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ABSTRACT
We consider static, external memory indexes for exact and approxi-

mate versions of the k-nearest neighbor (k-NN) problem, and show

new lower bounds under a standard indivisibility assumption:

• Polynomial space indexing schemes for high-dimensional

k-NN in Hamming space cannot take advantage of block

transfers: Ω(k) block reads are needed to to answer a query.

• For the ℓ∞ metric the lower bound holds even if we allow

c-appoximate nearest neighbors to be returned, for c ∈ (1, 3).

• The restriction to c < 3 is necessary: For every metric there

exists an indexing scheme in the indexability model of Heller-
stein et al. using spaceO(kn), wheren is the number of points,

that can retrieve k 3-approximate nearest neighbors using

optimal ⌈k/B⌉ I/Os, where B is the block size.

• For specific metrics, data structures with better approxima-

tion factors are possible. For k-NN in Hamming space and

every approximation factor c > 1 there exists a polynomial

space data structure that returns k c-approximate nearest

neighbors in ⌈k/B⌉ I/Os.

To show these lower bounds we develop two new techniques:

First, to handle that approximation algorithms have more freedom

in deciding which result set to return we develop a relaxed version

of the λ-set workload technique of Hellerstein et al. This technique

allows us to show lower bounds that hold in d ≥ n dimensions. To

extend the lower bounds down to d = O(k log(n/k)) dimensions,

we develop a new deterministic dimension reduction technique

that may be of independent interest.
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1 INTRODUCTION
The DEEP1B data set [8] is among the largest image data sets that

has been examined in the similarity search literature. From each of

n = 10
9
images, a 96-dimensional vector has been extracted from

an intermediate layer of a pre-trained deep neural network, a state-

of-the-art method for semantically meaningful feature vectors [9].

Such feature vectors can be thought of as compressed represen-

tations of the images that, for example, can be used to estimate

the similarity of two images. In many use cases, though, it is not

enough to substitute the images with their feature vectors, but we

also need to be able to access the corresponding images. Though the

size of the raw image data behind DEEP1B is not stated in [8], an

estimate would be 1 MB per image on average, or 1000 TB in total.

Clearly, retrieving similar images in a data set of this size is beyond

what is possible on a single machine, and even just indexing the

set of feature vectors would require an amount of internal memory

that is larger than what is present in most servers.

k-nearest neighbors. In the k-nearest neighbors (k-NN) problem
we want to construct a data structure on a set P of n points in some

metric space that, given an integer k > 0 and a query point q, finds
the k closest points to q in P . We will be focusing on data structures

that can be constructed in polynomial time and space. The k-NN
problem is believed to be hard in high dimensions even for k = 1,

and the brute-force algorithm that considers all data points in P
essentially optimal. In particular, Williams (see [4]) proved that for

constant ε > 0, no O(n1−ε ) query time data structure is possible

for ω(logn)-dimensional Hamming space, assuming the Strong

Exponential Time Hypothesis.

Because of the hardness of the problem most research has re-

volved around approximate solutions. The c-approximate k-NN
((c,k)-NN) problem asks to return k points from P with distance

at most cr to q, where r is the distance to the kth nearest neighbor
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of q. It is known that (c,k)-NN is equivalent, up to polylogarith-

mic factors, to the simpler near neighbor problem: Given an upper

bound r+ ≥ r , return a point within distance cr+ [16]. We refer

to [5] for more background on recent developments in approximate

near neighbor search.

Models of computation. Motivated by large-scale similarity search

applications we consider models of hardware aimed at massive

data sets. The external memory model [3] abstracts modern, block-

oriented storage where memory consists of blocks each capable of

holding B data items. The cost of an algorithm or data structure

is measured in terms of the number of block accesses, referred to

as I/Os. When considering the k-NN problem we let B denote the

number of vectors that fit in a block.

Distributing similarity search onto many machines has also been

considered as a way of scaling to large data sets [10, 21, 29]. We can

interpret a static, external memory data structure as an abstraction

of a large, distributed system in which each server holds B data

items (and information associated with them). In this context the

parameterBmay be relatively large in comparison ton. For example,

to store the n = 10
9
DEEP1B vectors of dimension d = 96, and

associated raw data, we could imagine s = 10
4
servers each holding

B = 10
6
data items (so that on average each item is replicated 10

times to achieve redundancy). The number of I/Os needed to answer

a query then equals the number of servers that need to be involved

when answering a k-NN query.

Most lower bounds for I/O efficient algorithms are shown under

the assumption that data items are indivisible in the sense that they

are treated as atomic units, and that a block contains a well-defined

set of at most B data items. The indexability model [17, 18], intro-
duced at PODS ’97, formalized external memory data structures

for queries that return a set of k data items under the indivisibility

assumption. For a given data structure, the complexity of a query

family Q is the smallest number of blocks that must be read to

answer a query, in the worst case over all queries q ∈ Q. There does

not need to be a constructive procedure for identifying the correct

blocks. In particular, the nearest neighbor problem (k = 1) is trivial

in the indexability model since the block containing the answer to

the query is given for free; the search aspect is completely removed

from consideration, and the algorithm would return the block in

one I/O. Though the original indexability model does not accom-

modate notions of approximation, it can be naturally extended to

the setting where there is a set of at least k elements that are valid

answers to a query and we are required to return any k of them.

1.1 Our results
The complexity of general (c,k)-NN queries in the I/O model lies

between two extremes:

• There exist ⌈k/B⌉ blocks (or servers) that contains a set of k
valid answers to the query, and

• No block (or server) contains more than one valid query

answer, so k block reads are needed.

Since we do not care about constant factors we can, for simplicity,

assume that k < n/2, since otherwise a trivial brute-force algorithm
that reads all points is optimal within a factor of 2. We give several

upper and lower bounds for (c,k)-NN that suggest a dichotomy

for polynomial space data structures. For various choices of metric

Metric Dimension Approximation
factor I/O bound

any any any ≥ ⌈k/B⌉

ℓ∞ Ω(k log(n/k)) 3 − ε Ω(k)

Hamming Ω(k log(n/k)) 1 + 1

4k Ω(k)

any any 3 ≤ ⌈k/B⌉

Hamming any 1 + ε ≤ ⌈k/B⌉

Table 1: Our I/O lower bounds (first three rows) and upper
bounds (last two rows) on the (c,k)-NN problem for data
structures using polynomial space, where ε > 0 can be any
constant. The lower bound for ℓ∞ holds assuming k < n1−ε .

space, number of dimensions, and approximation factor we see

that it is either possible to achieve O(k/B) I/Os, or Ω(k) I/Os are
provably required.

Our results are summarized in Table 1. For our lower bounds, the

dimension column represents the minimum (asymptotic) number

of dimensions required for the bounds to hold. Since it is possible to

decrease the I/O complexity in lower dimensions [35], a condition

on the number of dimensions is needed. Our upper bounds do not

depend on the number of dimensions, except indirectly through

the definition of B as the number of vectors in a block. We stress

that the I/O upper bounds for an indexing scheme do not imply the

existence of a data structure with the same guarantees — for a data

structure in the I/O model we would expect an additional search

cost. Our main theorems are:

Theorem 1.1. (L-infinity metric lower bound) Consider an in-
dexing scheme for (c,k)-NN in d-dimensional ℓ∞ space with c < 3

and with worst case query time ⌈k/α⌉ I/Os, where 1 ≤ α ≤ B. For
sufficiently large d = O(k log(n/k)), the indexing scheme must use

Ω
((

1

2e

√
nα
kB

)α )
blocks of space.

Theorem 1.2. (General metric indexing scheme) Given a set P of
n points in any metric space, there exists a 3-approximate indexing
scheme that uses n⌈k/B⌉ blocks of space (where B is the block size)
and returns 3-approximate, k nearest neighbors in optimal ⌈k/B⌉
I/Os.

Theorem 1.3. (Hamming metric lower bound) Consider an in-
dexing scheme for (c,k)-NN in d-dimensional Hamming space with
c < 1 + 1

4k and with worst case query time ⌈k/α⌉ I/Os, where
1 ≤ α ≤ B. For sufficiently large d = O(k log(n/k)), the indexing

scheme must use Ω
((

1

2e

√
nα
kB

)α )
blocks of space.

Theorem 1.4. (Hamming indexing scheme) Given a set P of n
points in d-dimensional Hamming space and a constant c > 1, there
exists a c-approximate indexing scheme that uses O(nO (1)d ⌈k/B⌉)
blocks of space and returns c-approximate, k nearest neighbors in
optimal ⌈k/B⌉ I/Os.



Discussion. We are not aware of any studies of c-approximate,

k-nearest neighbors in the I/O model. However, our lower bounds

suggest that such data structures cannot simultaneously have good

output sensitivity (I/O complexity in terms of k/B) and low space

usage. The currently best data structures for high-dimensional,

c-approximate r -near neighbor (return 1 point within known dis-

tance r ) have query time lower bounded by (n/B)f (c) I/Os, for some

non-increasing function f with f (1) = 1 that depends on the metric.

Depending on the choice of c andk this “search cost” may be smaller

or larger than the cost of reporting the c-approximate k-nearest
neighbors in the indexability model. In general, we would expect

the reporting cost to dominate only when c and k are sufficiently

large.

Our lower bounds assume that the number of dimensions is

sufficiently large. An attempt to bypass the lower bounds would

thus be to utilize some kind of dimension reduction, such as the

Johnson-Lindenstrauss lemma. Unfortunately, this will not work

in the settings of Theorems 1.1 and 1.3. This is because dimension

reduction is not possible for ℓ∞ [28], and because dimension reduc-

tion for Hamming space with distortion c requiresΩ(log(n)/(c−1)2)
dimensions [26], which is Ω(k2).

1.2 Related work
Lower bounds on nearest neighbors in restricted models. A well-

known work of Berchtold et al. [12] analyzes the performance of

certain types of nearest neighbor indexes on random data sets. More

recently, Pestov and Stojmirović [33] and Pestov [32] showed lower

bounds for high-dimensional similarity search in a model of data

structures that encompasses many tree-based indexing methods.

These results do not consider approximation, and their algorith-

mic models do not encompass modern algorithmic approaches to

approximate similarity search such as locality-sensitive hashing.

Data structure lower bounds based on indivisibility. There is a

rich literature, starting with the seminal paper of Aggarwal and

Vitter [3], giving lower bounds on I/O-efficiency under an indivisi-

bility assumption. Such results in the context of data structures are

known for dynamic dictionaries [37], planar point enclosure [7],

range sampling [20], and many variants of orthogonal range re-

porting [1, 2, 17, 27, 38]. Below we elaborate on the most closely

related works on orthogonal range queries.

To our best knowledge the high-dimensional k-NN problem has

not been explicitly studied in the indexability model [17]. However,

in n-dimensional Hamming space it is straightforward to use the

k-set workload technique of [17] to show that even obtaining k − 1

I/Os is not possible (for k ≪ n) unless the indexing scheme uses

quadratic space. Our lower bound technique is a generalization

of the k-set workload that allows us to deal with approximation

as well as space usage larger than quadratic. It also allows us to

show lower bounds all the way down to O(k logn) dimensions, as

opposed to n dimensions.

Orthogonal range queries. Orthogonal range reporting in d dimen-

sions asks to report all points in P lying inside a query range Q that

is a cross product of intervals. Note that k-NN in the ℓ∞ metric is

the special case of orthogonal range reporting where all intervals

have the same length. Hellerstein et al. [17] showed that in order

to answer orthogonal range reporting queries in O(k/B1−ε ) I/Os,

for some ε ∈ (0, 1), the data structure needs to use space Ω(n/εd−1).
In particular, in dimension d = ω(logn) a polynomial space data

structure needs k/Bo(1) I/Os.
Approximate d-dimensional range reporting has been studied in

the I/O model: Streppel and Yi [35] show that for a query rectangle

q and constant ε > 0, allowing the data structure to report points

at distance up to ε · diam(q) from q makes it possible to report k

points in 2
O (d )+O(k/B) I/Os (plus a logarithmic search cost, which

does not apply to the indexability model). To our best knowledge,

no lower bounds were known for approximate range queries before

our work.

Lower bounds based on computational assumptions. Uncondi-
tional lower bounds for (c,k)-NN in the cell probe model [11, 13,

14, 31] only match upper bounds in the regime where space is very

large. To better understand the complexity for, say, sub-quadratic

space usage, a possibility is to base lower bounds on computa-

tional assumptions such as the Strong Exponential Time Hypothe-

sis (SETH), or the weaker Orthogonal Vectors Hypothesis (OVH).

Recently, Rubinstein [34] showed that under either of these hy-

potheses, for each constant δ > 0, achieving an approximation

factor of c = 1 + o(1) is not possible for a data structure with poly-

nomial space and construction time unless the query time exceeds

n1−δ . Already in 2001 Indyk showed that in the ℓ∞ metric, (c,k)-NN
with approximation factor c < 3 is similarly hard [22]. (Though

Indyk links the lower bound to a different problem, it can be easily

checked that the same conclusion follows from the more recent

SETH and OVH assumptions.)

Upper bounds. The I/O complexity of the near neighbor problem

was studied by Gionis et al. [15], focusing onHamming space. (Their

approach extends to other spaces that have good locality-sensitive

hash functions.) For every approximation factor c > 1, they show

that O((n/B)1/c ) I/Os suffices to retrieve one near neighbor, using
a data structure of size subquadratic in n. It seems that the same

algorithm can be adapted to returnk near neighbors at an additional

cost ofO(k/B) I/Os. Tao et al. [36] extended these results to handle

nearest neighbor queries, but they do not consider the case of k
nearest neighbors.

For the Euclidean and Hamming metrics with constant approx-

imation factor c > 1 it is known how to get no(1) query time for

the near neighbor problem (k = 1) with a polynomial space data

structure (see [6] and its references). For c >
√
3 Kapralov [24] even

showed how to achieve this by a single probe to the data structure,

returning a pointer to the result.

Organization: The rest of this paper is organized as follows. In

Section 2 we develop notation and proceed in Section 2.1 to extend

the indexability result of [19] to approximate indexing schemes.

Section 3 describes the indexing scheme promised in Theorem 1.2,

followed by Section 4 that proves lower bounds in the L-infinity

metric (Theorem 1.1). Section 5 contains our results on the Ham-

mingmetric (Theorem 1.3 and Theorem 1.4), followed by conclusion

and open problems in Section 6.



2 PRELIMINARIES
The external memory model of computation (due to Aggarwal and

Vitter [3]) has a main memory of size M and an infinite external

memory, both realized as arrays. Data is stored in external memory,

and is transferred to/from main memory (where computation hap-

pens) in I/Os, or block transfers, where a block holds B data items.

Computation in main memory is free — the cost of an algorithm is

the number of I/Os it performs.

We will be using the following definitions from Hellerstein et

al. [17, 18]. For brevity we will refer to a subset of I of size b as a

b-subset.

Definition 2.1 (Workload). A workloadW = (D, I ,Q) consists
of a non-empty set D (the domain), a nonempty finite set I ⊆ D (the
instance, whose size we denote by n), and a set Q of subsets of I (the
query set).

Definition 2.2 (Indexing Scheme). An indexing scheme S =
(W ,B) consists of a workloadW = (D, I ,Q) and a set B of B-subsets
of I , where B is the block size of the indexing scheme.

Definition 2.3 (Cover set). A cover set CQ ⊆ B for a query
Q ∈ Q is a minimum-size subset of the blocks such that Q ⊆

⋃
b ∈CQ

b.

We will assume that the blocks are chosen such that CQ exists

for every query Q ∈ Q.

Definition 2.4 (λ-SetWorkload). The λ-set workload is a work-
load with instance I = {1, · · · ,n} whose query set Q is the set of all
λ-subsets of the instance.

While [17, 18] measure performance in terms of redundancy and

access overhead, we find it more natural to define performance in

the same way as the I/O model. The space usage of an indexing

scheme is the number of blocks, |B|. The query time of Q ∈ Q is

the size of a cover set, |CQ |. Observe that the time of a query of size

λ can range from ⌈λ/B⌉ I/Os to λ I/Os, depending on how many

blocks are needed to cover it.

All static data structures we know of in the external memory

model with a given space usage and query cost translate directly to

an indexing scheme with the same, or better, performance. This is

because these data structures store, or can be adapted to store,O(B)
vectors explicitly in each block, such that the set of result vectors

is explicitly present in the blocks that are read when answering a

query. This means that any lower bounds in the indexability model

strongly suggest lower bounds also in the external memory model.

2.1 Approximate indexing schemes
Definition 2.5 (c-approximatek-nearest neighbors problem,

(c,k)-NN). LetM be a metric space with distance function d(·, ·), and
c > 1 be a constant. Given P ⊂ M , |P | = n, and a positive integer
k ≤ n, construct a data structure that upon receiving a query q,
returnsQ ⊂ P ,Q = {q1, · · · ,qk }, such that for all qi ∈ Q , d(q,qi ) ≤
c d(q,pkq ), where p

k
q ∈ P is the kth nearest neighbor of q in P .

Wewill consider indexing schemes for (c,k)-NN that can depend

on the parameters c and k , i.e., the parameters are known when

the data structure is constructed. The set of points to be stored

is denoted by P . Observe that for (c,k)-NN, there can be at most

(n
k
)
distinct query answers (λ = k in the λ-set workload above).

Intuitively, the more queries there are in a workload, the higher

is the space needed by the data structure. But in the (c,k)-NN
problem, for a query q there is no one “right” answer, as any set of

k approximate near neighbors form a valid output. Thus we find

that the definitions in the original indexability model need to be

extended to capture approximate data structures It turns out that

even though approximate near neighbors are allowed, it is possible

to ensure that at least half of the k returned points are among the k
nearest to the query point. This motivates the following definition:

Definition 2.6 (Relaxed λ-set workload). The relaxed λ-set
workload is a workload whose instance is {1, · · · ,n}. The query set
is the set of all

(n
λ
)
subsets of size λ. Given a query q corresponding

to such a λ-subset Q , the indexing scheme must report λ elements, at
least half of which must come from Q .

We next show a space-I/O tradeoff for the relaxed workload.

Lemma 2.1 (Relaxed set workload tradeoff). Any indexing
scheme for the relaxed λ set workload with a space usage of s blocks
and a query time of t block accesses must have

t ≥ λ logs

(
1

2e

√
n

tB

)
Proof. Recall that by the relaxation, the indexing only needs to

find a subset Q̂ ⊂ Q of size |Q̂ | = λ/2 in the index. In other words,

with each subset Q̂ that can be retrieved by the index, the algorithm

can add any λ/2 elements and arrive at a valid query Q .
We upper bound the total number of distinct λ-sets reported by

an indexing scheme using s space and t query I/Os as follows:

• choose the set of t blocks to retrieve from the index (

(s
t
)

choices),

• choose the λ/2 elements to use from these at most tB distinct

elements (at most

( tB
λ/2

)
choices),

• choose λ/2 arbitrary other elements (at most

( n
λ/2

)
choices).

The total number of such combinations should be at least

(n
λ
)
,

which is the possible set of queries, or λ-subsets. Using the inequal-

ities

(
n
k

)k
≤

(n
k
)
≤

(
en
k

)k
≤ nk this gives us:(

s

t

) (
tB

λ/2

) (
n

λ/2

)
≥

(
n

λ

)
(1)

⇒ st
(
tBe

λ/2

)λ/2 ( ne
λ/2

)λ/2
≥

(n
λ

)λ
⇒ s2t/λ

(
tBe

λ/2

) (
ne

λ/2

)
≥

(n
λ

)
2

⇒ s2t/λ ≥
n

4e2tB

⇒ t ≥ λ logs

(
1

2e

√
n

tB

)
.

□

One may be interested in a query time of ⌈λ/α⌉ I/Os, where

1 ≤ α ≤ B.



Corollary 2.2. Any indexing scheme for the relaxed λ-set work-
load with worst case query time of ⌈λ/α⌉ I/Os, where 1 ≤ α ≤ B must

use Ω
((

1

2e

√
nα
λB

)α )
blocks of space.

This lower bound is essentially tight: Achieving a query time of

⌈λ/α⌉ I/Os using O(
(n
α
)
) space is easy by just preprocessing all α

combinations of the n items. By doing an analogous calculation for

the exact workload, we are able to give the following tradeoff for

the standard λ-set workload.

Lemma 2.3 (λ-set workload tradeoff). Any indexing scheme
for the λ-set workload with worst case query time of ⌈λ/α⌉ I/Os, where

1 ≤ α ≤ B must use Ω
((

nα
eλB

)α )
blocks of space.

Lemma 2.3 generalizes Theorem 7.2 in [17] which considered

the case of α = 1.

3 A 3-APPROXIMATION INDEXING SCHEME
FOR GENERAL METRICS

We prove Theorem 1.2 in this section, that asserts that (a relatively

simple) indexing scheme provides a 3-approximation for the k-NN
problem in any metric space. Note that we are only presenting an

indexing scheme as opposed to a data structure; i.e., we assume

that once the query is given, an oracle provides the smallest set of

blocks that contain a valid answer to the query.

Let P be a set of n points in a metric space. Consider the in-

dexing scheme I that consists of the set of ℓ = n⌈k/B⌉ blocks

B = {b1,b2, ...,bℓ} where we store pi ∈ P and the set Pi =
{pi,1,pi,2, ...,pi,k } of the k-nearest neighbors of the point pi (in-
cluding itself). This requires ⌈k/B⌉ blocks per element of P , as
claimed. For a query point q let pi∗ be the nearest neighbor of q.
The oracle then returns the set Pi∗ , i.e., the k nearest neighbors of

q’s nearest neighbor, using ⌈k/B⌉ I/Os.

Theorem 3.1. Let {pq
1
, · · · ,p

q
k } be the set of the exact k nearest

neighbors of a query q, and let {pi∗,1, · · ·pi∗,k } be the set of points
returned by the indexing scheme described above. Then for any 1 ≤

j ≤ k , d(q,pi∗, j ) ≤ 3d(q,p
q
k ). That is, all the returned points are

within a factor 3 of the distance of the query to itskth nearest neighbor.

Proof. The proof is a case analysis. Let D be the smallest ball

centered at p
q
1
:= pi∗ that contains pi∗,k (the “k nearest neighbor

disk” of pi
∗

). The cases are:

(1) Both q and p
q
k are outside D. For each j, we have that

d(q,pi∗, j ) ≤ d(pi∗, j ,p
q
1
) + d(p

q
1
,q) (triangle inequality)

≤ d(pi∗, j ,p
q
1
) + d(q,p

q
k ) (p

q
k is farther from q than p1q )

≤ d(q,p
q
1
) + d(q,p

q
k ) (q is outside D)

≤ 2d(q,p
q
k ) .

(2) q is inside D, and p
q
k is outside D. For each j, we have that

d(q,pi∗, j ) ≤ d(pi∗, j ,p
q
1
) + d(p

q
1
,q) (triangle inequality)

≤ d(pi∗, j ,p
q
1
) + d(q,p

q
k ) (p

q
k is farther from q than p

q
1
)

≤ d(p
q
k ,p

q
1
) + d(q,p

q
k ) (p

q
k is outside D)

≤ d(p
q
k ,q) + d(q,p

q
1
) + d(q,p

q
k ) (triangle inequality)

≤ 3d(q,p
q
k ) .

(3) Both q and p
q
k are inside D. In this case, we first claim that it

is sufficient to consider that for some i < {1,k}, p
q
i is outside

D. If that was not the case, we have reported all {p
q
i }, i.e.,

the exact k nearest neighbors of q. For each j we now have

that

d(q,pi∗, j ) ≤ d(q,p
q
1
) + d(p

q
1
,pi∗, j ) (triangle inequality)

≤ d(q,p
q
k ) + d(p

q
1
,pi∗, j ) (p

q
k is farther from q than p

q
1
)

≤ d(q,p
q
k ) + d(p

q
1
,p

q
i ) (p

q
i is outside D)

≤ d(q,p
q
k ) + d(p

q
1
,q) + d(q,p

q
i ) (triangle inequality)

≤ 3d(q,p
q
k ) .

(4) q is outside D, and p
q
k is inside D. In this case we have that

d(q,pi∗, j ) ≤ d(pi∗, j ,p
q
1
) + d(p

q
1
,q) (triangle inequality)

≤ d(q,p
q
1
) + d(p

q
1
,q) (q is outside D; pi∗, j is inside)

≤ 2d(q,p
q
k ) (p

q
k is farther from q than p

q
1
)

□

Tightness of the analysis: Next, we give an example of n = k + 1
points where the indexing scheme above does not achieve a better

approximation factor than 3(1 − ε), for arbitrary ε > 0. Consider

the scenario when all points including the query lie on a line:

q = 1/2, p
q
1
= 0, p

q
k = 1 + ε/2, p

q
k+1 = −1, and

p
q
i = −εi/2k for all i < {1,k,k + 1} .

The disk D contains all points but p
q
k , p

q
k+1 will be reported, and

d(q,p
q
k+1) = 3/2 > 3(1 − ε)(1/2 + ε/2) = 3(1 − ε)d(q,p

q
k ).

4 LOWER BOUNDS
In this section we prove Theorems 1.1 and 1.3.

4.1 Lower bound for the L-infinity metric
Wewarm up with a proof of a lower bound in n dimensions, a slight

variant of a reduction by Indyk [22].

Lemma 4.1. Consider the approximate k-NN problem in Rn with
ℓ∞ metric. There exists a set of n points pi for i ∈ {1, . . . ,n} that has
a k-set workload. Specifically, for every subset I ⊂ [n] there exists a
query point qI such that the ℓ∞-distance is

∥pi − qI ∥∞ =

{
1/2 for i ∈ I
3/2 for i < I .

Hence, the (c,k)-NN for c < 3 in n-dimensional ℓ∞ space leads to a
k-set workload.



Proof. The set consists of the n unit vectors pi = ei (where only
the ith entry is 1 and all other entries are 0). For a set I ⊂ {1, . . . ,n}
the query vector is defined as

qI =

{
+1/2 for i ∈ I
−1/2 for i < I

.

□

To deterministically reduce the dimensionality of the space we

use an expander and switch to relaxed k-set workloads. Expanders
were previously used for deterministic embeddings of Euclidean

space into ℓ1 by Indyk [23]. There is a vast literature on expanders

and the results we are using are standard by now. For the sake of

concreteness, we take the definitions and precise results almost

literally from [30]. We define (m,δ , 1/3)-expander graphs and state

some results concerning these graphs. For the rest of this paper we

will assume δ to divide 1/3, as this makes statements and proofs

simpler. This will be without loss of generality, as the statements

we show do not change when rounding δ down to the nearest such

value. Let G = (U ,V ,E) be a bipartite graph with left vertex set U ,

right vertex set V , and edge set E. We denote the set of neighbors

of a set S ⊆ U by Γ(S) = ∪s ∈S {v | (s,v) ∈ E}, and use Γ(x) as a
shorthand for Γ({x}), x ∈ U .

Definition 4.1 (Definition 3 of [30]). A bipartite graph G =
(U ,V ,E) is δ -regular if the degree of all nodes in U is δ . A bipartite
δ -regular graph G = (U ,V ,E) is an (m,δ , 1/3)-expander if for each
S ⊆ U with |S | ≤ m it holds that |Γ(S)| ≥ (1 − 1/3)δ |S |.

Lemma 4.2 (Corollary 5 in [30]). For every constant ε > 0

there exists an (m,δ , ε)-expander G = (U ,V ,E) with |U | = u, δ =
O(log(2u/m)) and |V | = O(m log(2u/m)).

Next, we discuss how to give an analogue of the hard query set

in Lemma 4.1 with O(k logn) dimensions.

Lemma 4.3. Let n,k(n) be arbitrary integer parameters. Consider
(c,k)-NN with c < 3. There exists a set D of n points in dimension
O(k logn) such that for any I ⊂ [n] with |I | = k there exists a query
point qI such that the set I ′ = {p ∈ D | ∥p−qI ∥∞ ≤ 1/2} of potential
answer points has I ⊂ I ′ and |I ′ | ≤ 3k/2.

Proof. Fix n and k(n). Letm = k(n) and let G = (U ,V ,E) be an
(m,δ = O(log(n/m)), 1/3)-expander with |U | = n and |V | = d =
O(kδ ). For concreteness we take U = [n].

Construct the set of points p1, . . . ,pn where

(pi )j =

{
1 if j ∈ Γ(i)
0 otherwise

.

Define the query point for set I with |I | = k where

(pI )j =

{
+1/2 for j ∈ Γ(I )
−1/2 otherwise

.

It is easy to see that ∥pi−pI ∥∞ = 1/2 for all i ∈ I , sopI has at least
k neighbors at distance 1/2. It remains to show that this leads to a

relaxedk-set workload, i.e., that for anyqI any set of 1/2-near points
in the set has at least k/2 points in common with I . Fix a subset I
and consider the query point qI . Let I

′ = {i | ∥pi − pI ∥∞ ≤ 1/2}

be the indices of the points of with distance at most 1/2 to qI .
Observe that I ⊆ I ′ by construction. Let I∗ = I ′ \ I be the indices
of “unintended near points”. Observe that every point pi that does

not fulfill Γ(i) ⊂ Γ(I ) has ∥pi − pI ∥∞ = 3/2 and cannot be reported

since c < 3. Hence

I∗ = {i | Γ(i) ⊆ Γ(I )}\I .

Observe |Γ(I )| ≤ δ |I | and |Γ(I ∪ I∗)| ≥ (1 − 1/3)δ |I ∪ I∗ |, by the

definition of G and |Γ(I ∪ I∗)| = |Γ(I )| by the definition of I∗. Com-

bining this we get δ |I | ≥ 2

3
δ |I ∪ I∗ |, or |I | ≥ 2

3
(|I | + |I∗ |). That

is,
1/3

2/3
|I | ≥ |I∗ |, as desired. Hence we have a relaxed k-set work-

load. □

This means that we can apply Lemma 2.1 and Corollary 2.2:

Corollary 4.4. (Theorem 1.1) Any indexing scheme for (c,k)-NN
in O(k log(n/k))-dimensional ℓ∞ space with c < 3 with worst case

query time of ⌈k/α⌉ I/Os, where 1 ≤ α ≤ Bmust use Ω
((

1

2e

√
nα
kB

)α )
blocks of space.

4.2 Lower Bound for the Hamming metric
We now prove Theorem 1.3, giving a lower bound on indexes on

sets of vectors in Hamming space with approximation factor c > 1.

This directly implies a lower bound in the ℓ1 metric, as well as a

lower bound for ℓ2 with approximation factor

√
c .

Lemma 4.5. Consider the approximate k-NN problem in Hamming
space of dimension d . There exists a set of n points pi , i ∈ {1, . . . ,n} of
dimension d = n that is a k-set workload, i.e, for every subset I ⊂ [n]
with |I | = k there exists a query point qI such that the Hamming (or
ℓ1) distance is:

∥pi − qI ∥1 =

{
k − 1 for i ∈ I
k + 1 for i < I .

Hence, the (c,k)-NN for c < 1+ 2/(k − 1) in n-dimensional Hamming
space leads to a k-set workload.

Proof. The set consists of then unit vectors ei . The query vector
for set I is the characteristic vector of I . It is easy to verify that the

distances from the query to the vectors in I is k − 1, and to those

not in I is k + 1. Note that (k + 1)/(k − 1) = 1 + 2/(k − 1), which

gives the bound on c . □

Lemma 4.6. Consider the approximate k-NN problem in Hamming
space of dimension d . There exists a set of n points pi , i ∈ {1, . . . ,n},
and d = O(k log(n/k)) that is a relaxed k-set workload, i.e, for every
subset I ⊂ [n] with |I | = k there exists a query point qI such that the
Hamming (ℓ1)-distance is

∥pi − qI ∥1 =

{
≤ dI for i ∈ I

≥ dI

(
1 + 1

4(k−1)

)
for i < I ′

for an I ′ ⊃ I with |I ′ | ≤ 1.5|I |. Hence, c < 1+ 1

4(k−1) leads to a relaxed
k-set workload for (c,k)-NN in O(k logn)-dimensional Hamming
space.

Proof. Fix n and k(n). Let G = (U ,V ,E) be an (m = k(n),δ =
O(logn), 1/4)-expander with |U | = n and |V | = d = O(k logn),
which exists by Lemma 4.2. For concreteness we take U = [n].

Construct the set of points p1, . . . ,pn in the same way as earlier:

(pi )h =

{
1 for h ∈ Γ(i)
0 otherwise

.



We define the query point qI for each set I with |I | = k where

(qI )h =

{
1 for h ∈ Γ(I )
0 otherwise

.

In other words, the vectors are the characteristic vectors of the

neighbor-sets in G.
We define dj := ∥pj −qI ∥1. For i ∈ I we have di = |Γ(I )| − δ and

di ≥ kδ (1 − 1/4) − δ = δ (k(1 − 1/4) − 1) .

For any j (in particular j < I ) we have dj = ∥pj −qI ∥1 = |Γ(I )| −δ +
2|Γ(j) \ Γ(I )|, leading to the definition γj = |Γ(j) \ Γ(I )|. We can set

the distance threshold ratio such that the number of unintended

neighbors is again at most k/2:
We can set the distance threshold ratio to 1 + 1/(4(k − 1)) such

that the set of unintended near neighbors are the j with γj < δ/4:

dj/dI = 1 + γj/dI ≤ 1 + 1/(4(k − 1)) ⇒ γj ≤ dI /(4(k − 1)) ≤ δ/4

To calculate the set of indices of unintended neighbors we define

I∗ = {j | γj ≤ δ/4} \ I .

Then

|Γ(I ∪ I∗)| ≤ δ |I | + (δ/4)|I∗ |

|Γ(I ∪ I∗)| ≥ (1 − 1/4)δ |I ∪ I∗ | = 3

4
δ (|I | + |I∗ |)

leading to

δ |I | + (δ/4)|I∗ | ≥ 3

4
δ (|I | + |I∗ |)

⇒ (δ/4)|I∗ | ≥ 3

4
δ |I∗ | − |I |δ/4

⇒ |I |δ/4 ≥ 3

4
δ |I∗ | − (δ/4)|I∗ | .

Hence

|I∗ | ≤ |I |
1/4

3

4
− 1/4

= k/2 .

This means that the described workload is a relaxed k-set workload.
Applying Lemma 2.1 and Corollary 2.2 now completes the proof of

Theorem 1.3. □

5 HAMMING METRIC INDEXING SCHEME
The general 3-approximate indexing scheme described in Section 3

can be improved for specific metrics. In this section we prove The-

orem 1.4. For any given approximation factor c > 1 we wish to

construct an indexing scheme that answers (c,k)-NN queries in

d-dimensional Hamming space using polynomial space and with

⌈k/B⌉ I/Os. Our construction is an application of the dimension

reduction technique of Kushilevitz et al. [25].

For each r ∈ {1, . . . ,d} we create a data structure that handles
the case where the kth closest point to q is at distance r . The data
structure must report k points that have distance at most cr from q.
The central idea of [25] is to use a randomized mapping

t : {0, 1}d → {0, 1}D ,

where D = O(logn), such that for each q ∈ {0, 1}d with high

probability for all x ,y ∈ P :

d(q,x) ≤ r ∧ d(q,y) > cr =⇒ d(t(q), t(x)) < d(t(q), t(y)) . (2)

(We note that the required dimension D grows as c approaches 1,
hencewe need to keep c fixed.) Consider themappedmultiset t(P) =
{t(x) | x ∈ P} and create a data structure that for each i ∈ {0, 1}D

lists, for the k nearest neighbors of i in t(P), the corresponding

vectors in P (breaking ties arbitrarily), using ⌈k/B⌉ blocks. If (2)

holds then list i = t(q) contains only c-approximate k-nearest
neighbors of q. To eliminate the error probability, chooseO(d) such
random mappings and construct corresponding data structures:

With high probability there will be no query q ∈ {0, 1}d that does

not have at least one data structure that returns a correct result. If

this fails for some q, start over from the beginning and choose new

mappings.

The total space usage is O(2Dd ⌈k/B⌉), which is polynomial in n
and d , as desired. Queries can be answered in ⌈k/B⌉ I/Os since we
are taking full advantage of the power of the indexability model:

To answer a query q it is necessary to know which mapping t can
be used to answer it correctly, and where in storage the blocks with

index t(q) reside.
Of course, we can also get an algorithm in the standard I/Omodel

with a multiplicative query time overhead of O(d) by querying all
repetitions and returning the k closest points seen.

6 CONCLUSION AND OPEN PROBLEMS
We have shown that nontrivial lower bounds can be shown in

the indexability model, even under approximation. The main open

problem that we leave is whether our hardness result for Hamming

distance can be extended to approximation factor c = 1 + Ω(1),
where the constant in Ω(1) is independent of k . This would give an

unconditional analogue of the recent conditional lower bound of

Rubinstein [34].
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