512

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

Online Few-Shot Gesture Learning
on a Neuromorphic Processor

Kenneth Stewart
and Emre Neftci

Abstract—We present the Surrogate-gradient Online
Error-triggered Learning (SOEL) system for online few-shot
learning on neuromorphic processors. The SOEL learning
system uses a combination of transfer learning and principles
of computational neuroscience and deep learning. We show
that partially trained deep Spiking Neural Networks (SNNs)
implemented on neuromorphic hardware can rapidly adapt
online to new classes of data within a domain. SOEL updates
trigger when an error occurs, enabling faster learning with fewer
updates. Using gesture recognition as a case study, we show
SOEL can be used for online few-shot learning of new classes
of pre-recorded gesture data and rapid online learning of new
gestures from data streamed live from a Dynamic Active-pixel
Vision Sensor to an Intel Loihi neuromorphic research processor.

Index Terms— Neuromorphic computing, spiking neural net-
works, on-chip learning, few-shot learning, online learning.

I. INTRODUCTION

HE current generation of Artificial Neural Networks
T (ANNGS) achieve state of the art performance in applica-
tions ranging from image classification and object recognition,
to object tracking, signal processing, natural language process-
ing, self driving cars, health care diagnostics, and many more
[1]. ANNs mainly rely on the backpropagation of errors as the
key to their learning prowess, but they require large amounts of
data and memory for training. Training these networks relies
on GPUs and thousands of iterations over the data sampled
in an i.i.d. fashion. To achieve the high throughput necessary
to quickly train the networks, GPUs rely on high volumes of
data movement and tensor-based computations, both of which
consume large amounts of energy [2], [3], making GPU less
than ideal for implementation at scale in mobile systems.

Manuscript received July 9, 2020; revised September 22, 2020; accepted
October 12, 2020. Date of publication October 19, 2020; date of current
version December 11, 2020. This work was supported in part by the Intel
Corporation (KS, EN), in part by the National Science Foundation under Grant
1652159 (EN), and in part by the Programmatic Grant A1687b0033 from
the Singapore government’s Research, Innovation and Enterprise 2020 Plan
(Advanced Manufacturing and Engineering Domain) (SBS). This article
was recommended by Guest Editor T. Serrano-Gotarredona. (Corresponding
author: Kenneth Stewart.)

Kenneth Stewart is with the Department of Computer Science, University of
California Irvine, Irvine, CA 92697-2625 USA (e-mail: kennetms@uci.edu).

Garrick Orchard is with the Intel Labs Intel Corporation, Santa Clara,
CA 95054-1549 USA (e-mail: garrick.orchard@intel.com).

Sumit Bam Shrestha is with the Institute for Infocomm Research, A*STAR,
Singapore 138632 (e-mail: sumit_bam@i2r.a-star.edu.sg).

Emre Neftci is with the Department of Cognitive Sciences, Department
of Computer Science, University of California Irvine, Irvine, CA 92697-
2625 USA (e-mail: eneftci@uci.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2020.3032058

, Graduate Student Member, IEEE, Garrick Orchard, Sumit Bam Shrestha,

, Member, IEEE

Neuromorphic computing platforms offer an energy-
efficient alternative to perform training and inference in neural
networks while being suitable for power-constrained applica-
tions in mobile systems [4]. Neuromorphic systems mimic
the brain’s event-driven dynamics, distributed architecture and
massive parallelism to overcome the limitations of conven-
tional von Neumann computing architectures [5]. Neuromor-
phic hardware equipped with synaptic plasticity capability can
perform training and inference online, using local information
[6], [7], making them particularly interesting for problems
requiring fast adaptation to new data. Despite the many tech-
nical advances in neuromorphic learning hardware, the prac-
tical role of learning and synaptic plasticity in neuromorphic
hardware has remained elusive. This is because gradient-based
learning is notoriously slow, requiring many iterations to
achieve an acceptable generalization. Furthermore, synaptic
plasticity is inherently online and local, but learning online
using streaming data breaks the i.i.d. assumptions required for
convergence of the neural network.

In this paper, we take a realistic and practical approach
to learning in neuromorphic hardware by combining the best
of conventional and neuromorphic hardware: we pre-train
networks on GPUs on a class of tasks and adapt the key
layers on the neuromorphic hardware. The result is a sys-
tem that moves the non-local and energy-intensive phases
of learning to a cloud or mainframe, and deploys on the
neuromorphic hardware the data sensitive portions of the
learning. This approach is realized by using recent theories
that combine machine learning theory with SNNs and few-
shot/transfer learning. We demonstrate our approach on fast
online learning of streaming, real-world visual patterns on
a neuromorphic processor. The pre-training is carried out
using a functional model of an Intel Loihi neuromorphic
processor. During deployment, the model is then fine-tuned
on the processor using local synaptic plasticity rules. The key
contribution of this work is few-shot Surrogate-gradient Online
Error-Triggered Learning (SOEL), a plasticity rule compatible
with neuromorphic hardware derived from gradient-descent on
SNNs and its efficient implementation using signals local to
the neuromorphic cores.

A. Surrogate-gradient Online Error-Triggered Learning
(SOEL)

While gradient Back-Propagation (BP) is the workhorse for
training nearly all deep neural network architectures, it is
generally incompatible with non Von Neumann computers,
including brains and neuromorphic hardware. By identifying
SNNs as a type of Recurrent Neural Network (RNN), recent

2156-3357 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7719-5796
https://orcid.org/0000-0002-0332-3273

STEWART et al.: ONLINE FEW-SHOT GESTURE LEARNING ON A NEUROMORPHIC PROCESSOR 513

studies showed two reasons for this incompatibility [8]. Firstly,
the spiking neuron has a non-differentiable activation func-
tion, which prevents the gradients from flowing across the
network. Secondly, the computation of local errors requires
the evaluation of a global loss function, which is a spatially
and temporally non-local computation.

These problems are addressed using Surrogate Gradient
(SG) learning [8]. SG methods define a differentiable surrogate
network to calculate weight updates in a local fashion, and
formulate the updates as three-factor synaptic plasticity rules.
The SG method reveals from first principles the mathematical
nature of the three factors, and a learning dynamic that is
temporally continuous and compatible with synaptic plasticity.
The three factor rules include a pre-synaptic factor, a post-
synaptic factor and an external error signal. In comparison,
Spike Time Dependent Plasticity (STDP), a common synaptic
plasticity model in neuroscience, contains only two factors
and lacks the external signal [9]. The third factor drastically
improves learning by projecting task-specific errors to the
neurons [10]. In short, the SG bridges the worlds of ANNs
and SNNs without simplifying assumptions on the latter.

SG methods pave the road towards neuromorphic learning
machines with performances similar to deep-learning [11],
while being able to learn online, with input streams, spike
timing and potentially using a fraction of the energy compared
to conventional computers.

While temporal continuity is a plausible property in the
brain, updating a large number of weights continuously is both
energetically expensive and prone to dynamical instabilities.
A recent development of SG learning in spiking neurons
suggested that updating at every timestep is not necessary
if weight updates are triggered by task errors [12]. In such
error-triggered learning, weight updates are made only when
an error threshold is crossed. Consequently, the number of
updates can be drastically reduced with a small penalty in
final accuracy.

However, even the fewer error-triggered learning updates is
incompatible with online learning as it can lead to catastrophic
forgetting. Catastrophic forgetting occurs when the data gener-
ating process for training the neural network is non i.i.d. This
problem can be generally solved by increasing the complexity
of the neuron and synapses [13], [14], experience replays [15],
or meta-learning and the related few-shot learning [16].

Here, we focus on the latter approach for the following
reasons: Firstly, the ability to solve difficult recognition tasks
using few samples is a key capability of the brain [17]. Few-
shot learning is a subset of deep learning concerned with such
fast adaptation in situations where prior knowledge of the task
domain is available. Bringing such capability to neuromorphic
hardware is a top priority for local learning and adaptation on
mobile systems, such as the learning of human gestures for
device control or adapting to a user’s voice.

In our approach, few-shot learning consists of first
pre-training a model on the class of problems of interest, and
then making (presumably) few error-triggered updates to learn
new but related tasks.

To achieve the error-triggered learning in neuromorphic
hardware, we implement the SOEL algorithm, an extension of

SG and error-triggered learning for rapid, few-shot learning.
We demonstrate SOEL on the Intel Loihi Neuromorphic
research chip, and capitalized on its specialized local plasticity
processors to carry out the updates. SOEL is an extension of
the Surrogate Gradient learning algorithm designed that fix
issues of a previous implementation [18].

II. RELATED WORK

Previous work has shown that the first layers of neural
networks learn general features and learn increasingly task
specific features the deeper within the network the layer is
[19]. The general features learned by the first layers of a
network can be transferred to other networks for task-specific
training of later layers, referred to as transfer learning.

The first layers of a network are trained on one dataset
to learn general features that can be transferred to a second
network trained on a target task. Using the transferred features
yields better generalization of the target task than without
transferring the general lower layer features [19]. Transfer
learning is useful for few-shot learning, i.e. when the target
task only has a small amount of data available for training,
but a similar task with a larger dataset is available. The goal
of few-shot learning is to train a model to generalize from as
few examples as possible [20]. Transfer learning can be used
to assist the training of few-shot learning models allowing for
greater generalization on a target domain from few examples
for both ANNs and deep SNNs [18], [21], [22].

As discussed earlier, training deep SNNs is challenging
due to a spatiotemporal credit assignment problem and non-
differentiabilities. Previous work overcame the learning prob-
lem in multiple layers of SNNs with methods such as feedback
alignment [23], [24], backpropagation-through-time (BPTT)
[25]-[27], and spike-based backpropagation [28], [29]. The
successful gradient-based training of deep SNNs usually
approximate the spiking function’s derivative using a surrogate
activation function [8]. By being able to train deep SNNs,
the ingredients of deep learning that make ANNSs successful
such as dropout, batch normalization, convolutions, pooling
etc. can be applied to SNNs, in addition to SNNs being
compatible with neuromorphic hardware. BPTT is shown to
achieve state-of-the-art accuracy on certain target domains
such as NMNIST and gesture recognition. However, BPTT is
inherently offline as it propagates error through the unrolled
network and therefore is not suited for applications where
online adaptation is desired. Rather than backpropagating
through the network, SOEL computes local errors between
pre- and post-synaptic neurons by propagating gradients for-
ward in time [8].

While previous work has shown increasing success in
training SNNs using spike-based gradient descent on a variety
of tasks, they are trained and tested offline just like ANNs and
do not demonstrate online on-chip learning on neuromorphic
hardware. [30] demonstrated rapid online on-chip learning
using the Intel Loihi neuromorphic research chip but did
not use spike-based gradient descent. To our knowledge this
work is the first to demonstrate online, on-chip gradient-based
learning on a neuromorphic processor. Using gestures as a

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

514 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

case study we show the success of rapid online learning using
SOEL which can be used for applications that require online
adaptation.

III. BACKGROUND
A. Dynamic Vision Sensor

The datasets used in this work are obtained using neu-
romorphic sensors, namely the DVS and DAVIS cameras.
Each pixel of Dynamic Vision Sensors (DVSs) quantize local
relative intensity changes to generate spike events [31]. In our
experiments we use data from a DVS 128, and a DAVIS 240C
[32]. The IBM DvsGesture dataset used here for pre-training
consists of recordings of 29 different individuals performing
10 different actions such as clapping and an unspecified
gesture for a total of 11 classes. The actions are recorded
using a DVS camera, an event-based neuromorphic sensor,
under three different lighting conditions. The task is to classify
an action sequence video. Samples from the first 23 subjects
were used for training and the last 6 subjects were used for
testing. The training set contains 1078 samples and the test
set contains 264 samples. Each sample consists of the first
1.45 seconds of the gesture performed.

B. Neural Network Model

The neural network model follows leaky, Integrate & Fire
(I&F) dynamics. The dynamics of the membrane potential
U; of a neuron i is governed by the following differential
equations:

Ui(t) = Vi(t) — U Ri(t) + bi,
d
Tmemavi(t) = _Vi(t) + 1 (t);

d
TrefaRi(t) = _Ri(t)'f‘Si(t), (D

with S;(r) = > ¥ ot — tif) representing the spike train of
neuron i spiking at times tl.f , where J is the Dirac delta.
A spike is emitted when the membrane potential reaches a
threshold Uyy,.

The constant b; represents the intrinsic excitability of the
neuron. The reset mechanism is captured with the dynamics
of R;. The factors Tpem and 7,.r are time constants of the
membrane and reset dynamics, respectively. I; denotes the
total synaptic current of neuron i, expressed as:

d
T i (0) = = 1) + 7 WS (1), ?)
jepre

where W;; is the synaptic weights between pre-synaptic neuron
J and post-synaptic neuron i. Because V; and [; are linear with
respect to the weights W;;, the dynamics of V; can be rewritten
as:

Vi) = D Wi Pi(0),

jepre
d
Tmemapj(t) = —P;(t)+ Q;(),

d
Tsynan(t):_Qj(t)"i‘Sj(t)- (3)

The states P and Q describe the traces of the membrane
and the current-based synapse, respectively. For each incoming
spike, each trace undergoes a jump of height 1 and otherwise
decays exponentially with a time constant tyey (for P) and
tsyn (for Q). Weighting the trace P; with the synaptic weight
W;; results in the Post-Synaptic Potentials (PSPs) of neuron
i caused by input neuron j.

Discrete Spike Response Model of the Neuron and Synapse
Dynamics: In a digital system, the continuous dynamics
above are simulated in discrete time, with time step Af. The
dynamical equations in Eq. (1) and Eq. (3) are expressed in
discrete time as:

Uilt] = D~ Wi Pilt] — UnRilt] + bi,
J
Si[t] = ©(Uilt]),
Pi[t + At] = aPj[t] + 1- a)Q;lt],
Qjlt+ At] = pQ;lt] + (1 — p)S;l1])

where the constants o = exp(—ﬁf—;m) and f = exp(—f—tn)
reflect the decay dynamics of the membrane potential U and
the synaptic state / during a Ar timestep. ® (U;[¢]) is the unit
step function, where @ (U;) = 0 if U; < Uy, otherwise 1.
Note that Eq. (4) is equivalent to a discrete-time version of

the Spike Response Model (SRMy) with linear filters [33].

C. Gradient-Based Training of SNNs

A number of recent methods for training SNNs using
gradient descent have recently emerged. The mathematical
principle of gradient descent lies on incrementally updating
the parameters in the direction opposite to the gradient of a
loss function. As mentioned in the introduction, difficulties of
training SNNs arise due to the spatiotemporal credit assign-
ment problem and the non-differentiability of the activation
function. The spatial credit assignment problem arises when
the parameters of neurons with no direct target are trained.
The temporal credit assignment arises organically due to the
temporal dependencies (dynamics) of spiking neurons. For
example, the effect of an input spike at a particular time affects
the membrane potential of a spiking neuron in the future.
The magnitude of the effect is determined by the normalized
post-synaptic response of the synapse, i.e. the P traces in
Eq. (4). As a consequence, during learning, the credit of
the error at a given point of time must be assigned to the
input synapse at some point in the past. One factor to the
magnitude of this temporal credit assignment is proportional
to the normalized post-synaptic response, reversed in time. An
illustration of this temporal credit assignment policy is shown
in Fig. 1.

Assuming a global cost function £(SV) defined on the
spikes SV of the top layer and targets Y, the gradients with
respect to the weights in layer / are:

oL(SN) 8S; oU;
oS; oU; oW ’
‘We discuss below the three factor above. For didactic reasons,

we proceed first with the middle term, then the first term, then
the third. The middle term is the derivative of the activation

Vi, L(SN) =)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

STEWART et al.: ONLINE FEW-SHOT GESTURE LEARNING ON A NEUROMORPHIC PROCESSOR 515

Forward Propagation: Back Propagation:

VA N

spike

error

/_ temporal error

PSP credit assignment

Fig. 1. Temporal credit assignment of an error at a point in time during
SLAYER backpropagation.

function @ of the spiking neuron which is non-differentiable.
As discussed earlier, the SG approach consists in using a
smooth surrogate function in place of the non-differentiable
step function, such as the boxcar function [11], [23]. The first
term on the right-hand side describes how the loss changes
as the spiking states in the network, S;, change. If the loss
function is the mean-squared error and the network consists
of only one layer, the first term becomes the task error
Y; — Sl.N). Computing a%(SSi D for hidden layers is non-trivial
and equivalent to solving a spatiotemporal credit assignment
problem. Two methods exist to solve this problem: (1) it
can be computed offline using gradient backpropagation on
the time-unfolded graph (i.e. Back-Propagation-Through-Time
(BPTT)), or online by using local loss functions [11]. This
work uses a combination of offline and online SNN learning,
namely SLAYER and SOEL for pre-training hidden layers
and online three-factor rules for learning in output layers,
respectively. In the following paragraphs, we provide further
detail about these two learning methods.

1) Surrogate-gradient Online Error-Triggered Learning
(SOEL) Online Training for Loihi: Online training on physical
substrate requires all the information necessary for computing
the gradient to be available at the synaptic plasticity processor.
The first two terms of Eq. (5) discussed above are errors and
postsynaptic states. The last term in Eq. (5) can be computed
from Eq. (1-3) (or Eq. (4) in the discrete case). The derivative
of the reset term introduces the full history of the spiking
neuron, which cannot be computed locally in time. However,
in low firing rate regimes, the error in omitting this term in
the gradient calculation is small. By omitting the reset process,
the third term becomes simply the trace P;. Finally, we are
left with the following three factors:

VWijﬁ(S) =— — S,‘)O'/(Ui)Pj. (6)

Provided that pre-synaptic traces, membrane potential and
errors are available at the synapse, learning can be performed
locally as a synaptic plasticity rule. In computational neuro-
sciences, rules of this type are referred to as three-factor rules
[34]. Three-factor rules are consistent with biological synapse
dynamics and constitute a normative theory of learning in the
brain.

Eq. (6) prescribes updates at every timestep. While this
is consistent with biological dynamics, it is not efficient
in hardware. Updates can instead be made when the error
(Y; — SiN) crosses a threshold, thus forming a binary “error
event” [12]. This is reminiscent of STDP, where updates are
triggered when pre-synaptic or post-synaptic neurons events
occur [9]. Here, updates are instead triggered by error events.
Error-triggered learning allows the conditional activation of the

Shadow Weight

1 =
Quantize o 17}
Loihi Parameters =
Wy Neuron Parameters é
, i Z
Synaptic VVQSﬂ Spike Loihi Neuron[=
Sin[t] - Spike S|t 3
Weight Response| 77 t] S
] K

ac(s™) | T | | | | L(SN)
9Salt] temporal credit surrogate gradient oS[t] z
assignment &
- g
8
aL(s™) O]

oW

Fig. 2. Computational blocks for offline pre-training of SNN for Loihi using
SLAYER. The SNN is modeled with a functional Loihi simulator and the
normalized post-synaptic response is used for temporal credit assignment.
Since Loihi uses integer weights full precision shadow weights are quantized
and used during the forward inference phase.

plasticity operations, which can drastically reduce the footprint
of online learning. Recent work showed that the number of
updates can be reduced by 20 fold for a small loss in accuracy
[12]. Using a piecewise SG function, B; = ¢’ (U;) becomes a
box function where B; € {0, 1}. Then, the SOEL rule can be
written in the following compact, three-factor form:

VW,.J.L:(SN) x —E;B;P;. 7

where E; is a integer error event for neuron i.

2) SLAYER Offline Training for Loihi: SLAYER is a gra-
dient computation method for training deep SNNs directly in
the spiking domain [25]. It treats the inputs and outputs of
the SNN as temporal signals and backpropagates the error
at the output layer accordingly. There are two basic guiding
principles in SLAYER: Temporal error credit assignment, and
the surrogate gradient. Temporal credit assignment is done by
unfolding the temporal dynamics in time and backpropagating
through the unfolded graph. Further, it is typical for the
normalized post-synaptic response to decay to practically zero
after some time. Therefore, it is sufficient in practice to apply
temporal error credit assignment only up to a finite point in
history. SLAYER uses a proxy function as an approximation
of spike function derivative, similar to the surrogate gradient
learning described in Section III-C. These principles form the
essential link in the computational graph used to calculate the
gradients of the weights of the SNN and train it using standard
deep learning optimization methods.

SLAYER PyTorch! also supports training an SNN with the
CUBA leaky integrate and fire neuron model compatible with
the Loihi chip. For one-to-one mapping of the trained network
in Loihi hardware, the SNN is modeled with a functional
Loihi simulator and the normalized post-synaptic response is
used for temporal error credit assignment during backpropa-
gation. In addition, since Loihi only supports integer weights,
a strategy of full precision shadow weights [35], [36] is used,
which are quantized during the forward inference phase only.
The computational blocks for SLAYER-Loihi training are
shown in Fig. 2.

1 https://github.com/bamsumit/slayerPytorch

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

516 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

DVS128

Gesture Dataset

PyTorch

S e PP Y

Pre-training
(BPTT)

A

DAVIS240

(SEOL)
512

New Gestures

Fig. 3. Experimental setup. During a pre-training phase, the Loihi compatible convolutional network is trained on a computer using an event-based gestures
dataset, the functional simulator, and SLAYER/BPTT. In this work, the pre-training dataset consisted of the IBM DVS Gestures dataset recorded using a
DVS128 camera. The entire network along with quantized parameters of the functional simulation are then transferred on to the Loihi cores. During deployment,
new gestures recorded using a DAVIS are streamed to an Intel Kapoho Bay. Few-shot learning is performed on the final layer using on-chip SOEL. The
deployed network, including inference and training dynamics are performed on the Loihi chips. Dashed orange arrows indicate the extent of the spatial credit

assignment, and thus which layers are trained in each of the two phases.

D. Intel Loihi

The Intel Loihi is a neuromorphic processor that integrates
a wide range of features such as hierarchical connectivity,
dendritic compartments, synaptic delays, and programmable
synaptic learning rules [7]. Each Loihi chip is composed of
a many core mesh comprising of 128 neuromorphic cores
with each core implementing 1024 primitive spiking neural
units, three embedded x86 processor cores, with an asynchro-
nous network-on-chip (NoC) for between core communication.
Loihi offers a variety of local information for programmable
synaptic learning processes such as spike traces with config-
urable time constants that can have different time constants.

1) Plasticity Processor: Synaptic weights can be updated
via a learning rule expressed as a finite-difference equation
with respect to a synaptic state variable that follows a sum-
of-products form as follows [7]:

Wiilt + 11 = Wij[t]+ZCkHFkl[t], ()
k l

where W;; is the synaptic weight variable defined for the
destination-source neuron pair being updated; Cy is a scaling
constant; and Fy;[t] may be programmed to represent var-
ious state variables, including pre-synaptic spikes or traces,
post-synaptic spikes or traces, where traces are represented as
first-order linear filters. The weights are stochastically rounded
according to the programmed weight precision. Traces are
stochastically rounded to 7-bits of precision.

IV. METHODS

We present a system for online learning of gestures from
DVS data using only a few shots. Our workflow consist of
a pre-training phase, followed by a deployment phase. The
pre-training phase uses SLAYER and its functional Loihi

simulator to train a Loihi compatible convolutional network
on a GPU. For our targeted human gesture recognition appli-
cation, we use the event-based IBM DVS Gestures dataset
to pre-train this network. The trained network and quantized
parameters are then transferred to the Loihi cores. During
deployment on Loihi, few-shot learning of new gestures is
performed on the top layer on-chip with SOEL. The system
is shown in figure 3 and its components are detailed in the
following subsections.

A. Dataset and Gesture Sampling

Visual input to the model was recorded with either a DVS
128 in the case of the IBM DVSGesture? dataset [37] or with
a DAVIS 240C [32] in the case of real-world gestures. The
network was pre-trained data recorded with a DVS 128, which
has a smaller resolution compared to the more recent DAVIS
240C. During experiments involving input live-streamed from
a DAVIS 240C to an Intel Kapoho Bay, data was scaled down
to the same dimensions as the DVS 128 before being input
into the network. Data was taken by one subject under three
different lighting conditions, natural light from the sun, incan-
descent light, and fluorescent light which is shown in Fig. 5.

B. Neural Network Model and Offline Pre-Training
Using SLAYER for Loihi

We trained a spiking CNN using SLAYER for Loihi (c.f.
Section III-C.2) on the DVS Gesture dataset [37]. It has eleven
output gestures, out of which six (the even classes) were used
for offline training using SLAYER. The input is a 128 x 128
spatial event with two polarities (ON and OFF). The spiking

2The DVS Gesture dataset is used under a Creative Commons Attribution
4.0 license.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

STEWART et al.: ONLINE FEW-SHOT GESTURE LEARNING ON A NEUROMORPHIC PROCESSOR 517

TABLE I
NETWORK ARCHITECTURE

Layer | Kernel Output Training Method
input 128x128x2 || DVSI128/DAVIS240C (Sensor)
1 4a 32x32x2
2 16c5z 32x32x16
3 2a 16x16x16
4 32¢3z 16x16%32 SLAYER (BPTT)
5 2a 8x8x32
6 - 512
output - N SOEL

Notation: Ya represents YxY sum pooling, XcYz represents X convolution filters (YxY)
with zero padding. IV is the number of classes, which is task-dependent.

CNN architecture shown in table I consisted of 7 layers. The
input spikes are OR’ed in 1 ms time bins and then fed to
the network. N refers to the number of output classes, which
depend on the experimental conditions.

The threshold for all the neurons were set to 80 x 2° and
the current decay and voltage decay were set to 1024 (time
constant of 32ms) and 128 (time constant of 4ms) respectively.
The weights of the network were trained to be in the set
{—256, —254,---,254} i.e. 8 bit signed weights with step
of 2.

The network was pre-trained for 2000 epochs. For better
generalization performance, the input was augmented during
training: x-y jitter of up to 8 pixels, rotation jitter of up to 10°,
and random sampling of 1450ms spike sequence. The Nadam
[38] optimizer was used with a learning rate of 0.003 and
default f = (0.9, 0.999). The network without the final fully
connected output layer (layers 1-6), is the feature extraction
network which is subsequently used in our on-chip learning
experiments described below.

C. Online Few-Shot Learning Using Surrogate-gradient
Online Error-Triggered Learning (SOEL) Plasticity for Loihi

SOEL requires the pre-synaptic trace P to be a second-order
linear filter. Second-order kernels can be implemented as a
subtraction of two first-order kernels [39]. This subtraction is
enabled by the sum-of-products formulation of the plasticity
rule (8). The error, err;, is computed with the post-synaptic
neuron using the following:

erri[t] =Y — §;[1] Q)

where Y is the target, S; = ZLT S;[t] is defined here as the
number of post-synaptic spikes by neuron i in the previous
T timesteps. T is a constant number of timesteps that is a
fraction of the total presentation time of the sample. This
number determines the rate at which errors are computed.
Using a spike-count instead of spike states is an approximation
because the update will be subsequently made using the states
in the final timestep, i.e. P;[t]. However, for T smaller than
the neuron and synaptic time constants, P;[¢t] will not vary
much during this time window, and the approximation will
remain close to the exact case.

Since the post-synaptic trace is not necessary for the SG
rule, SOEL writes the error on the same register used for
the post-synaptic trace. This enables the error value to be

Algorithm 1 SOEL
Result: Error-triggered Synaptic Plasticity
0 =0;
if neuron i is learning then
Si < Si+8i;
erri < Y —§;:
if err; > 6 or err; < —6 then
E; < C+err;
Wij < Wij —n(E; — C)Pj;
increase 6 by constant;
S‘,‘ <~ 0
else
| decrease 6 by constant;
end
end

available in the plasticity processor for learning. On the chip,
post-traces can only be positive but errors can be both positive
and negative. This problem is solved by offsetting the weight
updates with a constant term C.

C (21,
Eifi = & el .
C, otherwise

if err; > 0 or < —6 (10)

where 6 is an error threshold.

Intuitively, SOEL can be interpreted as follows. If err is
higher than 6, meaning the neuron is spiking at too high a
frequency, then there is a positive error and the weight of the
synapse will be penalized. Conversely if err is below —é then
the weight of the synapse weight will be increased. The term
o’ (the “second factor” in Eq. (6)) cannot be implemented
directly on the Loihi because the membrane state is not
available at the plasticity processor. Since only the final layer
N is trained, setting this term to 1 regardless of the membrane
value only has the effect of continued learning even after
the neuron output saturates in either direction. This strategy,
referred to straight-through estimator in the machine learning
field, has the disadvantage of yielding biased estimated of the
gradients, but the advantage of faster learning since every error
leads to an update. Since our goal is to perform fast, one-shot
learning, SOEL implemented here uses a straight-through
estimator. The full learning rule can then be expressed as:

Y

where W;; is the synapse from pre-synaptic neuron j to
post-synaptic neuron i, # is the learning rate, E; is the error,
and P; is the pre-synaptic trace. The learning rule can be
implemented in Intel Loihi as:

Wij = Wij +n(Ei = O)P,

X[t +11=a'X}[1] + S},
X?[t—i— 1] = azX?[t]—i—Sz-,
Yi[t] = E;l[t],

AW = n(X2[] = X Xl - ©). (12)

Here, X% and X' are pre-synaptic trace variables available
in the Loihi whose subtraction in the third equation yields

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

518 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

15 |

= N
o o
L L

1[1000]

o

N W
o O

U[1000]
=
S)

T

0 500

Po
ORNWAUIOIN® O

1000 1500

Fig. 4. Dynamics of one learning neuron when learning a new gesture. Only
a subset of the synaptic weights W are shown. The weights only change when
Py is non-zero during a learning epoch. The current I, and membrane potential
U of the learning neuron are shown over the duration of the sample. Spikes
are shown as grey vertical lines overlaying the membrane potential plot.

the second order kernel equivalent to P; in Eq. (3).

P;l1] oc (X3[1] = X [1]). (13)
A Loihi Lakemont core computes the spike count S and
evaluates err; at regular intervals 7. If the error exceeds the
threshold @, the post-synaptic trace value in the plasticity
processor, Y, is written with the error E; and a plasticity
operation is initiated. As in Eq. (10), C is a constant bias
term to account for negative error because traces cannot be
negative.

D. System Specifications for Measurement >

SNN offline pre-training was performed with Ubuntu
16.04.6, SLAYER PyTorch commit id 598fc44, and PyTorch
1.4.0. The machine consists of an Intel Xeon E5-2630 CPU
with 128GB RAM and Nvidia GeForce RTX 2080Ti GPU.

Loihi time and energy measurements were made using
Ubuntu 16.04.6 with Nx SDK 0.95 and a Nahuku 32 board
running on the Intel Neuromorphic Research Commu-
nity (INRC) cloud. The machine consists of an Intel Xeon
E5-2650 CPU with 4GB RAM.

Live gesture learning used a Kapoho Bay Loihi system con-
nected to an IniVation DAVIS240C sensor. The host machine

3A1 performance results are based on testing as of June 2020 and may not
reflect all publicly available security updates. No product can be absolutely
secure.

TABLE 11
6+5-WAY FEW-SHOT CLASSIFICATION ON THE DVSGESTURE DATASET

Dataset Learning Method | Shots Train Test
1 96+4% 64.7+4.6 %
SOEL 5 88+5.2% 65.1+5.1%
20 87.7£2.3% | 80.2+4.3%
1 40% 40%
DVSGesture SGD [18] 5 60% 43.3%
20 73.5% 56.2%
1 78.5£2.6% | 83.5£2.32%
SLAYER 5 95.9£1% 83.5+2.9%
20 99.7£.3% 91.2+1.9%

was an Intel Core i7-7700HQ CPU with 16GB of RAM
running Ubuntu 16.04.6 and Nx SDK 0.95.

V. EXPERIMENTS

We used SOEL to train and test the last layer of the neural
network pre-trained with SLAYER on 6 of the 11 gestures
from the DVSGesture dataset, training the last layer with only
a few-shots of the remaining 5 gestures of the dataset for a
few-shot 645 way gesture classification task. The 6 refers
to the 6 gestures the network is pre-trained to classify using
SLAYER, and the 5 refers to the 5 new gestures we are
training the last layer of models on using only a few-shots.
“Train” refers to classification accuracy on training samples
using saved weights with plasticity disabled. “Test” is the
classification accuracy on the samples held out of the training
procedure. Models were trained on one, five, or twenty shots
of data and then tested on 100 held out samples. The results are
obtained from performing a 5-fold cross-validation. A gesture
is considered correctly classified if the desired neurons spike
frequency is highest during the presentation time. We compare
the accuracy of the model using SOEL to two other models,
one whose last layer is trained using vanilla SGD used in
[18] and another whose last layer is trained using SLAYER.
Each model was trained on samples from the DVSGesture
test dataset, and tested on samples from the test dataset not
seen during training. Table II shows the accuracy comparisons
of the different models trained on the few-shot 6+5-way
gesture classification task. The results show the SOEL trained
network is overall better than the vanilla SGD method from
[18], achieving on average significantly better results at test
time after seeing only one shot of training data, and better
generalization. However while SOEL does better at training
time on 1 shot experiments than the pure SLAYER network,
SLAYER is better at generalizing than SOEL. This could
be due to the SOEL model tending to over-fit on samples
presented and the straight-through estimator. For similar rea-
sons, we speculate that the accuracy of the SOEL model is
more variable than SLAYER. When overfitting, samples that
deviate too much from those samples will be more likely to
be classified incorrectly, but all experiments show SOEL to be
significantly better than our previous implementation [18]. We
also compare the time taken and energy consumption needed
for SOEL and [18] to train each gesture shown in table III.
The results indicate that SOEL uses more energy but takes less
time to train and achieves higher accuracy than [18]. Because

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

STEWART et al.: ONLINE FEW-SHOT GESTURE LEARNING ON A NEUROMORPHIC PROCESSOR 519

TABLE III

COMPARISON OF TIME AND ENERGY TAKEN
FOR LEARNING ONE GESTURE

Measurement SOEL SGD [18] | % Diff
Learning Time (s) .037 31 -87.71%
Learning Energy (mJ) 167.58 | 37.04 358.46%
Learning Power (mW) | 6.18 11.48 -46.17%
Total Time (s) 1.04 1.21 -14.23%
Total Energy (mJ) 481.98 | 323.2 49.13%
Total Power (mW) 511.65 | 391.07 30.83%
swipe right
swipe left
rrght wax on
PP - RN
y ;“'@3 $ $&5s
Po o oL YF
2 £ 5
SSFES
£ e
&S

Fig. 5. Rapid online learning of gestures using data streamed from a
DAVIS240C to an Intel Kapoho Bay. The upper part of the figure shows a
person performing a gesture in front of a DAVIS240C, and the corresponding
DAVIS240C output events shown in blue. The histogram shows the spiking
frequency of each neurons response to the presented gesture after learning.
After only a single one second presentation of each gesture the network can
correctly classify the gestures it trained on.

the Intel Kapoho Bay does not support energy probing, energy
and time measurements were taken with an Intel Nahuku board
consisting of 32 Loihi chips.

A. Real-World Gesture Learning

In addition to the few-shot 6+5 way classification we also
tested SOEL in a real-world gesture learning and recognition
setting. To demonstrate rapid online gesture learning in a
real-world setting we streamed gesture data in real time
from a DAVIS 240C sensor connected to an Intel Kapoho
Bay. For the experiment we tested one subject in a single
lighting condition where the subject was under fluorescent
light. The neural network model on the Kapoho Bay was
pre-trained on all 11 gestures of the DVSGesture dataset using

SLAYER, but the last layer is reset, made plastic, and trained
using SOEL. The task was to train the network to classify
10 predetermined gestures outside of the DVSGesture dataset
using as few shots as possible. Figure 5 shows an example of
the learning and inference of the gestures. After being shown
a gesture for a one second presentation, the network is able to
classify other samples of the gesture. Additionally, training
other gestures does not interfere with the networks ability
to classify previously learned gestures. However, performance
can degrade if the learned gestures spatially overlap because
unique gestures within the same space may be seen as the
same gesture.

The results of which some are shown in figure 5 demon-
strate the capability of the SOEL learning rule to perform
rapid few-shot learning on a neuromorphic processor from
real-world data. A link to a video showing a live demonstration
of the rapid learning of 10 new gestures is added as supple-
mental information.

VI. DISCUSSION AND FUTURE WORK

We presented SOEL, a new surrogate gradient based learn-
ing algorithm for few-shot online learning on an Intel Loihi
neuromorphic processor using gesture recognition as a case
study. To accomplish this we first pre-trained an Intel Loihi
compatible SNN on a GPU using the current state-of-the-art
SLAYER method, and then deployed the network on an Intel
Kapoho Bay and retrained the last layer on few-shots of data
using SOEL. We found that like ANNSs, using a pre-trained
network for transfer learning with SNNs significantly boosts
few-shot learning accuracy. While we have achieved real-time
online gesture learning using SOEL, there are limitations to
our method. Currently, SOEL only supports training the last
layer of the network. Being a local learning rule, SOEL only
has information from pre- and post-synaptic neurons within
its layer. Therefore training other layers will incur the spatial
credit assignment because the neurons will not have a direct
target to train on outside of the last layer. Consequently, if the
signal is not separable in the penultimate layer then the last
layer cannot learn. This can be potentially solved using layer
wise local loss functions [11] and is beyond the scope of
this article. Another limitation stems from the approximations
made with the SOEL algorithm. First, the algorithm assumes
that states do not change across the time window in which
the error is calculated. This is beneficial to speed up training
and can be adjusted to match the error dynamics. Second,
due to limitations of the plasticity processor, the second term
of the three factor rule cannot be implemented exactly and
is instead ignored (set to one). These two approximations
are likely to reduce the accuracy of the final result. The
few-shot learning experiments using SOEL on gesture data
with the Intel Loihi neuromorphic processor are slightly worse
compared to training the last layer using GPU SLAYER. This
discrepancy is expected since SOEL yields biased estimates
of the gradients. The bias in the estimates is caused mainly
by the straight-through estimator, and the approximate spike
count loss which is computing using the neural states of the
last time step. Furthermore, the discretization of neural and

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

520 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

synaptic states, and limited range of effective learning rates
further widen the gap between GPU simulations and Loihi
simulations. However, in the regime of interest, e.g. between
one shot and five shots, the discrepancy remains acceptable.
Furthermore, they are a major improvement from our previous
work. Unlike vanilla SGD, which learns at every timestep,
SOEL only learns when there is sufficient error to trigger
learning. This error-triggered learning helps prevent weight
saturation and catastrophic forgetting leading to increased
accuracy. However the increased accuracy comes with an
increase in power consumption when compared to vanilla
SGD. We speculate that the power consumption for gesture
recognition using SLAYER with a GPU is at least an order
of magnitude higher than using SOEL with the Intel Loihi.
Additionally we also showed SOEL is capable of few-shot
learning from real world data. These experiments also showed
SOEL was able to adapt to the differences of data taken from
both a DAVIS 240 and a DVS 128 and was able to learn using
data from both.

ACKNOWLEDGMENT

The preliminary experiments of this research were con-
ducted at the Telluride Neuromorphic Cognition Engineering
workshop, years 2018 and 2019 (all authors).

REFERENCES

[1] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[2] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of GPU kernels using performance coun-
ters,” in Proc. Int. Conf. Green Comput., Aug. 2010, pp. 115-122.

[3] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in Proc. IEEE
Int. Symp. Workload Characterization (IISWC), Sep. 2013, pp. 56-65.

[4] T. Hwu, J. Krichmar, and X. Zou, “A complete neuromorphic solution to
outdoor navigation and path planning,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2017, pp. 1-4.

[5] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Frontiers
Neurosci., vol. 5, pp. 1-23, May 2011.

[6] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, “Neuromorphic
electronic circuits for building autonomous cognitive systems,” Proc.
IEEE, vol. 102, no. 9, pp. 1367-1388, Sep. 2014.

[71 M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan. 2018.

[8] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks,” IEEE Signal Process. Mag.,
vol. 36, no. 6, pp. 51-63, Nov. 2019.

[9] G.-Q. Bi and M.-M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” J. Neurosci., vol. 18, no. 24, pp. 10464-10472,
Dec. 1998.

[10] P. Baldi, P. Sadowski, and Z. Lu, “Learning in the machine: The symme-
tries of the deep learning channel,” Neural Netw., vol. 95, pp. 110-133,
Nov. 2017.

[11] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics
for deep continuous local learning (DECOLLE),” Frontiers Neurosci.,
vol. 14, p. 424, 2020. [Online]. Available: https://www.frontiersin.
org/article/10.3389/fnins.2020.00424, doi: 10.3389/fnins.2020.00424.

[12] M. Payvand, M. E. Fouda, F. Kurdahi, A. Eltawil, and E. O. Neftci,
“Error-triggered three-factor learning dynamics for crossbar arrays,”
in Proc. 2nd IEEE Int. Conf. Artif. Intell. Circuits Syst. (AICAS),
Aug. 2020, pp.218-222. [Online]. Available: http://arxiv.org/
pdf/1910.06152

[13] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through
synaptic intelligence,” 2017, arXiv:1703.04200. [Online]. Available:
http://arxiv.org/abs/1703.04200

[14] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 13, pp. 3521-3526,
2017.

[15] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

[16] M. Andrychowicz et al., “Learning to learn by gradient descent by
gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3981-3989.

[17] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, ‘“Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332-1338, Dec. 2015.

[18] K. Stewart, G. Orchard, S. B. Shrestha, and E. Neftci, “On-chip
few-shot learning with surrogate gradient descent on a neuromor-
phic processor,” in Proc. 2nd IEEE Int. Conf. Artif. Intell. Cir-
cuits Syst. (AICAS), Sep. 2020, pp. 223-227. [Online]. Available:
http://arxiv.org/pdf/1910.04972

[19] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 3320-3328.

[20] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” 2016, arXiv:1606.04080.
[Online]. Available: http://arxiv.org/abs/1606.04080

[21] S. Qiao, C. Liu, W. Shen, and A. Yuille, “Few-shot image recognition
by predicting parameters from activations,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7229-7238.

[22] T. Scott, K. Ridgeway, and M. C. Mozer, “Adapted deep embeddings:
A synthesis of methods for k-shot inductive transfer learning,” in
Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2018,
pp- 76-85. [Online]. Available: http://papers.nips.cc/paper/7293-
adapted-deep-embeddings-a-synthesis-of-methods-for-k-shot-inductive-
transfer-learning.pdf

[23] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-
driven random back-propagation: Enabling neuromorphic deep learning
machines,” Frontiers Neurosci., vol. 11, p. 324, Jun. 2017.

[24] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Ran-
dom synaptic feedback weights support error backpropagation for deep
learning,” Nature Commun., vol. 7, no. 1, Dec. 2016, Art. no. 13276.

[25] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 1412-1421.

[26] B. Yin, F. Corradi, and S. M. Bohté, “Effective and efficient computa-
tion with multiple-timescale spiking recurrent neural networks,” 2020,
arXiv:2005.11633. [Online]. Available: https://arxiv.org/abs/2005.11633

[27] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural
networks,” 2017, arXiv:1706.04698. [Online]. Available: http://arxiv.org/
abs/1706.04698

[28] J. C. Thiele, O. Bichler, and A. Dupret, “SpikeGrad: An ANN-
equivalent computation model for implementing backpropagation
with spikes,” 2019, arXiv:1906.00851. [Online]. Available:
http://arxiv.org/abs/1906.00851

[29] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling
spike-based backpropagation for training deep neural network archi-
tectures,” Frontiers Neurosci., vol. 14, p. 119, Feb. 2020. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/32180697

[30] N. Imam and T. A. Cleland, “Rapid online learning and robust recall
in a neuromorphic olfactory circuit,” Nature Mach. Intell., vol. 2, no. 3,
pp. 181-191, Mar. 2020, doi: 10.1038/s42256-020-0159-4.

[31] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15 us
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008.

[32] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240x 180
130 db 3 us latency global shutter spatiotemporal vision sensor,” [EEE
J. Solid-State Circuits, vol. 49, no. 10, pp. 2333-2341, Oct. 2014.

[33] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[34] W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, “Eligibil-
ity traces and plasticity on behavioral time scales: Experimental support
of NeoHebbian three-factor learning rules,” Frontiers Neural Circuits,
vol. 12, p. 53, Jul. 2018.

[35] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869-6898, 2017.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.3389/fnins.2020.00424
http://dx.doi.org/10.3389/fnins.2020.00424
http://dx.doi.org/10.1038/s42256-020-0159-4

STEWART et al.: ONLINE FEW-SHOT GESTURE LEARNING ON A NEUROMORPHIC PROCESSOR

[36] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123-3131.

[37] A. Amir et al., “A low power, fully event-based gesture recognition
system,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 7243-7252.

[38] T. Dozat, “Incorporating Nesterov momentum into adam,” in Proc. ICLR
Workshop, 2016, pp. 1-4.

[39] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition.
Cambridge, U.K.: Cambridge Univ. Press, 2014.

521

Sumit Bam Shrestha received the Ph.D. degree
from the School of Electrical and Electronic
Engineering, Nanyang Technological University,
Singapore, under SINGA Scholarship. He is cur-
rently a Research Scientist with the Institute for
Infocomm Research (I2R), Agency of Science Tech-
nology and Research (A*STAR), Singapore, where
he co-leads the Algorithm Development for Neu-
romorphic Computing Programme. His research is
mainly focused on deep spiking neural networks,
including neuromorphic computing, neuromorphic

vision, neural networks, and machine learning.

Kenneth Stewart (Graduate Student Member,
IEEE) is currently pursuing the Ph.D. degree with
the University of California Irvine. His current
research focuses on developing learning algorithms
for neuromorphic hardware and their application to
areas such as computer vision and robotics. His
research interests include neuromorphic computing,
online learning, robotics, artificial intelligence, and
applications thereof.

Garrick Orchard received the Ph.D. degree from
Johns Hopkins University in 2012. He joined the
newly formed Singapore Institute for Neurotechnol-
ogy (SINAPSE), National University of Singapore,
as a Research Scientist. In 2015, he was awarded the
Temasek Research Fellowship from the Singapore
Ministry of Defence. In 2019, he joined Intel’s
Neuromorphic Computing Laboratory as a Senior
Researcher, focusing on sensing and perception.

Emre Neftci (Member, IEEE) received the M.Sc.
degree in physics from Ecole Polytechnique Federale
de Lausanne, Switzerland, and the Ph.D. degree
from the Institute of Neuroinformatics, University
of Zurich and ETH Zurich, in 2010. He is cur-
rently an Assistant Professor with the Department
of Cognitive Sciences and Computer Science, Uni-
versity of California, Irvine, CA, USA. His current
research explores the bridges between neuroscience
and machine learning, with a focus on the theoretical
and computational modeling of learning algorithms

that are best suited to neuromorphic hardware and non-von Neumann com-
puting architectures.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 03,2021 at 17:43:31 UTC from IEEE Xplore. Restrictions apply.

