


the length of the time sequence, an important limitation, as

reported in [8]. On the other hand, DECOLLE and cRBP

can learn spatio-temporal patterns on long sequences with a

fine temporal resolution. This makes them perfectly suited to

neuromorphic vision sensor data. Additionally, unlike con-

ventional artificial neural networks which require to integrate

frames from event streams [9]–[11], our method is suitable

to low latency applications.

We show that the accuracy of cRBP is comparable to

state-of-the-art methods on the IBM DvsGesture dataset [12].

A covert attention mechanism is introduced which further

improves the efficiency and accuracy of the learning rules

by providing translation invariance at low computational

cost compared to convolutions. Inspired by receptive field

remapping in the visual cortex, this attention mechanism

is tailored to the sparsity of the visual event streams. Fi-

nally, we integrate cRBP in a real-world closed-loop robotic

grasping setup involving a robotic head, arm and a 5-finger

hand. The spiking network learns to classify different types

of affordances based on visual information obtained with

microsaccades, and communicates this information to the

arm for grasping. This real-world task has the potential

to enhance neuromorphic and neurorobotics research since

many functional components such as reaching, grasping and

depth perception can be easily segregated and implemented

with brain models. This work paves the way towards the

integration of brain-inspired computational paradigms into

the field of robotics.

A barrier to embodied learning robots is the offline (batch

learning) nature of conventional implementations of back-

propagation. In comparison, our model can learn from events

streamed from the DVS [26] with little loss in accuracy.

This enables continual updates without separation of training

and testing phases. However, such life-long learning setups

require to address the forgetting problem resulting from

learning on temporally correlated input data.

II. METHOD

A. Continuous Random Backpropagation

The backpropagation algorithm computes the gradient of

a synaptic weight with respect to an arbitrary loss function

defined on the network’s output. The credit of a neuron

– how a change in its output affects the loss – therefore

depends on the synaptic weights of the subsequent layers.

This weight transport problem is solved by Direct Feedback

Alignment [13], an instance of random backpropagation [14],

by computing the credit for a neuron i as a linear combi-

nation of network errors ek with fixed, random coefficients

gik. This solution also enables asynchronous weight up-

dates by decoupling the conventional forward and backward

phases of backpropagation. An adaptation of Direct Feedback

Alignment to spiking networks of Leaky Integrate-And-Fire

neurons was derived in [1]. Named eRBP, this synaptic

plasticity rule can be formulated as:

∆wij(t) ∝
∑

k∈rdout

ek(t)gik ×Θ′(ui(t))× sj(t), (1)

with wij the synaptic weight from j to i, Θ′ the derivative

of the spike function, ui the membrane potential of neuron

i and sj the pre-synaptic spiketrain (either 0 or 1 at a given

time t). The set rdout contains the indices of the readout

neurons yk. The spike function Θ is the non-differentiable

heaviside function (hard threshold), but its derivative can

be approximated with a surrogate gradient [15]. As with

eRBP and DECOLLE, we approximate this derivative with

the boxcar function: Θ′(x) ≈ Boxcar(x) = 1 if −0.5 < x <

0.5, otherwise 0. The symbol ∝ refers to a proportionality

relation – the multiplicative constant is the learning rate

which can be chosen freely.

In the special case of a Mean Square Error (MSE) loss,

the errors ek are computed as the difference between network

readouts yk and network targets ŷk:

ek(t) = yk(t)− ŷk(t),

yk(t) =
∑

i∈out

si(t)× gik
(2)

with out the set containing the indices of the output neurons.

Since the weight update in Equation (1) is proportional

to sj , weight updates in eRBP are triggered by pre-synaptic

spikes, in an event-driven fashion. However, this formulation

does not account for the dynamics of the post-synaptic

potentials. More recent three-factor rule derivations now

incorporate an eligibility trace to account for this dynamics

[2]–[4] (see Equation (4) in [2]). We can integrate this term

directly into Equation (1), yielding the cRBP rule:

∆wij(t) ∝
∑

k∈rdout

ek(t)gik ×Θ′(ui(t))× ǫ ∗ sj(t), (3)

where ∗ denotes a temporal convolution and ǫ is the post-

synaptic potential kernel. This new rule describes continuous

synapse dynamics rather than event-driven updates – we

therefore refer to it as cRBP. The main difference with Super-

Spike is the loss function: SuperSpike relies on a van Rossum

distance with a target spiketrain. This leads SuperSpike to

require one eligibility trace per synapse, whereas cRBP

requires only one eligibility trace per neuron. Additionally,

the computation of this eligibility trace can be factored into

the neural dynamics, as presented in DECOLLE. The main

difference with DECOLLE is that DECOLLE relies on local

readouts ylk and local targets ŷlk for every layer l to compute

the errors elk. Instead, hidden layers in cRBP are updated

with respect to the global network loss.

The simulations presented in this paper rely on the same

neuron model as DECOLLE, introduced in Equation 4 in [3].

Note that this neuron model does not account for synaptic

delays, and the refractory period is approximated with a self-

inhibition.

B. Network Architecture

The network is presented in Figure 1. It learns from

event streams provided by a DVS. Since spikes are not

signed events, we associate two neurons for each pixel to

convey ON- and OFF-events separately. This distinction is

important since event polarities carry information about the
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