
Error-triggered Three-Factor Learning Dynamics for

Crossbar Arrays

Melika Payvand1,∗, Mohammed E. Fouda2,∗, Fadi Kurdahi2, Ahmed Eltawil2, and Emre O. Neftci3

1Institute of neuroinformatics, University and ETH of Zurich, Zurich, Switzerland.
2Electrical Engineering and Computer Science Dept., UC Irvine, Irvine, CA 92697-2625 USA

3 Cognitive Sciences Dept. and Computer Science Dept., UC Irvine, Irvine, CA 92697-2625 USA

Abstract—Recent breakthroughs suggest that local,
approximate gradient descent learning is compatible with
Spiking Neural Networks (SNNs). Although SNNs can be scalably
implemented using neuromorphic VLSI, an architecture, that
can learn in situ as accurately as conventional processors, is still
missing. Here, we propose a subthreshold circuit architecture
designed through insights obtained from machine learning and
computational neuroscience that could achieve such accuracy.
Using a surrogate gradient learning framework, we derive local,
error-triggered learning dynamics compatible with crossbar
arrays and the temporal dynamics of SNNs. The derivation
reveals that circuits used for inference and training dynamics
can be shared, which simplifies the circuit and suppresses the
effects of fabrication mismatch. We present SPICE simulations
on XFAB 180nm process, as well as large-scale simulations
of the spiking neural networks on event-based benchmarks,
including a gesture recognition task. Our results show that the
number of updates can be reduced hundred-fold compared to
the standard rule while achieving performances that are on par
with the state-of-the-art.

I. INTRODUCTION

The implementation of learning dynamics as synaptic

plasticity in neuromorphic hardware can lead to highly

efficient, lifelong learning systems [1]–[5]. While gradient

Backpropagation (BP) is the workhorse for training nearly

all deep neural network architectures, it is incompatible

with neuromorphic hardware because it is not spatially and

temporally local [6]. Recent work addresses this problem using

Surrogate Gradient (SG) learning [7]. SGs use a differentiable

surrogate network to compute weight updates in a local

fashion, and formulate the updates as three-factor synaptic

plasticity rules. The SG approach reveals from first principles

the mathematical nature of the three factors, and a learning

dynamic that is continuous in time. While temporal continuity

is a plausible property in the brain, while being able to perform

a large number of weight updates (writes) which can be

energetically expensive in hardware [2].

Here, we demonstrate a crossbar based neuromorphic

architecture that efficiently implements SG learning as a three-

factor plasticity rule. The problem of continuous updates is

solved by triggering weight updates asynchronously when the

error exceeds a threshold. We propose subthreshold analog

circuits that efficiently implement the neural dynamics and

error-triggered updates. We find that the circuits for learning

and inference can be shared, which further reduces the circuit

complexity, and suppresses mismatch in the peripheral circuits.

Taken together, our results demonstrate that the additional

circuit complexity for efficient learning with spiking neurons

is small compared to a conventional artificial neural network,

and could enable efficient spatiotemporal pattern learning in

memristor-based crossbar arrays.

II. NEURAL NETWORK MODEL

The proposed model consists of networks of plastic

integrate-and-fire neurons. Here, the models are formalized in

discrete-time to make the equivalence with classical artificial

neural networks more explicit. However, these dynamics can

also be written in continuous-time without any conceptual

changes. The neuron and synapse dynamics are:
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where U l
i [n] is the membrane potential of neuron i at layer l

at time step n, W l is the synaptic weight matrix between layer

l−1 and l, and Sl
i is the binary output of this neuron. Θ is the

step function, i.e. (Sl
i[n] = 1 when U l

i [n] ≤ 0). The constants

αl
j , γl

j and βl
j capture the decay dynamics of the membrane

potential U l
i , the refractory (resetting) state Rl

i and the synaptic

state Ql
i and can be related to time constants in leaky integrate-

and-fire neurons. The indices in the time constants, j and l,
reflect the circuit-to-circuit variability in these parameters due

to fabrication mismatch. States P and Q describe the traces of

the membrane and the current-based synapse, respectively. R
is a refractory state that resets and inhibits the neuron after

it has emitted a spike, and δ is the constant that controls

its magnitude. Note that Eq. (1) is equivalent to a discrete-

time version of the Spike Response Model (SRM)0 with linear

filters [8]. This SNN and the ensuing learning dynamics can be

transformed into a standard binary neural network by setting

all α = 0, replacing all P [n] with S[n − 1] and dropping Q
and R.

III. SURROGATE GRADIENT LEARNING

Assuming a global cost function L, the gradients with

respect to the weights in layer l are formulated as three factors

∂

∂W l
ij

L =
∂

∂Sl
i

L
∂

∂U l
i
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i

∂
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ij

U l
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The rightmost factor describes the change of the membrane

potential changes with the weight W l
ij . This term is equal to

P l
j [n]−δ ∂

∂W l
ij

Rl
i[n] for the neuron defined by Eq. (1). The term

with R involves a dependence of the past spiking activity of the

neuron, which significantly complicates the learning dynamics.

Fortunately, this dependence can be ignored during learning

without empirical loss in performance [9]. The middle factor

is the change in spiking state as a function of the membrane

potential, i.e. the derivative of Θ. Θ is non-differentiable but

can be replaced by a smooth sigmoidal or piecewise constant

function in the learning rule [7]. Our experiments make use of

a piecewise linear function, such that middle factor becomes

the box function: ∂
∂U l

i

Sl
i := B(Ui) = 1 if u

−
< Ui < u+ and

0 otherwise. The leftmost factor describes how the change in

the spiking state affects the loss. It is commonly called the

local error (or the “delta”) and is typically computed using

gradient BP. We assume for the moment that these local errors

are available and denote them errli, and revisit this point in

Sec. III-B. The weight updates become:

∆W l
ij = −η

∂

∂W l
ij

L = −η errliP
l
j , if u

−
< Ui < u+, (3)

where η is the learning rate.

A. Error-triggered Learning

For most interesting cost functions, errors must be computed

extrinsically and communicated to the neuron. To make this

communication efficient, we encode errors using positive and

negative events as follows:

El
i = sign(errli)[|err

l
i| − θ]+ (4)

where θ ∈ R is a constant or slowly varying error threshold

and [·]+ is the recitifed linear function. Using this encoding,

the parameter update rule becomes:

∆W l
ij = −θEl

iP
l
jB(U l

i ) (5)

where θ is called the stop-learning threshold (η was folded

into θ). Thus, an update takes place on an error of magnitude

θ and if B(U l
i ) = 1. The sign of the weight update is −El

i

and its magnitude θP l
j . Provided that the layer-wide update

magnitude can be modulated proportionally to θ, this learning

rule implies two comparisons and an addition (subtraction).

B. Local Losses and Local Errors

Up to now, we have side-stepped the calculation of

err[n]li. If l is not the output layer, then computing this

term requires solving a deep credit assignment problem.

Gradient BP can solve this, but is not compatible with a

physical implementation of the neural network [6]. Several

approximations have emerged recently to solve this, such as

feedback alignment [10]–[12], and local losses defined for

each layer [13]–[15]. For classification, local losses can be

local classifiers (using output labels) [13], and supervised

clustering, which perform on par and sometimes better than BP

in classical ML benchmark tasks [15]. For all experiments used

in this work, we use a layer-wise local classifier using a mean-

squared error loss defined as Ll
i = ||

∑C
k=1

(J l
ikS

l
k − ŷk)||2,

where J l
ik is a random, fixed matrix, ŷk are one-hot encoded

labels, and C is the number of classes. The gradients of

Ll
i involve backpropagation within the time step n and thus

requires the symmetric transpose, J l,T . If this symmetric

transpose is available, then L can be optimized directly. To

account for the case where JT is unavailable, for example in

mixed signal systems, we train through feedback alignment

using another random matrix H l [10] whose elements are

equal to H l
ij = J l,T

ij ωl
ij with Gaussian distributed ωl

ij ∼

N(1, 1

2
), where T indicates transpose. Weight updates are

achieved through stochastic gradient descent (SGD). We note

that an error can be computed with any loss function (e.g.

mean-squared error or cross entropy) provided there is no

temporal dependency, i.e. L[n] does not depend on variables

in time step n − 1. If such temporal dependencies exist, for

example with Van Rossum distance [9], the learning rule

becomes considerably more complex and Eq. (3). The matrices

J l and H l can be very large, especially in the case of

convolutional networks. One solution to the memory footprint

of J l is to generate these matrices on the fly using a random

number generator [13]. Another solution is to define J l as a

sparse, binary matrix [6]. Using a binary matrix would further

reduce the need for multiplications in the computation of erri.

C. Hardware Realization with Memristor Crossbar Arrays

The emerging technologies, such as memristors (RRAMs),

phase change memory, and spin transfer torque-RAM in

addition to other MOS realizations such as floating gate

transistors, assembled as crossbar array enable the VMM

operation to be completed in a single step. This is unlike

other hardware solutions which requires N × M steps

where N and M are the size of the weight matrix.

These emerging technologies implement only positive weight

(excitatory connections), however, the negative weights

(inhibitory connections) are necessary. There are two ways

to realize the positive and negative weights [16]; 1) balanced

realization where two devices are needed to implement the

weight value which is stored in the devices’ conductances

where w = G+ − G−. If the G+ is greater/less than

G−, it represents positive/negative weight, respectively. 2)

Unbalanced realization where one device is used to implement

the weight value with a common reference conductance Gref ,

set to the mid value of the conductance range. Thus, the weight

value is represented as w = G−Gref . If the G is greater/less

than Gref , it represents positive/negative weight, respectively.

In this work, we use the unbalanced realization since it saves

the area and power in expense of using half of the device’s

dynamic range. Thus, the memristive SNN can be written as

U l
i [n] =

∑

j

(

Gl
ij −Gref

)

P l
j [n]. (6)

By following the same analysis in section III-A, the

conductance update model is the same as Eq. (3). The general

architecture of the proposed dynamics is shown in Fig. 1.
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Fig. 1. Architecture of the
Three-Factor Error-Triggered
Rule. Input spikes S are
integrated through P . The
vector P is then multiplied
with W resulting in U . Output
spikes S are then compared
with local targets ŷ and bipolar
error events E are fed back to
each neuron. Updates are made
if u

−
< U < u+. R is omitted

in this diagram

D. Inference and Learning Circuits

Our circuit implementation of the spiking neural network

differs from classical ones. Generally, the rows of crossbar

arrays are driven by (spikes) and integration takes place at

each column [17]. While this is beneficial in reducing read

power, it renders learning more difficult because the variables

necessary for learning in SNNs are not local to the crossbar.

Instead, we use the crossbar as a vector-matrix multiplication

of pre-synaptic trace vectors P l and synaptic weight matrices

W l. Using this strategy, a single trace P l
i per neuron supports

both inference and learning. Furthermore, this property means

that learning is immune to the mismatch in P l, and can even

exploit this variation for reducing the loss. Fig. 2 depicts the

details of the learning circuits in a crossbar-like architecture

which is compatible with the address-event representation

(AER) as the conventional scheme for communication between

neuronal cores in many neuromorphic chips [18]. In this

circuit, only P is shown and αQ = 0. This type of architecture

includes multi-T/1R [19]. The traces P are generated through

a Differential-Pair Integrator (DPI) circuit which generates

a tunable exponential response at each input event in the

form of a sub-threshold current [20]. The current is linearly

converted to voltage using pseudo resistors in the I-to-V

block highlighted in the red box in Fig. 2. The exponentially

decaying voltage is buffered and drives the entire crossbar row

in accordance with Eq. (1).

For every neuron, different voltages (corresponding to

Pj) are applied to the top electrode of the corresponding

memristive device whose bottom electrode is pinned by the

crossbar front-end highlighted in yellow (Fig. 2). This block

pins the entire column to a reference voltage (V ref ) and reads

out the sum of the currents generated by the application of P s

across the memristors in the column. As a result, a voltage is

developed on the gate of the M1 connected to a differential pair

which re-normalizes the sum of the currents from the crossbar

to Inorm. This ensures that the currents remain in the sub-

threshold regime for the next stage of the computation which

is the ternary error generation as is specified in equation (4).

This is done through the Variable Width Bump (VWBump)

circuit that compares Inn to the target ŷ, with a stop region.

Thus, the VWBump circuit output indicates the sign of the

weight update (up or down) or stop-learning (no update). The

circuit (not shown) is based on the bump circuit [21], which

consists of a differential pair for the comparison and a current

correlator for the stop region, and is modified to have a tunable

stop-learning region [22]. The boundaries of this region play

the role of θ in (4). The output of the block is plotted in the

inset of Fig. 2, which shows the Up, Down and STOP outputs.

The Up and Down signals trigger the oscillators highlighted

in blue which generate the bipolar Ei events. According to

Eq. (5), the magnitude of the weight update is Pj , and thus

Pj must be sampled at the onset of Ei. To do so, we regenerate

the exponential current in the entire row by propagating pbias

shown in the DPI circuit block (green) and sample it by the

up and down events. This is done through the sampling circuit

which consists of two PMOS transistors in series connected

to the up/down events and pbias respectively. The NMOS

transistor is biased to generate a current much smaller than

that of the DPI and as a result, the higher the DPI current,

the higher the input of the following inverter during the event

pulse, and thus it takes longer for the NMOS to discharge

that node. This results in a pulse width varying linearly with

Pj , in agreement with Eq. (5). The linear pulse width can be

approximated with multiple pulses which results in a linear

conductance update in memristive devices [23].

Fig. 3 illustrates the Spectre results of the above circuits

designed in XFAB 180nm process. With every input event,

the DPI current (and therefore EPSP) undergoes a near

instantaneous jump and decays exponentially. The EPSP is

buffered and applied to the memristive device whose other

side is pinned at vdd/2 (0.9V). V mmr, the voltage drop

across the device, follows the EPSP except for the time it

is being programmed. V Nrn, marked on Fig. 2, is used to

mirror the normalized crossbar current (Inn) to the bump

circuit and is shown in green in Fig. 3. In the beginning,

while the EPSP is low, Inn is lower than the target, therefore,

the UP output of the VWBump circuit is high and the UP

events are generated through the oscillator. As the neuron gets

closer to the target (because of the integrated input events),

the STOP output of VWBump is flipped to high and the

event generation stops. The UP events sample the EPSP to

change the synaptic weight correspondingly. While the EPSP

is low, no programming pulse is generated. For higher values

of the EPSP, the pulse width is higher and it falls as the EPSP

decays. This is highlighted in the inset of the V mmr. Note

that the memristor model (and thus the synaptic update) is not

included in the circuit simulations and we are only showing the

programming conditions which would cause the conductance

change based on the online learning algorithm.

IV. LARGE-SCALE SIMULATION EXPERIMENTS

An important feature of the used learning rule is its

scalability to multilayer networks with very small loss of

performance compared to a standard deep neural network

when using idealized dynamics. To demonstrate this, we

simulate the learning dynamics for classification in large-

scale, multilayer spiking networks. The GPU simulations

focus on event-based datasets acquired using a neuromorphic

sensor, namely the N-MNIST and DVS Gestures dataset for

demonstrating the learning model. Both datasets were pre-

processed as in [14]. The N-MNIST network is fully connected
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Fig. 2. Details of the architecture and learning circuits. Green: DPI circuit generating P in the current form. Red: Pseudo resistors converting input current
into a voltage driving the crossbar array. Pink: Synapse with the controlling switches. Purple: Sampling circuitry generating pulses to program the devices.
Yellow: Crossbar front-end and normalization of the crossbar current. Dark blue: Bump circuit comparing the crossbar current to a target and generating the
direction of the error. Light blue: Bidirectional neuron producing up and down events.

target

Fig. 3. SPICE simulation results of the learning circuits generating the
appropriate programming pulses across the memristive device (V mmr)
depending on the value of the EPSP at the onset of the error events.

(1000–1000–1000), while the DVS Gestures network is

convolutional (64c7-128c7-128c7). For practical reasons, the

neural networks were trained in minibatches of 72 (DVS

Gestures) and 100 (N-MNIST). We note that the choice

of using minibatches is advantageous when using GPUs to

simulate the dynamics and is not specific to Eq. (3), and

TABLE I
RECOGNITION ERROR IN IDEALIZED SPIKING NEURAL NETWORK

SIMULATIONS AVERAGED OVER 5 RUNS.

DVSGesture N-MNIST

〈E〉 Error Writes Error Writes

Cont. 3.82% 1M 2.3% 1.5M

50Hz 4.22% 50k 2.31% 75k

10Hz 6.25% 10k 2.71% 45k

can also be used for gradient backpropagation through time

and spike-timing dependent plastisity. The parameters of our

model are similar to that of [14] except that the time constants

were randomized. In our experiments, we used a proportional

controller to adjust θ such as the average error spike rate

〈E〉 remains stable. The column writes indicates an upper

bound on the number of weight writes. It is an approximate

upper boundary, as the effect of B(U) has not been taken into

account. These results in Tab. I demonstrate a small loss in

accuracy across the two tasks when updates are error-triggered.

As comparison, published work on DVS Gestures with spiking

neurons trained with backpropagation achieved 5.41% [24] and

6.36% [25] error rates and 1.3% [26].

V. CONCLUSION

In this article, we demonstrated an error-triggered learning

rule that is particularly well-suited for implementation in

crossbars. Our implementation leverages the linear property

of the subthreshold dynamics, such that the memory required

for computing the gradients (i.e. the synaptic traces) grows

linearly with the neurons (hence one Pj per input neuron).

By updating weights asynchronously (when errors occur),

the number of weight writes can be drastically reduced. The

proposed learning rule has the same computational footprint

as error-modulated Spike Time Dependent Plasticity (STDP)

but is functionally different in that there is no acausal part,

the updates are triggered on errors if the membrane potential
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is close to the firing threshold (rather than post-synaptic spike

STDP). A more detailed comparison of the scaling of this

family of learning rules is provided in [14].

Our proposed implementation still requires a programming

circuitry (8 transistors) per synapse along with transistors

which switch the memristive device in an out of the network

for read/programming. However, the transistors can take

advantage of the technology scaling (in contrast to the

capacitors whose area do not change as much with the scaling

of the nodes).

Despite of the huge benefit of the crossbar array structure,

the memristor devices suffer from many challenges that

might affect the performance unless taken into consideration

in the training such as asymmetric nonlinearity, precision

and retention [27]. Fortunately, online learning helps with

other problems such as sneak path (i.e wire resistance) and

endurance. With error-triggered learning rule, only selected

devices are updated which leads to extending the lifetime

of the devices and less write energy consumption. The

aforementioned non-idealities will be considered in our future

work.
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