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Abstract—Recent  breakthroughs suggest that local,
approximate gradient descent learning is compatible with
Spiking Neural Networks (SNNs). Although SNNs can be scalably
implemented using neuromorphic VLSI, an architecture, that
can learn in sifu as accurately as conventional processors, is still
missing. Here, we propose a subthreshold circuit architecture
designed through insights obtained from machine learning and
computational neuroscience that could achieve such accuracy.
Using a surrogate gradient learning framework, we derive local,
error-triggered learning dynamics compatible with crossbar
arrays and the temporal dynamics of SNNs. The derivation
reveals that circuits used for inference and training dynamics
can be shared, which simplifies the circuit and suppresses the
effects of fabrication mismatch. We present SPICE simulations
on XFAB 180nm process, as well as large-scale simulations
of the spiking neural networks on event-based benchmarks,
including a gesture recognition task. Our results show that the
number of updates can be reduced hundred-fold compared to
the standard rule while achieving performances that are on par
with the state-of-the-art.

I. INTRODUCTION

The implementation of learning dynamics as synaptic
plasticity in neuromorphic hardware can lead to highly
efficient, lifelong learning systems [1]-[5]. While gradient
Backpropagation (BP) is the workhorse for training nearly
all deep neural network architectures, it is incompatible
with neuromorphic hardware because it is not spatially and
temporally local [6]. Recent work addresses this problem using
Surrogate Gradient (SG) learning [7]. SGs use a differentiable
surrogate network to compute weight updates in a local
fashion, and formulate the updates as three-factor synaptic
plasticity rules. The SG approach reveals from first principles
the mathematical nature of the three factors, and a learning
dynamic that is continuous in time. While temporal continuity
is a plausible property in the brain, while being able to perform
a large number of weight updates (writes) which can be
energetically expensive in hardware [2].

Here, we demonstrate a crossbar based neuromorphic
architecture that efficiently implements SG learning as a three-
factor plasticity rule. The problem of continuous updates is
solved by triggering weight updates asynchronously when the
error exceeds a threshold. We propose subthreshold analog
circuits that efficiently implement the neural dynamics and
error-triggered updates. We find that the circuits for learning
and inference can be shared, which further reduces the circuit
complexity, and suppresses mismatch in the peripheral circuits.
Taken together, our results demonstrate that the additional
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circuit complexity for efficient learning with spiking neurons
is small compared to a conventional artificial neural network,
and could enable efficient spatiotemporal pattern learning in
memristor-based crossbar arrays.

II. NEURAL NETWORK MODEL

The proposed model consists of networks of plastic
integrate-and-fire neurons. Here, the models are formalized in
discrete-time to make the equivalence with classical artificial
neural networks more explicit. However, these dynamics can
also be written in continuous-time without any conceptual
changes. The neuron and synapse dynamics are:

Uiln] = Y W} Pln] = 8Ri[n], Si[n] =OWUi[n])

’ P]l[n +1] = aliPil[n] + Ql7 [n],
Qln+1] = Q" [n] + SL[n],
Ri[n +1] =~ Ri[n] + 5;[n].

where U![n] is the membrane potential of neuron i at layer [
at time step n, W' is the synaptic weight matrix between layer
[—1and [, and S! is the binary output of this neuron. © is the
step function, i.e. (S![n] = 1 when U}[n] < 0). The constants
ok, 4k and B} capture the decay dynamics of the membrane
potential U/, the refractory (resetting) state ! and the synaptic
state ¢ and can be related to time constants in leaky integrate-
and-fire neurons. The indices in the time constants, j and [,
reflect the circuit-to-circuit variability in these parameters due
to fabrication mismatch. States PP and () describe the traces of
the membrane and the current-based synapse, respectively. R
is a refractory state that resets and inhibits the neuron after
it has emitted a spike, and ¢ is the constant that controls
its magnitude. Note that Eq. (1) is equivalent to a discrete-
time version of the Spike Response Model (SRM), with linear
filters [8]. This SNN and the ensuing learning dynamics can be
transformed into a standard binary neural network by setting
all a = 0, replacing all P[n| with S[n — 1] and dropping @
and R.

III. SURROGATE GRADIENT LEARNING

Assuming a global cost function £, the gradients with
respect to the weights in layer [ are formulated as three factors
0 0 0 4 0
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The rightmost factor describes the change of the membrane
potential changes with the weight WZZJ This term is equal to
Pl[n]—6 av?/,}, Rl[n] for the neuron defined by Eq. (1). The term
with R involves a dependence of the past spiking activity of the
neuron, which significantly complicates the learning dynamics.
Fortunately, this dependence can be ignored during learning
without empirical loss in performance [9]. The middle factor
is the change in spiking state as a function of the membrane
potential, i.e. the derivative of ©. O is non-differentiable but
can be replaced by a smooth sigmoidal or piecewise constant
function in the learning rule [7]. Our experiments make use of
a piecewise linear function, such that middle factor becomes
the box function: %Sﬁ =B(U;)=1ifu_ <U; <wuy and
0 otherwise. The leftmost factor describes how the change in
the spiking state affects the loss. It is commonly called the
local error (or the “delta”) and is typically computed using
gradient BP. We assume for the moment that these local errors
are available and denote them errf, and revisit this point in
Sec. III-B. The weight updates become:

AW = iﬁ = —nerrlP!

ij —anl il ifu_ <U; < Uy, 3)
ij

where 7 is the learning rate.

A. Error-triggered Learning

For most interesting cost functions, errors must be computed
extrinsically and communicated to the neuron. To make this
communication efficient, we encode errors using positive and
negative events as follows:

Ell = sign(erré)Herrﬂ -0t 4)

where 6 € R is a constant or slowly varying error threshold
and [-]* is the recitifed linear function. Using this encoding,
the parameter update rule becomes:

AW/}, = —0E/P!B(U}) ®)

where 6 is called the stop-learning threshold (1 was folded
into ¢). Thus, an update takes place on an error of magnitude
¢ and if B(U}!) = 1. The sign of the weight update is —F!
and its magnitude GPJl. Provided that the layer-wide update
magnitude can be modulated proportionally to 6, this learning
rule implies two comparisons and an addition (subtraction).

B. Local Losses and Local Errors

Up to now, we have side-stepped the calculation of
err[n]!. If 1 is not the output layer, then computing this
term requires solving a deep credit assignment problem.
Gradient BP can solve this, but is not compatible with a
physical implementation of the neural network [6]. Several
approximations have emerged recently to solve this, such as
feedback alignment [10]-[12], and local losses defined for
each layer [13]-[15]. For classification, local losses can be
local classifiers (using output labels) [13], and supervised
clustering, which perform on par and sometimes better than BP
in classical ML benchmark tasks [15]. For all experiments used

in this work, we use a layer-wise local classifier using a mean-
squared error loss defined as £! = || chzl(JilkS,lC — Uk)||2s
where Jilk is a random, fixed matrix, ¥, are one-hot encoded
labels, and C' is the number of classes. The gradients of
L! involve backpropagation within the time step n and thus
requires the symmetric transpose, J'T. If this symmetric
transpose is available, then £ can be optimized directly. To
account for the case where J7 is unavailable, for example in
mixed signal systems, we train through feedback alignment
using another random matrix H L 110] whose elements are
equal to Hfj = JfJ’.Twll-j with Gaussian distributed wéj ~
N(1, %), where T indicates transpose. Weight updates are
achieved through stochastic gradient descent (SGD). We note
that an error can be computed with any loss function (e.g.
mean-squared error or cross entropy) provided there is no
temporal dependency, i.e. £[n] does not depend on variables
in time step n — 1. If such temporal dependencies exist, for
example with Van Rossum distance [9], the learning rule
becomes considerably more complex and Eq. (3). The matrices
J' and H' can be very large, especially in the case of
convolutional networks. One solution to the memory footprint
of J! is to generate these matrices on the fly using a random
number generator [13]. Another solution is to define .J! as a
sparse, binary matrix [6]. Using a binary matrix would further
reduce the need for multiplications in the computation of err;.

C. Hardware Realization with Memristor Crossbar Arrays

The emerging technologies, such as memristors (RRAMs),
phase change memory, and spin transfer torque-RAM in
addition to other MOS realizations such as floating gate
transistors, assembled as crossbar array enable the VMM
operation to be completed in a single step. This is unlike
other hardware solutions which requires N x M steps
where N and M are the size of the weight matrix.
These emerging technologies implement only positive weight
(excitatory connections), however, the negative weights
(inhibitory connections) are necessary. There are two ways
to realize the positive and negative weights [16]; 1) balanced
realization where two devices are needed to implement the
weight value which is stored in the devices’ conductances
where w = GT — G~. If the G is greater/less than
G, it represents positive/negative weight, respectively. 2)
Unbalanced realization where one device is used to implement
the weight value with a common reference conductance G .,
set to the mid value of the conductance range. Thus, the weight
value is represented as w = G — G,.y. If the G is greater/less
than Gy, it represents positive/negative weight, respectively.
In this work, we use the unbalanced realization since it saves
the area and power in expense of using half of the device’s
dynamic range. Thus, the memristive SNN can be written as

Ulln] = Y (Gl; = Greg) Pjln]. ©)
J
By following the same analysis in section III-A, the

conductance update model is the same as Eq. (3). The general
architecture of the proposed dynamics is shown in Fig. 1.
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S Q P W Fig. 1. Architecture of the
) Three-Factor Error-Triggered
ﬂ." Rule. Input spikes S are

integrated through P. The

vector P is then multiplied
with W resulting in U. Output
spikes S are then compared
with local targets y and bipolar
error events I are fed back to
each neuron. Updates are made
ifu_ <U <wuy. Ris omitted
in this diagram

D. Inference and Learning Circuits

Our circuit implementation of the spiking neural network
differs from classical ones. Generally, the rows of crossbar
arrays are driven by (spikes) and integration takes place at
each column [17]. While this is beneficial in reducing read
power, it renders learning more difficult because the variables
necessary for learning in SNNs are not local to the crossbar.
Instead, we use the crossbar as a vector-matrix multiplication
of pre-synaptic trace vectors P! and synaptic weight matrices
W!. Using this strategy, a single trace P} per neuron supports
both inference and learning. Furthermore, this property means
that learning is immune to the mismatch in P!, and can even
exploit this variation for reducing the loss. Fig. 2 depicts the
details of the learning circuits in a crossbar-like architecture
which is compatible with the address-event representation
(AER) as the conventional scheme for communication between
neuronal cores in many neuromorphic chips [18]. In this
circuit, only P is shown and ag = 0. This type of architecture
includes multi-T/1R [19]. The traces P are generated through
a Differential-Pair Integrator (DPI) circuit which generates
a tunable exponential response at each input event in the
form of a sub-threshold current [20]. The current is linearly
converted to voltage using pseudo resistors in the I-to-V
block highlighted in the red box in Fig. 2. The exponentially
decaying voltage is buffered and drives the entire crossbar row
in accordance with Eq. (1).

For every neuron, different voltages (corresponding to
Pj) are applied to the top electrode of the corresponding
memristive device whose bottom electrode is pinned by the
crossbar front-end highlighted in yellow (Fig. 2). This block
pins the entire column to a reference voltage (Vref) and reads
out the sum of the currents generated by the application of Ps
across the memristors in the column. As a result, a voltage is
developed on the gate of the M1 connected to a differential pair
which re-normalizes the sum of the currents from the crossbar
to I,,orm. This ensures that the currents remain in the sub-
threshold regime for the next stage of the computation which
is the ternary error generation as is specified in equation (4).
This is done through the Variable Width Bump (VWBump)
circuit that compares I,,,, to the target ¢, with a stop region.
Thus, the VWBump circuit output indicates the sign of the
weight update (up or down) or stop-learning (no update). The
circuit (not shown) is based on the bump circuit [21], which
consists of a differential pair for the comparison and a current
correlator for the stop region, and is modified to have a tunable

stop-learning region [22]. The boundaries of this region play
the role of 6 in (4). The output of the block is plotted in the
inset of Fig. 2, which shows the Up, Down and STOP outputs.

The Up and Down signals trigger the oscillators highlighted
in blue which generate the bipolar E; events. According to
Eq. (5), the magnitude of the weight update is P;, and thus
P; must be sampled at the onset of E;. To do so, we regenerate
the exponential current in the entire row by propagating pbias
shown in the DPI circuit block (green) and sample it by the
up and down events. This is done through the sampling circuit
which consists of two PMOS transistors in series connected
to the up/down events and pbias respectively. The NMOS
transistor is biased to generate a current much smaller than
that of the DPI and as a result, the higher the DPI current,
the higher the input of the following inverter during the event
pulse, and thus it takes longer for the NMOS to discharge
that node. This results in a pulse width varying linearly with
P;, in agreement with Eq. (5). The linear pulse width can be
approximated with multiple pulses which results in a linear
conductance update in memristive devices [23].

Fig. 3 illustrates the Spectre results of the above circuits
designed in XFAB 180nm process. With every input event,
the DPI current (and therefore EPSP) undergoes a near
instantaneous jump and decays exponentially. The EPSP is
buffered and applied to the memristive device whose other
side is pinned at vdd/2 (0.9V). Vmmr, the voltage drop
across the device, follows the EPSP except for the time it
is being programmed. V' Nrn, marked on Fig. 2, is used to
mirror the normalized crossbar current (/,,) to the bump
circuit and is shown in green in Fig. 3. In the beginning,
while the EPSP is low, I,,,, is lower than the target, therefore,
the UP output of the VWBump circuit is high and the UP
events are generated through the oscillator. As the neuron gets
closer to the target (because of the integrated input events),
the STOP output of VWBump is flipped to high and the
event generation stops. The UP events sample the EPSP to
change the synaptic weight correspondingly. While the EPSP
is low, no programming pulse is generated. For higher values
of the EPSP, the pulse width is higher and it falls as the EPSP
decays. This is highlighted in the inset of the Vmmr. Note
that the memristor model (and thus the synaptic update) is not
included in the circuit simulations and we are only showing the
programming conditions which would cause the conductance
change based on the online learning algorithm.

IV. LARGE-SCALE SIMULATION EXPERIMENTS

An important feature of the used learning rule is its
scalability to multilayer networks with very small loss of
performance compared to a standard deep neural network
when using idealized dynamics. To demonstrate this, we
simulate the learning dynamics for classification in large-
scale, multilayer spiking networks. The GPU simulations
focus on event-based datasets acquired using a neuromorphic
sensor, namely the N-MNIST and DVS Gestures dataset for
demonstrating the learning model. Both datasets were pre-
processed as in [14]. The N-MNIST network is fully connected
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Fig. 2. Details of the architecture and learning circuits. Green: DPI circuit generating P in the current form. Red: Pseudo resistors converting input current
into a voltage driving the crossbar array. Pink: Synapse with the controlling switches. Purple: Sampling circuitry generating pulses to program the devices.
Yellow: Crossbar front-end and normalization of the crossbar current. Dark blue: Bump circuit comparing the crossbar current to a target and generating the
direction of the error. Light blue: Bidirectional neuron producing up and down events.
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Fig. 3. SPICE simulation results of the learning circuits generating the

appropriate programming pulses across the memristive device (Vmmr)
depending on the value of the EPSP at the onset of the error events.

(1000-1000-1000), while the DVS Gestures network is
convolutional (64c7-128c7-128¢7). For practical reasons, the
neural networks were trained in minibatches of 72 (DVS
Gestures) and 100 (N-MNIST). We note that the choice
of using minibatches is advantageous when using GPUs to
simulate the dynamics and is not specific to Eq. (3), and

TABLE I
RECOGNITION ERROR IN IDEALIZED SPIKING NEURAL NETWORK
SIMULATIONS AVERAGED OVER 5 RUNS.

DVSGesture N-MNIST
(F) | Error | Writes | Error | Writes
Cont. | 3.82% | IM 23% | 1.5M
50Hz | 422% | 50k | 231% | 75k
10Hz | 6.25% 10k 2.71% 45k

can also be used for gradient backpropagation through time
and spike-timing dependent plastisity. The parameters of our
model are similar to that of [14] except that the time constants
were randomized. In our experiments, we used a proportional
controller to adjust 6 such as the average error spike rate
(F) remains stable. The column writes indicates an upper
bound on the number of weight writes. It is an approximate
upper boundary, as the effect of B(U) has not been taken into
account. These results in Tab. I demonstrate a small loss in
accuracy across the two tasks when updates are error-triggered.
As comparison, published work on DVS Gestures with spiking
neurons trained with backpropagation achieved 5.41% [24] and
6.36% [25] error rates and 1.3% [26].

V. CONCLUSION

In this article, we demonstrated an error-triggered learning
rule that is particularly well-suited for implementation in
crossbars. Our implementation leverages the linear property
of the subthreshold dynamics, such that the memory required
for computing the gradients (i.e. the synaptic traces) grows
linearly with the neurons (hence one P; per input neuron).
By updating weights asynchronously (when errors occur),
the number of weight writes can be drastically reduced. The
proposed learning rule has the same computational footprint
as error-modulated Spike Time Dependent Plasticity (STDP)
but is functionally different in that there is no acausal part,
the updates are triggered on errors if the membrane potential
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is close to the firing threshold (rather than post-synaptic spike
STDP). A more detailed comparison of the scaling of this
family of learning rules is provided in [14].

Our proposed implementation still requires a programming
circuitry (8 transistors) per synapse along with transistors
which switch the memristive device in an out of the network
for read/programming. However, the transistors can take
advantage of the technology scaling (in contrast to the
capacitors whose area do not change as much with the scaling
of the nodes).

Despite of the huge benefit of the crossbar array structure,
the memristor devices suffer from many challenges that
might affect the performance unless taken into consideration
in the training such as asymmetric nonlinearity, precision
and retention [27]. Fortunately, online learning helps with
other problems such as sneak path (i.e wire resistance) and
endurance. With error-triggered learning rule, only selected
devices are updated which leads to extending the lifetime
of the devices and less write energy consumption. The
aforementioned non-idealities will be considered in our future
work.
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