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Abstract— We present the Surrogate-gradient Online
Error-triggered Learning (SOEL) system for online few-shot
learning on neuromorphic processors. The SOEL learning
system uses a combination of transfer learning and principles
of computational neuroscience and deep learning. We show
that partially trained deep Spiking Neural Networks (SNNs)
implemented on neuromorphic hardware can rapidly adapt
online to new classes of data within a domain. SOEL updates
trigger when an error occurs, enabling faster learning with fewer
updates. Using gesture recognition as a case study, we show
SOEL can be used for online few-shot learning of new classes
of pre-recorded gesture data and rapid online learning of new
gestures from data streamed live from a Dynamic Active-pixel
Vision Sensor to an Intel Loihi neuromorphic research processor.

Index Terms— Neuromorphic computing, spiking neural net-
works, on-chip learning, few-shot learning, online learning.

I. INTRODUCTION

THE current generation of Artificial Neural Networks

(ANNs) achieve state of the art performance in applica-

tions ranging from image classification and object recognition,

to object tracking, signal processing, natural language process-

ing, self driving cars, health care diagnostics, and many more

[1]. ANNs mainly rely on the backpropagation of errors as the

key to their learning prowess, but they require large amounts of

data and memory for training. Training these networks relies

on GPUs and thousands of iterations over the data sampled

in an i.i.d. fashion. To achieve the high throughput necessary

to quickly train the networks, GPUs rely on high volumes of

data movement and tensor-based computations, both of which

consume large amounts of energy [2], [3], making GPU less

than ideal for implementation at scale in mobile systems.
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Neuromorphic computing platforms offer an energy-

efficient alternative to perform training and inference in neural

networks while being suitable for power-constrained applica-

tions in mobile systems [4]. Neuromorphic systems mimic

the brain’s event-driven dynamics, distributed architecture and

massive parallelism to overcome the limitations of conven-

tional von Neumann computing architectures [5]. Neuromor-

phic hardware equipped with synaptic plasticity capability can

perform training and inference online, using local information

[6], [7], making them particularly interesting for problems

requiring fast adaptation to new data. Despite the many tech-

nical advances in neuromorphic learning hardware, the prac-

tical role of learning and synaptic plasticity in neuromorphic

hardware has remained elusive. This is because gradient-based

learning is notoriously slow, requiring many iterations to

achieve an acceptable generalization. Furthermore, synaptic

plasticity is inherently online and local, but learning online

using streaming data breaks the i.i.d. assumptions required for

convergence of the neural network.

In this paper, we take a realistic and practical approach

to learning in neuromorphic hardware by combining the best

of conventional and neuromorphic hardware: we pre-train

networks on GPUs on a class of tasks and adapt the key

layers on the neuromorphic hardware. The result is a sys-

tem that moves the non-local and energy-intensive phases

of learning to a cloud or mainframe, and deploys on the

neuromorphic hardware the data sensitive portions of the

learning. This approach is realized by using recent theories

that combine machine learning theory with SNNs and few-

shot/transfer learning. We demonstrate our approach on fast

online learning of streaming, real-world visual patterns on

a neuromorphic processor. The pre-training is carried out

using a functional model of an Intel Loihi neuromorphic

processor. During deployment, the model is then fine-tuned

on the processor using local synaptic plasticity rules. The key

contribution of this work is few-shot Surrogate-gradient Online

Error-Triggered Learning (SOEL), a plasticity rule compatible

with neuromorphic hardware derived from gradient-descent on

SNNs and its efficient implementation using signals local to

the neuromorphic cores.

A. Surrogate-gradient Online Error-Triggered Learning

(SOEL)

While gradient Back-Propagation (BP) is the workhorse for

training nearly all deep neural network architectures, it is

generally incompatible with non Von Neumann computers,

including brains and neuromorphic hardware. By identifying

SNNs as a type of Recurrent Neural Network (RNN), recent
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studies showed two reasons for this incompatibility [8]. Firstly,

the spiking neuron has a non-differentiable activation func-

tion, which prevents the gradients from flowing across the

network. Secondly, the computation of local errors requires

the evaluation of a global loss function, which is a spatially

and temporally non-local computation.

These problems are addressed using Surrogate Gradient

(SG) learning [8]. SG methods define a differentiable surrogate

network to calculate weight updates in a local fashion, and

formulate the updates as three-factor synaptic plasticity rules.

The SG method reveals from first principles the mathematical

nature of the three factors, and a learning dynamic that is

temporally continuous and compatible with synaptic plasticity.

The three factor rules include a pre-synaptic factor, a post-

synaptic factor and an external error signal. In comparison,

Spike Time Dependent Plasticity (STDP), a common synaptic

plasticity model in neuroscience, contains only two factors

and lacks the external signal [9]. The third factor drastically

improves learning by projecting task-specific errors to the

neurons [10]. In short, the SG bridges the worlds of ANNs

and SNNs without simplifying assumptions on the latter.

SG methods pave the road towards neuromorphic learning

machines with performances similar to deep-learning [11],

while being able to learn online, with input streams, spike

timing and potentially using a fraction of the energy compared

to conventional computers.

While temporal continuity is a plausible property in the

brain, updating a large number of weights continuously is both

energetically expensive and prone to dynamical instabilities.

A recent development of SG learning in spiking neurons

suggested that updating at every timestep is not necessary

if weight updates are triggered by task errors [12]. In such

error-triggered learning, weight updates are made only when

an error threshold is crossed. Consequently, the number of

updates can be drastically reduced with a small penalty in

final accuracy.

However, even the fewer error-triggered learning updates is

incompatible with online learning as it can lead to catastrophic

forgetting. Catastrophic forgetting occurs when the data gener-

ating process for training the neural network is non i.i.d. This

problem can be generally solved by increasing the complexity

of the neuron and synapses [13], [14], experience replays [15],

or meta-learning and the related few-shot learning [16].

Here, we focus on the latter approach for the following

reasons: Firstly, the ability to solve difficult recognition tasks

using few samples is a key capability of the brain [17]. Few-

shot learning is a subset of deep learning concerned with such

fast adaptation in situations where prior knowledge of the task

domain is available. Bringing such capability to neuromorphic

hardware is a top priority for local learning and adaptation on

mobile systems, such as the learning of human gestures for

device control or adapting to a user’s voice.

In our approach, few-shot learning consists of first

pre-training a model on the class of problems of interest, and

then making (presumably) few error-triggered updates to learn

new but related tasks.

To achieve the error-triggered learning in neuromorphic

hardware, we implement the SOEL algorithm, an extension of

SG and error-triggered learning for rapid, few-shot learning.

We demonstrate SOEL on the Intel Loihi Neuromorphic

research chip, and capitalized on its specialized local plasticity

processors to carry out the updates. SOEL is an extension of

the Surrogate Gradient learning algorithm designed that fix

issues of a previous implementation [18].

II. RELATED WORK

Previous work has shown that the first layers of neural

networks learn general features and learn increasingly task

specific features the deeper within the network the layer is

[19]. The general features learned by the first layers of a

network can be transferred to other networks for task-specific

training of later layers, referred to as transfer learning.

The first layers of a network are trained on one dataset

to learn general features that can be transferred to a second

network trained on a target task. Using the transferred features

yields better generalization of the target task than without

transferring the general lower layer features [19]. Transfer

learning is useful for few-shot learning, i.e. when the target

task only has a small amount of data available for training,

but a similar task with a larger dataset is available. The goal

of few-shot learning is to train a model to generalize from as

few examples as possible [20]. Transfer learning can be used

to assist the training of few-shot learning models allowing for

greater generalization on a target domain from few examples

for both ANNs and deep SNNs [18], [21], [22].

As discussed earlier, training deep SNNs is challenging

due to a spatiotemporal credit assignment problem and non-

differentiabilities. Previous work overcame the learning prob-

lem in multiple layers of SNNs with methods such as feedback

alignment [23], [24], backpropagation-through-time (BPTT)

[25]–[27], and spike-based backpropagation [28], [29]. The

successful gradient-based training of deep SNNs usually

approximate the spiking function’s derivative using a surrogate

activation function [8]. By being able to train deep SNNs,

the ingredients of deep learning that make ANNs successful

such as dropout, batch normalization, convolutions, pooling

etc. can be applied to SNNs, in addition to SNNs being

compatible with neuromorphic hardware. BPTT is shown to

achieve state-of-the-art accuracy on certain target domains

such as NMNIST and gesture recognition. However, BPTT is

inherently offline as it propagates error through the unrolled

network and therefore is not suited for applications where

online adaptation is desired. Rather than backpropagating

through the network, SOEL computes local errors between

pre- and post-synaptic neurons by propagating gradients for-

ward in time [8].

While previous work has shown increasing success in

training SNNs using spike-based gradient descent on a variety

of tasks, they are trained and tested offline just like ANNs and

do not demonstrate online on-chip learning on neuromorphic

hardware. [30] demonstrated rapid online on-chip learning

using the Intel Loihi neuromorphic research chip but did

not use spike-based gradient descent. To our knowledge this

work is the first to demonstrate online, on-chip gradient-based

learning on a neuromorphic processor. Using gestures as a
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case study we show the success of rapid online learning using

SOEL which can be used for applications that require online

adaptation.

III. BACKGROUND

A. Dynamic Vision Sensor

The datasets used in this work are obtained using neu-

romorphic sensors, namely the DVS and DAVIS cameras.

Each pixel of Dynamic Vision Sensors (DVSs) quantize local

relative intensity changes to generate spike events [31]. In our

experiments we use data from a DVS 128, and a DAVIS 240C

[32]. The IBM DvsGesture dataset used here for pre-training

consists of recordings of 29 different individuals performing

10 different actions such as clapping and an unspecified

gesture for a total of 11 classes. The actions are recorded

using a DVS camera, an event-based neuromorphic sensor,

under three different lighting conditions. The task is to classify

an action sequence video. Samples from the first 23 subjects

were used for training and the last 6 subjects were used for

testing. The training set contains 1078 samples and the test

set contains 264 samples. Each sample consists of the first

1.45 seconds of the gesture performed.

B. Neural Network Model

The neural network model follows leaky, Integrate & Fire

(I&F) dynamics. The dynamics of the membrane potential

Ui of a neuron i is governed by the following differential

equations:

Ui (t) = Vi (t) − Uth Ri (t) + bi ,

τmem
d

dt
Vi (t) = −Vi (t) + Ii (t),

τre f
d

dt
Ri (t) = −Ri (t) + Si (t), (1)

with Si (t) =
∑

f δ(t − t
f

i ) representing the spike train of

neuron i spiking at times t
f

i , where δ is the Dirac delta.

A spike is emitted when the membrane potential reaches a

threshold Uth .

The constant bi represents the intrinsic excitability of the

neuron. The reset mechanism is captured with the dynamics

of Ri . The factors τmem and τre f are time constants of the

membrane and reset dynamics, respectively. Ii denotes the

total synaptic current of neuron i , expressed as:

τsyn
d

dt
Ii (t) = − Ii (t) +

∑

j∈pre

Wi j S j (t), (2)

where Wi j is the synaptic weights between pre-synaptic neuron

j and post-synaptic neuron i . Because Vi and Ii are linear with

respect to the weights Wi j , the dynamics of Vi can be rewritten

as:

Vi (t) =
∑

j∈pre

Wi j Pj (t),

τmem

d

dt
Pj (t) = −Pj (t) + Q j (t),

τsyn
d

dt
Q j (t) = −Q j (t) + S j (t). (3)

The states P and Q describe the traces of the membrane

and the current-based synapse, respectively. For each incoming

spike, each trace undergoes a jump of height 1 and otherwise

decays exponentially with a time constant τmem (for P) and

τsyn (for Q). Weighting the trace Pj with the synaptic weight

Wi j results in the Post–Synaptic Potentials (PSPs) of neuron

i caused by input neuron j .

Discrete Spike Response Model of the Neuron and Synapse

Dynamics: In a digital system, the continuous dynamics

above are simulated in discrete time, with time step 1t . The

dynamical equations in Eq. (1) and Eq. (3) are expressed in

discrete time as:

Ui [t] =
∑

j

Wi j Pj [t] − Uth Ri [t] + bi ,

Si [t] = 2(Ui [t]),

Pj [t + 1t] = αPj [t] + (1 − α)Q j [t],

Q j [t + 1t] = β Q j [t] + (1 − β)S j [t] (4)

where the constants α = exp(− 1t
τmem

) and β = exp(− 1t
τsyn

)

reflect the decay dynamics of the membrane potential U and

the synaptic state I during a 1t timestep. 2(Ui [t]) is the unit

step function, where 2(Ui ) = 0 if Ui < Uth , otherwise 1.

Note that Eq. (4) is equivalent to a discrete-time version of

the Spike Response Model (SRM0) with linear filters [33].

C. Gradient-Based Training of SNNs

A number of recent methods for training SNNs using

gradient descent have recently emerged. The mathematical

principle of gradient descent lies on incrementally updating

the parameters in the direction opposite to the gradient of a

loss function. As mentioned in the introduction, difficulties of

training SNNs arise due to the spatiotemporal credit assign-

ment problem and the non-differentiability of the activation

function. The spatial credit assignment problem arises when

the parameters of neurons with no direct target are trained.

The temporal credit assignment arises organically due to the

temporal dependencies (dynamics) of spiking neurons. For

example, the effect of an input spike at a particular time affects

the membrane potential of a spiking neuron in the future.

The magnitude of the effect is determined by the normalized

post-synaptic response of the synapse, i.e. the P traces in

Eq. (4). As a consequence, during learning, the credit of

the error at a given point of time must be assigned to the

input synapse at some point in the past. One factor to the

magnitude of this temporal credit assignment is proportional

to the normalized post-synaptic response, reversed in time. An

illustration of this temporal credit assignment policy is shown

in Fig. 1.

Assuming a global cost function L(SN ) defined on the

spikes SN of the top layer and targets Y , the gradients with

respect to the weights in layer l are:

∇Wi jL(SN ) =
∂L(SN )

∂Si

∂Si

∂Ui

∂Ui

∂Wi j

. (5)

We discuss below the three factor above. For didactic reasons,

we proceed first with the middle term, then the first term, then

the third. The middle term is the derivative of the activation
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Fig. 1. Temporal credit assignment of an error at a point in time during
SLAYER backpropagation.

function 2 of the spiking neuron which is non-differentiable.

As discussed earlier, the SG approach consists in using a

smooth surrogate function in place of the non-differentiable

step function, such as the boxcar function [11], [23]. The first

term on the right-hand side describes how the loss changes

as the spiking states in the network, Si , change. If the loss

function is the mean-squared error and the network consists

of only one layer, the first term becomes the task error

(Yi − SN
i ). Computing

∂L(S N )
∂Si

for hidden layers is non-trivial

and equivalent to solving a spatiotemporal credit assignment

problem. Two methods exist to solve this problem: (1) it

can be computed offline using gradient backpropagation on

the time-unfolded graph (i.e. Back-Propagation-Through-Time

(BPTT)), or online by using local loss functions [11]. This

work uses a combination of offline and online SNN learning,

namely SLAYER and SOEL for pre-training hidden layers

and online three-factor rules for learning in output layers,

respectively. In the following paragraphs, we provide further

detail about these two learning methods.

1) Surrogate-gradient Online Error-Triggered Learning

(SOEL) Online Training for Loihi: Online training on physical

substrate requires all the information necessary for computing

the gradient to be available at the synaptic plasticity processor.

The first two terms of Eq. (5) discussed above are errors and

postsynaptic states. The last term in Eq. (5) can be computed

from Eq. (1–3) (or Eq. (4) in the discrete case). The derivative

of the reset term introduces the full history of the spiking

neuron, which cannot be computed locally in time. However,

in low firing rate regimes, the error in omitting this term in

the gradient calculation is small. By omitting the reset process,

the third term becomes simply the trace Pj . Finally, we are

left with the following three factors:

∇Wi jL(S) = −(Yi − Si )σ
0(Ui )Pj . (6)

Provided that pre-synaptic traces, membrane potential and

errors are available at the synapse, learning can be performed

locally as a synaptic plasticity rule. In computational neuro-

sciences, rules of this type are referred to as three-factor rules

[34]. Three-factor rules are consistent with biological synapse

dynamics and constitute a normative theory of learning in the

brain.

Eq. (6) prescribes updates at every timestep. While this

is consistent with biological dynamics, it is not efficient

in hardware. Updates can instead be made when the error

(Yi − SN
i ) crosses a threshold, thus forming a binary “error

event” [12]. This is reminiscent of STDP, where updates are

triggered when pre-synaptic or post-synaptic neurons events

occur [9]. Here, updates are instead triggered by error events.

Error-triggered learning allows the conditional activation of the

Fig. 2. Computational blocks for offline pre-training of SNN for Loihi using
SLAYER. The SNN is modeled with a functional Loihi simulator and the
normalized post-synaptic response is used for temporal credit assignment.
Since Loihi uses integer weights full precision shadow weights are quantized
and used during the forward inference phase.

plasticity operations, which can drastically reduce the footprint

of online learning. Recent work showed that the number of

updates can be reduced by 20 fold for a small loss in accuracy

[12]. Using a piecewise SG function, Bi = σ 0(Ui ) becomes a

box function where Bi ∈ {0, 1}. Then, the SOEL rule can be

written in the following compact, three-factor form:

∇Wi jL(SN ) ∝ −Ei Bi Pj . (7)

where Ei is a integer error event for neuron i .

2) SLAYER Offline Training for Loihi: SLAYER is a gra-

dient computation method for training deep SNNs directly in

the spiking domain [25]. It treats the inputs and outputs of

the SNN as temporal signals and backpropagates the error

at the output layer accordingly. There are two basic guiding

principles in SLAYER: Temporal error credit assignment, and

the surrogate gradient. Temporal credit assignment is done by

unfolding the temporal dynamics in time and backpropagating

through the unfolded graph. Further, it is typical for the

normalized post-synaptic response to decay to practically zero

after some time. Therefore, it is sufficient in practice to apply

temporal error credit assignment only up to a finite point in

history. SLAYER uses a proxy function as an approximation

of spike function derivative, similar to the surrogate gradient

learning described in Section III-C. These principles form the

essential link in the computational graph used to calculate the

gradients of the weights of the SNN and train it using standard

deep learning optimization methods.

SLAYER PyTorch1 also supports training an SNN with the

CUBA leaky integrate and fire neuron model compatible with

the Loihi chip. For one-to-one mapping of the trained network

in Loihi hardware, the SNN is modeled with a functional

Loihi simulator and the normalized post-synaptic response is

used for temporal error credit assignment during backpropa-

gation. In addition, since Loihi only supports integer weights,

a strategy of full precision shadow weights [35], [36] is used,

which are quantized during the forward inference phase only.

The computational blocks for SLAYER-Loihi training are

shown in Fig. 2.

1https://github.com/bamsumit/slayerPytorch
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Fig. 3. Experimental setup. During a pre-training phase, the Loihi compatible convolutional network is trained on a computer using an event-based gestures
dataset, the functional simulator, and SLAYER/BPTT. In this work, the pre-training dataset consisted of the IBM DVS Gestures dataset recorded using a
DVS128 camera. The entire network along with quantized parameters of the functional simulation are then transferred on to the Loihi cores. During deployment,
new gestures recorded using a DAVIS are streamed to an Intel Kapoho Bay. Few-shot learning is performed on the final layer using on-chip SOEL. The
deployed network, including inference and training dynamics are performed on the Loihi chips. Dashed orange arrows indicate the extent of the spatial credit
assignment, and thus which layers are trained in each of the two phases.

D. Intel Loihi

The Intel Loihi is a neuromorphic processor that integrates

a wide range of features such as hierarchical connectivity,

dendritic compartments, synaptic delays, and programmable

synaptic learning rules [7]. Each Loihi chip is composed of

a many core mesh comprising of 128 neuromorphic cores

with each core implementing 1024 primitive spiking neural

units, three embedded x86 processor cores, with an asynchro-

nous network-on-chip (NoC) for between core communication.

Loihi offers a variety of local information for programmable

synaptic learning processes such as spike traces with config-

urable time constants that can have different time constants.

1) Plasticity Processor: Synaptic weights can be updated

via a learning rule expressed as a finite-difference equation

with respect to a synaptic state variable that follows a sum-

of-products form as follows [7]:

Wi j [t + 1] = Wi j [t] +
∑

k

Ck

∏

l

Fkl [t], (8)

where Wi j is the synaptic weight variable defined for the

destination-source neuron pair being updated; Ck is a scaling

constant; and Fkl [t] may be programmed to represent var-

ious state variables, including pre-synaptic spikes or traces,

post-synaptic spikes or traces, where traces are represented as

first-order linear filters. The weights are stochastically rounded

according to the programmed weight precision. Traces are

stochastically rounded to 7-bits of precision.

IV. METHODS

We present a system for online learning of gestures from

DVS data using only a few shots. Our workflow consist of

a pre-training phase, followed by a deployment phase. The

pre-training phase uses SLAYER and its functional Loihi

simulator to train a Loihi compatible convolutional network

on a GPU. For our targeted human gesture recognition appli-

cation, we use the event-based IBM DVS Gestures dataset

to pre-train this network. The trained network and quantized

parameters are then transferred to the Loihi cores. During

deployment on Loihi, few-shot learning of new gestures is

performed on the top layer on-chip with SOEL. The system

is shown in figure 3 and its components are detailed in the

following subsections.

A. Dataset and Gesture Sampling

Visual input to the model was recorded with either a DVS

128 in the case of the IBM DVSGesture2 dataset [37] or with

a DAVIS 240C [32] in the case of real-world gestures. The

network was pre-trained data recorded with a DVS 128, which

has a smaller resolution compared to the more recent DAVIS

240C. During experiments involving input live-streamed from

a DAVIS 240C to an Intel Kapoho Bay, data was scaled down

to the same dimensions as the DVS 128 before being input

into the network. Data was taken by one subject under three

different lighting conditions, natural light from the sun, incan-

descent light, and fluorescent light which is shown in Fig. 5.

B. Neural Network Model and Offline Pre-Training

Using SLAYER for Loihi

We trained a spiking CNN using SLAYER for Loihi (c.f.

Section III-C.2) on the DVS Gesture dataset [37]. It has eleven

output gestures, out of which six (the even classes) were used

for offline training using SLAYER. The input is a 128 × 128

spatial event with two polarities (ON and OFF). The spiking

2The DVS Gesture dataset is used under a Creative Commons Attribution
4.0 license.
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TABLE I

NETWORK ARCHITECTURE

CNN architecture shown in table I consisted of 7 layers. The

input spikes are OR’ed in 1 ms time bins and then fed to

the network. N refers to the number of output classes, which

depend on the experimental conditions.

The threshold for all the neurons were set to 80 × 26 and

the current decay and voltage decay were set to 1024 (time

constant of 32ms) and 128 (time constant of 4ms) respectively.

The weights of the network were trained to be in the set

{−256,−254, · · · , 254} i.e. 8 bit signed weights with step

of 2.

The network was pre-trained for 2000 epochs. For better

generalization performance, the input was augmented during

training: x-y jitter of up to 8 pixels, rotation jitter of up to 10◦,

and random sampling of 1450ms spike sequence. The Nadam

[38] optimizer was used with a learning rate of 0.003 and

default β = (0.9, 0.999). The network without the final fully

connected output layer (layers 1–6), is the feature extraction

network which is subsequently used in our on-chip learning

experiments described below.

C. Online Few-Shot Learning Using Surrogate-gradient

Online Error-Triggered Learning (SOEL) Plasticity for Loihi

SOEL requires the pre-synaptic trace P to be a second-order

linear filter. Second-order kernels can be implemented as a

subtraction of two first-order kernels [39]. This subtraction is

enabled by the sum-of-products formulation of the plasticity

rule (8). The error, erri , is computed with the post-synaptic

neuron using the following:

erri [t] = Y − S̄i [t] (9)

where Y is the target, S̄i =
∑T

t−T Si [t] is defined here as the

number of post-synaptic spikes by neuron i in the previous

T timesteps. T is a constant number of timesteps that is a

fraction of the total presentation time of the sample. This

number determines the rate at which errors are computed.

Using a spike-count instead of spike states is an approximation

because the update will be subsequently made using the states

in the final timestep, i.e. Pj [t]. However, for T smaller than

the neuron and synaptic time constants, Pj [t] will not vary

much during this time window, and the approximation will

remain close to the exact case.

Since the post-synaptic trace is not necessary for the SG

rule, SOEL writes the error on the same register used for

the post-synaptic trace. This enables the error value to be

Algorithm 1 SOEL

Result: Error-triggered Synaptic Plasticity

θ = 0;

if neuron i is learning then

S̄i ← S̄i + Si ;

err i ← Y − S̄i ;

if err i > θ or err i < −θ then
Ei ← C + err i

Wi j ← Wi j − η(Ei − C)Pj ;

increase θ by constant;

S̄i ← 0;
else

decrease θ by constant;

end

end

available in the plasticity processor for learning. On the chip,

post-traces can only be positive but errors can be both positive

and negative. This problem is solved by offsetting the weight

updates with a constant term C .

Ei [t] =

{

C + err i [t], if erri > θ or < −θ

C, otherwise
(10)

where θ is an error threshold.

Intuitively, SOEL can be interpreted as follows. If err is

higher than θ , meaning the neuron is spiking at too high a

frequency, then there is a positive error and the weight of the

synapse will be penalized. Conversely if err is below −θ then

the weight of the synapse weight will be increased. The term

σ 0 (the “second factor” in Eq. (6)) cannot be implemented

directly on the Loihi because the membrane state is not

available at the plasticity processor. Since only the final layer

N is trained, setting this term to 1 regardless of the membrane

value only has the effect of continued learning even after

the neuron output saturates in either direction. This strategy,

referred to straight-through estimator in the machine learning

field, has the disadvantage of yielding biased estimated of the

gradients, but the advantage of faster learning since every error

leads to an update. Since our goal is to perform fast, one-shot

learning, SOEL implemented here uses a straight-through

estimator. The full learning rule can then be expressed as:

Wi j = Wi j + η(Ei − C)P, (11)

where Wi j is the synapse from pre-synaptic neuron j to

post-synaptic neuron i, η is the learning rate, Ei is the error,

and Pj is the pre-synaptic trace. The learning rule can be

implemented in Intel Loihi as:

X1
j [t + 1] = α1 X1

j [t] + S1
j ,

X2
j [t + 1] = α2 X2

j [t] + S2
j ,

Yi [t] = Ei [t],

1Wi j = η(X2
j [t] − X1

j [t])(Yi [t] − C). (12)

Here, X2 and X1 are pre-synaptic trace variables available

in the Loihi whose subtraction in the third equation yields
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Fig. 4. Dynamics of one learning neuron when learning a new gesture. Only
a subset of the synaptic weights W are shown. The weights only change when
P0 is non-zero during a learning epoch. The current I, and membrane potential
U of the learning neuron are shown over the duration of the sample. Spikes
are shown as grey vertical lines overlaying the membrane potential plot.

the second order kernel equivalent to Pj in Eq. (3).

Pj [t] ∝ (X2
j [t] − X1

j [t]). (13)

A Loihi Lakemont core computes the spike count S̄ and

evaluates erri at regular intervals T . If the error exceeds the

threshold θ , the post-synaptic trace value in the plasticity

processor, Y , is written with the error Ei and a plasticity

operation is initiated. As in Eq. (10), C is a constant bias

term to account for negative error because traces cannot be

negative.

D. System Specifications for Measurement 3

SNN offline pre-training was performed with Ubuntu

16.04.6, SLAYER PyTorch commit id 598fc44, and PyTorch

1.4.0. The machine consists of an Intel Xeon E5-2630 CPU

with 128GB RAM and Nvidia GeForce RTX 2080Ti GPU.

Loihi time and energy measurements were made using

Ubuntu 16.04.6 with Nx SDK 0.95 and a Nahuku 32 board

running on the Intel Neuromorphic Research Commu-

nity (INRC) cloud. The machine consists of an Intel Xeon

E5-2650 CPU with 4GB RAM.

Live gesture learning used a Kapoho Bay Loihi system con-

nected to an IniVation DAVIS240C sensor. The host machine

3All performance results are based on testing as of June 2020 and may not
reflect all publicly available security updates. No product can be absolutely
secure.

TABLE II

6+5-WAY FEW-SHOT CLASSIFICATION ON THE DVSGESTURE DATASET

was an Intel Core i7-7700HQ CPU with 16GB of RAM

running Ubuntu 16.04.6 and Nx SDK 0.95.

V. EXPERIMENTS

We used SOEL to train and test the last layer of the neural

network pre-trained with SLAYER on 6 of the 11 gestures

from the DVSGesture dataset, training the last layer with only

a few-shots of the remaining 5 gestures of the dataset for a

few-shot 6+5 way gesture classification task. The 6 refers

to the 6 gestures the network is pre-trained to classify using

SLAYER, and the 5 refers to the 5 new gestures we are

training the last layer of models on using only a few-shots.

“Train” refers to classification accuracy on training samples

using saved weights with plasticity disabled. “Test” is the

classification accuracy on the samples held out of the training

procedure. Models were trained on one, five, or twenty shots

of data and then tested on 100 held out samples. The results are

obtained from performing a 5-fold cross-validation. A gesture

is considered correctly classified if the desired neurons spike

frequency is highest during the presentation time. We compare

the accuracy of the model using SOEL to two other models,

one whose last layer is trained using vanilla SGD used in

[18] and another whose last layer is trained using SLAYER.

Each model was trained on samples from the DVSGesture

test dataset, and tested on samples from the test dataset not

seen during training. Table II shows the accuracy comparisons

of the different models trained on the few-shot 6+5-way

gesture classification task. The results show the SOEL trained

network is overall better than the vanilla SGD method from

[18], achieving on average significantly better results at test

time after seeing only one shot of training data, and better

generalization. However while SOEL does better at training

time on 1 shot experiments than the pure SLAYER network,

SLAYER is better at generalizing than SOEL. This could

be due to the SOEL model tending to over-fit on samples

presented and the straight-through estimator. For similar rea-

sons, we speculate that the accuracy of the SOEL model is

more variable than SLAYER. When overfitting, samples that

deviate too much from those samples will be more likely to

be classified incorrectly, but all experiments show SOEL to be

significantly better than our previous implementation [18]. We

also compare the time taken and energy consumption needed

for SOEL and [18] to train each gesture shown in table III.

The results indicate that SOEL uses more energy but takes less

time to train and achieves higher accuracy than [18]. Because
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TABLE III

COMPARISON OF TIME AND ENERGY TAKEN

FOR LEARNING ONE GESTURE

Fig. 5. Rapid online learning of gestures using data streamed from a
DAVIS240C to an Intel Kapoho Bay. The upper part of the figure shows a
person performing a gesture in front of a DAVIS240C, and the corresponding
DAVIS240C output events shown in blue. The histogram shows the spiking
frequency of each neurons response to the presented gesture after learning.
After only a single one second presentation of each gesture the network can
correctly classify the gestures it trained on.

the Intel Kapoho Bay does not support energy probing, energy

and time measurements were taken with an Intel Nahuku board

consisting of 32 Loihi chips.

A. Real-World Gesture Learning

In addition to the few-shot 6+5 way classification we also

tested SOEL in a real-world gesture learning and recognition

setting. To demonstrate rapid online gesture learning in a

real-world setting we streamed gesture data in real time

from a DAVIS 240C sensor connected to an Intel Kapoho

Bay. For the experiment we tested one subject in a single

lighting condition where the subject was under fluorescent

light. The neural network model on the Kapoho Bay was

pre-trained on all 11 gestures of the DVSGesture dataset using

SLAYER, but the last layer is reset, made plastic, and trained

using SOEL. The task was to train the network to classify

10 predetermined gestures outside of the DVSGesture dataset

using as few shots as possible. Figure 5 shows an example of

the learning and inference of the gestures. After being shown

a gesture for a one second presentation, the network is able to

classify other samples of the gesture. Additionally, training

other gestures does not interfere with the networks ability

to classify previously learned gestures. However, performance

can degrade if the learned gestures spatially overlap because

unique gestures within the same space may be seen as the

same gesture.

The results of which some are shown in figure 5 demon-

strate the capability of the SOEL learning rule to perform

rapid few-shot learning on a neuromorphic processor from

real-world data. A link to a video showing a live demonstration

of the rapid learning of 10 new gestures is added as supple-

mental information.

VI. DISCUSSION AND FUTURE WORK

We presented SOEL, a new surrogate gradient based learn-

ing algorithm for few-shot online learning on an Intel Loihi

neuromorphic processor using gesture recognition as a case

study. To accomplish this we first pre-trained an Intel Loihi

compatible SNN on a GPU using the current state-of-the-art

SLAYER method, and then deployed the network on an Intel

Kapoho Bay and retrained the last layer on few-shots of data

using SOEL. We found that like ANNs, using a pre-trained

network for transfer learning with SNNs significantly boosts

few-shot learning accuracy. While we have achieved real-time

online gesture learning using SOEL, there are limitations to

our method. Currently, SOEL only supports training the last

layer of the network. Being a local learning rule, SOEL only

has information from pre- and post-synaptic neurons within

its layer. Therefore training other layers will incur the spatial

credit assignment because the neurons will not have a direct

target to train on outside of the last layer. Consequently, if the

signal is not separable in the penultimate layer then the last

layer cannot learn. This can be potentially solved using layer

wise local loss functions [11] and is beyond the scope of

this article. Another limitation stems from the approximations

made with the SOEL algorithm. First, the algorithm assumes

that states do not change across the time window in which

the error is calculated. This is beneficial to speed up training

and can be adjusted to match the error dynamics. Second,

due to limitations of the plasticity processor, the second term

of the three factor rule cannot be implemented exactly and

is instead ignored (set to one). These two approximations

are likely to reduce the accuracy of the final result. The

few-shot learning experiments using SOEL on gesture data

with the Intel Loihi neuromorphic processor are slightly worse

compared to training the last layer using GPU SLAYER. This

discrepancy is expected since SOEL yields biased estimates

of the gradients. The bias in the estimates is caused mainly

by the straight-through estimator, and the approximate spike

count loss which is computing using the neural states of the

last time step. Furthermore, the discretization of neural and
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synaptic states, and limited range of effective learning rates

further widen the gap between GPU simulations and Loihi

simulations. However, in the regime of interest, e.g. between

one shot and five shots, the discrepancy remains acceptable.

Furthermore, they are a major improvement from our previous

work. Unlike vanilla SGD, which learns at every timestep,

SOEL only learns when there is sufficient error to trigger

learning. This error-triggered learning helps prevent weight

saturation and catastrophic forgetting leading to increased

accuracy. However the increased accuracy comes with an

increase in power consumption when compared to vanilla

SGD. We speculate that the power consumption for gesture

recognition using SLAYER with a GPU is at least an order

of magnitude higher than using SOEL with the Intel Loihi.

Additionally we also showed SOEL is capable of few-shot

learning from real world data. These experiments also showed

SOEL was able to adapt to the differences of data taken from

both a DAVIS 240 and a DVS 128 and was able to learn using

data from both.
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