved that such signed graphs

K ds: . .

Inizgeirﬁiw admit nowhere-zero 30-flows. In this paper we show that every
Modulo flow flow-admissible signed graph admits a nowhere-zero 11-flow.
Balanced Zo X Z3-NZF © 2020 Elsevier Inc. All rights reserved.

Signed graph

E-mail address: lijiaao@nankai.edu.cn (J. Li).

L This research project has been partially supported by National Natural Science Foundation of China (No.
11901318), Natural Science Foundation of Tianjin (No. 19JCQNJC14100) and the Fundamental Research
Funds for the Central Universities, Nankai University (No. 63191425).

2 This research project has been partially supported by National Natural Science Foundation of China
(No. 11871397), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JM-083)
and the Fundamental Research Funds for the Central Universities (No. 3102019ghjd003).

3 This research project has been partially supported by National Science Foundation (DMS-1700218).

https://doi.org/10.1016/j.jctb.2020.04.008
0095-8956/© 2020 Elsevier Inc. All rights reserved.

Please cite this article in press as: M. DeVos et al., Flows on flow-admissible signed graphs, J. Combin.
Theory Ser. B (2020), https://doi.org/10.1016/j.jctb.2020.04.008




YJCTB:3311

2 M. DeVos et al. / Journal of Combinatorial Theory, Series B see (sse0) soo—see

1. Introduction

Graphs or signed graphs considered in this paper are finite and may have multiple
edges or loops. For terminology and notations not defined here we follow [1,4,11].

In 1983, Bouchet [2] proposed a flow conjecture that every flow-admissible signed graph
admits a nowhere-zero 6-flow. Bouchet [2] himself proved that such signed graphs admit
nowhere-zero 216-flows; Zyka [13] proved that such signed graphs admit nowhere-zero
30-flows. In this paper, we prove the following result.

Theorem 1.1. Every flow-admissible signed graph admits a nowhere-zero 11-flow.

In fact, we prove a stronger and very structural result as follows, and Theorem 1.1 is
an immediate corollary.

Theorem 1.2. Every flow-admissible signed graph G admits a 3-flow f1 and a 5-flow
fa such that f = 3f1 + f2 is a nowhere-zero 11-flow, |f(e)| # 9 for each edge e, and

|f(e)] = 10 only if e € B(supp(f1)) N B(supp(f2)), where B(supp(fi)) is the set of all
bridges of the subgraph induced by the edges of supp(f;) (i =1,2).

Theorem 1.2 may suggest an approach to further reduce 11-flows to 9-flows.

The main approach to prove the 11-flow theorem is the following result, which, we
believe, will be a powerful tool in the study of integer flows of signed graphs, in particular
to resolve Bouchet’s 6-flow conjecture.

Theorem 1.3. Every flow-admissible signed graph admits a balanced nowhere-zero Zg X
Z3-flow.

A Zoy x Zs-flow (f1, f2) is called balanced if supp(f1) contains an even number of
negative edges.

The rest of the paper is organized as follows: Basic notations and definitions will be
introduced in Section 2. Section 3 will discuss the conversion of modulo flows into integer
flows. In particular a new result to convert a modulo 3-flow to an integer 5-flow will be
introduced and its proof will be presented in Section 5. The proofs of Theorems 1.2 and
1.3 will be presented in Sections 4 and 6, respectively.

2. Signed graphs, switch operations, and flows

Let G be a graph. For Uy,Us C V(G), denote by d¢(Ur,Us) the set of edges with
one end in U; and the other in U,. For convenience, we write dg(Up) and d¢g(v) for
3¢ (U, V(G) \ Uy) and ég({v}), respectively. The degree of v is the number of edges
incident with v, where each loop is counted twice. A d-vertex is a vertex with degree d.
Let V4(G) be the set of d-vertices in G. The maximum degree of G is denoted by A(G).
We use B(G) to denote the set of cut-edges of G.
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A signed graph (G,0) is a graph G together with a signature o : E(G) — {—1,1}.
An edge e € E(G) is positive if o(e) = 1 and negative otherwise. Denote the set of all
negative edges of (G, o) by En (G, o). For a vertex v in G, we define a new signature o’ by
changing o’(e) = —o(e) for each e € dg(v). We say that o’ is obtained from o by making
a switch at the vertex v. Two signatures are said to be equivalent if one can be obtained
from the other by making a sequence of switch operations. Define the negativeness of
G by €(G,0) = min{|En(G,0")| : ¢’ is equivalent to o}. A signed graph is balanced if
its negativeness is 0. That is it is equivalent to a graph without negative edges. For a
subgraph G’ of G, denote 0(G') = [[.cp(qr) o(e)-

For convenience, the signature o is usually omitted if no confusion arises or is written
as o¢ if it needs to emphasize G. If there is no confusion from the context, we simply
use En(Q) for Ex(G, o) and use €(G) for (G, o).

Every edge of G is composed of two half-edges h and h, each of which is incident with
one end. Denote the set of half-edges of G by H(G) and the set of half-edges incident
with v by Hg(v). For a half-edge h € H(G), we use e;, to refer to the edge containing
h. An orientation of a signed graph (G, o) is a mapping 7 : H(G) — {—1, 1} such that
7(h)7(h) = —o(en) for each h € H(G). Tt is convenient to consider 7 as an assignment
of orientations on H(G). Namely, if 7(h) = 1, h is a half-edge oriented away from its
end and otherwise towards its end. Such an ordered triple (G, o, 7) is called a bidirected
graph.

Definition 2.1. Assume that G is a signed graph associated with an orientation 7. Let A
be an abelian group and f : E(G) — A be a mapping. The boundary of f at a vertex v
is defined as

of(w)= > 7(h)f(en).
hEHG(’U)
The pair (7, f) (or to simplify, f) is an A-flow of G if df(v) = 0 for each v € V(G), and
is an (integer) k-flow if it is a Z-flow and |f(e)| < k for each e € E(G).

Let f be a flow of a signed graph G. The support of f, denoted by supp(f), is the set
of edges e with f(e) # 0. The flow f is nowhere-zero if supp(f) = E(G). For convenience,
we abbreviate the notions of mowhere-zero A-flow and nowhere-zero k-flow as A-NZF
and k-NZF, respectively. Observe that G admits an A-NZF (resp., a k-NZF) under an
orientation 7 if and only if it admits an A-NZF (resp., a k-NZF) under any orientation
7'. A Zy-flow is also called a modulo k-flow. For an integer flow f of G and a positive
integer ¢, let Er—y; :={e € E(G) : |f(e)| = t}.

A signed graph G is flow-admissible if it admits a k-NZF for some positive integer k.
Bouchet [2] characterized all flow-admissible signed graphs as follows.

Proposition 2.2. ([2]) A connected signed graph G is flow-admissible if and only if ¢(G) #
1 and there is no cut-edge b such that G — b has a balanced component.
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Fig. 1. A signed graph admitting a Z3-NZF with all edges assigned with 1, but no 4-NZF.

3. Modulo flows on signed graphs

Just like in the study of flows of ordinary graphs and as Theorem 1.3 indicates, the
key to make further improvement and to eventually solve Bouchet’s 6-flow conjecture is
to further study how to convert modulo 2-flows and modulo 3-flows into integer flows.
The following lemma converts a modulo 2-flow into an integer 3-flow.

Lemma 3.1 (/3]). If a signed graph is connected and admits a Za-flow fi such that
supp(f1) contains an even number of negative edges, then it also admits a 3-flow fo

such that supp(f1) C supp(f2) and |f2(e)| = 2 if and only if e € B(supp(f2)).

Remark. In Lemma 3.1 the conclusion “|fy(e)| = 2 if and only if e € B(supp(f2))” is
not listed in Theorem 1.5 of [3]. However this fact is implicit and follows from the basic
property of flows of signed graphs: the flow value of each cut-edge must be even.

In this paper, we will show that one can convert a Z3-NZF to a very special 5-NZF.

Theorem 3.2. Let G be a signed graph admitting a Zs-NZF. Then G admits a 5-NZF g
such that Eg—13 = 0 and Ey—14 € B(G).

Theorem 3.2 is also a key tool in the proof of the 11-theorem and its proof will be
presented in Section 5.

Remark. Theorem 3.2 is sharp in the sense that there is an infinite family of signed
graphs that admits a Z3-NZF but does not admit a 4-NZF. For example, the signed
graph obtained from a tree in which each vertex is of degree one or three by adding a
negative loop at each vertex of degree one. An illustration is shown in Fig. 1.

4. Proof of the 11-flow theorem

Now we are ready to prove Theorem 1.2, assuming Theorems 1.3 and 3.2.
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Proof of Theorem 1.2. Let G be a connected flow-admissible signed graph. By Theo-
rem 1.3, G admits a balanced Zy x Z3-NZF (g1, g2). By Lemma 3.1, G admits a 3-flow

f1 such that supp(g1) € supp(f1) and |f1(e)| = 2 if and only if e € B(supp(f1)).
By Theorem 3.2, G admits a 5-flow fs such that supp(f2) = supp(g2) and

Ef2::|:3 =0. (1)

Since (g1, g2) is a Zs X Z3-NZF of G,

supp(f1) Usupp(f2) = supp(g1) Usupp(g2) = E(G). (2)

We are to show that f = 3f; + f2 is a nowhere-zero 11-flow described in the theorem.
Since |fi(e)] <2 and |fa(e)| < 4, we have

[fle)l = |Bf1+ f2)(e)] < 3[fi(e)| + [f2(e)| <10 Ve € E(G).
Furthermore, by applying Equations (1) and (2),
3fi(e) + fale) #0,£9 Ve € E(Q).

If |f(e)] = 10 for some edge e € E(G), then |fi(e)] = 2 and |f2(e)| = 4. Thus, by
Lemmas 3.1 and 3.2 again, the edge e € B(supp(f1))NB(supp(f2)) and hence f = 3 f1+ f2
is the 11-NZF described in Theorem 1.2. O

5. Proof of Theorem 3.2

As the preparation of the proof of Theorem 3.2, we first need some necessary lemmas.
The first lemma is a stronger form of the famous Petersen’s theorem, and here we
omit its proof (see Exercise 16.4.8 in [1]).

Lemma 5.1. Let G be a bridgeless cubic graph and eg € E(G). Then G has two perfect
matchings My and Ms such that e € My and ey ¢ M.

We also need a splitting lemma due to Fleischner [5].

Let GG be a graph and v be a vertex. If F' C dg(v), we denote by G|,,r| the graph
obtained from G by splitting the edges of F' away from v. That is, adding a new vertex
v* and changing the common end of edges in F' from v to v*.

Lemma 5.2. ([5]) Let G be a bridgeless graph and v be a wvertex. If dg(v) > 4 and
€0, e1,6e2 € dg(v) are chosen in a way that eg and ey are in different blocks when v is
a cut-vertex, then either Gy (eg.e,}] 0T Gluifen,en}) 5 bridgeless. Furthermore, Gy feq,es)]
is bridgeless if v is a cut-vertex.
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Let G be a signed graph. A path P in G is called a subdivided edge of G if every internal
vertex of P is a 2-vertex. The suppressed graph of G, denoted by G, is the signed graph
obtained from G by replacing each maximal subdivided edge P with a single edge e and
assigning o(e) = o(P).

The following result is proved in [12] which gives a sufficient condition when a modulo
3-flow and an integer 3-flow are equivalent for signed graphs.

Lemma 5.3 (/12]). Let G be a bridgeless signed graph. If G admits a Z3-NZF, then it
also admits a 3-NZF.

Lemma 5.3 is strengthened in the following lemma, which will serve as the induction
base in the proof of Theorem 3.2.

Lemma 5.4. Let G be a bridgeless signed graph admitting a Zs-NZF. Then for any ey €
E(G) and for any i € {1,2}, G admits a 3-NZF such that ey has the flow value 1.

Proof. Let G be a counterexample with 3(G) := 3, cy () |de(v) — 2.5] minimum. Since
G admits a Z3-NZF, there is an orientation 7 of G such that for each v € V(G),

or(v):= > 7(h)=0 (mod3). (3)

heHg(v)

We claim A(G) < 3. Suppose to the contrary that G has a vertex v with dg(v) > 4.
By Lemma 5.2, we can split a pair of edges {ej,es} from v such that the new signed
graph G' = Gy;{e, ¢,}) is still bridgeless. In G’, we consider 7 as an orientation on E(G")
and denote the common end of e; and es by v*. If 97 (v*) = 0, then 8(G") < 8(G) and
by Eq. (3), 07(u) = 0 (mod 3) for each u € V(G'), a contradiction to the minimality
of B(G). If dr(v*) # 0, then we further add a positive edge vv* to G’ and denote
the resulting signed graph by G”. Let 7 be the orientation of G” obtained from 7
by assigning vv* with a direction such that 97" (v*) = 0 (mod 3). Then by Eq. (3),
01" (u) =0 (mod 3) for each u € V(G"). Since 8(G") < B(G), we obtain a contradiction
to the minimality of 5(G) again. Therefore A(G) < 3.

Since G is bridgeless, every vertex of G is of degree 2 or 3. Note that the existence of
the desired 3-flows is preserved under the suppressing operation. Then the suppressed
signed graph G of G is also a counterexample, and 3(G) < B(G) when G has some
2-vertices. Therefore G is cubic by the minimality of 8(G).

Since G is cubic, by Eq. (3), either 97(v) = dg(v) or d1(v) = —dg(v) for each
v € V(G). By Lemma 5.1, we can choose two perfect matchings M; and My such that
eo ¢ My and eg € My. For i = 1,2, let 7; be the orientation of G obtained from 7 by
reversing the directions of all edges of M;, and define a mapping f; : F(G) — {1,2} by
setting fi(e) = 2 if e € M; and f;(e) = 1 if e ¢ M;. Then f; and fo are two desired
nowhere-zero 3-flows of G under 7, and 7o, respectively, a contradiction. 0O

Please cite this article in press as: M. DeVos et al., Flows on flow-admissible signed graphs, J. Combin.
Theory Ser. B (2020), https://doi.org/10.1016/j.jctb.2020.04.008




YJCTB:3311

M. DeVos et al. / Journal of Combinatorial Theory, Series B see (sss0) ooo—see 7

Now we are ready to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. We will prove by induction on ¢t = |B(G)|, the number of cut-
edges in G. If t =0, then G is bridgeless and it is a direct corollary of Lemma 5.4. This
establishes the base of the induction.

Assume ¢ > 0. Let e = v1v2 be a cut-edge in B(G) such that one component, say B,
of G — e is minimal. Let By be the other component of G —e. We may assume the bridge
e is a positive edge (by possibly some switch operations). Since G admits a Z3-NZF,
0(G) > 2. Thus By is bridgeless and nontrivial. WLOG assume v; € B; (i = 1,2). Let
B! be the graph obtained from B; by adding a negative loop e; at v;. Then B, admits
a Z3-NZF since G admits a Z3-NZF. By induction hypothesis, B admits a 5-NZF g,
with ga(e2) = a € {1,2}. By Lemma 5.4, B admits a 3-NZF g; such that g;(e;) = a.
Hence we can extend g1 and go to a 5-NZF g of G by setting g(e) = 2a with appropriate
orientation of e. Clearly g is a desired 5-NZF of G. O

6. Proof of Theorem 1.3

In this section, we will complete the proof of Theorem 1.3, which is divided into two
steps: first to reduce it from general flow-admissible signed graphs to cubic shrubberies
(see Lemma 6.6); and then prove that every cubic shrubbery admits a balanced Zg x Z3-
NZF by showing a stronger result (see Lemma 6.13).

We first need some terminology and notations. Let G be a graph. For an edge e €
E(G), contracting e is done by deleting e and then (if e is not a loop) identifying its
ends. Note that all resulting loops generated from the parallel edges of e are kept. For
S C E(G), we use G/S to denote the resulting graph obtained from G by contracting
all edges in S.

For a path P, let End(P) and Int(P) be the sets of the ends and internal vertices of P,
respectively. For Uy, Uy C V(G), a (Uy, Usz)-path is a path P satisfying |End(P)NU;| =1
and Int(P)NU; = 0 for ¢ = 1,2; if G; and G5 are subgraphs of G, we write (G1, G2)-path
instead of (V(G1),V(G2))-path. Let C = vy ---v,v1 be a circuit. A segment of C is the
path v;v;41---vj_1v; (mod r) contained in C' and is denoted by v;Cv; or v;C~v;. An
{-circuit is a circuit with length £.

For a plane graph G embedded in the plane II, a face of G is a connected topological
region (an open set) of IT'\ G. If the boundary of a face is a circuit of G, it is called a
facial circuit of G. Denote [1,k] = {1,2,... k}.

0.1. Shrubberies

Now we start to introduce shrubberies and removable circuits, which are key concepts
for induction purpose.

Let G be a signed graph and H be a connected signed subgraph of G. An edge
e € E(G)\ E(H) is called a chord of H if both ends of e are in V(H). We denote the
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set of chords of H by Cq(H) or simply C(H), and partition C(H) into
UH) =Ug(H) = {e € C(H) : H+e is unbalanced} and U(H) = Ug(H) = C(H)\U(H).

A circuit C' is called removable if either it is unbalanced or it satisfies [U(C)| + [Va(G) N
V()| > 2.
A signed graph G is called a shrubbery if it satisfies the following requirements:

(S1) A(G) < 3;

(S2) every signed cubic subgraph of G is flow-admissible;

(S3) 0c(V(H))|+ Xsev (3 — da(z)) + 2[U(H)| = 4 for any balanced and connected
signed subgraph H with |V (H)| > 2;

(S4) G has no balanced 4-circuits.

The following proposition shows that shrubberies form a nice graph class which is
closed under deletion, a crucial fact for induction.

Proposition 6.1. Every signed subgraph of a shrubbery is still a shrubbery.

Proof. Let G’ be an arbitrary signed subgraph of a shrubbery G. Obviously, G’ satisfies
(S1), (S2) and (S4). We will show that G’ satisfies (S3).

Let H be a balanced and connected signed subgraph of G' with |V(H)| > 2. Let
A1 = 5(;(V(H)) \ (5G/(V(H)) and A2 = Cg(H) \ CGI(H). Then

Y. B-da(@) - Y B-de(@)= Y (da(x)—du(w)) = |Ai] +2|As|.

zeV (H) zeV (H) eV (H)
Since U (H) C Ug(H) and Cq/(H) C Co(H), we have
Ue(H)| = [Ue (H)] < [As].

Hence

b (VIH)) [+ > (3= dar(x)) + 2Ue (H)

zeV (H)
> (6a(VH) =)+ [ D B—da(@) + A1 +2[As|] + 2(|Ue (H)| — | Az])
eV (H)
= Pa(VH) |+ Y (B-da(x)) +2Us(H)| > 4,
zeV(H)

since G is a shrubbery.
Therefore G’ satisfies (S3) and thus is a shrubbery. O
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Proposition 6.1 will be applied frequently in the proof of Lemma 6.13 and thus it will
not be referenced explicitly.

Next we will apply the following two theorems and Lemma 6.5 to reduce Theorem 1.3
for general signed graphs to cubic shrubberies.

Theorem 6.2. ([8]) Every ordinary bridgeless graph admits a 6-NZF.

Theorem 6.3. ([9]) Let A be an abelian group of order k. Then an ordinary graph admits
a k-NZF if and only if it admits an A-NZF.

Let G be an ordinary oriented graph, T'C E(G) and A be an abelian group. For any
function vy : T'— A, let F,(G) denote the number of A-NZF ¢ of G with ¢(e) = v(e) for
every e € T. For every X C V(G), let ax : E(G) — {—1,0,1} be given by the rule

1if e € 6g(X) is directed toward X,
ax(e) =4¢ —1if e € §g(X) is directed away X,
0 otherwise.

For any two functions 1,72 from T to A, we call y1,v2 similar if for every X C V(G),
the following holds

Z ax(e)yi(e) = 0 if and only if Z ax(e)ya(e) = 0.
eeT eceT

Lemma 6.4. (Seymour - Personal communication). Let G be an ordinary oriented graph,
T C E(G) and A be an abelian group. If the two functions v1,v2 : T — A are similar,
then F,, (G) = F,,(G).

Proof. We proceed by induction on the number of edges in F(G)\T. If this set is empty,
then F.,,(G) <1 and F,,(G) = 1 if and only if 7, is an A-NZF of G for ¢ = 1,2. Thus,
the result follows by the assumption. Otherwise, choose an edge e € E(G) \T. If e is a
cut-edge, then F,,(G) =0 for i = 1, 2. If e is a loop, then we have inductively that

Fn(G) = (Al = 1) F, (G —e) = (JA] = 1) F, (G =€) = T, (G).
Otherwise, applying induction to G — e and G /e we have
Fn(G) = Fy, (Gfe) = Fy (G =) = Frp (Ge) = Foy (G =€) = Fop (G). O
The following lemma directly follows from Lemma 6.4.

Lemma 6.5. Let G be an ordinary oriented graph and A be an abelian group. Assume that
G has an A-NZF. If G has a vertex v with dg(v) < 3 and v : dg(v) — A\ {0} satisfies
dv(v) = 0, then there exists an A-NZF ¢ such that ¢|s. ) =7
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Proof. Let f be an A-NZF of G. Since dg(v) < 3, flss(v) is similar to . Thus by
Lemma 6.4, we have F(G) = Fy|; ,,(G) # 0. Therefore there exists an A-NZF ¢ such
that ¢|5G('U) =7v. O

Now we can reduce Theorem 1.3 to cubic shrubberies.

Lemma 6.6. The following two statements are equivalent.

(i) Ewvery flow-admissible signed graph admits a balanced Zo X Z3-NZF.
(ii) BEwvery cubic shrubbery admits a balanced Zo X Z3-NZF.

Proof. “(i)=-(ii)”: By (S2), every cubic shrubbery is flow-admissible, and thus (ii) follows
from (i).

“(i)=(i)": Let G be a counterexample to (i) with 3(G) = >, cy (g lda(v) — 2.5|
minimum. Since G is flow-admissible, it admits a k-NZF (7, f) for some positive integer
k and thus Vi(G) = ). Furthermore, by the minimality of 3(G), G is connected and
Vo(G) = ) otherwise the suppressed signed graph G of G is also flow-admissible and has
smaller 3(G) than 3(G). We are going to show that G is a cubic shrubbery and thus
admits a balanced Zy x Z3-NZF by (ii), which is a contradiction to the fact that G is a
counterexample. By the definition of shrubberies, we only need to prove (I)-(III) in the
following.

(I) G is cubic.

Suppose to the contrary that G has a vertex v with dg(v) # 3. Then dg(v) > 4. Let
{e1,e2} C dg(v) and let G' = G[yiqe, e,}]- Denote the new common end of e; and ey in
G’ by v*. If 0f(v*) = 0, let G” = G'. If 9f(v*) # 0, we further add a positive edge
vv* with direction from v to v* and assign vv* with flow value df(v*). Let G” be the
resulting signed graph. In both cases, G” is flow-admissible and 8(G") < S(G). By the
minimality of 8(G), G” admits a balanced Zs x Z3-NZF, and so does G, a contradiction.
This proves (I).

(IT) [6c(V(H))| +2|U(H)| > 4 for any balanced and connected signed subgraph H with
V(H)| = 2.

Suppose to the contrary that H is such a subgraph with |d¢(V (H))| + 2[U(H)| < 3.
Let X = V(H). Then H' = G[X| —U(H) is a balanced and connected signed subgraph
of G. WLOG assume that all edges of H' are positive. Let G; = G/E(H’). Then G; is
also flow-admissible.

Since |dg(X)| + 2lU(H)| < 3, it follows from the choice of G and Proposition 2.2
that either [U(H)| = 0 and |d¢(X)| € {2,3} or [U(H)| = 1 and |dg(X)| = 1. Let
x be the contracted vertex in G; = G/E(H') corresponding to E(H’). Then dg, (z) =
16c(X)|+2[U(H)| € {2,3} and B(G1) < B(G) since | X| = |V (H)| > 2. By the minimality
of (@), Gy admits a balanced Zgy x Z3-NZF (11, f1), where 7y is the restriction of 7 on
Gi.
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Let Hx be the set of the half edges of each edge in d¢(X) UU(H) whose end is in
X. Then |Hx| = [0¢(X)| 4+ 2|U(H)| = 2 or 3. Construct a new graph Go from H' + Hx
by identifying the non-ends of all half edges in Hx into a new vertex y. Now in Ga, y is
the common end of all h € H,. Then in Gs, y is the vertex incident with all h € Hx.
Since G is flow-admissible, G5 is a bridgeless ordinary graph and thus admits a balanced
Zo x Z3-NZF by Theorems 6.2 and 6.3. Let 75 be the restriction of 7 on G and define
~v(h) = fi(ep) for each h € Hyx. Note that 75(h) = 71(h) for each h € Hx. Since (71, f1)
is a balanced Zs x Z3-NZF of G, we have 0y(y) = —Jf1(z) = 0. By Lemma 6.5, there is
a balanced Zg x Z3-NZF (72, f2) of G2 such that f2|5c2 ) =7 = fl“sGl(l')' Thus (11, f1)
can be extended to a balanced Zy x Z3-NZF of G, a contradiction. This proves (II).

(III) G has no balanced 4-circuits.

Suppose to the contrary that G has a balanced 4-circuit C'. Then we may assume that
all edges of C' are positive. Let G’ = G/E(C). Then §(G’) < B(G). By the minimality
of B(@), G' admits a balanced Zy x Z3-NZF, say (f1, f43). Since C' is a circuit with all
positive edges and |E(C)| = 4 and since |Zs x Z3| = 6, it is easy to extend (f7, f3) to a
balanced Zs x Z3-NZF of G, a contradiction. This proves (IIT) and thus completes the
proof of the lemma. O

6.2. Nowhere-zero watering

In this subsection, we will prove that every cubic shrubbery admits a balanced Zo x Z3-
NZF. In fact, we will prove a stronger result that every shrubbery admits a nowhere-zero
watering as in Lemma 6.13 below. Here a nowhere-zero watering (see Definition 6.10)
involves flows with certain boundaries at vertices of degree one or two, which provides
some flexibility for induction and makes some reduction arguments on removable circuits
possible. Before proceeding, we need some preparations.

Theorem 6.7. ([10]) Let G be a 2-connected graph with A(G) < 3 and let y1,y2,ys €
V(G). Then either there exists a circuit of G containing yi,ya,ys, or there is a partition
of V(G) into {X1, X2, Y1, Y2, Y3} with the following properties:

(1) y; €Y; fori=1,2,3;
(2) 0a(X1,Xa) =0a(Yi,Y;) =0 for 1 <i<j<3;
(3) |0¢(X;,Y;)| =1 fori=1,2 and j =1,2,3.

Let H be a contraction of G and let x € V(G). We use % to denote the vertex in H
which z is contracted into.

Theorem 6.8. ([7]) Let G be a 2-connected signed graph with |En(G)| = €(G) = k > 2,
where En(G) = {x1Zk41, ..., rx2r}. Then the following two statements are equivalent.

(i) G does not contain two edge-disjoint unbalanced circuits.
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(ii) The graph G can be contracted to a cubic graph G’ such that either G' —
{#18541, .-, Bplox} 18 a 2k-circuit Cy on the vertices 1, ..., Tk, Txi1, ..., Lok OT
can be obtained from a 2-connected cubic plane graph by selecting a facial circuit
Cs and inserting the vertices T1,...,Tk, Tkt1,---, 22k on the edges of Cy in such a
way that for every pair {i,j} C [1,k], the vertices &;,%;, Ti+i, Tit; are around the
circuit Cy or Cy in this cyclic order.

Lemma 6.9. ([6]) Let G be an ordinary oriented graph and A be an abelian group. Then G
is connected if and only if for every function B : V(G) — A satisfying ZUE‘/(G) B(v) =0,
there exists ¢ : E(G) — A such that ¢ = .

Definition 6.10. Let G be a signed graph with A(G) < 3 and a given orientation. A
nowhere-zero watering (briefly, NZW) of G is a mapping f : E(G) — Za x Z3 — {(0,0)}
such that

df(v) =(0,0) if dg(v) =3 and 9f(v) = (0,%1) if dg(v) = 1,2.

Similar to flows, the existence of an NZW is also an invariant under switch operation.
The following reductions/extensions of NZW on removable circuits play an important
role in later proofs.

Lemma 6.11. Let G be a shrubbery and C' be a removable circuit of G. Then for every
NZW " = (f1, ) of G = G = V(C), there exists an NZW f = (f1, f2) of G so that
f(e) = f'(e) for every e € E(G") and supp(f1) = supp(f1) U E(C).

Proof. We first extend f" to f : E(G) — Zg X Zs3 as follows where «. is a variable in Z3
for every e € U(C).

(0,£1) ifeed(V(C)),
(1,0) ifee E(C),
(0,1) ifecU(C),
(0,c) ifecl(C)
Since every v € V(G) \ V(C) adjacent to a vertex in V(C) has degree less than three in
G’, we may choose values f(e) for each edge e € §(V(C')) so that f satisfies the boundary
condition for a watering at every vertex in V(G) \ V(C). Obviously by the construction
df1(v) =0 for every v € V(C'). So we need only adjust df2(v) for v € V(C') to obtain a
watering. We distinguish the following two cases.

fle) =

Case 1: C' is unbalanced.

In this case U(C) = (). Choose arbitrary +1 assignments to the variables a.. Since C
is unbalanced, for every vertex u € V(C), there is a function n, : E(C) — Z3 so that
Ony(u) =1 and In, (v) =0 for any v € V(C) \ {u}. Now we may adjust fo by adding a
suitable combination of the 7, functions so that f is an NZW of G, as desired.
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Case 2: C'is balanced.

WLOG we may assume that every edge of C is positive and every unbalanced chord is
oriented so that each half edge is directed away from its end. In this case, each negative
chord e contributes 2fa(e) = a. to the sum - i) 0f2(v). For every v € V(C)N
V2(G), let B, be a variable in Zs. Since [U(C)| + |Va(G) NV (C)| > 2, we can choose +1
assignments to all of the variables a. and (3, so that the following equation is satisfied:

Yo of)y= . B

veV(C) VeV (C)NVa(G)

By Lemma 6.9, we may choose a function ¢ : E(C) — Zs so that

a¢( )_ vian(’U) ifUEV(C)ﬁ%(G)7
TN Sofh)  ifve V(O)\ Va(G).

Now modify f by adding ¢ to fo and then f is an NZW of G, as desired. O

A theta is a graph consisting of two distinct vertices and three internally disjoint
paths between them. A theta is unbalanced if it contains an unbalanced circuit. By the
definition, the following observation is straightforward.

Observation 6.12. Let G be a signed graph containing no unbalanced thetas and A(G) < 3.
Then for any unbalanced circuit C and any v € V(G)\ V(C), G does not contain two
internally disjoint (x, C)-paths.

Now we present our main result of this subsection.

Lemma 6.13. Fvery shrubbery has an NZW. Furthermore, if G is a shrubbery with an
unbalanced theta or a negative loop and € € {—1,1}, then G has an NZW f = (f1, f2)
such that o(supp(f1)) = €.

Before we go through the details of the proof, we first present the outline of the proof.

Outline of the proof of Lemma 6.13: Consider G the minimum counterexample to the
lemma. If G does not contain an unbalanced theta or a negative loop, by Lemma 6.11,
all removable circuits are forbidden from G (See Claim 2-(1)). However due to the re-
quirement of ¢, if G has an unbalanced theta or a negative loop, only removable circuits
with certain properties can be forbidden from G (See Claim 2-(2a) and (2b)).

Thus, in order to avoid “forbidden circuits”, certain structures of G are determined
step-by-step in Claims 3-8, especially, the non-existence of edge-disjoint unbalanced cir-
cuits (Claim 6). With those structures and the application of Theorem 6.8, we are able
to lead the final contradiction that some forbidden circuit does exist in the remaining
part of the proof (Claims 9-11 and the final step).
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Proof. Let G be a minimum counterexample with respect to |E(G)|. Then G is con-
nected.

Claim 1. A(G) = 3 and G is 2-connected. Thus G does not contain loops.

Proof of Claim 1. Tt is obvious that both a circuit (balanced or unbalanced) and a path
have NZWs. Since A(G) < 3 by (S1), we have A(G) = 3.

Now we show that G is 2-connected. Suppose to the contrary that G has a cut vertex.
Since A(G) = 3, G contains a cut-edge e = vyvy. Let G; be the component of G — e
containing v;. By the minimality of G, each G; admits an NZW f* = (fi fi), and
Ofi(v;) # 0 since dg, (v;) < 2. Thus we can obtain an NZW f = (f1, f2) of G by setting
f(e) = (0,1) and f|g(c,) = f* or —f" according to the orientation of e and the values
of 0f3(vi) and 9f3(vy). Further, if G' contains an unbalanced theta or a negative loop,
so does one component of G — e, say G;. By the minimality of G, we choose f! such
that o(supp(/1)) = ¢ - o(supp(f2)). Hence o(supp(f1)) = o(supp(f1)) - olsupp(f?)) =
e o(supp(f2)) - o(supp(f?)) = ¢, a contradiction. O

Claim 2. (1) If G does not contain an unbalanced theta, then G does not contain a
removable circuit.

(2) If G contains an unbalanced theta, then G has no removable circuit C with one of
the following properties:

(2a) G — V(C) contains an unbalanced theta;

(2b) G = V(C) is balanced and o(C) = €.

Proof of Claim 2. Note that G does not contain a negative loop.

(1) is straightforward from Lemma 6.11.

Suppose that (2) is not true. Then G contains an unbalanced theta. Let C' be a
removable circuit satisfying (2a) or (2b). By the minimality of G, there exists an NZW
1= (f1, %) of G=V(C) such that o(supp(f)) = e-o(C) in Case (2a) and o (supp(f7)) =
1 in Case (2b). By Lemma 6.11, f’ can be extended to an NZW f = (f, f2) of G such
that supp(f1) = supp(fy) U E(C). In particular for Cases (2a) and (2b), o(supp(f1)) =
o(supp(fi)) - o(C) = ¢, a contradiction. O

Claim 3. Let X C V(G) such that |X| > 2, G[X] is balanced, and |dq(X)| = 2. If
G — X either contains an unbalanced theta, or is balanced and contains a circuit, then
X C Va(G) and thus G| X] is a path.

Proof of Claim 3. The conclusion that G[X] is a path directly follows from the properties
of X and the first conclusion that X C V5(G).

Suppose the claim fails. Let X C V(G) be a minimal set with the above properties
such that X NV3(G) # 0. Then G[X] is 2-connected by the minimality of X. Since G[X]
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is balanced and U(G[X]) = 0, by (S3), we have

2+ (3—do(x) = 0a(X)| + Y (3 —da(@) + 2U(G[X])| > 4.

zeX reX

The above inequality implies that X contains at least two 2-vertices. Since G[X] is
2-connected, let C' be a circuit in G[X] containing at least two 2-vertices. Then C' is
removable and thus by Claim 2-(2a), G — V(C) does not contain a unbalanced theta,
which implies that G — X does not contain unbalanced theta either. By the hypothesis,
G — X is balanced and G — X contains a circuit too.

Denote dg(X) = {e1,e2}. Since both G[X]| and G — X are balanced, by possibly
replacing o¢ with an equivalent signature, we may assume that og(e;) € {—1,1} and
that og(e) = 1 for every other edge e € E(G). Since C' is a removable circuit of G,
G contains an unbalanced theta by Claim 2-(1), and so G is unbalanced. Therefore
oc(e1) = —1 and thus e; is the only negative edge in G.

Let C’ be an unbalanced circuit and C” be a circuit in G — X. Then C” is balanced
and C’ contains e; and es.

Now we show that C’ U (G — X) contains an unbalanced theta. Denote e; = 2111
and ey = xoys, where 21,29 € X and y1,y2 € V(G) \ X. Since G is 2-connected and
A(G) = 3, there are two disjoint (x1,C”)-paths P; and P with V(P1) NV (Py) = {z1}.
Since C’ contains both e; and e, we may choose P; and P, such that P; U P, contains
the segment of C’ in G[X] from z to x5. Since e is the only negative edge, P, U P, UC”
is an unbalanced theta.

Since C’ is unbalanced, it is removable. Since G — V(C") is balanced and o(C’) =
—1, by Claim 2-(2b), we have ¢ = 1. On the other hand, since C is removable and
0c(C) =1=¢, G-V(C) is unbalanced by Claim 2-(2b) again. Thus we may choose the
unbalanced circuit ¢’ in G — V(C). Hence V(C") NV (C) = (). Therefore P, U P, UC" is
an unbalanced theta in G — V(C), a contradiction to Claim 2-(2a). O

Claim 4. Let X C V(Q) such that |X| > 2, G[X] is balanced, and |6¢(X)| < 3. For any
two distinct ends x1,x2 in X of dq(X), there is an (x1,x2)-path in G[X] containing at
least one vertex in Va(G).

Proof of Claim 4. Suppose that the claim fails. Let x12), z025 € 6¢(X), and B; be the
maximal 2-connected subgraph of G[X] containing x; for i = 1,2. Since G is 2-connected
and A(G) = 3 by Claim 1 and |dg(X)| < 3, we have that G[X] is connected and
da(x1) = dg(w2) = 3. Moreover every edge in dg(x](V(B;)) is a cut-edge of G[X] by
the maximality of B;. Thus |dgx)(V(B;i))| is equal to the number of components of
G[X] — V(B;). Since G is 2-connected, we have

(a) for each component A of G[X]| — V(B;), 0q(V(A),V(G)\ X) > 1 and thus

(b) 66(V(B))]| < 66(X)| < 3.

Moreover, since G[X] is balanced, B; is balanced for ¢ = 1,2. Thus we further have

(c) U(B;) =0 for i =1,2.
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We first show that for each ¢ = 1,2 B; does not contain a 2-vertex and is trivial.

WLOG, suppose to the contrary that B; contains a 2-vertex y.

If 25 € V(By1), then there are two internally disjoint (y, {x1,z2})-paths P; and P;.
Then Py U Py is an (21, z2)-path in G[X] containing one 2-vertex.

If x5 ¢ V(B1), then By and Bs are disjoint since A(G) = 3. Since G[X] is connected,
let P3 be an (z9, By)-path and y; be the other end of Ps. Then y; € V(B). Again
since Bj is 2-connected and dg(x1) = 3, y1 # 21 and there are two internally disjoint
(y,{y1,x1})-paths, P{ and Py. Then P; U P{ U P} is a desired (x1, z2)-path. This proves
that By (and Bg) doesn’t contain a 2-vertex.

By (b) and (c), we have |d¢(V(B;))| < 3 and U(B;) = 0 for i = 1, 2. If B; is nontrivial,
then by (S3), we have

4< Y B-de(@) +6c(V(B)) < > (3-da(x))+3.

zeV(B;) z€V(B;)

The above inequality implies that B; contains a 2-vertex, a contradiction. Therefore B;
is trivial.

Since dg(71) = 3, dgix)(z1) = 2 and thus G[X] — x; has two components, say A;
and A;. WLOG, we may assume zo € V(Ag). Since G is 2-connected, there exists
x3ah € 0g(V (A1), V(G)\ X) with 23 € V(A1) Similarly, G[X] — 22 has two components
Az and Ay. Since G[X] is connected, the subgraph induced by V(A;) together with
x1 must be contained in one of A3 and Ay, say As. Thus dg(V(A44),V(G) \ X) =
{z12), x32%}. Note that 0g(X) = {x12],x22h, x325} since [0g(X)| < 3. Since a2 ¢
V(As), §(V(A43), V(G)\ X) =0 < 1, a contradiction to (a). This proves the claim. O

Claim 5. G does not contain two disjoint unbalanced circuits Cy and Cy such that
V3(G) C V(C1) UV (Cy).

Proof of Claim 5. Suppose the claim fails. Let C; and Cy be two disjoint unbalanced
circuits such that V3(G) C V(C;) UV (Cy). Then every vertex of G’ = G — E(CyUCy) is
of degree at most 2. By Claim 2-(2a), G — V(C;) does not contain unbalanced theta for
each ¢ = 1,2. Thus by Observation 6.12, every nontrivial component of G’ is a path with
one end in V(C4) and the other end in V(C5). Since G is 2-connected and A(G) = 3,
there are at least two 3-vertices in each Cj.

When € = —1, choose 1, zo from V3(G) NV (Cy) such that the segment P = x1Cxs
contains all vertices of V3(G) N V(Cy). Let P; be the path in G’ with one end x; and
y; be the other end of P; for ¢ = 1,2. Since C is unbalanced, there is a segment, say
y1Coys2, of Cy such that the circuit C' = PUP; U P, Uy, Cyys is unbalanced, and thus C' is
removable. This contradicts Claim 2-(2b) since G — V(C) is a forest (which is balanced).

When e = 1, by the minimality of G and since G = G — V(Cy U C3) is a forest, G”
admits an NZW f' = (f], f3) with supp(f]) = 0. By applying Lemma 6.11 twice, we
extend f' = (f1, f4) to an NZW f = (f1, f2) of G such that supp(f1) = E(Cy) U E(Cy).
So o(supp(f1)) = 0(Cy) - 0(C2) =1 = ¢, a contradiction. O
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Claim 6. G' does not contain two disjoint unbalanced circuits.

Proof of Claim 6. Suppose to the contrary that C; and Cy are two disjoint unbalanced
circuits of G. By Claim 5, V3(G) \ V(C; U Cq) # 0.

Let z € V3(G)\ V(C1UCy). By Claim 2-(2a), for each C;, G —V(C;) does not contain
an unbalanced theta. Thus by Observation 6.12, there exists a 2-edge-cut of G separating
x from V(Cy U Cy). Let {e1,e2} be such a 2-edge-cut. Let

F={ei}U{e € E(G):{e,e1} is a 2-edge-cut of G}

and B be the set of all nontrivial components of G — F. Then every member of B is
2-connected. Since dg(z) = 3, there is a By € B containing z.

We claim that B has the following properties:

(a) Each B € B contains a removable circuit. In particular, if B is balanced, then B
contains at least one 2-vertex.

(b) Each B € B is either balanced or is an unbalanced circuit.

(c) [B] = 3.

Let B € B. Then [0¢(V(B))| = 2 and U(B) = 0. If B is balanced, then by (S3),
B contains at least two 2-vertices and thus contains a circuit containing at least two
2-vertices which is removable. If B is unbalanced, then B contains an unbalanced circuit
which is also removable. This proves (a).

Since By doesn’t contain Cy or Cy, |B| > 2. By (a) each member B in B contains a
removable circuit. Thus by Claim 2-(2a), each member of B does not contain unbalanced
theta and so is an unbalanced circuit if it is unbalanced. This proves (b).

By (b), C; and C5 belong to distinct members in . Note that By doesn’t contain C4
or Cy. Thus |B| > 3. This proves (c).

Since G is 2-connected, there is a circuit that contains all edges in F and goes through
every B € B. We choose such a circuit C' with the following properties:
(1) o(C') = € (the existence of C' is guaranteed since C; is unbalanced);
(2) subject to (1), |Vo(G) NV (C' — V(C1))| is as large as possible;
(3) subject to (1) and (2), |En(G) N E(C — V(C4))] is as small as possible.

We claim that C' is removable.

Let B € B\ {C1}. If B is balanced, then by (a), B contains a 2-vertex. Since B
is 2-connected, by (2), C' contains at least one 2-vertex in B. If B is an unbalanced
circuit of length at least 3, then by (2), C' contains one 2-vertex in B too. If B is an
unbalanced circuit of length 2, then by (3), C contains the positive edge in B and the
negative edge in B belongs to U(C). Therefore every B € B\ {C;} contributes at least 1
to [U(C)| + [Va(G) NV (C)]. Since |B\ {C1}] > 2, we have [U(C)| + |Va(G)NV(C)| > 2.
Hence C is a removable circuit.

Since each B € B is either balanced or an unbalanced circuit, G — V(C) is balanced.
This contradicts Claim 2-(2b) since C' is removable and since o(C) =€ by (1). O
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Claim 7. G contains an unbalanced theta and e = 1.

Proof of Claim 7. We first show that G contains an unbalanced theta.

Suppose that G does not contain unbalanced theta. If GG is unbalanced, then it contains
an unbalanced circuit. If G is balanced, then [V2(G)| = X, cy ()3 — da(2)) = 4 -
10¢(V(G))| — [U(G)] = 4 by (S3). Since G is 2-connected by Claim 1, G has a circuit
containing at least two 2-vertices. Hence G has a removable circuit in either case. It
contradicts Claim 2-(1). Therefore G contains an unbalanced theta.

The existence of unbalanced thetas implies that e € {—1,1}. Let C be an unbalanced
circuit. By Claim 6, G does not contain two disjoint unbalanced circuits, and thus G —
V(C) is balanced. By Claim 2-(2b), e # ¢(C) = —1,s0 e =1. O

Claim 8. |Ey(G)| > 2.

Proof of Claim 8. By Claim 7, G is unbalanced. Suppose to the contrary that Ex(G) =
{eo}. Let P be the maximal subdivided edge of G containing eg. Let yg,y1 be the two
ends of P. Then Int(P) C V(@) and yo,y1 € V3(G). Let G' = G — Int(P) if Int(P) # 0;
Otherwise, let G' = G — eg.

We claim that G’ is 2-connected. Suppose to the contrary that G’ is not 2-connected.
Let B be the maximal 2-connected subgraph of G’ containing y;. Since G = G’ U P is 2-
connected by Claim 1, yg ¢ V(B) and d¢/(V(B)) # 0. By the maximality of B, each edge
in 6/ (V(B)) is a cut-edge of G'. Since G is 2-connected again, |d¢/(V(B))| = 1 and thus
|0c¢(V(B))| = 2 and B is nontrivial since dg(y1) = 3. Similarly the maximal 2-connected
subgraph of G’ containing yo is nontrivial and thus contains a circuit. Therefore B is
balanced and G — V(B) is balanced and contains circuits since Ex(G) = {eg} C E(P).
By Claim 3, V(B) C V5(G), which contradicts the fact y; € V5(G). This proves that G’
is 2-connected.

(i) G" does not contain a circuit C' such that {yo,y1 }NV(C) # 0 and |V (C)NVa(G)| > 2.

Proof of (i). Otherwise, C' is a removable circuit such that G — V(C') is balanced and
o(C) =1 =€ by Claim 7, a contradiction to Claim 2-(2b).

Since G’ is balanced and 2-connected, and is also a shrubbery by Proposition 6.1,
V2(G)] = X sevien (3 — dar(2)) = 4 by (S3) and thus at least two vertices in V(G'),
say y2 and ys3, also belong to V5(G). Note that {ya, y3} N {yo,y1} = 0. By (i), there is no
circuit in G’ containing {y1, y2, y3}. Thus by Theorem 6.7, there is a partition of V(G’)
intoZ = {X1, X, Y1,Ys, Y3} such that y; € Y; (1 = 1,2,3), ¢/ (X1, X2) = 0 (Y3, Y;) = 0
(1<i<j<3),and 6¢/(X;,Y;) =e;5 (1 =1,2; j =1,2,3). See Fig. 2. For each Z € Z,
G'[Z] is connected since G’ is 2-connected and [dg/(Z)] < 3.

Since G’ is 2-connected and |6g/(Y;)| = 2 for j € {2, 3}, we have the following state-

ment.
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Fig. 2. A partition of V(G') into T = {X1, X2, Y1, Yo, Y3}.

(it) For any {i,j} = {2,3}, there is a circuit C; in G' —Y; containing y, and all the
edges in {e11, €1, €24, 21 }. We choose C; such that |V (C;)NVo(G)] is as large as possible.
Then by (i), |V(Cs) N Va(G)| < 1.

(iii) yo ¢ Y2 U Ys, Yo = {ya2}, and Y3 = {ys}.

Proof of (iii). Let j € {2,3}. We first show |Y;| = 1 if yo ¢ Y;. WLOG suppose to the
contrary yo ¢ Y3 and |Y3| > 2. Since G = G’ U P and yo ¢ Y3, |0a(Y3)| = |0¢/ (Y3)| = 2.
By (it), C3 is a circuit in G’ — Y3. Since G’[Z] is connected for each Z € 7, G’ — Y3 is
connected. Thus there is a (yo, Cs)-path P’ in G’ — Y3, so P’ U P U (5 is an unbalanced
theta in G — Y3. Since G[Y3] is balanced and |0¢(Y3)| = 2, by Claim 3, Y5 C V5(G) and
G[Y3] is a path. Thus Y5 C V(C3) and |V (C3) NVa(G)| > 2, a contradiction to (#i). This
proves |Y3| = 1. Therefore |Y;| = 1 if yo ¢ Y; for each j € {2,3}.

Now we show yo ¢ Y2 U Y3. Otherwise WLOG, assume yo ¢ Y3 and yo € Y2. Then
Y5 = {ys} and y3 € Vo(G). By (S4), C5 is not a balanced 4-circuit, and thus there is a
set Z € {Y1,X1, X2} such that |V(C3) N Z| > 2. Since |V(Z) N {yo, 1 }| < 1, G[Z] is
balanced. Obviously |d¢(Z)| = 3. By Claim 4 and the maximality of |V (C5)NVa2(G)|, Cs
contains a 2-vertex in Z. Together with the 2-vertex y3, we have |[V(C3) N Va(G)| > 2, a
contradiction to (¢). This shows yo ¢ Yo UY3 and thus |Ya| = |Y3| = 1.

() | X;| =1 if yo ¢ X; for any i € {1,2} and thus yo € X1 U Xs.

Proof of (iv). Suppose that for some i € {1,2}, yo ¢ X; and |X;| > 2. WLOG assume
i =1. Let @1, be the end of ey, in X for j =1,2,3. Since | X;| > 2 and since A(G) =3
and G is connected by Claim 1, z1; # x1; for some j € {2,3}. Note that z11,21; €
V(Cj). Since [6¢(X1)| = 3 and G[X4] is balanced, by Claim 4, there is an (z11,z1,)-
path in X; containing a 2-vertex. So C; contains a 2-vertex in X; by the maximality
of [V(C;) N'Va(G)|. Since de(y;) = 2 and C; contains y;, V(C3) contains at least two
2-vertices, a contradiction to (¢i). This proves that | X;| =1 if yo ¢ X; for any i € {1,2}.

If yo ¢ X1 U Xs, then |X1| = |X2| = 1. By (4i7), G[Y2 U Y5 U X7 U X5] is a balanced
4-circuit, a contradiction to (S4). Therefore yy € X1 U Xs.
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Y3

Fig. 3. G' = G — Int(P) — E(P).

By (iv), WLOG assume yo € X;. Then by (iv) and (iii), |Xa| = |Ya| = |Y3] = 1.
Denote Xy = {z5}.

(v) Y1 ={yi}.

Proof of (v). Suppose to the contrary that Y7 # {y1}. Then |Y1| > 2. Note that A(G") <
A(G) = 3. Since G’ is 2-connected and d¢/ (Y1) = {e11, €21}, the ends of e17 and e9; in V3
are different. Let Cy be a circuit in G’ containing all the edges in {e11, €12, €22, €21 } such
that |[V(C4) N Va(G)| is as large as possible. Since G[Y7] is balanced and [0¢(Y7)| = 3,
with a similar argument in (iv), Cy contains a 2-vertex in Y; and also contains the
2-vertex yo. Thus Cy contains at least two 2-vertices and hence is removable. Since
da(Y1) N E(Cy) = {e11,e21} and [0g(Y1)| = 3, G — V(C4) is balanced. Since Cy does
not contain ep, the only negative edge, Cy is balanced, meaning o(Cy) = 1 = ¢, a
contradiction to Claim 2-(2b). This completes the proof of (v).

Let 211, x12 and x13 be the ends of eq1, e12 and ej3 in X5, respectively. By (S4),
G[{z12,%13, T2, Y2, y3}] is not a 4-circuit, so x12 # x13. Together with (ii7), (iv), and (v),
the structure of G’ is shown in Fig. 3.

Now we can complete the proof of Claim 8.

Recall that G'[X7] is connected. If there is an (212, z13)-path P in G'[X;] containing
Yo, then C5 = P U {eja, €2, €23, €13} is a circuit containing yo and two 2-vertices ys, y3,
a contradiction to (z). Hence by Menger’s Theorem, G'[X;] = G[X;] has a cut-edge
separating yo from {x12, 213}

Let By be the maximal 2-connected subgraphs in G[X;] containing yo. Then every
edge in dgrx,](V(B1)) is a cut-edge of G[X;] by the maximality of B;. Since G[X;]
has a cut-edge separating yo from {12,213}, 12 and 13 are in the same component,
denoted by Ba, of G[X1] — V(B1). Since G’ is 2-connected and d¢/ (X1) = {e11, €12, €13},
x11 ¢ V(Bz). Let 0gx,1(V(B2)) = {¢'} and z be the end of ¢’ in By. Then there exists
an (x11, z)-path P’ in G'[X}] containing yj.

Recall that 12 # 2135. WLOG assume z # x13. Since dg(V(B2)) = {e12,€13,€'} and
Bs is balanced and has at least two vertices, by Claim 4, By has a (z,x13)-path P”
containing at least one vertex in V5(G). Then Cg = P’ U P” U z13ysx2y1 211 is a circuit
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containing at least two 2-vertices and yg, a contradiction to (). This completes the proof
of Claim 8. O

By Claim 8, ¢(G) = |En(G)| > 2. Denote €¢(G) = k. By Claims 1 and 6 and The-
orem 6.8, we can choose a minimum subset S C E(G) \ Ex(G) such that H = G/S
satisfies the following properties:

(i) A(H) <3;
(ii) H — En(H) — Ueepy () Int(P.) is a 2-connected planar graph with a facial circuit
C, where P, is the maximal subdivided edge in H containing e;

(iii) z1,..., %k, Tgt1,--.,22r are pairwise distinct and lie in that cyclic order on C,
where En(H) = En(G) = {e1, ..., e} and z;, x4, are the two ends of P,, for each
1 €[1,k].

For each v € V(H), let G, denote the corresponding component of G — E(H). Note
that A(G,) < A(G) = 3. By the minimality of S, G, is 2-connected. Otherwise we choose
S\ S, to replace S, where S, is the set of cut-edges of G,. Moreover, S = U,ey () E(G)
and E(G) =E(H)US.

Claim 9. k = 2 and |Int(P.,)| + |Int(P.,)| = 1.

Proof of Claim 9. Since k > 2, it is easy to see H — {z} contains an unbalanced theta
for any vertex z with dy(z) = 2. Thus by Claim 3 and by the minimality of .S, we have
that if dy(z) = 2 then G, = {z}.
We construct a circuit Cy in the following cases. If there are distinct i, j € [1, k] such
that [Int(P.,)| = [Int(Pe,)| = 0, let Cyg = C; If [Int(P.,)| + |Int(Pe,,,)| > 2 for some
€ [L,k],let Cy = C — E(x;Cxiy1) — E(xiy1Caiypq1) + Pe, + Pe,,,. Note that G, is
2-connected for any v € V(H), A(H) < 3 and A(G) = 3. Then Cp can be extended to
a removable circuit Cg of G such that 0(Cg) =1 =€ and G — V(Cg) is also balanced,
a contradiction to Claim 2-(2b). This completes the proof of the claim. O

WLOG assume that Int(P.,) = 0 and Int(P.,) = {y} by Claim 9. Then P., = z1z3
and P., = xoyxy4. Denote A; = 2;,Cx;41 (mod 4) fori € [1,4], C; = P.,, UA 1 UP,, U As,
and Cy = P, UA,; U P,, UAs. Note that both C; and Cy contain the 2-vertex y. See
Fig. 4.

Claim 10. H = G and V2(G) = {y}.

Proof of Claim 10. As noted in the proof of Claim 9, for each = with dy(z) =2, G, =
{z}. In particular, G, = {y}.

Note that G, is balanced and |d¢ (G )| < 3 for every @ € V(H). Thus by Claim 4, we
have the following fact:
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Fig. 4. Cy and C2 in CU P, U P,,.

(a) If G, is nontrivial, then for each two distinct ends w,v in V(G,) of d¢(G..), there
is an (u,v)-path in G, containing at least one vertex in V5.

Let z € V(C). WLOG assume z € V(C}). Note that if dy(x) = 2, then dg(z) = 2.
Thus, if dg(x) = 2 or if G, is nontrivial, C; can be extended to a circuit C{ of G such
that C contains the 2-vertex y and one 2-vertex in G, (the latter case follows from (a)).
Hence C] is removable, o(Cf) = 1 = ¢, and G — V(C]) is balanced, a contradiction to
Claim 2-(2b). Therefore dy(x) = 3 and G, = {«} for each z € V(C).

Next we show that y is the only 2-vertex in G. Suppose to the contrary that w is a
2-vertex in G. Then u ¢ V(C'). Since G is 2-connected, there are two internally disjoint
(u, C)-paths @ and Q2 in G with v; and vy the end vertices in C respectively. Since
A(G) = 3, v1 # va. Let C5 = Q1 U Q2 Uwv1Cvg and Cy € {C1,Ca} such that V(Cy) N
{v1,v2} # 0. Then C" = C3ACY is a circuit containing two 2-vertices {y, v} and the two
negative edges. Thus C” is removable, o(C]) = 1 = ¢, and G — V(C") is balanced, which
contradicts Claim 2-(2b). Thus V5(G) = {y}.

Since Vo(G) = {y}, G, is trivial by (a). Therefore H = G. O

Claim 11. Int(A;) # 0 for each i € [1,4].

Proof of Claim 11. Suppose to the contrary that Int(A;) # 0 for some i € [1,4]. WLOG
assume Int(A;) = (. Then A; is a chord in U(Cs). Since Cy contains the 2-vertex v,
(5 is removable, which contradicts Claim 2-(2b) since (C2) =1 =€ and G — V(Cy) is
balanced. O

The final step.

By Claim 11, let y; € Int(Ay) be the neighbor of z;. Let @ be the component of
G — E(C) containing y;. Since dg(y1) = 3 by Claim 10, @ is nontrivial. Obviously,
V(Q) N{x1, 22, 23,24} = 0 since A(G) = 3.
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If there is a vertex yo in V(Q) N (Int(A2) U Int(As)), let P be a (y1,y2)-path in Q.
Since A(G) < 3, C3 = P UyCys is a circuit containing xo. Then C' = Cy A C5 is a
circuit of G containing y and the chord z1y; € U(C’). Thus C” is a removable circuit of
G, a contradiction to Claim 2-(2b) since G — V(C") is balanced.

If V(Q) N (Int(A2) U Int(As)) = 0, then V(Q) NV (C) C Int(As) U Int(A;). Note
that |[V(Q) N V(C)| > 2 since G is 2-connected. Let ya,y3 € V(Q) N V(C) be two
ends of a segment P’ of A4 U A; such that the length of P’ is as large as possible. By
Claim 10, G’ = G — x123 — y is a 2-connected planar graph with a facial circuit C,
and so T" = ¢/ (V(P')) N E(C) is a 2-edge-cut of G'. Let T = T" if yo,y3 € Int(Ay),
and otherwise T' = 7" U {z123}. Then T is an edge-cut of G with |T] < 3 and the
component, denoted by R, of G—T containing y- is balanced and doesn’t contain y. Since
0 (V(R))| = [T] <3, by (S3), Xvev(r(B3—da(v)) = 4—6c(V(R))| - 2[U(R)| > 1, and
so this component R contains a 2-vertex (distinct from y), which contradicts Va(G) = {y}
by Claim 10. This completes the proof of Lemma 6.13. 0O

6.3. Completing the proof of Theorem 1.3

Finally we are to complete the proof of Theorem 1.3 in this subsection.

By Lemma 6.6, it suffices to show that every cubic shrubbery G admits a balanced
Zgy x Z3-NZF. If G is balanced, then such a flow exists by Theorem 6.2.

Assume that G is unbalanced. We claim that G contains either an unbalanced theta
or a negative loop.

If G is 2-connected, then for any unbalanced circuit C, we can easily find a path in
G — E(C) to connect two distinct vertices of V(C), and thus G has an unbalanced theta.

If G is not 2-connected, then it has an cut-edge since G is cubic. Let B be a leaf block
of G. If B is trivial, then B is a negative loop. If B is nontrivial, then B is unbalanced by
Proposition 2.2 since G is flow-admissible by (S2). Since B is 2-connected and all vertex
except one has degree 3, similar to the argument in the case when G is 2-connected, one
can find an unbalanced theta in B, which is also an unbalanced theta in G.

By the claim, we apply Lemma 6.13 on cubic shrubbery G with ¢ = 1 to obtain
an NZF f = (f1, f2) with o(supp(f1)) = € = 1. By Definition 6.10 this is a balanced
Zo x Z.3-NZF as desired. This completes the proof of Theorem 1.3.
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