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Abstract—Recent work suggests that synaptic plasticity dy-
namics in biological models of neurons and neuromorphic hard-
ware are compatible with gradient-based learning [1]. Gradient-
based learning requires iterating several times over a dataset,
which is both time-consuming and constrains the training sam-
ples to be independently and identically distributed. This is
incompatible with learning systems that do not have boundaries
between training and inference, such as in neuromorphic hard-
ware. One approach to overcome these constraints is transfer
learning, where a portion of the network is pre-trained and
mapped into hardware and the remaining portion is trained
online. Transfer learning has the advantage that pre-training
can be accelerated offline if the task domain is known, and
few samples of each class are sufficient for learning the target
task at reasonable accuracies. Here, we demonstrate on-line
surrogate gradient few-shot learning on Intel’s Loihi neuromor-
phic research processor using features pre-trained with spike-
based gradient backpropagation-through-time. Our experimental
results show that the Loihi chip can learn gestures online using
a small number of shots and achieve results that are comparable
to the models simulated on a conventional processor.

Keywords— neuromorphic computing, spiking neural net-
works, on-chip learning, few-shot learning

I. INTRODUCTION

Understanding how the plasticity dynamics in multilayer biological
neural networks are organized for efficient data-driven learning is
a long-standing question in computational neuroscience [2], and
elucidating it can open the door to scalable brain-inspired computers
for continual “life-long” learning. Machine learning and artificial
neural networks provide important hints for answering this question.
Recent work has demonstrated that many ingredients of deep learning
are compatible with biological neural networks and neuromorphic
hardware [3], [1]. This compatibility paves the road towards neu-
romorphic learning machines with performances similar to deep
learning, while being able to learn online, with input streams, and
using a fraction of the energy.

However, neural network training is especially time-consuming
in neuromorphic hardware since they generally operate in real-
time and on a single stream of data (i.e. in deep learning terms,
using a batchsize of 1). Furthermore, the training samples must be
independently and identically distributed (iid). The failure to meet
the iid constraint often results in catastrophic forgetting [4]. Methods
such as transfer learning [5] and meta-learning [6] can mitigate these
two problems by pre-training a network in an iid fashion on a known
task domain, followed by a small number of “shots” to learn the task-
specific output. Catastrophic forgetting is mitigated, because fewer
data samples are needed to achieve a target accuracy compared to
training from scratch, which translates into fewer synaptic weight
updates.

Here, we leverage recent advances in surrogate gradient learning
[1] and on-chip plasticity in neuromorphic hardware to demonstrate
few-shot learning in an event-based gesture recognition task in Intel’s
neuromorphic research processor, Loihi. A spiking convolutional
neural network is trained offline using backpropagation through
time [7] using an accurate behavioral model of the Loihi neuron.
The classification layer is then learned on-line using a variation
of a three-factor rule for surrogate gradient learning [8] adapted
to overcome limitations in neuromorphic hardware such as locality
and bit precision. We test the network learning performance on
a gesture recognition task in a few-shot learning framework, and
the performance is compared to that of an equivalent software
model trained and executed on a conventional computer. Our results
demonstrate that the Loihi hardware achieves similar results to that
of the software simulations, and provided the building blocks for
multilayer learning and transfer learning in neuromorphic hardware.

II. SURROGATE GRADIENT DESCENT WITH THE LOIHI

NEUROMORPHIC RESEARCH CHIP

A. Neuron and Plasticity Model

The dynamics of the Loihi neuron follow the current-based leaky
integrate-and-fire model. The neuron uses two internal state variables:
The synaptic response current ui[n] and the membrane potential
vi[n]. The current is computed as the sum of filtered input spike
trains added to a constant bias current;

ui[n] =
∑

j

wijQj [n]

Qj [n+ 1] = αQQj [n] +
1

τu
Sj [n].

(1)

The variable Sj [n] is the input spike train, modeled as a sum of
boxcar functions of width and height equal to 1, with n the discrete
time step. Qj [n] here is a first-order low-pass filter that models
the unweighted post-synaptic current. Upon an input spike Sj , ui

undergoes a jump of height wij , then decays exponentially with time
constant τu, where αQ = exp(− 1

τu
). The connection weights wij

are the trainable parameters of the neuron. This synapse model is
commonly used in computational neuroscience modeling [9], [2]. In
the equations above, inputs neurons are confounded with network
neurons for simplicity of notation. Although recurrent connections
can be learned using the same dynamics as described in this work,
our experiments focus on training feed-forward weights only.

The membrane potential follows similar dynamics and is the
integration of the synaptic current with an exponential decay. A
neuron emits a spike when its membrane potential exceeds the firing
threshold vth.

Si[n] = Θ(vi[n]− vth),

vi[n] =
∑

j

wijPj [n] +Ri[n], (2)
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where,

Pj [n+ 1] = αPPj [n] +
1

τv
Qj [n],

Ri[n+ 1] = αRRi[n]− Sivth.

(3)

The term αP = exp(− 1

τv
) captures the leak of state v. Following

an input spike Sj , P follows an unweighted “alpha” post-synaptic
potential with fast rise and slow decay. The term Ri[n] captures the
reset of the neuron after firing. The neuron model above is a discrete-
time version of the Spike Response Model (SRM0) [2] and is fully
compatible with the Loihi neuron model.

The Loihi research processor offers a variety of local information
to a programmable synaptic learning process including pre and post
synaptic traces and reward traces corresponding to special reward
spikes [10]. Synaptic weights can be updated via a learning rule
expressed as a finite-difference equation with respect to a synaptic
state variable that follows a sum-of-products form as follows [10]:

wij [n+ 1] = wij [n] +
∑

k

Ck

∏

l

Fkl, (4)

where wij is the synaptic weight variable defined for the destination-
source neuron pair being updated; Ck is a scaling constant; and
Fkl may represent a synaptic state variable, a pre-synaptic trace,
or a post-synaptic trace defined for the neuron pair i and j. The
weights are stochastically rounded according to the programmed
weight precision. All plastic weights in our work used 8 bit precision.
Currently, the Loihi’s learning rules cannot scalably depend on an
extrinsic factor such as modulation. (Although there exists an external
reward modulation variable, these are limited to 4 per core but
surrogate gradient learning requires one per neuron.) In the following
paragraph, we describe a workaround for this constraint and the
implementation of surrogate gradient learning.

B. Surrogate Gradient Learning in Spiking Neurons

The main contribution of this work is the implementation of a
surrogate gradient-based learning rule in the Loihi research processor
using three-factor rules. Three-factor rules are extensions of Hebbian
learning and Spike Time Dependent Plasticity (STDP), which can
be derived from a normative (top-down) approach [11]. Such rules
are compatible with a wide number of unsupervised, supervised, and
reinforcement learning paradigms [11], and implementations can have
scaling properties comparable to that of STDP [12].

The third factor in three-factor rules is motivated by neuromodula-
tors, such as Dopamine, Acetylcholine, or Noradrenaline in reward-
based learning [13]. Generally, the weight update of the three-factor
learning rule can be written as follows:

∆w
3F
ij ∝ fprefpostMi (5)

where fpre and fpost correspond to functions over presynaptic and
post synaptic variables, respectively (for example, but not restricted to
traces Pi and Pj), and Mi is the modulating term of the postsynaptic
neuron i. Note that, to reduce clutter, time indices will be omitted
when there is no ambiguity (all terms in the same time step n).
The modulating term is a task-dependent function, which can, for
example, represent error, surprise, reward, or another variable relevant
to the task at hand.

Three-factor rules can be derived from gradient descent on the
spiking neural network [14], [1]. The significance of this compatibil-
ity is far-reaching because the techniques and tools of deep learning
can be made compatible with training spiking neural networks. Such
rules are often “local” in the sense that all the information necessary
for computing the gradient is available at the post-synaptic neuron [3].
For this reason, three-factor rules are a candidate for implementation
in neuromorphic hardware.

In our contribution, we start with a three-factor synaptic plasticity
rule derived from surrogate gradient descent for classification or
regression tasks [8]. For the output layer:

∆wij ∝ Errori σ
′(vi − vth)Pj , (6)

where the Errori is the instantaneous error (targeti−outputi), Pj is
the pre-synaptic trace at the membrane potential, and σ′(vi[n]−vth)
is the derivative of the smoothed output function with vth the
firing threshold. For the output layer of a classification or regression
neural network, this learning rule is equivalent to the Delta rule in
artificial neural networks. It is derived from the gradient of a Mean-
Squared Error (MSE) loss with respect to the neuron parameters,
ignoring the refractory variable R and replacing derivatives of Θ
with those of the sigmoid function [1]. This rule is the building
block of the backpropagation algorithm in multilayer networks, in
which case Errori becomes the backpropagated errors (i.e. the
“deltas”). Because this rule is derived from gradient descent on
the spiking dynamics (i.e. there is no rate-based approximation),
it naturally leverages spike timing dynamics. As a result, this rule
and its variations have been shown to perform particularly well on
spike-based classification tasks and outperform traditional synaptic
plasticity rules such as STDP and reward/error modulated STDP [8],
[15] in equivalent networks.

C. Implementation of Surrogate Gradient Learning in the

Loihi Research Processor

Here, we map the Loihi learning dynamics to Eq. (6). By def-
inition, the factor σ′ is constrained to the range [0, 1]. It is non-
zero when the membrane potential is close to 0. Removing this term
will cause synaptic weights to endlessly grow, but does not prevent
learning in the early stages of training. This mode of operation is
compatible with the few-shot learning scenario experimented here.
The two other terms fpre and Mi, however, are critical for learning.
Thus, we drop the σ′ term in (6) and obtain provisionally:

∆wij ∝ PjP
err
i . (7)

where P err
i is an error trace as described below. To represent the

error, we use dynamics:

S
err
i = Θ(verri − vth),

v
err
i =

∑

j

wijPj − wtgtP̂i +R
err
i + b

err
, (8)

where P , P̂ and Rerr
i follow the same dynamics as in (2). P̂ is

the input due to the target spikes, and wtgt > 0 is its weight. The
constant berr is a bias term used to offset the firing rate of the neuron,
as explained in the following paragraphs.

The synaptic plasticity processor operates on neural traces com-
puted with pre-synaptic and post-synaptic spike times. In Loihi, traces
are first-order linear filters. However, as discussed earlier P is a
second-order linear filter. Second-order kernels can be implemented
as a subtraction of two first-order kernels [2]. This subtraction is
enabled by the sum-of-products formulation of the plasticity rule (4).
The error can be implemented with the post-synaptic compartment
using the following post-traces:

P
err
i [n+ 1] = αvP

err
i [n] +Q

err
i [n],

Q
err
i [n+ 1] = αuQ

err
i [n] + S

err
i [n].

Post-traces can only be positive but errors can be both positive and
negative. This problem can be solved by offsetting the weight updates
with a constant term b:

∆wij ∝ Pj(P
err
i − b). (9)

To enforce the constraint of zero error when output matches target, a
constant firing rate is imposed on the error neurons via berr . In the
absence of inputs, this constant firing will create a repeating P err

i

trace with average 〈P err
i 〉. The bias b is then adjusted such that it is

equal to the average of this trace: 〈P err
i 〉 = b.

Two potential problems remain with this workaround: a) bounds
on the error magnitude, b) Fluctuations in the weight updates even
when the error is zero, since only the average update is zero with the
baseline firing rate. Previously work suggest that a) does not prevent
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Fig. 1. Setup and multi-compartment neuron used in our work. The distal compartment receives spikes from the spiking ConvNet with synaptic weights
adjusted by the surrogate gradient rule. The distal compartment pushes its current to the proximal compartment for integration. During training, label spikes
with weights of opposite signs are received by the distal compartment and proximal compartment. Error is calculated in the distal compartment as a subtraction
of the label input and input from the previous layer.

convergence in spiking neural network classification tasks [16]. While
(b) is currently unsolved, we observe that it does not prevent few-shot
learning. The learning rule is implemented in Loihi as follows:

∆wij ∝ C(Y1(X2 −X1) +X1 −X2) (10)

where C is a constant that captures the learning rate, X1 and
X2 are two first-order pre-synaptic traces, Y1 is a first-order post-
synaptic trace. The (X2 − X1) term corresponds to Pj in (9), and
Y1 corresponds to P err

i in (9). Note that to simplify the rule, we
approximated P err using a single first-order filter.

D. Multi-compartment Neuron and Readout

In order to read out the class and to build multilayer learning in
future work, we use a multi-compartment neuron. The neurons consist
of two compartments, made of a distal (error) compartment that
receives input from a pre-trained network, and a proximal (output)
compartment whose voltage integrates the state uerr copied from the
distal compartment, and does not directly receive spiking input from
the convnet:

S
out
i = Θ(vouti − vth)

P
out
i = αvP

out
i + u

err

v
out
i = P

out
i +R

out
i + wtgtP̂i.

(11)

During training, target spike signals are sent to both the distal
compartment and the proximal compartment. The distal compartment
receives positively weighted target spikes to adjust the weight of
attached synaptic connections towards a desired class, while the
proximal compartment receives equally negative weighted target
spikes to cancel out the effect of the label spikes have on the current
integrated from the attached distal compartment. Targets are not
provided during the test phase. Error encoding and propagation to the
proximal compartment takes place in the distal compartment without
the need for separate phases. Classification accuracy is measured
using the spike count in the proximal compartments of the output
layer neurons.

III. EXPERIMENTAL EVALUATION

A. Setup

The IBM DvsGesture[17] dataset consists of recordings of 29
different individuals performing 10 different actions such as clapping
and an unspecified gesture for a total of 11 classes. The actions are
recorded using a DVS camera, an event-based neuromorphic sensor,
under three different lighting conditions. The problem is to classify
an action sequence video. Samples from the first 23 subjects were
used for training and the last 6 subjects were used for testing. The test
set contains 264 samples and will be used for the few-shot learning
task. Each sample consists of the first 1.45 seconds of the gesture
performed. The SNN model trained on the Loihi for DvsGesture
classification is described in table I.

TABLE I
NETWORK ARCHITECTURE

Layer Kernel Output Training Method

input 1a 128x128x2 DVS128 (Sensor)
1 4a 32x32x2 SLAYER (BPTT)
2 16c5z 32x32x16
3 2a 16x16x16
4 32c3z 16x16x32
5 2a 8x8x32
6 - 512

out - 11 Loihi Plasticity Rule

The hidden layers 1 through 6 were trained offline using SLAYER
[7] on the Loihi neuron model. The output layer synapse weights
are trained using the three-factor surrogate gradient plasticity rule
described in Sec. II-C.

We compare our model to the one used in [7]. To assess [7],
the output layer weights are reset and retrained in few-shot learning
conditions. Due to the limited bit precision of the synaptic weights
in Loihi (256 levels), the effective learning rate is typically higher
than that used in GPUs. To emulate this, we trained the output layer
of the SLAYER model using a higher learning rate than the original
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for a better comparison. In our few-shot learning experiments, using
a higher learning rate achieves a higher accuracy because the training
data is small and presented only once. We also compare our results
to a model trained using SLAYER with hidden layers pre-trained
SLAYER network but with the output layer replaced with a fully
connected linear layer trained using the MSE of the membrane
potentials of the neurons instead of classification with spike counts.

Because the hidden layers of each model are pre-trained on
the DvsGesture training data, we train and test the models on the
DvsGesture test dataset. Using the test dataset we set up three N-
way classification tasks with 1, 5, and 14 shots. N-way classification
involves selecting N unseen classes, provide the model with K
different instances, also known as shots, of each of the N classes,
and evaluate the model’s ability to classify new instances within the
N classes. The test data is split into separate training and testing
sets. The training set consists of N·K samples taken from the first
154 samples of the DvsGesture Test dataset. During training, we
present the data of the K shots for a single learning epoch. The N-
way classification models are then tested on the last 110 samples of
the DvsGesture Test dataset not used during training.

Additionally, we set up three M+N-way classification tasks with
1, 5, and 20 shots. For M+N-way classification, we pre-trained the
SLAYER network offline using only M classes of the DvsGesture
Training dataset. We then reset the output layer weights and retrain
them using the surrogate gradient plasticity rule on Loihi on N unseen
classes, provide the model with K shots of each of the N classes, and
evaluate the model’s ability to classify new instances within the N
classes. The M+N-way classification models are trained using the
DvsGesture Training dataset, and tested using the DvsGesture Test
dataset.

B. Results

We present the N -way classification results in Table II, and the
M +N -way classification results in Table III. Each model is trained
with K shots presented a single time, and then tested on samples of
each class held out from training. We use N = 11 for the number
of classes for the N -way classification experiments, which is the
number of classes in DvsGesture. For the M +N -way classification
experiment, we use M = 6 for the number of classes pre-trained
offline using SLAYER, and N = 5 for the number of classes
trained on the network implemented on Loihi using the surrogate
gradient plasticity rule. “Train” refers to classification accuracy on
training samples using saved weights with plasticity disabled. “Test”
is the classification accuracy on the samples held out of the training
procedure. For each type of model, the same training and testing
data samples were used. The SLAYER+Linear section of Table II
shows the results of the model consisting of a pre-trained SLAYER
hidden layer connected to an ANN Linear output layer that uses MSE
loss, measuring the error of target versus output membrane potential
quantities rather than a classification accuracy using the number of
spikes over the presentation time.

The surrogate gradient plasticity rule implemented on Loihi outper-
forms the purely SLAYER model on few-shot learning tasks in both
the 11-way classification experiments, and the 6+5-way classification
experiments. In the 11-way few-shot classification experiments, the
plasticity rule achieved 32.1% better accuracy at test time than the
SLAYER rule of the SLAYER+Spiking model for one-shot learning,
with the plasticity rule achieving better accuracy on the 5 and 14
shot learning tasks as well. Interestingly, the SLAYER+Linear model
achieved 21.7% better test accuracy than the SLAYER+Spiking
model on one-shot learning, but performed poorer on the 5 and
14 shot learning tasks than the SLAYER+Spiking model. These
results indicate that the plasticity rule augmented with the pre-trained
features does not need large amounts of training data to generalize.
The performance of the plasticity rule in the 6 + 5-way experiments
was not as high as the 11-way experiments because the 5 unseen
classes were unseen by the entire network and not just unseen by
the output layer, but did outperform the 6+5-way SLAYER models.
The plasticity rule achieved 24.5% better accuracy at test time than

TABLE II
11-WAY FEW-SHOT CLASSIFICATION ON THE DVSGESTURE DATASET

Dataset Learning Method Shots Train Test

DVSGesture

Loihi Plasticity Rule
1 100% 52.2%
5 86.6% 56.8%
14 72.2% 64.7%

SLAYER+Spiking
1 9.1% 20.1%
5 40% 50.1%
14 56.5% 61.8%

SLAYER+Linear
1 <1% 41.8%
5 38.2% 42.7%
14 53.9% 51.8%

TABLE III
6+5-WAY FEW-SHOT CLASSIFICATION ON THE DVSGESTURE DATASET

Dataset Learning Method Shots Train Test

DVSGesture

Loihi Plasticity Rule
1 40% 40%
5 60% 43.3%
20 73.5% 56.2%

SLAYER+Spiking
1 40% 35%
5 20% 41.7%
20 37% 31.7%

SLAYER+Linear
1 40% 33%
5 36% 27.5%
20 35% 33%

the SLAYER rule of the SLAYER+Spiking model and 23.2% better
accuracy than the SLAYER+Linear model for 20 shot learning, with
the plasticity rule achieving better accuracy on the 1 and 5 shot
learning tasks as well. These results indicate that the plasticity rule
augmented with features pre-trained on some classes but not all can
generalize to completely new classes of data.

IV. CONCLUSION

The results achieved in the few-shot learning experiment demon-
strate the building blocks for online multi-layer learning and transfer
learning in neuromorphic hardware. Neuromorphic hardware that can
achieve high accuracy on only a few observations is a long-sought
feature in applications where large datasets are nonexistent, cannot be
accessed or where energy is limited, such as in robotic and embedded
IoT systems. However, there are still challenges for achieving highly
accurate continual “life-long” learning in neuromorphic hardware
such as catastrophic forgetting [4]. Future work will address these
challenges by exploring synaptic consolidation dynamics [18], [19]
and reducing the variance of the learning when no error is made
(problem (b) in the text). The solution described here trains the final
layer only and thus foregoes the deep credit assignment problem. Our
ongoing and future work is addressing the deep credit assignment
using the technique of local losses [15], thus allowing to train
multiple layers simultaneously. As the plasticity rule is improved,
the applicability is likely to extend beyond classification, namely
unsupervised learning and reinforcement learning tasks.

V. ACKNOWLEDGMENTS

This work was supported by Intel Corporation (KMS); the Na-
tional Science Foundation under grant 1652159 (EON); the National
Science Foundation under grant 1640081 (EON), and the Nanoelec-
tronics Research Corporation (NERC), a wholly-owned subsidiary of
the Semiconductor Research Corporation (SRC), through Extremely
Energy Efficient Collective Electronics (EXCEL), an SRC-NRI Na-
noelectronics Research Initiative under Research Task ID 2698.003
(EON, KMS).

REFERENCES

[1] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based opti-
mization to spiking neural networks,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 51–63, Nov 2019.

226

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:42:28 UTC from IEEE Xplore.  Restrictions apply. 



[2] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

[3] E. O. Neftci, “Data and power efficient intelli-
gence with neuromorphic learning machines,” iScience,
vol. 5, pp. 52–68, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2589004218300865

[4] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there
are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of
learning and memory.” Psychological review, vol. 102, no. 3, p. 419,
1995.

[5] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[6] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1126–1135.

[7] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 1412–1421.
[Online]. Available: http://papers.nips.cc/paper/7415-slayer-spike-layer-
error-reassignment-in-time.pdf

[8] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multi-layer
spiking neural networks,” arXiv preprint arXiv:1705.11146, 2017.

[9] A. Destexhe, Z. Mainen, and T. Sejnowski, Methods in Neuronal
Modelling, from ions to networks. MIT Press, 1998, ch. Kinetic Models
of Synaptic Transmission, pp. 1–25.

[10] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, P. Joshi, A. Lines,
A. Wild, and H. Wang, “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. PP, no. 99, pp. 1–1, 2018.

[11] R. Urbanczik and W. Senn, “Learning by the dendritic prediction of
somatic spiking,” Neuron, vol. 81, no. 3, pp. 521–528, 2014.

[12] G. Detorakis, S. Sheik, C. Augustine, S. Paul, B. U. Pedroni, N. Dutt,
J. Krichmar, G. Cauwenberghs, and E. Neftci, “Neural and synaptic
array transceiver: A brain-inspired computing framework for embedded
learning,” Frontiers in Neuroscience, vol. 12, p. 583, 2018. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2018.00583

[13] W. Schultz, “Getting formal with dopamine and reward,” Neuron,
vol. 36, no. 2, pp. 241–263, 2002.

[14] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal
spike-timing-dependent plasticity for precise action potential firing in
supervised learning,” Neural computation, vol. 18, no. 6, pp. 1318–1348,
2006.

[15] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity for deep
continuous local learning,” arXiv preprint arXiv:1812.10766, 2018.

[16] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven
random back-propagation: Enabling neuromorphic deep learning ma-
chines,” Frontiers in Neuroscience, vol. 11, p. 324, 2017.

[17] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243–7252.

[18] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, p. 201611835, 2017.

[19] M. K. Benna and S. Fusi, “Computational principles of biological
memory,” arXiv preprint arXiv:1507.07580, 2015.

227

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:42:28 UTC from IEEE Xplore.  Restrictions apply. 


