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Abstract

Disarticulated fish remains are frequently recovered from late preHispanic and early historic archaeological sites in the Middle
Rio Grande basin of central New Mexico, but they are rare during earlier time periods. Increased aquatic habitat quality brought
on by wetter climatic conditions may have impacted Ancestral Pueblo foraging goals related to risk minimization, leading to an
uptick in fish exploitation. Wetter stream conditions can increase the number of different energy channels that help support fish
populations and increase ecological stability, which makes fish less risky to pursue for human foragers. Here, we illustrate how to
identify stable ecological communities in the archaeological record using stable carbon and nitrogen isotope values of fish bones
recovered from archaeological sites in the Middle Rio Grande. We find that energy derived from terrestrial C, plants—a
stabilizing “slow” allochthonous energy source—was important for the Middle Rio Grande aquatic food web during the late
preHispanic/early historic period. This result suggests that fish populations were supported by a broader resource base and were

thus more stable and less risky to pursue for Ancestral Pueblo people.
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Introduction

Optimal foraging theory (OFT; Stephens and Krebs 1986) and
energy maximization logic have been instrumental in examin-
ing the relationship between food acquisition and cultural
change in the zooarchaeological record across the globe
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(Broughton 1994; Broughton and Cannon 2010; Jones 2004;
Stiner Mary et al. 2000). One of the main ways that
zooarchaeologists have used energy maximization logic is to
identify resource depression, a topic at the center of the OFT
literature in zooarchaeology from 1997 to 2013 (Jones and
Hurley 2017). There are different types of resource depression
(Charnov et al. 1976; Wolverton et al. 2012), but the one most
often examined by archaeologists is exploitation depression or
the decline in food availability due to overhunting.
Exploitation depression is identified by comparing the amount
of high-ranked to low-ranked prey in archaeofaunal assem-
blages through time, where prey rank is frequently assumed
to positively covary with prey body size (Badenhorst and
Driver 2009; Broughton 1994; Broughton et al. 2011,
Nagaoka 2002). Exploitation depression relies on energy
maximization logic because it occurs when humans cannot
obtain enough large-bodied food items.

Many zooarchaeologists have been quick to point out that
thinking about prey rank strictly in terms of body size is po-
tentially misleading. On the surface, this might seem to indi-
cate advances in zooarchaeological thought are pulling away
from energy maximization logic. Cooperative hunting or tech-
nology can make the mass collection of smaller taxa more
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profitable (Codding et al. 2010; Jones 2006; Lupo and Schmitt
2005; Rick and Erlandson 2000), and manipulating prey hab-
itat can change pursuit costs associated with certain prey items
(Badenhorst and Driver 2009; Linares 1976; Muir and Driver
2002; Neusius 2008). However, the underlying assumption of
what matters most to human foragers does not change when
thinking about how foragers might collect smaller-bodied
prey en masse or closer to settlements. Abundance in terms
of' body size or the number of individuals captured (or both) is
assumed to guide foragers at all costs (Lubinski 2013, but see
Byers and Ugan 2005). However, foragers do not select food
in only this way.

Another way to think about the process of food selection is
through risk minimization (Caraco 1981, 1982; Caraco et al.
1980; Stephens 1981, 1990; Stephens and Charnov 1982),
which differs from energy maximization in that food items
are selected based on the probability of successful acquisition.
Risk-sensitive foraging models assume that foragers have in-
complete knowledge of the environment and make decisions
based on contingency. If energy demands are low, a forager
will select food items that are predictably acquired. If energy
demands are high, however, it may make sense to select re-
sources that are highly variable in their return. Risky foraging
decisions are made when high energy demands could be met
in a single foraging bout (Fig. 1; Stephens 1981; Stephens and
Charnov 1982).

The use of risk-sensitive foraging models in anthropologi-
cal and archaeological research has largely focused on the
domestication of plants and how engagement with agriculture
can offset the failure of riskier foraging strategies (Gremillion
1996; Marston 2017; Winterhalder and Goland 1997). In con-
trast to plant domestication, the study of risk related to the
procurement of wild animal resources has received far less
attention in the archaeological literature (but see Cashdan
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Fig. 1 The Z-score model for two resource types (A and B) with two
different nutritional demands represented (R; and R,) for a forager.
Resource A is preferred when nutritional demands are lower (R;), and
resource B is preferred when nutritional demands are higher (R,).
(Simplified from Winterhalder and Goland 1997; Marston 2017)
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1990; Halstead and O’Shea 1989; O’Shea 1989). This may
relate to the complicated nature of understanding what makes
wild food resources risky and how it is measured in the ar-
chaeological record.

In this article, we tackle the issue of how to measure and
identify risky wild food resources through stable isotope anal-
ysis. We focus on archaeofaunal assemblages that have been
recovered from the Middle Rio Grande (MRG) region of cen-
tral New Mexico from late preHispanic and early historic con-
texts (ca. AD 1300-1680). This time period is characterized
by major demographic and religious reconfigurations across
what is now the American Southwest and Mexican
Northwest. In the MRG specifically, there is major population
aggregation within large multistory room blocks alongside
environmental change, and the end of this period is marked
by Spanish conquest (Barrett 2009; Cordell et al. 1994).
Interestingly, fish remains are more commonly recovered in
small quantities during the late preHispanic and early historic
period than earlier in the archaeological record (Fig. 2; Akins
1987, 1995, 2004; Clark 2007; Cordero 2013; Dombrosky
2015; James 1986, 1987; Jones 2015; Snow 2002; Stiner
1986). The small quantity of fish remains, usually only con-
sidered on a site-by-site basis, has led to a stereotypical view
among archaeologists that fishes were unimportant in Pueblo
society (White 1947:240). Thinking about fish remains recov-
ered from Pueblo sites on a regional scale, however, shifts this
narrative and demands a more comprehensive view of how
exactly fishing fit into Pueblo foodways and lifeways in gen-
eral. While the prevalence of fish remains during the late
preHispanic/early historic period could have several
socioenvironmental causes, we ask one specific question: un-
der what environmental conditions can a small amount of a
small-bodied resource become optimal for human foragers?
Optimality is a multifaceted concept and understanding how
the food selection strategies of past peoples incorporated fac-
tors beyond the number or size of available prey is critical.

Foraging risk, ecological stability, and stable isotope
analysis

The successful pursuit of a prey type is partially dependent on
how organisms within an ecological community (Clements
1936; Elton 1927; Gleason 1926) or paleocommunity
(Damuth 1982; Fagerstrom 1964; Hoffman 1979; Louys
et al. 2012) interact, and is thus inherently tied to the concept
of ecological stability (Donohue et al. 2016). In its most gen-
eral sense, stability refers to how well ecosystems or ecolog-
ical communities can persist after a disturbance (Holling
1973). Stable ecological communities are better able to main-
tain their function and structure after continual perturbations
that impact mortality of community members (e.g., via preda-
tion or harvest). By extension, a resource that is part of a stable
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Fig. 2 a Hydrological basins present in New Mexico. b Location of
archaeological sites where fish remains have been recovered in New
Mexico from Snow (2002). Roughly 51% of sites where fishes have been
recovered and reported in the state of New Mexico occur in the Middle
Rio Grande hydrological basin, and of these sites, 85% were occupied
from ca. AD 1300 and onward

ecological community is less risky to exploit for humans be-
cause foraging returns are less variable.

The degree of stability exhibited by an ecological commu-
nity is determined by local food web diversity, structure, and
resource partitioning (Rooney and McCann 2012).
Researchers initially assumed that species diversity alone
was the most important attribute of stability (Elton 1927;

Hutchinson 1959; MacArthur 1955); however, some argued
that species diversity actually destabilizes food webs (Gardner
and Ashby 1970; May 1971, 1972). This argument precipitat-
ed a new view about the nature of ecological stability: the total
amount of species richness is not as important as where in a
food web it occurs. The structure of species richness helps
enhance stability (Yodzis 1981), but how those species use
resources (sensu Paine 1966; Schoener 1974) and what those
resources are might be even more important (Moore and
William Hunt 1988).

Consumers relying on prey that derive their energy from
different energy channels likely provides the most stability to
food webs (Kondoh 2003; McCann and Rooney 2009; Post
etal. 2000; Rooney et al. 2006). An energy channel represents
the flow of a specific production source (e.g., aquatic algae or
terrestrial plants) through a food web (Zhao et al. 2018), and
there are two general types of energy channels cogent to eco-
logical stability. Fast energy channels are those where energy
is depleted and replaced quickly such that the biomasses of
primary producers and the primary consumers that rely on
them have high rates of turnover. In contrast, slow energy
channels have low rates of biomass turnover. One of the most
important slow energy sources is derived from the decompo-
sition of organic detritus (Hagen et al. 2012; Steffan et al.
2017; Wolkovich et al. 2014; Zou et al. 2016). Fast energy
channels allow predators to rapidly recover after disturbance,
but since fast channel predators maximize efficiency by rely-
ing on a single source of energy with high rates of turnover,
overconsumption and eventual collapse may result. Instead,
linking a slow channel to a fast one allows for predators to take
advantage of completely different resources that rely on their
own separate resource pools and allows for asynchronous re-
source depletion in the food web as a whole. There are also
characteristics of ecological stability tied to long-term envi-
ronmental stochasticity and how different measures of envi-
ronmental change are aligned with one another in time (Yang
et al. 2019). When ecological communities are continuously
exposed to favorable environmental conditions, their recovery
time from a disturbance is decreased because the community
has the resources it needs to bounce back. In contrast, consis-
tently unfavorable environmental conditions cause recovery
time to increase as the resources needed to return to some
baseline condition are low.

Stable isotopes offer a way to measure the stability of past
ecological communities. Carbon isotope (5'C) values are
useful for tracing the energy channels supporting food webs
because 5'>C values of primary producers vary systematically
across functional groups. Plants that use the C; photosynthetic
pathway (e.g., riparian trees, such as Populus spp. and Salix
spp.) have average 5'°C values around — 26 to — 28%o, while
those that use the C4 pathway (e.g., many aridland grasses,
such as Sporobolus spp. and Bouteloua spp.) typically have
values around — 12 to — 14%o (Fry 2007) and aquatic algae
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Fig.3 5'°Cand 6'°N values of bone collagen from fishes recovered from
three large preHispanic/early historic archacological sites near the Middle
Rio Grande: Isleta Pueblo Mission Complex, Chamisal Pueblo, and
Kuaua Pueblo (ca. AD 1300-1680). Archaeological fishes are compared
to museum specimens collected before (1949-1972) and after (1994—
2008) the construction of Cochiti Dam. All dates provided are AD calen-
dar dates. 5'C values of modern samples are Suess corrected using the

have §6'°C values intermediate to these terrestrial end-
members (Supplementary File 1; Figure 3). Stability can be
inferred from &'C data alone if consumers show that they use
primary production from both slow and fast energy channels.
Another indicator of increased stability is food chain length,
which is the total number of trophic levels in a given food
web. More trophic levels serve to increase the probability that
different consumers thoroughly incorporate both fast and slow
energy channels within the food chain (MacArthur 1955;
Pimm 1984; Rooney et al. 2006). Nitrogen isotope (5'°N)
values measure food chain length because they steadily in-
crease by ~ 2—4%o per each trophic step (Post 2002;
Vanderklift and Ponsard 2003).

Community-wide metrics of isotopic niche width are useful
for inferring stability because they can define the structure and
variation of ecological communities in delta space (or 6-space;
Layman and Post 2008; Turner et al. 2015). The term 6-space,
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model presented in Dombrosky (2020). Standard ellipse areas corrected
for small sample size (SEA,) are used as a measure of isotopic niche
width. SEA. overlap between archaeological and late twentieth century
(1949-1972) is minimal (< 0.2%02) Primary producers sampled from the
Middle Rio Grande are shown in the background; solid lines denote mean
5'3C values and the shading represents + 1o. (Raw data available in
Supplemental File 1)

here, refers to the two-dimensional area defined by axes of
5'3C and 5'°N values (Newsome et al. 2012). Stability can
be inferred from whole communities if the overall niche width
spans multiple energy channels and/or shows substantial tro-
phic complexity. Such metrics simultaneously incorporate
§'3C and §'°N measurements of multiple individuals from
within or across communities and are resistant to outlier ef-
fects. For instance, the use of Bayesian-based standard ellipse
areas has allowed for niche width estimates that account for
sample size effects (Jackson et al. 2011), which often plague
paleozoological data. However, it is key to draw specimens
from contexts where fast and slow energy channels have dis-
tinct isotopic values. Certain environmental contexts, like
aridland rivers, are better suited for inferring ecological stabil-
ity using stable isotopes because different sources of fast (e.g.,
aquatic algae) and slow (e.g., terrestrial plants) energy are
isotopically distinct with little overlap.
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Aridland river food web dynamics, the Middle Rio
Grande, and Ancestral Pueblo fishing

Reviewing some foundational concepts in stream ecology is
necessary before assessing stability in the late preHispanic/
early historic Middle Rio Grande (see Allan and Castillo
2009 for further discussion). Organic carbon in freshwater
aquatic ecosystems—and by extension in consumers, like
fishes—can originate from autochthonous or allochthonous
production. Autochthonous sources of organic carbon are sup-
plied by aquatic primary producers such as filamentous algae
or phytoplankton, which have high rates of biomass turnover
and are considered labile sources of fast energy (Thorp et al.
1998; Rooney et al. 2006). In contrast, allochthonous sources
of organic carbon come from the surrounding landscape, usu-
ally from the vegetated riparian zone (Zeug and Winemiller
2008). Rivers and streams obtain allochthonous energy
through downstream transport and/or lateral exchange with
their floodplains (Tank et al. 2010). Allochthonous inputs
are considered to be a slow energy channel since their incor-
poration into food webs is dependent on decomposition rates
and the conversion of recalcitrant biomolecules (e.g., cellu-
lose) into compounds that are more easily assimilated by
aquatic consumers (e.g., fatty and amino acids); this process
is mediated by microorganisms (e.g., bacteria and fungi) in the
form of biofilms and macroinvertebrates (Arce Funck et al.
2015; Marks 2019; Tank et al. 2010). The relative importance
of autochthonous and allochthonous sources (e.g., fast and
slow energy channels) for large river food webs is a funda-
mental topic of considerable debate in stream ecology, and
there have been a number of models proposed to explain
how stream ecosystems function to incorporate these different
energy sources (Humphries et al. 2014; Junk et al. 1989;
Vannote et al. 1980; Thorp and Bowes 2017; Thorp and
Delong 2002; Thorp et al. 2006, 2008).

Autochthonous inputs (fast energy) are commonly thought
to be the main form of energy in aridland rivers like the
Middle Rio Grande since sunlight is abundant and facilitates
high rates of biomass turnover (Busch and Fisher 1981).
Further, it is typically assumed that riparian vegetation in de-
sert environments is not productive enough to provide suffi-
cient allochthonous inputs to the food web because the pro-
duction (biomass) of vegetation along aridland rivers is typi-
cally lower than that along temperate rivers (Webster and
Meyer 1997). Some have even suggested that streams do not
process allochthonous carbon from C,4 grasses at all (Clapcott
and Bunn 2003; Lewis et al. 2001) because this functional
group exhibits high cellulose concentrations and does not eas-
ily decompose (Ross et al. 2002; Throop and Archer 2009;
Vanderbilt et al. 2008). Contrary to these suggestions, alloch-
thonous energy sources could be important in aridland aquatic
ecosystems for several reasons. Solar radiation—while abun-
dant in desert environments—cannot penetrate far into the

turbid main channels of aridland rivers and streams, limiting
the overall potential of autochthonous production. Riparian
ecosystems are also some of the most productive terrestrial
biomes in deserts and could provide sufficient allochthonous
inputs given the right environmental conditions. Finally, river
systems with strong seasonal pulses of snowmelt—which
characterizes many aridland river systems in the Western
USA—have a strong connection with their floodplain, thus
enhancing the availability of allochthonous energy to aquatic
consumers.

In the case of Ancestral Pueblo fishing activity in the MRG,
there is also important environmental context linked to stabil-
ity that could relate to increased fishing by humans. The North
American Southwest experienced persistent aridity between
approximately AD 900 and 1300, which is generally referred
to as the Medieval Warm Period (Cook et al. 2016;
Woodhouse and Overpeck 1998). This climatic event impact-
ed human populations across North America (Benson et al.
2007; Douglass 1929; Hodell et al. 2001; Kintisch 2016). It
caused intermittent connectivity between different stretches of
river systems in the American Southwest, including the Rio
Grande headwaters (Meko et al. 2007; Routson et al. 2011;
Woodhouse et al. 2010). Increased aridity also results in the
fragmentation of stream ecosystems, which can cause insta-
bility for freshwater fish communities in several ways. Stream
fragmentation cuts off genetic diversity for fishes, reduces
habitat size, increases variation in physiochemical conditions,
and reduces prey diversity (Lynch et al. 2016). Increasing
stream fragmentation is also shown to result in isotopic niche
width collapse of freshwater fish communities (Layman et al.
2007). The release from arid conditions at the end of the
Medieval Warm Period coincides with the beginning of the
late preHispanic period (ca. AD 1300) in the American
Southwest, which is when fishing activity became more prev-
alent in the MRG. It follows that more precipitation would
increase seasonal snowmelt and flooding in the MRG.
Wetter stream conditions would enhance connectivity with
the floodplain, increase the accessibility of multiple channels
of (auto- and allochthonous) energy that resulted in the avail-
ability of more diverse resources for fish communities, and
would have improved overall stability of the aquatic ecosys-
tem (Reese 2016). This climatic shift would have essentially
rewired the MRG food web (sensu Bartley et al. 2019;
Blanchard 2015)

A foraging goal of risk minimization paired with changing
aquatic habitat conditions and improved ecological stability
during the late preHispanic/early historic period in the MRG
could have helped make fishes a more attractive resource to
pursue in small quantities. Ancestral Pueblo people clearly
used a different and somewhat novel resource patch—an
aquatic patch—on the MRG landscape more frequently, but
are there traces of stability directly measurable from fish re-
mains during this time? To explore this question, we asked a
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more specific one: what energy channels fueled the late
preHispanic/early historic MRG food web? We hypothesize
that both slow (allochthonous terrestrial) and fast (autochtho-
nous algal) energy channels were important in fueling the food
web during this period, that this duality led to increased eco-
logical stability, and thus increased exploitation of aquatic
taxa.

We measured the bone collagen 5'°C and §'°N values of
MRG fishes (n = 79) recovered from historical and archaeo-
logical contexts to test this hypothesis (Supplemental File 1).
We sampled multiple taxa including carps/minnows
(Cyprinidae), suckers (Catostomidae), smallmouth buffalo
(Ictiobus bubalus), catfishes (Ictaluridae), gar (Lepisosteus
spp.), and shovelnose sturgeon (Scaphirhynchus
platorynchus). The archaeological specimens were recovered
from three major late preHispanic/early historic MRG sites:
Isleta Pueblo Mission Complex (LA 724), Chamisal (LA
22765), and Kuaua (LA 187) Pueblos. We also sampled fishes
historically collected in the MRG that are curated in the
Museum of Southwestern Biology (MSB). The historical
samples are split into two categories: before (1949-1972)
and after (1994-2008) the construction of the Cochiti Dam,
which greatly impacted ecosystem functioning in the histori-
cal MRG (Turner et al. 2015). The historical samples provide
a reference for limited river channel/floodplain connectivity
due to the construction of large impoundments that drastically
changed flow regimes along the MRG. We would ideally
compare the isotope values of fishes from the late
preHispanic/early historic period to previous time periods.
However, fishes are much rarer during earlier time periods,
and an adequate sample does not yet exist. Fishes from the
historic period are derived from a qualitatively similar setting
to earlier preHispanic archaeological fishes in that both
drought conditions and impoundments limit nutrient ex-
change between the main channel of the Middle Rio Grande
and its floodplain. In theory, isotopic data of modern speci-
mens should indicate they are overwhelmingly composed of
fast energy derived from autochthonous production (similar to
fishes in drought contexts, like preAD 1300 fishes), while
archaeological fishes from the late preHispanic/early historic
period should reflect a more equable mixture of autochtho-
nous and allochthonous production if they were part of stable
communities. We used small sample size corrected Standard
Ellipse Areas (SEAc) to estimate community wide isotopic
niche width (Jackson et al. 2011).

Our results indicate that many fishes recovered from late
preHispanic/early historic archacological sites consistently
have higher 5'°C but lower 5'°N values compared with late
twentieth century fish communities collected in the same area
(Fig. 3). The increase in 5'°N values over time likely reflects
anthropogenic nitrogen loading, where the incorporation of
human effluent from the Albuquerque, NM, water treatment
facility and runoff from fertilizer into the MRG has increased
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baseline 5'°N values that cascades up to primary and second-
ary consumers like fish (Turner et al. 2015). While inferences
about historical shifts in trophic complexity such as food chain
length are likely confounded by anthropogenic nutrient inputs,
the significant shift in §'°C values we observe through time is
interesting in the context of ecological stability. These data
suggest that C, riparian plants (e.g., aridland grasses) helped
fuel the protohistoric MRG aquatic food web. Such a 5'C
signature measured from protohistoric fish communities indi-
cates that a notably slow allochthonous energy source helped
bolster MRG fish communities. The coupling of both slow
and fast energy channels likely led to increased stability of
the MRG food web. Thus, fishes could have represented a
stable and low risk resource for Ancestral Pueblo fishers to
rely on in small quantities.

While fishes could have represented a low risk food re-
source because of the stability of aquatic communities, it is
also possible that fishes fit into the risk management strategies
of Ancestral Pueblo people in a slightly more specific way.
The season of death of a small sample of late preHispanic
catfish remains recovered from Henderson Pueblo (LA
1549) near the Pecos River in New Mexico shows that most
of'the catfishes were captured during that late summer or early
fall, which coincides with a major precipitation pulse from
summer monsoonal rains (Arntzen and Speth 2004; Speth
et al. 2004). This result highlights that monsoons might have
been an extremely important factor in why Ancestral Pueblo
people fished. Additionally, fishes captured during monsoon
season could also represent a type of famine food. Prior to
agricultural harvest in the late fall, stored resources are known
to dwindle among small-scale farming societies (Arntzen and
Speth 2004:324), and foraging becomes an important subsis-
tence strategy to fall back on (Strawhacker et al. 2020). The
coupling of fast and slow energy channels—Ilargely influ-
enced by the influx of allochthonous resources during spring
snowmelt-induced overbank flooding—Iikely led to stable
fish populations that could be exploited later in the year to
buffer the risks associated with stored resource shortfall.
River flow during monsoon season is dynamic. Monsoon
events cause intense short-term increases in flow, but most
of the time the flow is low near baseline. These low flows
could have helped increase access to fishes and could have
been seasonally predictable (sensu Smith 1974). It could be
useful, in the future, to pair isotopic analyses with estimates of
season of death to test the association more rigorously be-
tween season, ecological stability, accessibility/predictability,
and Ancestral Pueblo need for a reliable resource buffer. The
analysis of otoliths might be especially helpful to address this
question (Higham and Horn 2000; Hufthammer et al. 2010;
Waurster and Patterson 2001, 2003).

Another important factor to consider is whether Ancestral
Pueblo land use practices could have enhanced aquatic eco-
logical stability. Floodplain farming and irrigation networks
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are known to have been used by Ancestral Pueblo people
along the Rio Grande (Doolittle 2000; Eiselt et al. 2017,
Worman 2013). Detritus from staple crops such as corn (Zea
mays) could be partially responsible for the C, signature mea-
sured from MRG fishes. While differentiating among C, pri-
mary producer sources is almost impossible using bulk tissue
isotope analyses, analyzing the 5'°C values of essential amino
acids found in bone collagen of late preHispanic/early historic
MRG fishes could be a fruitful area for future research.
Essential amino acids move up food chains virtually unmod-
ified because animals cannot synthesize them de novo and
instead must acquire them directly from their food (Howland
et al. 2003). Different functional groups of producers (plants,
algae, bacteria, and fungi) use discrete biochemical pathways
to synthesize essential amino acids, which leads to distinctive
patterns or “fingerprints” among &'>C values of essential ami-
no acids in these producers (Larsen et al. 2009, 2013; Elliott
Smith et al. 2018; Whiteman et al. 2019). This allows for
higher-resolution identification, and possible quantification,
of the relative importance of autochthonous versus allochtho-
nous primary producers in aquatic food webs.

Analyzing 5"°N values of individual amino acids from fish
bone collagen could be used to separate baseline from trophic
level shifts. Separating these two effects is impossible to do
with bulk tissue 8'°N analysis without samples of primary
producers or consumers (invertebrates), which are rare in the
archaeological record. For 5'°N analysis, amino acids are cat-
egorized into two main groups: (1) source amino acids that are
minimally altered by consumers and thus reflect baseline 5'°N
values and (2) trophic amino acids that significantly increase
in 5'°N with each trophic step (Chikaraishi et al. 2014;
McMahon and McCarthy 2016). By comparing source and
trophic amino acid §'°N values, and estimating a few other
physiological parameters, one can differentiate between base-
line 5'°N shifts and changes in trophic position from a single
sample (McMahon and McCarthy 2016). Pairing these amino
acid 5'°C and 5'°N approaches with direct AMS radiocarbon
dates from archaeological MRG fish remains could provide a
powerful way to reconstruct environmental conditions in the
MRG over time and to better understand the context of past
Pueblo fishing strategies in relation to stability, agricultural
intensification, and trophic complexity.

Conclusion

The trouble in identifying risky wild food resources from
zooarchaeological material is one reason why OFT models
that use energy maximization dominate the literature. There
is certainly value in these models, but we maintain that human
foragers use both energy maximization and risk minimization
logic when selecting resources. We have established one
proxy for identifying low risk prey items with stable isotope

analysis. The identification of both fast and slow energy
sources in aquatic consumers that constitute prey items for
human foragers is a strong biomarker for increased ecological
stability. Prey items drawn from more stable populations are
less risky to pursue, because they are resistant to harvest pres-
sure and can provide reduced variation in foraging return. To
help illustrate this point, we have provided data from the late
preHispanic/early historic period from fish remains sourced
from the MRG in central New Mexico. How fishes have
played into the food getting strategies of Ancestral Pueblo
people is an understudied topic, but the theoretical framework
and the data we present suggests that increased ecological
stability might have played an important role in the fishing
strategies of Ancestral Pueblo people during this time.
Ultimately, we believe this represents a productive way to
frame important future research that incorporates fishes recov-
ered before AD 1300 and to test more specific ways that
fishing and ecological stability fit into Pueblo lifeways.
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