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Abstract

In this paper, we proposed a novel zero velocity detector, the Dynamic-Vision-Sensor
(DVS)-aided Stance Phase Optimal dEtection (SHOE) detector, for Zero-velocity-UPdaTe
(ZUPT)-aided Inertial Navigation Systems (INS) augmented by a foot-mounted event-
based camera DVS128. We observed that the firing rate of the DVS consistently increased
during the swing phase and decreased during the stance phase in indoor walking
experiments. We experimentally determined that the optimal placement configuration for
zero-velocity detection is to mount the DVS next to an Inertial Measurement Unit (IMU)
and face the sensor outward. The DVS-SHOE detector was derived in a General
Likelihood Ratio Test (GLRT) framework, combining statistics of the conventional SHOE
detector and the DVS firing rate. This paper used two methods to evaluate the proposed
DVS-SHOE detector. First, we compared the detection performances of the SHOE
detector and the DVS-SHOE detector. The experimental results showed that the DVS-
SHOE detector achieved a lower false alarm rate than the SHOE detector. Second, we
compared the navigation performance of the ZUPT-aided INS using the SHOE detector
and the DVS detector. The experimental results showed that the Circular Error Probable
(CEP) of the case using DVS-SHOE was reduced by around 25 % from 1.2 m to 0.9 m, as

compared to the case of the SHOE detector.

1. Introduction

Pedestrian Dead Reckoning (PDR) systems, or self-contained pedestrian Inertial
Navigation Systems (INS), are necessary for localization in environments where the
signals of Global Navigation Satellite Systems (GNSS) are degraded or unavailable [1]. In
the GNSS-degraded environments, alternative localization techniques include 1) radio
navigation systems utilizing signals from Wireless Local Area Network (WLAN) [2],
Bluetooth [3], Long-Term Evolution (LTE) [4], and Ultra-Wide Band(UWB) [5] and 2) vision-
based navigation systems that utilizes computer vision algorithms to estimate camera
positions based on visual features detected in the surrounding environments [6, 7].
However, in some scenarios, the assumptions about availability of Radio-Frequency (RF)
infrastructure and validity of images for visual feature detection might not be realistic.

Thus, self-contained pedestrian INS are the only remaining options.

Due to the successful development of Micro-Electro-Mechanical-System (MEMS), small-
size and low-cost Inertial Measurement Units (IMUs) have become available, and the
availability has enabled pedestrian INS. However, the positions estimated by an INS have

high drift because the INS performs positioning by dead reckoning utilizing noisy IMU

[2]
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measurements that are corrupted by unknown time-varying biases [8]. For pedestrian
navigation, the Zero velocity UPdaTe (ZUPT) algorithm, can enhance the navigation
accuracy of an INS employing foot-mounted IMUs. The ZUPT-aided INS calibrates the
IMU measurements and zeros out the residual velocity of the INS during the stance phase
in a gait cycle [9]-[13]. The standalone ZUPT-aided INS has demonstrated the capability of
achieving an accuracy of 1 meter after traveling on the order of 100 meters, with industrial-
grade inertial sensors [14]. The accuracy of the ZUPT-aided INS could be further improved
by fusing IMU measurements, ZUPT algorithm, and measurements of other non-inertial
sensors, such as barometers, ultrasonic sensors, magnetometers, and cameras [15]-[20].
However, the navigation error of ZUPT-based INS heavily depends on the performance of
stance phase detection. For example, a standalone ZUPT-aided INS that employs an
accurate stance phase detector could have a better navigation performance than a

ZUPT/barometer-aided INS that uses an inaccurate stance phase detector.

In early developments of the ZUPT algorithm for pedestrian navigation, stance phase
detection, or zero velocity detection, was often achieved by comparing a fixed threshold
with statistics of likelihood computed from accelerometers’ and gyroscopes’
measurements [21]. One of the frequently used detector is the Stance Hypothesis Optimal
dEtection (SHOE) detector. The statistics of the SHOE detector directly relates to stability
of the foot, and its detection mechanism is based on an observation that the foot is more
stable in the stance phase than in the swing phase. As a result, if the statistics is higher
than the defined threshold, the SHOE detector determines the swing phase. Otherwise,

the detector indicates the stance phase.

The statistics of the SHOE detector, however, has an undesirable property. Figure 1
presents an example of statistics of the SHOE detector of one gait cycle in an indoor
walking experiment. In the second stage of the swing phase, the statistics of the SHOE
detector decreased when compared to the first and the second stages. The decrease was
due to the fact that the foot is more stable when traveling in the air than when taking off or
landing. False alarms of zero velocity detection, which is defined as the case that a
detector determines as a stance phase when the foot is in the swing phase, often occur
during the period when the foot is in the air. For example, if we used the threshold,
indicated by the red line in Figure 1, then a false alarm would be triggered. Notice that
although we can lower the threshold value to eliminate the false alarm, the lower value

does not necessarily lead to an improved overall navigation result.

[3]
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Figure 1. An example of the SHOE statistics in one gait cycle. The gait cycle is split into two stance
phases and a swing phase. The swing phase can be further divided into three stages. In the first
stage, the foot takes off the ground. In the second stage, the foot travels in the air. In the third

stage, the foot lands on the ground.

Previous work on improvement of the detection performance of zero velocity detection can
be categorized into two groups. The first group uses thresholds that adaptively vary during
different activities, such as walking, running, and climbing. The adaptive approaches
include classifications based on machine learning, Long Short-Term Memory (LSTM)
neural network, Hidden Markov Model (HMM), the posterior odds, the temporal variance of
the accelerometer, and the maximum shock of an IMU [22]-[32]. The methods presented in
the first group usually involve large training datasets and multiple heuristic parameter

tuning. Thus, it is not ideal for real-time implementation.

The second group of approaches includes measurements of other non-inertial sensing
modalities in the computation of likelihood statistics. Sensor modalities including
magnetometers [33], electromyography (EMG) [34], shoe-embedded pressure sensors
[35], and downward-facing Radio Frequency (RF) sensors [36]-[38] have been explored for
this purpose. However, these approaches for enhancing zero-velocity detection also have
limitations and constraints. The systems with EMG sensors are physically too complex.
The systems integrated with shoe-mounted pressure sensors or downward-facing ranging
sensors are only effective when users step on the ground and would fail for other
pedestrian activities, such as climbing on ladders. Therefore, other sensing modalities that
could benefit zero-velocity detection without the requirement of shoe contacting the ground
are necessary to investigate. In this paper, we utilize a Dynamic Vision Sensors (DVS) to
explore how the sensor can help to reduce the false alarm rate of the SHOE detector and

improve the detection performance.

[4]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:29:08 UTC from IEEE Xplore. Restrictions apply.



DVS, or Event-based cameras, work differently from a traditional CMOS camera in a way
that a DVS asynchronously detects light intensity changes, called events [39]. Some
previous work has been conducted to apply the DVS to the field of navigation [40]-[42].
The DVS has a high dynamic range, high temporal resolution, low power consumption,
and reduced motion blur [43], making it an intriguing alternative for efficient event detection
in foot-mounted INS navigation. Since DVS detects light intensity changes, no event would
be generated in an ideal case if no object is moving inside its Field Of View (FOV). This
idea can be extended to detect whether a DVS is stationary. Under the assumption that
the background inside the FOV is static, a DVS has a property that no event would be
produced when DVS is static, and a large number of events would be generated when the
DVS is moving. In this paper, we utilize this property of a DVS to assist the SHOE

detector.

We propose an event-based camera-assisted zero velocity detector for foot-mounted INS.
The proposed detector achieves zero-velocity detection by comparing a threshold with its
statistics, computed using the firing rate, defined as the total number of events generated
during a period, of the event-based camera and the statistics from the SHOE detector. The
proposed detector is shown to reduce the rate of false alarms of zero velocity detections
and to increase the accuracy of pedestrian navigation. This paper makes the following

contributions:
1) it presents hardware design of a foot-mounted INS integrated with a DVS,

2) it analyzes the properties of the DVS firing rate during indoor navigation

experiments,

3) it derives the event-based camera-aided zero velocity detector in a Generalized
Likelihood Ratio Test (GLRT) framework,

4) it evaluates the proposed detector in terms of detection rate, false alarm rate, and

navigation error,

5) it experimentally demonstrates the validity of the proposed detector.

2. Foot-mounted Dynamic Vision Sensor
2.1. The Lab-On-Shoe platform integrated with a DVS128
To understand the characteristics of measurements obtained from a foot-mounted DVS

and investigate its effect when aiding foot-mounted IMU for pedestrian inertial navigation,

[5]
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we combined the Lab-On-Shoe platform with a mini-eDVS system, shown in Figure 2. The
Lab-On-Shoe was previously developed by UCI MicroSystems Lab for evaluating
navigation performance of foot-mounted IMUs when aided by other non-inertial sensors,

such as barometers, ultrasonic sensors, and cameras [44]. The mini-eDVS system

Event-based camera
| DVS128

ADIS16495

Figure 2. The Lab-On-Shoe platform integrated with DVS128. The Lab-On-Shoe platform is
equipped with an IMU, three ultrasonic sensors, an barometer, an CMOS camera, and a
DVS. This paper only uses the DVS and the IMU.

contains an event-based camera DVS128 and a micro-controller [40]. The detall
description of the event-based camera DVS128 can be found in [39]. In this paper, the
IMU sampling rate was set to 120 Hz. The DVS firing rate was obtained by calculating the

number of events generated in a period of 0.0083 s.

2.2. Measurements of foot-mounted DVS
A DVS asynchronously detects light intensity changes, called events. A positive light

intensity change is represented as a positive event, and a negative change is a negative

[6]
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Figure 3. (a) The accelerometer readouts in an indoor walking experiment. (b) The corresponding
DVS firing rate in the same experiment. (c) An example of DVS events collected in the same
experiment. (d) A group of events collected during a swing phase in the experiment. (e) A CMOS
image of the scene generating DVS events during the swing phase. (f) A group of events collected

during a stance phase in the experiment.

event. In this paper, we do not distinguish the two types of events as they are both
generated by light intensity changes. One scenario that events are produced is when a
scene observed is moving relatively to the DVS. In the case of a shoe-mounted DVS in a
walking experiment, a large number of events are produced when the shoe is moving, and
fewer events present when the shoe is stationary. An example of DVS events generated in

an indoor walking experiment is shown in Figure 3(c). Each of the blue particles in Figure

[7]
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3(c) is an event. For visualization, we collected the events generated in a 0.0083 s window
and displayed the events as an DVS image. Figure 3(e) and (f) illustrate DVS images
taken during a swing phase and a stance phase, respectively. The blue and the red
particles in Figure 3(e) and (f) represent positive and negative events. We can observe
that the number of events generated during the stance phase is distinctively less than the
swing phase. Note that even though the shoe-mounted DVS had minimum movement
during the stance phase, events exist in Figure 3(f). Those events are considered as noise

events.

The firing rate of a DVS is defined as the total number of events triggered within a period.
The DVS firing rate of the walking experiment is presented in Figure 3(b). Accelerometer
readouts collected in the same walking experiment, shown in Figure 3(a), are used as
references to the stance phases and the swing phases. Figure 3(b) illustrates that the
firing rate increases during the swing phases and decreases during the stance phases.
Thus, the firing rate of a shoe-mounted DVS can be used to assist the SHOE detector,

which only relies on IMU measurements.

2.3. Mounting position for DVS to achieve best zero-velocity detection performance

To maximize the assistance that a DVS can provide for zero-velocity detection, we
conducted two indoor walking experiments with the Lab-On-Shoe platform integrated with
the DVS128 to determine a mounting configuration for the DVS. The two experiments
were conducted with the same path and walking speed and different mounting
configurations for the DVS. The mounting configuration of the DVS in the first experiment
is illustrated in Figure 4(a), where the DVS was mounted next to the IMU and faced
outward to surrounding walls. In the second experiment, the DVS was mounted on top of
the IMU and faced toward the front. The configuration of the second experiment is shown
in Figure 4(b).

Figures 4(c) and (d) illustrate examples of the firing rates collected during the first and the
second experiments, respectively. Comparing the firing rates in the swing phase, we can
see that the configuration demonstrated in Figure 4(a) led to a consistent DVS firing rate.
In contrast, the firing rate collected with the configuration shown in Figure 4(b) fluctuated
dramatically. The fluctuation was contributed by the fact that with the configuration in
Figure 4(b), there is a period during the swing phase that the FOV of the DVS was facing
the ground. The ground in the experiments does not have many visual features. Thus, the

number of events that were generated was less when the DVS is facing the ground. An

[8]
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Figure 4. (a) DVS is mounted next to the IMU and faces outward. (b) DVS is mounted next to the
IMU and faces outward. (c) Firing rate in an indoor walking experiment with DVS mounting
configuration shown in (a). (d) Firing rate in an indoor walking experiment with DVS mounting
configuration shown in (b). (e) An example of a DVS image taken when the DVS is facing the
ground. (f) An example of a DVS image taken when the DVS is moving and facing forward. (g) An
example of a DVS image taken during the stance phase, capturing events generated by the other

shoe.

example of events generated when the DVS was facing the ground is shown in Figure
4(e). In this series of experiments, we also found that using the configuration in Figure 4(b)
has another drawback. During the stance phase, the other shoe can come inside the FOV

of the DVS, generating events that are not beneficial for zero-velocity detection. Figure

[9]
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4(g) shows an example of the events caused by the other shoe. Since zero-velocity
detection is based on comparing a statistics of likelihood with a threshold, one of the
desired properties is that the statistics during the stance phase is distinct from that during
the swing phase. Thus, to achieve the best performance for zero velocity detection, we

conclude that the DVS should be mounted next to the IMU, facing outward.

3. DVS-aided Zero Velocity Detection (DVS-SHOE)

We propose a zero velocity detector that utilizes statistics of the SHOE detector and firing
rate of a DVS. We will refer to the proposed detector as the DVS-aided SHOE (DVS-
SHOE) detector in the following discussion. The derivation of the DVS-SHOE is similar to
the derivation of the SHOE detector presented in [21], which uses the GLRT framework. In
the derivation of the DVS-SHOE detector, we augmented the inertial sensors
measurements, y& and y, with the DVS firing rate, y{, and the measurement vector y;

can be expressed in the following form:

a a a
Yk Sk U
w w w
Vi = Yi | = |Sk =+ Vg =Sk+vk’
y) ) )
Yk Sk 4%

where s¥ € R® and s € R® denote the IMU-experienced acceleration and angular rate,
respectively. si € R denotes the firing rate of the DVS.vZ € R?, v € R?, and v €R
represent the measurement noises of the accelerometer, gyroscope, and DVS firing rate,
respectively. In our derivation, we assumed that the measurement noises of
accelerometers, gyroscopes, and DVS firing rate are independent and identically

distributed white Gaussian noises with respective variances ¢, ¢2, and o;.

As discussed in [21], the two hypotheses, H, and H;, in zero-velocity detection correspond
to the cases of the swing phase and the stance phase, respectively. Under the hypothesis
H,, the accelerometer only experiences the gravitational acceleration; the angular rate
experienced by the gyroscope is zero; the DVS firing rate is a constant value A. For an
ideal noise-free DVS, A is zero. In a practical situation, noise events can be generated
even when no object is moving in a DVS field of view, and therefore, 4 is non-zero. In our
implementation, we experimentally determined 1 = 30. Under the hypothesis H,, forces
from the foot lead to complicated foot motion, so that the accelerometer experiences

acceleration exceeding gravity, the gyroscope readouts fluctuate, and the DVS detects

[10]
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events generated by the foot motion. For the two hypotheses, we assumed the sensor

measurements should satisfy the following conditions:
Ho: 3k € Q,, 5T # guy, S© # O3yq,Sp # A
H;:Vk € Q,,5% = gu,,s® = 035,50 = A

where u,, is a 3x1 unit vector, 054, is a 3x1 zero vector, g is the gravitational constant, and
Q,={leN,n<l < N-—1}is a collection of the sensor measurement indexes at time n

with a window of length N.

Following the derivation described in [21], the proposed DVS-SHOE detector chooses H; if

Ti(zp) = 5 Z <Ua

kEQy

L [ —a||2) <y

where z,, = {y,}¥=N-1 and y’ are user-defined thresholds.

4. Experimental Results

To validate the DVS-SHOE detector, we performed a series of indoor close-loop walking
experiments with the Lab-On-Shoe platform integrated with the DVS128. The series of
experiments included ten nominally identical trials. In each trial, a subject walked over 150
steps for a duration of 160 m in about 120 s. The trajectory included a flat surface, a ramp,
and stairs. A reference trajectory generated by ZUPT-aided INS with the DVS-SHOE
detector is shown in Figure 6(a). We used two methods to evaluate the DVS-SHOE
detector. The first method was to study the detection performance in terms of the detection
rate and the false alarm rate. The second method was to investigate the navigation results
of ZUPT-aided INS with different detectors. Detailed implementation of the ZUPT-aided
INS is presented in [11].

4.1. Detector Performance

We first compared the detection performance of the DVS-SHOE detector with the SHOE
detector. False alarm rate and detection rate were used as metrics for evaluation. In zero-
velocity detection, a false alarm is generated when the shoe is moving, but a stance phase
detector indicates a stance phase. A mis-detection is produced when the shoe is on the
ground, but the detector determines a swing phase. Figure 5(a) illustrates that using the

threshold indicated by the green line in Figure 5(a) for the SHOE detector would lead to a

[11]
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Figure 5. (a) shows an example of SHOE and DVS-SHOE statistics for one gait cycle in the indoor

walking experiment. The orange area indicates the stage of shoe traveling in the air during the
swing phase. (b) presents the detection performance of the SHOE detector in the indoor walking
experiments. The green area indicates the range of thresholds that achieves a near 0% false alarm
and 100% detection rate. (c) demonstrates the detection performance of the DVS-SHOE detector
in the indoor walking experiments. The green area in (c) is larger than the one shown in (b). The

larger green area implies that the DVS-SHOE detector is more robust than the SHOE detector.

false alarm in the walking experiment. The false alarm was eliminated when the statistics
of the DVS-SHOE was used. The elimination was due to the fact that during the period
when the shoe is traveling in the air, the DVS firing remains consistently on a high level.
Thus, the statistics of the DVS-SHOE was kept high during the orange area in Figure 5(a),
leading to a reduction of the false alarm.

Figure 5(b) and (c) demonstrate the detection rates of the SHOE detector and the DVS-
SHOE detector when different values of thresholds were used. We can observe that the
first false alarm for the DVS-aided SHOE detector happened at a much larger threshold
value than in the case of the SHOE detector. The green areas in both Figure 5(b) and (c)

indicate that when a threshold value is chosen from this range, the detector achieves a

[12]
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near 0% false alarm rate and a 100% detection rate. In this series of experiments, the
green area in Figure 5(e) is larger than Figure 5(d), implying that the DVS-SHOE detector

can handle a larger range of thresholds.

4.1.
To evaluate the DVS-SHOE detector in a more realistic case, we compared the navigation
accuracy of ZUPT-based INS when using the SHOE detector and the DVS-SHOE

detector. The navigation accuracy is evaluated with the Circular Error Probable (CEP). The

Navigation results

estimated final destinations of the ten sets of experiments and the CEPs are presented in
Figure 6(b) and (c). The experimental results showed that the CEP is reduced by around
25%, from 1.2m to 09m, when the DVS-aided SHOE detector is applied. The
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Figure 6. (a) Reference trajectory of the indoor walking experiments. (b) presents the navigation
results of the SHOE detector in the indoor walking experiments. (c) demonstrates the navigation

results of the DVS-SHOE detector in the indoor walking experiments.
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improvement is a direct result of the fact that the DVS-SHOE detector has a better zero-

velocity detection performance than the SHOE detector.

The DVS-SHOE detector has two constraints. First, we assumed that the scene observed
by the DVS is static to use the DVS firing rate for zero-velocity detection. Nevertheless,
this is not always the case. If the DVS observes moving objects during the stance phase,
the statistics of the DVS-SHOE will increase, leading to mis-detections. Second, if the
scene inside the field of view does not have many visual features, for example, a white

wall, then the statistics of the DVS-SHOE will decrease, leading to false alarms.

6. Conclusion

In this paper, we proposed a novel zero velocity detector, the DVS-SHOE detector, for
ZUPT-aided INS augmented by a foot-mounted event-based camera DVS128. We
demonstrated that the firing rate of the foot-mounted DVS increased during the swing
phase and decreased during the stance phase in a walking experiment. We experimentally
determined the DVS mounting configuration, which is to mount the DVS next to an IMU
and face the sensor outward for optimal performance of zero-velocity detection. We used
two methods to evaluate the proposed DVS-SHOE detector. First, we compared the
detection performances of the SHOE detector and the DVS-SHOE detector in terms of
false alarm rate and detection rate. The experimental results showed that the DVS-SHOE
detector achieved a lower false alarm rate than the SHOE detector. Second, we compared
the navigation performance of the ZUPT-aided INS using the SHOE detector and the DVS
detector. The experimental results showed that the CEP of the case using DVS-SHOE is
reduced by around 25 %, from 1.2m to 0.9 m, as compared to the case of the SHOE

detector.
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