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Abstract—The brain outperforms computer architectures
in aspects of energy efficiency, robustness and adaptivity.
Brain computations are modeled in silico with spiking neural
networks and neuromorphic hardware. Recently, three-factor
synaptic plasticity rules approximating backpropagation have
been derived. Suited to neuromorphic hardware, these rules
can learn online with asynchronous updates. In this paper,
we present Continuous Random Backpropagation (cRBP), a
continuous version of Event-Driven Random Backpropagation.
This learning rule performs comparably to state-of-the-art rules
on the DvsGesture dataset. We additionally show that the
accuracy can be significantly increased with a simple attention
mechanism. This mechanism provides translation invariance at
low computational cost compared to convolutions by exploiting
event stream sparsity. Subsequently, we integrate cRBP in a
real robotic setup, where a gripper grasps objects according to
the detected visual affordances. In this setup, visual information
is actively sensed by a Dynamic Vision Sensor (DVS) mounted
on a robotic head performing microsaccadic eye movements.
Our results suggest that advances in neuromorphic technology
and plasticity rules enable the development of learning robots
operating at high speed and low power.

I. INTRODUCTION

The brain outperforms computer architectures in aspects
of energy efficiency, robustness and adaptivity. The com-
putational paradigms of the brain are vastly different from
modern computer architectures. Biological neural networks
base their computations on local information and communi-
cate asynchronously with spikes. Understanding how these
paradigms can be implemented in hardware would enable
the design of autonomous learning robots operating at high
speed for a fraction of the energy budget of current solutions.

Learning in the brain is believed to be based on synaptic
plasticity. Unlike conventional machine learning methods,
synaptic plasticity rules characterize weight updates in terms
of information local to the synapse. Synaptic learning en-
ables an efficient neuromorphic hardware implementation,
asynchronous updates and online learning.

Recently, a family of synaptic plasticity rules for training
multi-layer spiking neural networks have been proposed in
[1]-[4]. These rules implement variations of backpropagation
by approximating gradients as a multiplication of three fac-
tors related to the input, output and error of a synapse [5]. In
this paper, we evaluate the ability to efficiently learn spatio-
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Fig. 1: Our robotic setup to embody the synaptic learning
rule cRBP. The DVS is mounted on a robotic head per-
forming microsaccadic eye movements. The spiking network
is trained online (dashed-line connections) in a supervised
fashion to classify visual affordances from the event streams.
The output neurons of the network correspond to the four
types of affordances: ball-grasp, bottle-grasp, pen-grasp or do
nothing. At test time, a Schunk LWA4P arm equipped with
a Schunk SVH 5-finger hand performs the corresponding
reaching and grasping motion.

temporal visual representations using three-factor rules em-
bodied in a robotic setup.

We present the Continuous Random Backpropagation
(cRBP) rule — a continuous version of Event-Driven Random
Backpropagation (eRBP) [1] — following the derivation of
Deep Continuous Local Learning (DECOLLE) [3]. Like
DECOLLE, the synaptic weights have continuous-time dy-
namics, unlike eRBP which only updates synaptic weights
on pre-synaptic spikes. Like eRBP, the error signals for the
hidden neurons are computed at the network output, unlike
DECOLLE which computes errors locally at the layer. These
rules learn in an online fashion, in the sense that synaptic
weights are updated while the input is streamed in the
network, by propagating information required to compute the
gradient forward as Real-Time Recurrent Learning (RTRL)
[6]. This enables the space complexity of these rules to
remain constant with respect to time. In contrast, other rules
such as SLAYER [7] based on Backpropagation-Through-
Time (BPTT) require to store an history of the past neural
activity. In this case, memory consumption increases with
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the length of the time sequence, an important limitation, as
reported in [8]. On the other hand, DECOLLE and cRBP
can learn spatio-temporal patterns on long sequences with a
fine temporal resolution. This makes them perfectly suited to
neuromorphic vision sensor data. Additionally, unlike con-
ventional artificial neural networks which require to integrate
frames from event streams [9]-[11], our method is suitable
to low latency applications.

We show that the accuracy of cRBP is comparable to
state-of-the-art methods on the IBM DvsGesture dataset [12].
A covert attention mechanism is introduced which further
improves the efficiency and accuracy of the learning rules
by providing translation invariance at low computational
cost compared to convolutions. Inspired by receptive field
remapping in the visual cortex, this attention mechanism
is tailored to the sparsity of the visual event streams. Fi-
nally, we integrate cRBP in a real-world closed-loop robotic
grasping setup involving a robotic head, arm and a 5-finger
hand. The spiking network learns to classify different types
of affordances based on visual information obtained with
microsaccades, and communicates this information to the
arm for grasping. This real-world task has the potential
to enhance neuromorphic and neurorobotics research since
many functional components such as reaching, grasping and
depth perception can be easily segregated and implemented
with brain models. This work paves the way towards the
integration of brain-inspired computational paradigms into
the field of robotics.

A barrier to embodied learning robots is the offline (batch
learning) nature of conventional implementations of back-
propagation. In comparison, our model can learn from events
streamed from the DVS [26] with little loss in accuracy.
This enables continual updates without separation of training
and testing phases. However, such life-long learning setups
require to address the forgetting problem resulting from
learning on temporally correlated input data.

II. METHOD
A. Continuous Random Backpropagation

The backpropagation algorithm computes the gradient of
a synaptic weight with respect to an arbitrary loss function
defined on the network’s output. The credit of a neuron
— how a change in its output affects the loss — therefore
depends on the synaptic weights of the subsequent layers.
This weight transport problem is solved by Direct Feedback
Alignment [13], an instance of random backpropagation [14],
by computing the credit for a neuron ¢ as a linear combi-
nation of network errors e; with fixed, random coefficients
gi- This solution also enables asynchronous weight up-
dates by decoupling the conventional forward and backward
phases of backpropagation. An adaptation of Direct Feedback
Alignment to spiking networks of Leaky Integrate-And-Fire
neurons was derived in [1]. Named eRBP, this synaptic
plasticity rule can be formulated as:

Aw;;(t) o Z ex(t)gin X O (ui(t)) x s;(t), 1)

kerdout

with w;; the synaptic weight from j to 7, ©’ the derivative
of the spike function, u; the membrane potential of neuron
1 and s; the pre-synaptic spiketrain (either 0 or 1 at a given
time t). The set rdout contains the indices of the readout
neurons y. The spike function © is the non-differentiable
heaviside function (hard threshold), but its derivative can
be approximated with a surrogate gradient [15]. As with
eRBP and DECOLLE, we approximate this derivative with
the boxcar function: ©'(z) &~ Boxcar(z) =1if —0.5 < z <
0.5, otherwise 0. The symbol o refers to a proportionality
relation — the multiplicative constant is the learning rate
which can be chosen freely.

In the special case of a Mean Square Error (MSE) loss,
the errors e, are computed as the difference between network
readouts y; and network targets yy:

er(t) = yu(t) — Y (1),
yr(t) = Z 5i(t) X gix (2)

i€out

with out the set containing the indices of the output neurons.

Since the weight update in Equation (1) is proportional
to s;, weight updates in eRBP are triggered by pre-synaptic
spikes, in an event-driven fashion. However, this formulation
does not account for the dynamics of the post-synaptic
potentials. More recent three-factor rule derivations now
incorporate an eligibility trace to account for this dynamics
[2]-[4] (see Equation (4) in [2]). We can integrate this term
directly into Equation (1), yielding the cRBP rule:

Awgi(t) o< D> er(t)gin x O (ui(t)) x €% s;(t), 3)
kerdout

where * denotes a temporal convolution and € is the post-
synaptic potential kernel. This new rule describes continuous
synapse dynamics rather than event-driven updates — we
therefore refer to it as cRBP. The main difference with Super-
Spike is the loss function: SuperSpike relies on a van Rossum
distance with a target spiketrain. This leads SuperSpike to
require one eligibility trace per synapse, whereas cRBP
requires only one eligibility trace per neuron. Additionally,
the computation of this eligibility trace can be factored into
the neural dynamics, as presented in DECOLLE. The main
difference with DECOLLE is that DECOLLE relies on local
readouts ny and local targets g]i for every layer [ to compute
the errors efc. Instead, hidden layers in cRBP are updated
with respect to the global network loss.

The simulations presented in this paper rely on the same
neuron model as DECOLLE, introduced in Equation 4 in [3].
Note that this neuron model does not account for synaptic
delays, and the refractory period is approximated with a self-
inhibition.

B. Network Architecture

The network is presented in Figure 1. It learns from
event streams provided by a DVS. Since spikes are not
signed events, we associate two neurons for each pixel to
convey ON- and OFF-events separately. This distinction is
important since event polarities carry information about the
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direction of motion (see Figure 3). Since events are emitted
only upon light change, two different setups are analyzed: a
dataset where changes originate from motion in the scene,
and a dataset where changes originate from fixational eye
movements. The evaluation on these two types of dataset
can lead to different performance [16].

Only spikes are propagated from a layer to another.
However, the errors computed at the network output (e in
Equation (2)) are communicated to the layers as an analog
value. A previous implementation of the work presented in
this paper relied on eRBP which was implemented with
Auryn [17]'. This implementation computed and commu-
nicated errors using only neural dynamics and spikes, as
in [1]. The newer implementation of this work is based
on PyTorch which offers more tools for learning such as
auto-differentiation, convolution, max pooling and advanced
optimization methods.

C. Covert Attention Window

It was shown in biology that receptive fields of frontal eye
field neurons are constantly remapped [18]-[20]. Inspired
from this insight, we introduce a simple covert attention
mechanism which consists of continuously moving an at-
tention window across the input stream when new events
are received. Covert attention, as opposed to overt atten-
tion, signifies an attention shift which was not marked by
eye movements. Particularly suited to the sparsity of event
streams, the center of the attention window is computed
online as the median address of the last 7ugenton €vents,
see Figure 3. By remapping receptive fields relatively to
the center of the motion, this technique enables translation
invariance at low computational cost compared to convo-
lutions. Indeed, convolutions process all the regions of the
image identically and require a weight sharing mechanisms
complicated to implement on neuromorphic hardware. Our
method also allows to reduce the dimension of the event
stream without rescaling, thus decreasing the size of the
neural network.

A similar method was already introduced in [21] for
classifying a dataset of three human motions (bend, sit/stand,
walk) recorded with a DVS. Their approach consists of
remapping the address of their feature neurons (C1) with
respect to their mean activation before being fed to the clas-
sifier. Instead, our method consists of remapping the address
events directly, with respect to the median address of the last
events. Unlike the median, the mean activation can result in
an event-less attention window in case of multiple objects in
motion, such as two-hand gestures. Additionally, since our
attention window is smaller than the event stream, eccentric
events are not processed by the network. We show in this
paper how this biologically motivated technique boosts the
performance, even on DvsGesture, where multiple body
parts are simultaneously in motion. We note that a similar
mechanism could be integrated in a robotic head as the one
used in this paper to perform saccadic eye movements (see

Ihttps://github.com/HBPNeurorobotics/auryn

Fig. 2: Microsaccadic motion of the DVS performed by the
robotic head.

Figure 2). In this case, an additional mechanism to discard
events resulting of the ego-motion would be required.

D. Microsaccadic eye-movements

For our real-world grasping experiment, address events
are sensed from static scenes by performing microsaccadic
eye movements. This technique was already used to convert
images to event streams [22], essentially extracting edge
features [16]. To this end, we mounted the DVS on the
robotic head presented in [23], see Figure 2. One Dynamixel
servo MX-64AT is used to tilt both DVS simultaneously,
while two other Dynamixel servos MX-28AT are used to
pan each DVS independently. The center of all rotations
is approximately the optical center of each DVS. In this
work, only the events of the right DVS are processed. The
microsaccadic motion consists of an isosceles triangle in joint
space, with each motion lasting 0.2s. The motions are a
negative tilt of o and negative pan of «/2, followed by a
tilt of v and negative pan of «/2, finalized with a return to
the initial position. We chose the angle o = 1.833°. This
angle is much smaller in biology, but DVS pixels are much
larger than the photoreceptors of the retina [24]. The precise
microsaccadic motion is not relevant for learning, but similar
motions should be used for training and testing.

The microsaccades are triggered either manually for
recording training data, or automatically in a loop at test
time. We allow the events to flow through the network only
when a microsaccade is triggered. No information about the
properties of the microsaccade is passed as an input to the
network.

ITII. EVALUATION

Two different network architectures are used in this work:
a convolutional network and a dense network. Both archi-
tectures expect input dimensions 2x32x32 at a given time
step. The first architecture is the same 3-layers convolutional
network used in DECOLLE [3]. The convolutions consist of
64, 128 and 128 kernels of size 7x7 respectively, interleaved
with max pooling and spike dropout operations. The max
pooling operation is applied before the spike function ©.
The dense network consists of two hidden layers with 200
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Model Accuracy #Iterations
IBM EEDN (conv) [12] 91.77%(94.59%)  Offline 64M
SLAYER (conv) [7] 93.64 + 0.49 % Offline .27M
DECOLLE (conv) [3] 95.60 + 0.56% Online .16M
DECOLLE (conv+attention) 96.37 £ 0.51% Online .16M
c¢RBP (conv) 92.48 £+ 0.89% Online .16M
cRBP (conv+attention) 95.34 + 0.78% Online .16M
cRBP (2L dense) 77.93 + 2.09% Online .16M
cRBP (2L dense+attention) 90.80 &+ 1.16% Online .16M

TABLE I: Classification accuracy on the DvsGesture dataset.
The mean accuracies and standard deviations reported in this
work (below the horizontal bar) were computed over 7 runs.
The number of iterations refers to the number of training
samples that were fed to the network. EEDN increases its
accuracy with output filtering.

neurons each. The implementation for cRBP is realized
with the PyTorch framework and integrated in the open-
source DECOLLE code base?. This allows a fair comparison
between DECOLLE and cRBP, using the same training pro-
cedure and neural parameters, see [3] for details. Specifically,
the loss function L is a smooth L1 loss, the learning rate is
set to 10~ and divided by 5 every 30 epochs. The optimizer
is AdaMax [25] with parameters 31 = 0, $2 = 95.

A. DvsGesture

We evaluate cRBP on the DvsGesture dataset, following
the same training procedure as the DECOLLE rule [3],
currently achieving state-of-the-art accuracy on this dataset.
DvsGesture is an action recognition dataset recorded by
IBM using a DVS [12], [26]. It consists of 1342 record-
ings of 29 subjects performing 11 diverse actions in three
different illumination conditions. This dataset is loaded into
PyTorch using the torchneuromorphic library® developed in
[3]. Specifically, training samples consist of 500 ms-long
event streams, and test samples 1800 ms-long. These samples
are sliced at random location in the dataset, but ensuring
that the motion is presented during the whole sequence. This
procedure maximizes the use of the dataset, leading to 1176
train samples and 288 test samples. The sequences were
presented to the network in mini-batches of 72 samples.

The event streams recorded from the DVS are 2-channels
(ON and OFF events) with 128x128 pixels. We compare
the accuracy of the network on the downsized streams and
using the covert attention window mechanism described in
Section II-C. The downsize operation reduced the event
stream to 32x32 by grouping neighboring pixels, and was
used in [3]. The attention window re-address the events in
a 32x32 window with respect to the median event. It was
implemented as an alternative to the downsize operation
in the torchneuromorphic library. The number of events to
calculate the position of the attention window was set to
Nattention = 1000.

The final accuracies for the different experiments on
DvsGesture are reported in Table I. Our evaluation on Dvs-

’https://github.com/nmi-lab/decolle-public
3https://github.com/nmi-lab/torchneuromorphic

(a) Arm circling clockwise  (b) Arm circling anticlockwise

Fig. 3: Aggregation of 1000 events for two samples of
the DvsGesture dataset (user 10). The information about
direction of motion is contained in the event polarity, hence
the importance of their segregation in the input layer. The
red square represents the attention window of size 32x32,
calculated as the median address of the last 1000 events.
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Fig. 4: Classification accuracy on DvsGesture with the
convolutional and dense network architectures on the 32x32
event streams. Top: downsampling. Bottom: attention win-
dow mechanism. Shaded areas represent the standard devia-
tion computed over 7 runs with different random seeds.

Gesture shows that cRBP efficiently learns spatio-temporal
patterns to classify motions from raw event streams. With
the same convolutional architecture and training procedure as
DECOLLE, cRBP reaches 92.48% accuracy, close to state-
of-the art accuracy, see Figure 4. When replacing the down-
sampling operation of the event stream with the attention
mechanism, the accuracy further increases to 95.34% for
cRBP and to 96.37% for DECOLLE. This improvement is
more significant for the dense network architecture. In this
case, the attention window mechanism leads to a substantial
improvement from 77.93% to 90.80% accuracy compared to
the downsampling approach. This confirms our assumption
that the attention window mechanism provides translation
invariance with respect to the performed gestures. The reason
why the performance of the convolutional networks only
slightly improves is because convolution and max pooling
operations already provide translation invariance. It results
from the same kernel being convolved on the whole image
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Fig. 5: Spiketrains of cRBP with attention window for a test sample of class “Left Hand Wave” from the DvsGesture dataset
(dropout deactivated). The spiketrains only show 50% of the input neurons and 1% of the hidden neurons for readability.
The rhythm of the “Left Hand Wave” motion is clearly visible in the input spiketrain. Lack of regularization in the loss and
weak refractory term in the neuron dynamics lead to pathologically high spike rates. Readout activities are filtered with a

sigmoid function.
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Fig. 6: Output of cRBP with downsampling for the same test
sample as shown in Figure 5.

to form a feature map. We therefore expect that locally
connected layers (convolutional topology where kernels are
not shared for the whole the image [27]) coupled with
the presented attention mechanism could drastically reduce
the amount of computations while retaining the accuracy
of a convolutional network. Such networks are also more
biologically plausible than convolutional networks since no
mechanisms in the brain is known to support weight sharing.

The improvement of the attention mechanism over down-

sampling is also reflected in the classification output of a test
sample. Indeed, with the attention mechanism, the network
unambiguously and correctly classifies the test sample early
in the sequence, see Figure 5. With the downsampling
approach, the confusion in the output of the network is
higher, see Figure 6. We note that many neurons in the hidden
layers spike with very high rates, including the maximum
rate of 1000Hz imposed by the simulation time step of 1ms
(neglecting dropout). Indeed, the weak refractory term in
the neural dynamics decreases the membrane potential after
a spike, but does not prevent subsequent spikes. A lower
spiking rate can be favored by adding a regularization term
in the loss function as mentioned in [3]. This is shown in
the grasping experiment, see Figure 9.

B. Grasp-type Recognition

In this experiment, we embody cRBP in the real-world
grasping robotic setup shown in Figure 7. In this setup, the
spiking network is trained to recognize four labels corre-
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Fig. 7: Real-world grasp-type Recognition experiment setup
integrating a Schunk LWA4P arm equipped with a Schunk
SVH 5-finger hand and a DVS head. The DVS head performs
microsaccadic eye movements to sense event streams from
static scenes. We recorded a small four-classes dataset (ball,
bottle, pen, background) of 50 samples per class. At test time,
the detected grasp-type triggers the corresponding predefined
reaching and grasping motion.

sponding to four different grasps: ball-grasp, bottle-grasp,
pen-grasp or do nothing [28]. During training, an object of a
particular class is placed on a table at a specific position.
The robotic head performs microsaccadic eye movements
(similar to the N-MNIST dataset [22]) to extract visual
information from the static object. Only the event stream
of one DVS is recorded, together with the corresponding
object affordance. In this experiment, the attention window
of dimension 32x32 is fixed to match the position of the
objects on the table, see Figure 8 for example samples.
During testing, a microsaccade is performed and the detected
object affordance triggers the adequate predefined reaching
and grasping motion on a Schunk LWA4P arm equipped
with a Schunk SVH 5-finger hand. This demonstrator was
implemented with the ROS Framework [29] and the ROS
DVS driver introduced in [30].

With only 50 samples per class and 10 epochs, the network
was capable of learning the four visual affordances (see the
supplementary video* using the previous eRBP implemen-
tation). Example spiketrains and classification results at test
time are shown in Figure 9. Spike rates are kept lower than
in the DvsGesture experiment by using regularization in the
loss function. Specifically, the loss function becomes:

L=L+> M([UF+0.01]"); + Xaf0.1 — (UD]H @)
l

where L is the network loss, Uil is the membrane potential
of neuron 7 in layer [, the (-); denotes averaging over index
i, []* is a linear rectification, A\; = 2.5- 1072 and Ay =
1.5-10~* for both layers. The term with the \; factor favors
a minimum firing rate, and the term with the A, factor keeps

“https://neurorobotics-files.net/index.php/s/sBQzWFrBPoHIDx7
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Fig. 8: Example samples and learned weights for the grasp-
type recognition experiment. Top row: camera image of the
objects. Middle row: integration of the address events after
microsaccade onset. Bottom row: projection of the synaptic
weights for each label neuron onto the input after training.
Green denotes excitation and pink denotes inhibition.

the membrane potential below threshold on average. This
regularization decreases the average spiking rate although we
note that individual neurons can still spike with high rates
up to 5S00Hz (neglecting dropout) for the second layer, see
Figure 9.

The network readout for the correct class is high (> .66)
shortly after microsaccade onset: 43ms for the ball, 58ms for
the bottle, 35ms for the pen and 33ms for the background,
see Figure 9. These numbers are coherent with behavioral
experiments on humans quantifying the reaction time to a
visual stimuli [31], [32]. This resemblance should be further
investigated on tasks identical to those used in the behavioral
experiments. To this end, different neural dynamics enforcing
plausible spike rates and including synaptic delays should be
used.

Since the DVS does not sense colors, the network only
relies on shape information, crucial for affordances. This
allowed the network to moderately generalize despite the
small amount of training samples. The learned weights
projected to the input are displayed in Figure 9. A single
object per affordance was used during training, but the
network could recognize objects with different colors of
the same shape. Recognition also worked when the objects
were slightly moved from the reference point used for
grasping. However, the network was not robust to change
in background or unexpected background motions happening
during the microsaccade. This is due to the background being
learned as an additional class for the “do nothing” affordance.

IV. CONCLUSION

Neuromorphic engineering technology enables the design
of autonomous learning robots operating at high speed for a
fraction of the energy consumption of current solutions. Until
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Fig. 9: Spiketrains and classification results for four test samples of our grasp-type dataset. The network manages to correctly
classify the four test samples. The vertical lines denote the microsaccade onset and high detection confidence (readout
> 0.66) respectively. The phases of the microsaccadic motion are visible in the input spiketrains (first row of each plot),

see Section II-D.

recently, the advantages of this technology were limited due
to the lack of synaptic plasticity rules for training multi-
layer spiking networks. This bottleneck has been addressed
since the derivation of three-factor rules approximating back-
propagation. In this paper, we demonstrated the ability of
cRBP to learn spatio-temporal representations from event
streams provided by a DVS. With the addition of a simple
biologically-inspired covert attention mechanism, we have
shown that cRBP and DECOLLE further improved their
accuracy on the DvsGesture benchmark in comparison to
classical rescaling approaches. This attention mechanism
provides translation invariance at a low computational cost
compared to convolutions. Lastly, we integrated cRBP in a
real-world robotic grasping experiment, where affordances
are detected from microsaccadic eye movements and con-
veyed to a robotic arm and hand setup for execution. Real
robot learning experiments are challenging because of the

difficulty and time required to collect relevant training data.
Our results show that correct affordances are detected within
about 40ms after microsaccade onset, which is coherent
with biological findings in humans. For future work, these
results should be further investigated by replicating the
behavioral experiments presented in [31], [32]. Additionally,
other components of the grasp-type recognition experiment
could be implemented with spiking networks, such as reach-
ing motions [33], [34], grasping motions [35] and depth
perception [23]. It was already shown in [8] that spiking
networks can learn regression tasks from event streams. This
would enable a wider variety of computational brain models
to be compared against behavioral experimental results in
real-world scenarios. This work paves the way towards the
integration of brain-inspired computational paradigms into
the field of robotics.
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