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Abstract

Many basic properties in Tutte’s flow theory for unsigned graphs do not have their counter-
parts for signed graphs. However, signed graphs without long barbells in many ways behave like
unsigned graphs from the point view of flows. In this paper, we study whether some basic prop-
erties in Tutte’s flow theory remain valid for this family of signed graphs. Specifically let (G, o)
be a flow-admissible signed graph without long barbells. We show that it admits a nowhere-zero
6-flow and that it admits a nowhere-zero modulo k-flow if and only if it admits a nowhere-zero
integer k-flow for each integer k > 3 and k # 4. We also show that each nowhere-zero positive
integer k-flow of (G, o) can be expressed as the sum of (k—1) 2-flows. For general signed graphs,
we show that every nowhere-zero %—ﬂow can be normalized in such a way, that each flow value
is a multiple of Q—Iq. As a consequence we prove the equality of the integer flow number and the

ceiling of the circular flow number for flow-admissible signed graphs without long barbells.

1 Introduction

Many basic properties in Tutte’s flow theory for unsigned graphs do not have their counterparts for
signed graphs. For instance Tutte’s 5-flow conjecture [24] states that every flow-admissible unsigned
graph has a nowhere-zero 5-flow. The best approximation so far is that every flow-admissible un-
signed graph has a nowhere-zero 6-flow [18]. Flow-admissible signed graphs which do not admit a
nowhere-zero 5-flow are known. Therefore, the 5-flow conjecture is not true for signed graphs in gen-
eral. But a 6-flow theorem might be true for flow-admissible signed graphs as conjectured by Bouchet
[1]. This conjecture is verified for several classes of signed graphs (see e.g. [5, 6, 9, 13, 16, 17, 25]).

The signed graphs without long barbells form a very interesting family in general. Slilaty [20]
presents a complete characterization of signed graphs without long barbells (Theorem 1.2 in [20]).
Such a signed graph can also be translated into a special unsigned graph without vertex-disjoint odd
circuits by inserting one vertex of degree 2 into each positive edge. Readers are referred to [7] and
[19] for a characterization of unsigned graphs without vertex-disjoint odd circuits.
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Figure 1: A signed Petersen graph admits a nowhere-zero 6-flow, but no nowhere-zero 5-flow.

Positive edges are solid and negative edges are dashed.

The family of signed graphs without long barbells also has its special interest from the point view
of flow theory. It is well known that cycles are fundamental elements in flow theory. For unsigned
graphs, every element in the cycle space is the support of a 2-flow. However, some element (long
barbells) in the cycle space of a signed graph is the support of a 3-flow but not a 2-flow. Therefore,
we may expect signed graphs without long barbells to inherit some nice properties from unsigned
graphs, which naturally motivates the question whether signed graphs without long barbells have
almost similar properties as unsigned graphs in Tutte’s flow theory. Unfortunately, the answer is no.
For example, the unsigned Petersen graph admits a nowhere-zero 5-flow, while the signed Petersen
graph of Figure 1, which has no long barbells, admits a nowhere-zero 6-flow but no nowhere-zero
5-flow.

Khelladi verified Bouchet’s 6-flow conjecture for flow-admissible 3-edge-connected signed graphs

without long barbells.

Theorem 1.1. (Khelladi [6]) Let (G, o) be a flow-admissible 3-edge-connected signed graph. If (G, o)

contains no long barbells, then it admits a nowhere-zero 6-flow.

Lu et al. [9] also showed that every flow-admissible cubic signed graph without long barbells
admits a nowhere-zero 6-flow. In Section 3 we will verify Bouchet’s 6-flow conjecture for the family
of signed graphs without long barbells. We further study the relation between modulo flows and
integer flows on signed graphs. The equivalency of modulo flow and integer flow is a fundamental

result in the theory of flows on unsigned graphs.

Theorem 1.2. (Tutte [23], or see Younger [27]) An unsigned graph admits a nowhere-zero modulo

k-flow if and only if it admits a nowhere-zero k-flow.

Almost all landmark results in flow theory, such as, the 4-flow and 8-flow theorems by Jaeger
[4], the 6-flow theorem by Seymour [18], the 3-flow theorems by Thomassen [22] and by Lovdsz et
al. [11], are proved for modulo flows.

However, there is no equivalent result in regard to Theorem 1.2 for signed graphs in general.

We will prove an analog of Theorem 1.2 for the family of signed graphs without long barbells. We
show that the admittance of a nowhere-zero modulo k-flow and a nowhere-zero k-flow are equivalent
for k=3 or k> 5.

In Section 4 we study the decomposition of flows. For unsigned graphs, a positive k-flow can be

expressed as the sum of some 2-flows.



Theorem 1.3. (Little, Tutte and Younger [8]) Let G be an unsigned graph and (7, f) be a positive

k-flow of G. Then
k-1

(T7f) = Z(Ta fl)?

i=1

where each (7, f;) is a non-negative 2-flow.

We extend Theorem 1.3 to the class of signed graphs without long barbells.

The paper closes with the study of circular flows in Section 5. For an unsigned graph G, Goddyn
et al. [2] showed ®;(G) = [®.(G)]. Raspaud and Zhu [15] conjectured this to be true for a signed
graph (G, o) as well, and they proved that ®;(G,0) < 2[®.(G,0)] —1. The conjecture was disproved
in [17] by constructing a family of signed graphs where the supremum of ®;(G,0) —®.(G, o) is 2 (see
one member of the family depicted in Figure 5). This result was further improved in [14] by showing
that the supremum of ®,(G, o) — ®.(G, o) is 3 which is best possible if Bouchet’s 6-flow conjecture is
true. We show that ®,(G, o) = [®.(G,0)] for a signed graph (G, o) without long barbells and verify
the conjecture of Raspaud and Zhu for this family of signed graphs. The result is a consequence of
a normalization theorem for signed graphs which states that every nowhere-zero %—ﬂow on a signed
graph can be normalized in such a way, that each flow value is a multiple of 2%' For unsigned graphs
it is known [21] that every nowhere-zero g—ﬂow on a signed graph can be normalized in such a way,
that each flow value is a multiple of %. We show that this is also true for signed graphs without long
barbells.

2 Notations and Terminology

Let G be a graph. For S C V(G), the set V(G) — S is denoted by S°. For Uy, Us C V(G), the set of
edges with one end in U; and the other in Us is denoted by d¢(Uy, Us). For convenience, we write
dq(Uy) for 6¢(Uy, Uf) and ¢ (v) for dg({v}). The degree dg(v) of v is the number of edges incident
with v where a loop is counted twice.

A signed graph (G,o) is a graph G together with a signature o : E(G) — {—1,1}. An edge
e € E(G) is positive if o(e) = 1 and negative otherwise. The set En(G, o) denotes the set of all
negative edges in (G,0). An unsigned graph can also be considered as a signed graph with the
all-positive signature, i.e. Ex(G,0) = 0. Let (G,0) be a signed graph. A path P in G is called a
subdivided edge of G if every internal vertex of P is a 2-vertex. The suppressed graph of G, denoted
by G, is the signed graph obtained from G by replacing each maximal subdivided edge P with a
single edge e and assigning o(e) = o(P) where o(P) is the product of the signs of the edges in
E(P). A circuit (C,0|g(cy), or shortly C, is a connected 2-regular subgraph of (G, o). A circuit C'
is balanced if |[En(C)] =0 (mod 2), and it is unbalanced otherwise. A signed graph is balanced if it
does not contain an unbalanced circuit and it is unbalanced otherwise. A signed circuit is a signed

graph of one of the following three types:
(1) a balanced circuit;
(2) a short barbell, the union of two unbalanced circuits that meet at a single vertex;

(3) along barbell, the union of two disjoint unbalanced circuits with a path that meets the circuits

only at its ends.



Following Bouchet [1], we view an edge e = uv of a signed graph (G, o) as two half-edges h¥ and
hY, one incident with w and one incident with v. Let Hg(v) (abbreviated H(v)) be the set of all
half-edges incident with v, and H(G) be the set of all half-edges in (G, ). An orientation of (G, o)
is a mapping 7 : H(G) — {—1,+1} such that for every e = uv € E(G), 7(h¥)7(hY) = —o(e). If
7(h¥) = 1, then h¥ is oriented away from u; if 7(hY%) = —1, then hY is oriented toward u. Thus, based
on the signature, a positive edge can be directed like e—>—>—e or like e—<«—<—e and a negative edge
can be directed like @-->----<-# or like &--<-->---o. A signed graph (G, o) together with an orientation

7 is called an oriented signed graph, denoted by (G, 7), with underlying signature o.

Definition 2.1. Let (G, 7) be an oriented signed graph and f : E(G) — R be a mapping. Let r > 2
be a real number and k > 2 be an integer.

(1) The boundary of (7, f) is the mapping O(7, ) : V(G) — R defined as

. )= > 7(h)f(en)

heH (v)
for each vertex v, where ey, is the edge of (G,0,) containing h.
(2) The support of f, denoted by supp(f), is the set of edges e with |f(e)| > 0.

(3) If O(7, f) = 0, then (7, f) is called a flow of (G,0,). A flow (7, f) is said to be nowhere-zero
of (G,07) if supp(f) = E(G).

(4) If 1 < |f(e)] < r —1 for each e € E(G), then the flow (7, f) is called a circular r-flow of
(G,0,).

(5) If fe) € Z and 1 < |f(e)| < k — 1 for each e € E(G), then the flow (7, f) is called a
nowhere-zero k-flow of (G, 0,).

(6) If O(7, f) =0 (mod k) and f(e) € Zy \ {0} for each e € E(G), then the flow (7, f) is called a
nowhere-zero modulo k-flow or a nowhere-zero Z-flow of (G,0;).

A signed graph is flow-admissible if it admits a nowhere-zero k-flow for some integer k. In a
signed graph, switching at a vertex u means reversing the signs of all edges incident with u. Two
signed graphs are equivalent if one can be obtained from the other by a sequence of switches. Then a
signed graph is balanced if and only if it is equivalent to a graph without negative edges. Note that
switching at a vertex does not change the parity of the number of negative edges in a circuit and
although technically it changes the flows, it only reverses the directions of the half edges incident
with the vertex and the directions of other half edges and the flow values of all edges remain the

same. Bouchet [1] gave a characterization for flow-admissible signed graphs.

Proposition 2.2. (Bouchet [1]) A connected signed graph (G, o) is flow-admissible if and only if it
is not equivalent to a signed graph with exactly one negative edge and it has no cut-edge b such that
(G —b,0|g-p) has a balanced component.

The following lemma is a direct consequence of Proposition 2.2 and the definition of long barbell.

Lemma 2.3. Let (G,0) be a signed graph without long barbells. Then for each X C V(G), one of
(G[X],0lp@x)) and (G[X€], o|paxe)) is balanced. Thus, if (G,0) is flow-admissible, then (G, o)
is bridgeless.



For a flow-admissible signed graph (G, o), its circular flow number and integer flow number are
defined respectively by

O.(G,0) = inf{r:(G,o) admits a circular r-flow},
®,(G,0) = min{k: (G,o0) admits a nowhere-zero k-flow}.

Raspaud and Zhu [15] showed that ®.(G, o) is a rational number for any flow-admissible signed
graph (G, o) and ®.(G,0) = min{r : (G, o) admits a circular r-flow}, just like for unsigned graphs.

3 Integer flows and modulo flows

3.1 Integer flows

This subsection will extend Khelladi’s result (Theorem 1.1) to the class of all flow-admissible signed
graphs without long barbells. For the proof of our result we will need the following two results.

Theorem 3.1. (Seymour [18]) Every bridgeless unsigned graph admits a nowhere-zero 6-flow.

Lemma 3.2. (Lu, Luo and Zhang [9]) Let G be an unsigned graph with an orientation T and
assume that G admits a nowhere-zero k-flow. If a vertex u of G has degree at most 3 and =y :
da(u) = {=£1,...,£(k — 1)} satisfies O(T,v)(u) = 0, then there is a nowhere-zero k-flow (1,¢) of G
50 that ¢s) = -

Theorem 3.3. Let (G,0) be a flow-admissible signed graph. If (G,c) contains no long barbells,

then it admits a nowhere-zero 6-flow.

Proof. Suppose to the contrary that the statement is not true. Let (G, o) be a counterexample with
|E(G)] minimum. We will deduce a contradiction to Theorem 1.1, by showing that G is 3-edge-
connected.

We first show that the minimum degree of G, 6(G) > 3. If G has vertices of degree two, then the
suppressed graph G remains flow-admissible and contains no long barbells. Thus by the minimality
of G, G admits a nowhere-zero 6-flow, so does G, a contradiction. Hence G contains no vertices
of degree two. Since (G,o) is flow-admissible, it contains no vertices of degree one and thus the
minimum degree of G is at least three.

Next we show that G is 3-edge-connected. By Lemma 2.3, (G, o) is bridgeless since it contains
no long barbells.

Suppose that (G, o) has a 2-edge-cut, say {ujus, wjws}. Since the minimum degree of G is at
least 3, every 2-edge-cut is nontrivial. Let (G1,0|g(qg,)) and (G2, 0|gq,)) be the two components of
G — {e1,ea} where e; = ujuz and ey = wywe with u;, w; € V(G;) for i = 1,2. By Lemma 2.3 again,
one of (G1,0|g(g,)) and (G2, 0|g(qg,)) is balanced. WLOG we assume that (G1,0|g(q,)) is balanced.
By switching, we may further assume that all edges in (G1,0|g(q,)) are positive. Fix an arbitrary 7
on H(G). Let G| be the unsigned graph obtained from (G, o) by contracting H(G2)U{h¢?, h?} into
a vertex vi, and let (G, 0|g(qy)) be the signed graph obtained from (G, o) by contracting H(G1)
into a vertex vp. An illustration on G and (G5, o|g(cy)) is shown in Figure 2.

From the definition of (G%, o|p(ay)), we know that (G5, 0|g(ay)) is flow-admissible and contains

no long barbells. So (G%,0|g(qy)) admits a nowhere-zero 6-flow (7| (cy), f2) by the minimality of



Figure 2: An illustration on how to construct Gy and (G, 0|p(ay)) from (G, 0).

(G,0). Assign y(viu1) = fa(vaug) and y(viwy) = fa(vaws). Since G is an unsigned graph, the
restriction of 7 on H(G1)U{h¥!, hi’' } can be considered as an orientation of G}, denoted by 71. Then
we have 9(71,7)(v1) = 9(7|m(ay), f2)(v2) = 0. By Theorem 3.1 and Lemma 3.2, there is a nowhere-
zero 6-flow (11, f1) of G such that f1|5c,1 (1) =7 = f2|5c,2(v2). Thus (71, f1) and (7|m(cy), f2) can
be combined to a nowhere-zero 6-flow of (G, o), a contradiction. Therefore G is 3-edge-connected,

a contradiction to Theorem 1.1 since (G, o) is a counterexample. O

3.2 From modulo flows to integer flows

In flow theory, an integer flow and a modulo flow are different by their definitions, but they are
equivalent for unsigned graphs as shown by Tutte [24] (see Theorem 1.2). However, Tutte’s result
cannot be extended to signed graphs (see e.g. [26]). That is, there is a gap between modulo flows
and integer flows for signed graphs.

In this subsection, we will extend Tutte’s result and show that the equivalence between nowhere-
zero Zj-flows and nowhere-zero k-flows still holds for signed graphs without long barbells when k£ = 3
or k> 5.

Theorem 3.4. Let (G, o) be a signed graph without long barbells and let k be an integer with k = 3

ork >5. Then (G, o) admits a nowhere-zero Zy-flow if and only if it admits a nowhere-zero k-flow.

The “if” part of Theorem 3.4 is trivial since every nowhere-zero k-flow is also a nowhere-zero
Zi-flow in a signed graph. For the “only if” part of Theorem 3.4, by Lemma 2.3, the case of k = 3 is
an immediate corollary of a result about Zs-flow in [26] and the case of k > 6 follows from Theorem
3.3, and thus we only need to consider the case of k = 5, which is a corollary of the following stronger
result.

Theorem 3.5. Let k > 3 be an odd integer and (G, o) be a signed graph with a nowhere-zero Zy-flow
(1, f1). If (G, 0) does not contain a long barbell, then there is a nowhere-zero k-flow (7, f2) such that

fi(e) = fa(e) (mod k).
In order to prove Theorem 3.5, we introduce some new concepts.

Definition 3.6. Let W = xpejxieaxs ... e 1xi—16:x¢ be a signed walk with an orientation 7.

(1) W is called a diwalk from xo to @y if T(h?) = 1 and 7(he) + 7(hei ) = 0 for each
ie{l,....t—1}

(2) The diwalk W from xq to x; is positive if T(hZ!) = —1. Otherwise, it is negative.



(8) A diwalk is all-positive if all its edges are positive.
(4) A ditrail from x to y is a diwalk from = to y without repeated edges.
(5) A dipath from z to y is a diwalk from x to y without repeated vertices (see Figure 3).

€1 €2 €3 €4 €1 €2 €3 €4
E>—> 0 > € OOt >-e 0 > OO >0 > <@
Xr1 X9 €T3 Tq Iy X xro €T3 Xy Is

(a) (b)

Figure 3: (a) A positive dipath from z1 to xs5; (b) A negative dipath from z1 to xs.

Definition 3.7. An oriented signed graph is called a tadpole with tail end x (see Figure /) if
(1) it consists of a ditrail C' and a dipath P with V(C) NV (P) = {v1};
(2) P is a positive dipath from x to vyi;
(8) C is a closed negative ditrail from vy to vy.

Figure 4: A tadpole with tail end x.

Note that it is possible that z = vy in the above definition. In this case, the tadpole is called
a tailless tadpole. Although in the proof of Theorem 3.5, the ditrail C' of the tadpole is a ditrail
without repeated vertices, the definition of a tadpole only requires C' to be a ditrail which allows

repeated vertices for general purpose.

Definition 3.8. Let (G,7) be an oriented signed graph and f : E(G) — R.

(1) A vertex x is a source (resp., sink) of (7, f) if (7, f)(z) > 0 (resp., O(t, f)(x) <0).

(2) An edge e is a source (resp., sink) of (7, f) if the boundary at e, O(r, f)(e) = —(7(h1) +
7(ha))f(e), is positive (resp., negative), where hy and hs are the two half-edges of e.

Note that an edge is a source or a sink if and only if it is negative. A sink is either a sink vertex
or a sink edge and a source is either a source vertex or a source edge.

The following observation is a trivial fact in network theory.

Observation 3.9. Let (G,7) be an oriented signed graph and f : E(G) — R. The total sum of
boundaries on V(G)UE(G) is zero. In particular, if f is a flow, then the total sum of the boundaries
on E(QG) is zero.

The following observation is also a trivial fact in network theory which will be applied to find a
tadpole.



Observation 3.10. Let (G,7) be an oriented signed graph and f : E(G) — RT U {0}. For each

source x, there must exist a sink t, such that there is an all-positive dipath from x to t,.

Definition 3.11. Let (G,7) be an oriented signed graph, Ey C E(G), and [ : E(G) — Zi be a
mapping. The operation minusing of (7, f) on Ey is done by reversing the directions of both half-
edges of e and changing f(e) to k — f(e) for every e € Ey. The resulting pair obtained from (7, f)
is denoted by (15, [, )-

We are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Let (G, 0p) be a counterexample and (79, f1) be a nowhere-zero Zj-flow
of (G, 00). We can choose a triple (G, 7, f) obtained from (G, 19, f1) by a sequence of switching and
minusing operations such that

(S1) 0 < f(e) < k for every e € E(G);

(S2) Subject to (S1), O(r, f)(v) =0 (mod k) for every v € V(G);

(S3) Subject to (S1) and (S2), n(7, f) = >_,cv () |0(7, f)(v)] is as small as possible;

(S4) Subject to (S1), (S2) and (S3), the number of source vertices of (7, f) is as large as possible.

Let X = {x € V(G) : O(r, f)(x) > 0)} be the set of source vertices of (7, f). The following claim
shows that by the choice of (G, 7, f), there is no sink vertex in (7, f).

Claim 1. X ={z € V(G) : O(t, f)(x) £ 0)}. That is, there is no sink vertex in (7, f).

Proof. Suppose to the contrary that there is a vertex v € V(G) such that 9(7, f)(v) < 0. Let (G, 7")
be the resulting oriented signed graph obtained from (G, 7) by switching at v and let X’ = X U {v}.
Note that switching at v is done by reversing all directions of half-edges in Hg(v). Thus (G, 7/, f)
satisfies (S1)~(S3) and X’ is the set of source vertices of (7/, f). This contradicts (S4). O

The following claim shows that n(7, f) # 0 and thus (G, 7, f) is indeed a network with sinks and

sources.
Claim 2. X # (.

Proof. Suppose X = (). Then (7, f) is a nowhere-zero k-flow of the signed graph (G, o). Since
(G, 1, f) is obtained from (G, 9, f1) by a sequence of switching and minusing operations, there are
Vo C V(G), Ey C E(G) and an orientation 71 of (G, o) such that (G, 71) is obtained from (G, )
by switching on V and (7, f) is obtained from (71, f1) by minusing on Ey. Let f' : E(G) — Z be
defined as follows,

/ o f(e) if6¢E0;
o= { —f(e) ifee€ Ey.

Since (7, f) is a nowhere-zero k-flow of (G, o) and is obtained from (71, f1) by minusing on Ey, (71, f’)
is also a nowhere-zero k-flow of (G, o) and satisfies f'(e) = fi(e) (mod k) for every e € F(G). Thus
(70, f) is a desired nowhere-zero k-flow of (G, 0¢) since (G, 71) is obtained from (G, 79) by switching

on Vp. This contradicts that (G, o|p) is a counterexample. O



By (S2) and Claim 1, every vertex z in X satisfies

o(r, f)(x) = pk

for some positive integer p.
For directed unsigned graph, there is only one type of ditrails/dipaths. However, for directed
signed graphs, there are two types of ditrails/dipaths, namely positive and negative. We first show

that a negative ditrail between two vertices in X does not not exist in (G, 7).
Claim 3. There is no negative ditrail of (G,T) between two distinct vertices in X .

Proof. Suppose to the contrary that X contains two distinct vertices x1 and x5 such that there exists
a negative ditrail P from 1 to x5 in (G, 7). By the definition of negative ditrails (see Definition 3.6)
and by Definition 3.11, it is not difficult to check that

2

g faim) = Z(a(T, F(x) — k) + > o(r, [)(v) =n(r, f) — 2k.

i=1 veV(G)\{z1,22}

This contradicts (S3). O

Similar to unsigned graphs, for a given source vertex © € X we need to study the properties
of the graph induced by the vertices y in (G, 7) such that there is a dipath from x to y. We may
partition such reachable vertices according to the signs of the dipath.

Pick an arbitrary vertex z from X by Claim 2 and let

Yt = {y € V(G) : (G, 7) contains a positive dipath from x to y},
Y, ={y € V(G) : (G, ) contains a negative dipath from x to y} \ Y,", and
Y, =Y, Uy,

In fact, we will show that we may further assume that Y- = (). By Claim 3, Y,” N X = (), so
(7, f)(y) = 0 for each y € Y. Switch at every vertex in Y, and denote the resulting pair obtained
from (G,7) by (G,71). Then (G,o,) is equivalent to (G,o,) and 7 is an orientation of (G, o, ).
Since O(7, f)(y) = 0 for y € Y., it is easy to see that the triple (G, 7y, f) also satisfies (S1)~(S4).
Moreover, by the definitions of Y," and Y, , (G, ;) contains a positive dipath from z to y for every

y € Y,. Without loss of generality, we can assume
Y, =0 and Y, =Y.', (1)

and consider (G, 71, f) = (G, 7, f). Then the following claim holds which will be applied to find
tadpoles in (G[Y,], 7).

Claim 4. For every y € Yy, (G,T) contains a positive dipath from x to y.
Claim 5. (G[Y,],7) contains a tadpole with tail end = (see Definition 3.7).

Proof. By Observation 3.10, there is a sink ¢, of (7, f) such that (G,7) contains an all-positive
dipath from « to t,. Note that (7, f) contains no sink vertices by Claim 1. Hence ¢, must be a
sink edge, say t, = u/u”. Let P, be an all-positive dipath from z to «’. Then v’ € Yy, t, ¢ E(P)),



and P, + t, is a negative dipath from z to u” since t, is a sink edge. Thus v’ € Y, = Y,  (by
Equation (1)).

This implies that (G[Y,], 7) has a positive dipath from z to u”. Let P! = xejxq -+ e 1241124
(x¢ = u”) be a positive dipath from x to u” in (G[Yz], 7). Then t, ¢ E(P)) since t, is a sink edge.
If E(P.)NE(P)) =0, then P, +t, + P is a tailless tadpole with tail end x.

If E(P,)NE(P!) # 0, then let s be the maximum index in {1,2,...,t} such that e, € E(P,). If
both P, and P. traverse es in the same direction, then P. + t, + P/(zs,u”) is a tadpole with tail
end x, where P/ (x4,u") is the segment of P! from z; to u”.

If P! traverses es in the opposite direction from P., then the segment P.(x,xs) is a negative
dipath from x to z, since ey is a positive edge. Since P)(x,x4) is a negative dipath, there is a
segment P/ (z;,x;) of P)(x,x,) such that P)(z;,x;) contains an odd number of negative edges
and V(P)(x;,x;)) N V(Py(x,25-1)) = {z;,2;}. We choose such a segment that i is as small as
possible. By the minimality of ¢, we have that P (x;,x;) is a negative dipath from z; to z; and
the segment P.(x,x;) is a positive dipath from x to z;. Denote the segment of P, from x to zs_1
by P.(z,zs—1) = Yoy1...Yp where yo = = and y, = z5_1. Then z; = y, and z; = y, for some
a,b € {0,...,p}. If a < b, then P)(x;,x;) + P.(z;,x;) is a closed negative ditrail from y,(= ;)
to y, and thus P,(z,z;) + PJ(x;,x;) + PL(x;,x;) is a tadpole with tail end . If a > b, then
P! (x;,x;) + PL(xj,x;) is a closed negative ditrail from y,(= x;) to y, since P, (z;,z,) is an all-
positive dipath from y, to y, and thus P, (x,x;)+ P (x;, z;) + P.(x;, z,) is a tadpole with tail end
x. This completes the proof of the claim. ]

By Claim 5, let P,+C, be a tadpole with tail end x in (G[Y,], 7). Here, P, is an all-positive dipath
from z to a vertex, denoted by y,,, C, is a closed negative ditrail from y, to y, and V(P,)NV(C,) =
{ys}. Note that it is possible that P, is the single vertex x.

Claim 6. O(7, f)(z) = k and if y, # x, then O(t, f)(y.) = 0.

Proof. Suppose to the contrary O(7, f)(x) # k. Then O(r, f)(x) > 2k since z is a source vertex and
(t, [)(x) = pk for some positive integer u.

If O(r, f)(ys) = O, then y, # =, so |[E(P,)| > 1. We can check easily that the new triple
(G, THEy fﬁ(?:)) satisfies (S1)~(S3) and the set of source vertices is X U {y,}, a contradiction to
(S4).

If O(7, f)(yz) # O, since P, + C, is a negative ditrail from z to y., the new triple (G, 7, f5)
(where E' = E(P, + C)) satisfies (S1) and (S2). However, the total sum of boundaries is reduced
by 2k. This contradicts (S3) and so the claim holds. Therefore (7, f)(z) = k.

Now assume y, # z. Since P, + C, is a negative ditrail from = to y,, by Claim 3, y, ¢ X and

thus (7, f)(y.) = 0. O

For the sake of convenience, let (G’TEETD/)’ fEZF/) = (G, 74, fz) and let X’ be the set of source
vertices of (7, fz). The next two claims show that (G, 7., f,) has the same properties as (G, T, f)

and will replace (G, 7, f) in the rest of the proof to obtain a contradiction.

Claim 7. The following statements for (G, 1, f.) are true.
(a) Cy is a tailless tadpole with tail end y, in (G, 7y);
(b)) X' = (X \{z}) U{ya};
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(c) (G, Ty, fo) satisfies (S1)~(S4).

Proof. The statement (a) is trivial since E(C,) N E(P,) = 0 and C, is a tailless tadpole with tail
end y, in (G,7). Now we show the statements (b) and (c). In fact, if y, = 2, then X’ = X and
(Tw, fz) = (7, f), and thus both (b) and (c) are trivial; if y, # x, then by Claim 6, we can also check
directly that both (b) and (c) hold. O

Similar to Claims 1 and 3, it follows from Claim 7-(c) that (7., f) contains no sink vertex and
(G, 7;) contains no negative ditrail between two distinct vertices of X'.
The next claim basically tells that for any two distinct vertices x1, 29 € X (if any), Y, NV (C,) =

(). Tt will be applied to show that there is exactly one source vertex.
Claim 8. For every 2’ € X'\ {y.}, (G,7z) contains no dipath from ' to C,.

Proof. Suppose to the contrary that P is a dipath from 2z’ to y with V(P) N V(C,) = {y} in
(G, 7). Since C, is a closed negative ditrail from y, to y, (by Claim 7-(a)) and y € V(Cy), C,
can be decomposed into two edge-disjoint ditrails from v, to y, denoted by Cy and Cs. Since C, is
negative, one of C7 and Cj is positive and the other one is negative. Thus either P+ Cy or P+ C5 is
a negative dipath from 2’ to y,. This contradicts that (G, 7,) contains no negative ditrails between

two distinct vertices of X'. O
Claim 9. X = {z}.
Proof. Suppose to the contrary 2’ € X \ {z}. Then 2’ € X'\ {y,} by Claim 7-(b). Let

Y, ={y € V(G) : (G, 1,) contains a dipath from 2’ to y}.

By Claim 8, Y. NV (C,) = 0. Note that (G, 7, f..) satisfies (S1)~(S4) by Claim 7-(c). Similar to the
discussion in Claims 4 and 5, (G[Y,], 7,) contains a tadpole with tail end 2. By the definition, there
is an unbalanced circuit, denoted by C,/, in this tadpole. Since (G, o) contains no long barbells,
V(C)NV(Cy) # 0, s0 Y NV(C,) # 0. This contradicts Y,r NV (C,) = 0. O

Now we can complete the proof.

The final step. By Claim 9, X = {z}. By Claim 6, O(7, f)(x) = k which is an odd number. Since
the boundary of every negative edge is an even number, the total sum of the boundaries of (7, f)
on V(G) U E(G) must be odd since z is the only source/sink vertex with an odd boundary. This
contradicts Observation 3.9. Hence the proof of Theorem 3.5 is complete. ]

There are precisely two abelian groups of order 4, namely the Klein Four Group K, and the
cyclic group Z4. Clearly, the elements of the Klein Four Group are self-inverse and therefore, a
signed cubic graph G has a nowhere-zero Ky-flow if and only if the underlying unsigned graph of G
is 3-edge-colorable. We will show that this is also true for signed graphs without long barbells which
admit a nowhere-zero Z-flow. We will apply a result of Macajova and Skoviera. A signed graph
(G, 0) is antibalanced if it is equivalent to a signed graph (G, o’) with En(G,0’) = E(G).

Theorem 3.12. (Mécajova and Skoviera [12]) A signed cubic graph admits a nowhere-zero Z4-flow

if and only if it admits an antibalanced 2-factor.
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Theorem 3.13. Let (G,0) be a flow-admissible signed cubic graph. If (G,o) contains no long
barbells, then (G,o0) admits a nowhere-zero Zy-flow if and only if the underlying unsigned graph G

is 3-edge-colorable.

Proof. First assume that (G, o) admits a nowhere-zero Zs-flow. By Theorem 3.12, (G, o) has an
antibalanced 2-factor F. Since (G, o) contains no long barbells and .. »|V(C)| = [V(G)| = 0
(mod 2), it follows that that every circuit of F is of even length, so G is 3-edge-colorable.

Now assume that G is 3-edge-colorable. Then F(G) can be decomposed into three edge-disjoint
1-factors My, My and Msz. Without loss of generality, assume |M; N En(G,0)| = |[Ma2 N En(G,0)]
(mod 2). Let C = My U M. Clearly, C is a 2-factor of G.

Since |[E(C)NEN(G,0)| = |[M1NEN(G,0)|+|M2NEN(G,0)] =0 (mod 2), C contains an even
number n of unbalanced circuits. Since (G, o) contains no long barbells, it follows n = 0. This
implies that each component of C' is a balanced circuit with even length and thus is antibalanced.

By Theorem 3.12, (G, o) admits a nowhere-zero Z4-flow. O

Theorem 3.4 doesn’t hold for k = 4. There is a signed W5 (the wheel with six vertices) which
has a nowhere-zero Z4-flow but doesn’t have a nowhere-zero 4-flow (see [3]).
However, we don’t know whether Theorem 3.5 can be extended to all even positive integers k > 6.

We conclude this section with the following problem.

Problem 3.14. Let k > 6 be an even integer and (G, o) be a signed graph with a nowhere-zero
Zi-flow (1, f1). If (G,0) contains no long barbells, does there exist a nowhere-zero k-flow (7, f2)
such that

fi(e) = fale)  (mod k).

4 Circuit decomposition and sum of 2-flows

The following theorem is well-known for unsigned graphs.
Theorem 4.1. Every eulerian unsigned graph has a circuit decomposition.
Theorem 4.1 for unsigned graphs is extended to the class of signed graphs without long barbells.

Theorem 4.2. Let (G,0) be a flow-admissible signed eulerian graph with |En(G,0)| even. If (G, 0)
contains no long barbells, then (G, o) has a decomposition C such that each member of C is either a

balanced circuit or a short barbell.

Proof. Suppose to the contrary that (G, o) is a counterexample. Since (G, o) is a signed eulerian
graph, it has a decomposition C = {C4,...,Ch,Chi1,- - s Chtms Chtm1s -« s Chimin}, where hym
and n are three non-negative integers, and C; is an balanced circuit if ¢ € {1,..., h}, a short barbell
ifi e {h+1,...,h+m}, and a unbalanced circuit otherwise. We choose such a decomposition
that h + m is as large as possible. Then n # 0. Furthermore, n > 2 is even since |En(G,0)| =
|En(Ci,0lpc,))| =0 (mod 2) for each i € {1,...,h 4+ m}. Since (G, o) contains no long barbells,
it also contains no vertex disjoint unbalanced circuits, and thus, Cj 441 and Chim42 have at least
two common vertices. Let x; and z2 be two common vertices of Cpimt1 and Chipmio such that

Chim+1 has a path P; from x1 to z2 containing no vertex of Cj4mi2 as internal vertex. Let P
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and P53 be the two paths from z; to z9 in Cj 2. Since Ch 2 is an unbalanced circuit, there is
exactly one of P, and Ps, say P», such that |Ex(P1)| = |En(P2)| (mod 2), so Py + P is a balanced
circuit of (G'\ UM F(C;)). This contradicts the choice of C. O

Next we are going to study the decomposition of nowhere-zero k-flows into elementary 2-flows.
One of the basic theorems in flow theory for unsigned graphs is Theorem 1.3. The next theorem

extends this result to the class of signed graphs without long barbells.

Theorem 4.3. Let (G, o) be a signed graph without long barbells and (7, f) be a non-negative k-flow

of (G,o) where k> 2. Then
k—1

(T7f) = Z(T’ fl>7

i=1

where each (T, f;) is a non-negative 2-flow.
We need some lemmas to prove Theorem 4.3.

Lemma 4.4. Let (G,0) be a signed graph and (T, f) be a k-flow of (G,0). Then the total number

of negative edges with odd flow values is even.

Proof. Denote F' = {e € Ex(G,0) : f(e) is odd}. By Observation 3.9, 3 cp (g.0)(—27(h)) f(e) =
0, and thus }©.cp (g0 T(h) f(€) = 0, where h is a half-edge of e. Therefore || =3 . 7(h)f(e) =
0 (mod 2). O

Theorem 4.5. (Xu and Zhang [26]) A signed graph (G, o) admits a nowhere-zero 2-flow if and only

if each component of (G, o) is eulerian and has an even number of negative edges.

Lemma 4.6. Let (G,0) be a signed graph without long barbells and (7, f) be a k-flow of (G, o).
Let (Q,0|g(q)) be the subgraph of (G, o) induced by the edges of {e : f(e) = 1 (mod 2)}. Then
every component of (Q,0|g(q)) has an even number of negative edges and thus (Q,o|g(q)) admits

a nowhere-zero 2-flow.

Proof. Obviously, (Q,c|g(qg)) is an even subgraph of (G, o). By Lemma 4.4, (Q,0|g(g)) has an even
number of negative edges and thus the number of components of (Q, o|g(g)) with an odd number of
negative edges is even. By Theorem 4.5, if a component of (Q, 7| g()) has an odd number of negative
edges, then it is unbalanced. Thus (@, o|g(g)) has an even number of unbalanced components. Since
(G, o) contains no long barbells, (Q,o|g(g)) doesn’t contain two vertex-disjoint unbalanced circuits.
Therefore, each component of (Q,o|g(g)) is balanced and thus by Theorem 4.5 again, it admits a

nowhere-zero 2-flow. O

Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Prove by induction on k. It is trivial if k¥ = 2. Now assume that the
theorem is true for all t < k — 1. Let (7, f) be a non-negative k-flow of (G, o). For convenience,
every flow is a flow of (G, o) under the orientation 7 in the following.

We first consider the case when k is odd. Let (Q,o|g(q)) be the subgraph of (G, o) induced by
the edges of {e : f(e) =1 (mod 2)}. By Lemma 4.6, (G, 0) admits a 2-flow g with supp(g) = E(Q).
Then each

o= 119 and g = 129
1 2 ) g2 2
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is a non-negative (451 + 1)-flow. By induction hypothesis, each g; is the sum of £51 non-negative

2-flows. Thus f = g1 + g2 is the sum of k£ — 1 non-negative 2-flows.

Now assume that k is even. Then k — 1 is odd. First consider f as a modulo (k — 1)-flow. Then
by Theorem 3.5, (G, ) has a (k — 1)-flow g satisfying the following two properties:

(a) f(e) =g(e) (mod k — 1) for each edge e € E(G);

(b) supp(g) = supp(f) \ {e € E(G): f(e) =k —1}.

Now in the rest of the proof, we consider f as an integer k-flow. Since 0 < f(e) < k — 1 and
—(k —2) < g(e) < k-2, for each edge e we have —(k — 2) < f(e) — g(e) < 2k — 3. Thus we have
the following properties for f — g:

* (f—g)(e) =0, or k—1by (a);

o {e€ E(G): f(e) =k —1} Csupp(f —g) by (b).

Note that by (b), for each edge e, if f(e) = 0, then g(e) = 0. Thus f; = % is a non-negative
2-flow with {e € E(G) : f(e) =k — 1} C supp(f1). Therefore f — f; is a non-negative (k — 1)-flow.
By induction hypothesis, f — fi is the sum of k — 2 non-negative 2-flows. Together with f1, f can
be expressed as the sum of k — 1 non-negative 2-flows. This completes the proof of the theorem. [J

5 Integer and circular flow numbers

As mentioned in the introduction, ®;(H) = [®.(H)] holds for each unsigned graph H (Goddyn et
al. [2]) but there are signed graphs with ®,(G,0) — ®.(G,0) > 1. In this section we study the
circular flow numbers of signed graphs and prove that signed graphs without long barbells behave

like unsigned graphs in this context.

Figure 5: A nowhere-zero circular 4-flow of a graph (G, o) with ®;(G,0) =5

Most examples with the property [®.(G,0)] < ®;(G,0) contain a star-cut. A star-cut is an
induced subgraph S isormorphic to K ; of G such that every edge of S is an edge-cut of G. It becomes
natural to ask whether for each 2-edge-connected signed graph (G, o) the numbers [®.(G,0)] and
®,;(G, o) are same. We present an infinite family of counterexamples to this questions. Kompisova
and Mécajova [10] present a family of bridgeless cubic signed graphs which also are counterexamples

to this question.
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Proposition 5.1. Let t be a positive integer and Gy be the unsigned graph obtained by identifying t
copies of Ky at a common edge vivy. Let (G, o) be the signed graph obtained from G by deleting vyvo
and adding two negative loops L1, Lo at v1 and ve, respectively. Then ®.(G,0) < 3 and ®;,(G,0) > 4.

Proof. Note that it is easy to check that the unsigned graph G; doesn’t admit a nowhere-zero 3-flow
but admits a positive nowhere-zero 4-flow (D, f) with precisely one edge vivy with flow value 3.

We first claim that (G, o) admits a circular nowhere-zero 3-flow. Assume that v1v9 is oriented
away from v; and toward vy in D. Orient L; away from v; and orient Ly toward vy and define a
mapping ¢ on E(G) from f by ¢(e) = f(e) for each e ¢ {L1, Lo} and ¢(L1) = ¢(L2) = 1.5. Then ¢
is a circular 3-flow of (G, o), so ®.(G,0) < 3.

Now we claim that (G, o) does not admit a nowhere-zero 3-flow. Suppose to the contrary that
(G, o) admits a nowhere-zero 3-flow and thus admits a nowhere-zero Zs-flow (7, g) such that g(e) = 1
for every e € E(G). Since every vertex in V(G) \ {v1,v2} is of degree three in G, every copy of
K4 — vivy contributes zero to 9(7,g)(v;) for each i € {1,2}. Thus |9(7,9)(v;)| = 2|g(L;)] £ 0
(mod 3), a contradiction. O

The following structural lemma is needed in the proofs of Theorems 5.4 and 5.6. Given a circular

(2 4+ 1)-flow (7,7) of a signed graph (G, 0), let Iy = {e € E(G) : qi(e) ¢ Z}.

Lemma 5.2. Let (G, 0) be a signed graph admitting a circular (%Jrl)—ﬂow and let (1, ) be a circular
(2 4+ 1)-flow of (G, o) such that Fy has minimum cardinality. If Fy # 0, then
(1) the signed induced graph (G[Fg,0|r,) consists of a set of vertez-disjoint unbalanced circuits;
(2) for every edge e € E(G) \ Fy, 2q¢(e) is an even integer, while for every edge e € Fy, 2q¢(e)

is an odd integer.
Proof. Without loss of generality, we may assume ¢(e) > 0 for every edge e € E(G).

I. (G[Fy],0|F,) contains no signed circuits.
Suppose to the contrary that (G[Fy],o|F,) contains a signed circuit C. Then (G,o) admits
P

an integer 2- or 3-flow (7, ¢1) with supp(¢1) = E(C) (see [1]). Let ¢ = min.cp ) min{d)%(e)(a -

o(e)), ﬁ(e)(qb(e) —1)}. Then both (7, ¢+ €d2) and (7, — €¢2) are circular (£ +1)-flows and at least

one of Fyicg, and Fy_.4, is a proper subset of Fy, contradicting the choice of ¢.

II. G[F}] is 2-regular.

It is easy to see that the minimum degree §(G[Fy]) > 2 since (7, ¢¢) is a flow with integer value
in E(G) \ F, and non-integer value only in F.

Suppose that @Q is a component of G[Fy| with maximum degree A(Q) > 3. Then @ must contain
at least two distinct circuits C'; and Cs, otherwise @ itself is a circuit. By I, both C7 and Cy are
unbalanced. Hence, one may find either a balanced circuit or a short barbell if C; and Cs intersect

each other, or a long barbell if C; and C5 are vertex-disjoint, contradicting I.

Obviously, (1) is a corollary of I and II. To prove (2), let e € E(G). Since g¢(e) is not an integer
if and only if e € Fy, 2g¢(e) is an even integer if e € E(G) \ Fy. Assume e € Fy, below. By (1), let C
be the unbalanced circuit in (G[Fy],0|F,) containing e. Without loss of generality, further assume

that e is the unique negative edge of C' after switching. Hence, by (1) again,

2g6(e)| =] Y A(r,qd)(v)| =0 (mod 1).

veV(C)
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Thus 2g¢(e) is an odd integer since go(e) is not an integer. This completes the proof of the lemma.

O
Definition 5.3. Let p be a positive integer. A signed graph (G,o) is ﬁ—ﬁow—normalizable if it
admits a circular % flow with rational flow values in {1,1 + ﬁ,l + %,...,% —-1- i% -1}

whenever it admits a circular % flow with real flow values in [1, % —1]. By G,, we denote the family

of signed graphs which are i—ﬂow—normalizable.

For unsigned graphs we have G; = G, = {G : G is a bridgeless graph} for each > 2 (see [21]).
However, for general signed graphs this does not hold. As an example we refer to the graph depicted
in Figure 5 with ®.(G, o) = 4 where it is easy to see that every circular 4-flow must contain an edge
with flow value 1 + %

The following theorem is a direct corollary of Lemma 5.2-(2) and the definition of Gs.
Theorem 5.4. A signed graph (G, o) is flow-admissible if and only if (G,0) € Gs.

The following lemma gives some sufficient conditions for [®.(G,0)] = ®;(G, 0).
Lemma 5.5. Let (G,0) € Gi. Then [®.(G,0)] = ®;(G,0).

Proof. Let (G,0) € G1 with a circular £-flow (7, f). Let k = [2]. Since (7, f) can also be considered
as a circular %—ﬂow, by Definition 5.3, (G, o) admits a circular %—ﬂow (7, f") with rational flow values
in {1,1+ %7 1+ %, o k—=1— %, k —1}. Obviously, (7, f/) is a nowhere-zero k-flow. O

Theorem 5.6. Let (G,0) be a signed graph containing no long barbells. Then (G,0) € G and thus
[©.(G,0)] = ®;(G,0).

Proof. Suppose that (G, o) admits a circular (g +1)-flow. Without loss of generality, assume that G
is connected. We choose a circular (£+1)-flow (7, ¢) of (G, o) such that Iy = {e € E(G) : q¢(e) ¢ Z}
has minimum cardinality. If F,, = ), then (G, o) € Gy by the definition of G;.

Now assume Fy, # ). Then by Lemma 5.2-(1), G[F}] consists of a set of vertex-disjoint unbalanced
circuits. Since G is connected and (G, o) has no long barbells, (G, o) doesn’t contain two vertex-
disjoint unbalanced circuits. Thus (G[Fy],0|F,) is an unbalanced circuit. By switching, we may
assume that G[Fy] is an unbalanced circuit with precisely one negative edge, denoted by eg.

Since (7, ¢) is a circular flow of (G, o), so does (7, ¢¢). By Observation 3.9, the total sum of the
boundaries on E(G) is zero for (7,¢¢). By Lemma 5.2-(2),

0= > 0(r,90)(e) = > 2¢(e) =2q¢(e0) =1 (mod 2).

ecE(G) ecEN(G,0)NFy
This contradiction completes the proof of the theorem. O]
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