On the 1/0 Complexity of the k-Nearest Neighbors Problem

Mayank Goswami”
mayank.goswami@qc.cuny.edu
Queens College, CUNY
Flushing, New York, USA

ABSTRACT

We consider static, external memory indexes for exact and approxi-
mate versions of the k-nearest neighbor (k-NN) problem, and show
new lower bounds under a standard indivisibility assumption:

e Polynomial space indexing schemes for high-dimensional
k-NN in Hamming space cannot take advantage of block
transfers: Q(k) block reads are needed to to answer a query.

o For the s metric the lower bound holds even if we allow
c-appoximate nearest neighbors to be returned, for ¢ € (1, 3).

o The restriction to ¢ < 3 is necessary: For every metric there
exists an indexing scheme in the indexability model of Heller-
stein et al. using space O(kn), where n is the number of points,
that can retrieve k 3-approximate nearest neighbors using
optimal [k/B] I/Os, where B is the block size.

o For specific metrics, data structures with better approxima-
tion factors are possible. For k-NN in Hamming space and
every approximation factor ¢ > 1 there exists a polynomial
space data structure that returns k c-approximate nearest

neighbors in [k/B] I/Os.

To show these lower bounds we develop two new techniques:
First, to handle that approximation algorithms have more freedom
in deciding which result set to return we develop a relaxed version
of the A-set workload technique of Hellerstein et al. This technique
allows us to show lower bounds that hold in d > n dimensions. To
extend the lower bounds down to d = O(k log(n/k)) dimensions,
we develop a new deterministic dimension reduction technique
that may be of independent interest.

CCS CONCEPTS

« Theory of computation — Lower bounds and information
complexity; Nearest neighbor algorithms; Sorting and search-
ing; Expander graphs and randomness extractors; Random projections

*Supported by NSF grants CRII-1755791 and CCF-1910873.

T Part of this work done during the second Hawaiian workshop on parallel algorithms
and data structures, University of Hawaii at Manoa, Hawaii, USA.

*Work done in part while visiting Google Research. Supported by Investigator Grant
16582, Basic Algorithms Research Copenhagen (BARC), from the VILLUM Foundation,
and by funding from the European Research Council under the European Union’s 7th
Framework Programme (FP7/2007-2013) / ERC grant agreement no. 614331.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODS’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7108-7/20/06...$15.00
https://doi.org/10.1145/3375395.3387649

Riko Jacob™
rikj@itu.dk
IT University of Copenhagen
Kobenhavn S, Denmark

Rasmus Pagh?
pagh@itu.dk
BARC & IT University of Copenhagen
Kobenhavn S, Denmark

and metric embeddings; Data structures and algorithms for data man-
agement; Computational geometry; - Mathematics of computing
— Approximation algorithms; « Information systems — Indexed
file organization; Search engine indexing; Search index compression;
» Hardware — External storage.

KEYWORDS
Nearest neighbors, I/O complexity, indexability model

ACM Reference Format:

Mayank Goswami, Riko Jacob, and Rasmus Pagh. 2020. On the I/O Com-
plexity of the k-Nearest Neighbors Problem. In Proceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS’20), June 14—19, 2020, Portland, OR, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3375395.3387649

1 INTRODUCTION

The DEEP1B data set [8] is among the largest image data sets that
has been examined in the similarity search literature. From each of
n=10° images, a 96-dimensional vector has been extracted from
an intermediate layer of a pre-trained deep neural network, a state-
of-the-art method for semantically meaningful feature vectors [9].
Such feature vectors can be thought of as compressed represen-
tations of the images that, for example, can be used to estimate
the similarity of two images. In many use cases, though, it is not
enough to substitute the images with their feature vectors, but we
also need to be able to access the corresponding images. Though the
size of the raw image data behind DEEP1B is not stated in [8], an
estimate would be 1 MB per image on average, or 1000 TB in total.
Clearly, retrieving similar images in a data set of this size is beyond
what is possible on a single machine, and even just indexing the
set of feature vectors would require an amount of internal memory
that is larger than what is present in most servers.

k-nearest neighbors. In the k-nearest neighbors (k-NN) problem
we want to construct a data structure on a set P of n points in some
metric space that, given an integer k > 0 and a query point g, finds
the k closest points to g in P. We will be focusing on data structures
that can be constructed in polynomial time and space. The k-NN
problem is believed to be hard in high dimensions even for k = 1,
and the brute-force algorithm that considers all data points in P
essentially optimal. In particular, Williams (see [4]) proved that for
constant ¢ > 0, no O(n'~¢) query time data structure is possible
for w(log n)-dimensional Hamming space, assuming the Strong
Exponential Time Hypothesis.

Because of the hardness of the problem most research has re-
volved around approximate solutions. The c-approximate k-NN
((c, k)-NN) problem asks to return k points from P with distance
at most cr to g, where r is the distance to the kth nearest neighbor

https://doi.org/10.1145/3375395.3387649
https://doi.org/10.1145/3375395.3387649

of g. It is known that (c, k)-NN is equivalent, up to polylogarith-
mic factors, to the simpler near neighbor problem: Given an upper
bound ry > r, return a point within distance cry [16]. We refer
to [5] for more background on recent developments in approximate
near neighbor search.

Models of computation. Motivated by large-scale similarity search
applications we consider models of hardware aimed at massive
data sets. The external memory model [3] abstracts modern, block-
oriented storage where memory consists of blocks each capable of
holding B data items. The cost of an algorithm or data structure
is measured in terms of the number of block accesses, referred to
as I/Os. When considering the k-NN problem we let B denote the
number of vectors that fit in a block.

Distributing similarity search onto many machines has also been
considered as a way of scaling to large data sets [10, 21, 29]. We can
interpret a static, external memory data structure as an abstraction
of a large, distributed system in which each server holds B data
items (and information associated with them). In this context the
parameter B may be relatively large in comparison to n. For example,
to store the n = 10° DEEP1B vectors of dimension d = 96, and
associated raw data, we could imagine s = 10* servers each holding
B = 10° data items (so that on average each item is replicated 10
times to achieve redundancy). The number of I/Os needed to answer
a query then equals the number of servers that need to be involved
when answering a k-NN query.

Most lower bounds for I/O efficient algorithms are shown under
the assumption that data items are indivisible in the sense that they
are treated as atomic units, and that a block contains a well-defined
set of at most B data items. The indexability model [17, 18], intro-
duced at PODS ’97, formalized external memory data structures
for queries that return a set of k data items under the indivisibility
assumption. For a given data structure, the complexity of a query
family Q is the smallest number of blocks that must be read to
answer a query, in the worst case over all queries g € Q. There does
not need to be a constructive procedure for identifying the correct
blocks. In particular, the nearest neighbor problem (k = 1) is trivial
in the indexability model since the block containing the answer to
the query is given for free; the search aspect is completely removed
from consideration, and the algorithm would return the block in
one I/O. Though the original indexability model does not accom-
modate notions of approximation, it can be naturally extended to
the setting where there is a set of at least k elements that are valid
answers to a query and we are required to return any k of them.

1.1 Our results

The complexity of general (c, k)-NN queries in the I/O model lies
between two extremes:
o There exist [k/B] blocks (or servers) that contains a set of k
valid answers to the query, and
e No block (or server) contains more than one valid query
answer, so k block reads are needed.
Since we do not care about constant factors we can, for simplicity,
assume that k < n/2, since otherwise a trivial brute-force algorithm
that reads all points is optimal within a factor of 2. We give several
upper and lower bounds for (c, k)-NN that suggest a dichotomy
for polynomial space data structures. For various choices of metric

Metric Dimension Approximation 1/0 bound
factor
any any any > [k/B]
leo Q(klog(n/k)) 3—¢ Q(k)
Hamming | Q(k log(n/k)) 1+ Q(k)
any any 3 < [k/B]
Hamming any 1+¢ < [k/B]

Table 1: Our I/O lower bounds (first three rows) and upper
bounds (last two rows) on the (c,k)-NN problem for data
structures using polynomial space, where ¢ > 0 can be any
constant. The lower bound for £ holds assuming k < n!=¢,

space, number of dimensions, and approximation factor we see
that it is either possible to achieve O(k/B) I/Os, or Q(k) I/Os are
provably required.

Our results are summarized in Table 1. For our lower bounds, the
dimension column represents the minimum (asymptotic) number
of dimensions required for the bounds to hold. Since it is possible to
decrease the I/O complexity in lower dimensions [35], a condition
on the number of dimensions is needed. Our upper bounds do not
depend on the number of dimensions, except indirectly through
the definition of B as the number of vectors in a block. We stress
that the I/O upper bounds for an indexing scheme do not imply the
existence of a data structure with the same guarantees — for a data
structure in the I/O model we would expect an additional search
cost. Our main theorems are:

THEOREM 1.1. (L-infinity metric lower bound) Consider an in-
dexing scheme for (c,k)-NN in d-dimensional {« space with ¢ < 3
and with worst case query time [k/a] I/Os, where 1 < a < B. For
sufficiently large d = O(klog(n/k)), the indexing scheme must use

Q ((% \/Z:%) a) blocks of space.

THEOREM 1.2. (General metric indexing scheme) Given a set P of
n points in any metric space, there exists a 3-approximate indexing
scheme that uses n[k/B] blocks of space (where B is the block size)
and returns 3-approximate, k nearest neighbors in optimal [k/B]
I/Os.

THEOREM 1.3. (Hamming metric lower bound) Consider an in-
dexing scheme for (¢, k)-NN in d-dimensional Hamming space with
c < 1+ ﬁ and with worst case query time [k/a] I/Os, where
1 < a < B. For sufficiently large d = O(klog(n/k)), the indexing

scheme must use Q ((%\/Z:%)a) blocks of space.

THEOREM 1.4. (Hamming indexing scheme) Given a set P of n
points in d-dimensional Hamming space and a constant ¢ > 1, there
exists a c-approximate indexing scheme that uses o(n°Nd[k/B])
blocks of space and returns c-approximate, k nearest neighbors in
optimal [k/B] I/Os.

Discussion. We are not aware of any studies of c-approximate,
k-nearest neighbors in the I/O model. However, our lower bounds
suggest that such data structures cannot simultaneously have good
output sensitivity (I/O complexity in terms of k/B) and low space
usage. The currently best data structures for high-dimensional,
c-approximate r-near neighbor (return 1 point within known dis-
tance r) have query time lower bounded by (n/ B)f(c) 1/Os, for some
non-increasing function f with f(1) = 1 that depends on the metric.
Depending on the choice of ¢ and k this “search cost” may be smaller
or larger than the cost of reporting the c-approximate k-nearest
neighbors in the indexability model. In general, we would expect
the reporting cost to dominate only when ¢ and k are sufficiently
large.

Our lower bounds assume that the number of dimensions is
sufficiently large. An attempt to bypass the lower bounds would
thus be to utilize some kind of dimension reduction, such as the
Johnson-Lindenstrauss lemma. Unfortunately, this will not work
in the settings of Theorems 1.1 and 1.3. This is because dimension
reduction is not possible for £« [28], and because dimension reduc-
tion for Hamming space with distortion c requires Q(log(n)/(c—1)?)
dimensions [26], which is Q(k?).

1.2 Related work

Lower bounds on nearest neighbors in restricted models. A well-
known work of Berchtold et al. [12] analyzes the performance of
certain types of nearest neighbor indexes on random data sets. More
recently, Pestov and Stojmirovi¢ [33] and Pestov [32] showed lower
bounds for high-dimensional similarity search in a model of data
structures that encompasses many tree-based indexing methods.
These results do not consider approximation, and their algorith-
mic models do not encompass modern algorithmic approaches to
approximate similarity search such as locality-sensitive hashing.

Data structure lower bounds based on indivisibility. There is a
rich literature, starting with the seminal paper of Aggarwal and
Vitter [3], giving lower bounds on I/O-efficiency under an indivisi-
bility assumption. Such results in the context of data structures are
known for dynamic dictionaries [37], planar point enclosure [7],
range sampling [20], and many variants of orthogonal range re-
porting [1, 2, 17, 27, 38]. Below we elaborate on the most closely
related works on orthogonal range queries.

To our best knowledge the high-dimensional k-NN problem has
not been explicitly studied in the indexability model [17]. However,
in n-dimensional Hamming space it is straightforward to use the
k-set workload technique of [17] to show that even obtaining k — 1
I/Os is not possible (for k < n) unless the indexing scheme uses
quadratic space. Our lower bound technique is a generalization
of the k-set workload that allows us to deal with approximation
as well as space usage larger than quadratic. It also allows us to
show lower bounds all the way down to O(k log n) dimensions, as
opposed to n dimensions.

Orthogonal range queries. Orthogonal range reporting in d dimen-
sions asks to report all points in P lying inside a query range Q that
is a cross product of intervals. Note that k-NN in the {o, metric is
the special case of orthogonal range reporting where all intervals
have the same length. Hellerstein et al. [17] showed that in order

to answer orthogonal range reporting queries in O(k/B~¢) I/Os,
for some ¢ € (0, 1), the data structure needs to use space Q(n/ed_l).
In particular, in dimension d = w(logn) a polynomial space data
structure needs k/B°() 1/Os.

Approximate d-dimensional range reporting has been studied in
the I/O model: Streppel and Yi [35] show that for a query rectangle
q and constant ¢ > 0, allowing the data structure to report points
at distance up to ¢ - diam(q) from g makes it possible to report k
points in 20(d) 4 O(k/B)1/Os (plus a logarithmic search cost, which
does not apply to the indexability model). To our best knowledge,
no lower bounds were known for approximate range queries before
our work.

Lower bounds based on computational assumptions. Uncondi-
tional lower bounds for (c, k)-NN in the cell probe model [11, 13,
14, 31] only match upper bounds in the regime where space is very
large. To better understand the complexity for, say, sub-quadratic
space usage, a possibility is to base lower bounds on computa-
tional assumptions such as the Strong Exponential Time Hypothe-
sis (SETH), or the weaker Orthogonal Vectors Hypothesis (OVH).
Recently, Rubinstein [34] showed that under either of these hy-
potheses, for each constant § > 0, achieving an approximation
factor of ¢ = 1 + 0(1) is not possible for a data structure with poly-
nomial space and construction time unless the query time exceeds
n1=% . Already in 2001 Indyk showed that in the £oo metric, (¢, k)-NN
with approximation factor ¢ < 3 is similarly hard [22]. (Though
Indyk links the lower bound to a different problem, it can be easily
checked that the same conclusion follows from the more recent
SETH and OVH assumptions.)

Upper bounds. The I/O complexity of the near neighbor problem
was studied by Gionis et al. [15], focusing on Hamming space. (Their
approach extends to other spaces that have good locality-sensitive
hash functions.) For every approximation factor ¢ > 1, they show
that O((n/B)Y/¢) I/Os suffices to retrieve one near neighbor, using
a data structure of size subquadratic in n. It seems that the same
algorithm can be adapted to return k near neighbors at an additional
cost of O(k/B) I/Os. Tao et al. [36] extended these results to handle
nearest neighbor queries, but they do not consider the case of k
nearest neighbors.

For the Euclidean and Hamming metrics with constant approx-
imation factor ¢ > 1 it is known how to get no@ query time for
the near neighbor problem (k = 1) with a polynomial space data
structure (see [6] and its references). For ¢ > V/3 Kapralov [24] even
showed how to achieve this by a single probe to the data structure,
returning a pointer to the result.

Organization: The rest of this paper is organized as follows. In
Section 2 we develop notation and proceed in Section 2.1 to extend
the indexability result of [19] to approximate indexing schemes.
Section 3 describes the indexing scheme promised in Theorem 1.2,
followed by Section 4 that proves lower bounds in the L-infinity
metric (Theorem 1.1). Section 5 contains our results on the Ham-
ming metric (Theorem 1.3 and Theorem 1.4), followed by conclusion
and open problems in Section 6.

2 PRELIMINARIES

The external memory model of computation (due to Aggarwal and
Vitter [3]) has a main memory of size M and an infinite external
memory, both realized as arrays. Data is stored in external memory,
and is transferred to/from main memory (where computation hap-
pens) in I/Os, or block transfers, where a block holds B data items.
Computation in main memory is free — the cost of an algorithm is
the number of I/Os it performs.

We will be using the following definitions from Hellerstein et
al. [17, 18]. For brevity we will refer to a subset of I of size b as a
b-subset.

DEFINITION 2.1 (WORKLOAD). A workload W = (D, I, Q) consists
of a non-empty set D (the domain), a nonempty finite set I C D (the
instance, whose size we denote by n), and a set Q of subsets of I (the
query set).

DEFINITION 2.2 (INDEXING SCHEME). An indexing scheme S =
(W, B) consists of a workload W = (D, I, Q) and a set B of B-subsets
of I, where B is the block size of the indexing scheme.

DEFINITION 2.3 (COVER SET). A cover set Co C B for a query

Q € Q is a minimum-size subset of the blocks such thatQ € |J b.
b€CQ

We will assume that the blocks are chosen such that Cg exists
for every query Q € Q.

DEFINITION 2.4 (A-SET WORKLOAD). The A-set workload is a work-
load with instance I = {1, - - , n} whose query set Q is the set of all
A-subsets of the instance.

While [17, 18] measure performance in terms of redundancy and
access overhead, we find it more natural to define performance in
the same way as the I/O model. The space usage of an indexing
scheme is the number of blocks, |B|. The query time of Q € Q is
the size of a cover set, |Cg|. Observe that the time of a query of size
A can range from [A1/B] I/Os to A I/Os, depending on how many
blocks are needed to cover it.

All static data structures we know of in the external memory
model with a given space usage and query cost translate directly to
an indexing scheme with the same, or better, performance. This is
because these data structures store, or can be adapted to store, O(B)
vectors explicitly in each block, such that the set of result vectors
is explicitly present in the blocks that are read when answering a
query. This means that any lower bounds in the indexability model
strongly suggest lower bounds also in the external memory model.

2.1 Approximate indexing schemes

DEFINITION 2.5 (c-APPROXIMATE k-NEAREST NEIGHBORS PROBLEM,
(c, k)-NN). Let M be a metric space with distance function d(-, -), and
¢ > 1 be a constant. Given P C M, |P| = n, and a positive integer
k < n, construct a data structure that upon receiving a query q,
returnsQ c P,Q = {q%,- -~ ,qk}, such that for allqi € Q,d(q, qi) <
c d(q,p](;), where pl‘; € P is the kth nearest neighbor of q in P.

We will consider indexing schemes for (c, k)-NN that can depend
on the parameters ¢ and k, i.e., the parameters are known when
the data structure is constructed. The set of points to be stored
is denoted by P. Observe that for (c, k)-NN, there can be at most

(3) distinct query answers (A = k in the A-set workload above).
Intuitively, the more queries there are in a workload, the higher
is the space needed by the data structure. But in the (c, k)-NN
problem, for a query q there is no one “right” answer, as any set of
k approximate near neighbors form a valid output. Thus we find
that the definitions in the original indexability model need to be
extended to capture approximate data structures It turns out that
even though approximate near neighbors are allowed, it is possible
to ensure that at least half of the k returned points are among the k
nearest to the query point. This motivates the following definition:

DEFINITION 2.6 (RELAXED A-SET WORKLOAD). The relaxed A-set
workload is a workload whose instance is {1, - - - , n}. The query set
is the set of all (}) subsets of size A. Given a query q corresponding
to such a A-subset Q, the indexing scheme must report A elements, at
least half of which must come from Q.

We next show a space-1/0 tradeoft for the relaxed workload.

LEMMA 2.1 (RELAXED SET WORKLOAD TRADEOFF). Any indexing
scheme for the relaxed A set workload with a space usage of s blocks
and a query time of t block accesses must have

1 /n
tZAlOgS (2—e ﬁ)

ProOF. Recall that by the relaxation, the indexing only needs to
find a subset O C Q of size |Q| = A/2 in the index. In other words,
with each subset O that can be retrieved by the index, the algorithm
can add any A/2 elements and arrive at a valid query Q.

We upper bound the total number of distinct A-sets reported by
an indexing scheme using s space and ¢ query I/Os as follows:

e choose the set of ¢ blocks to retrieve from the index ((i)
choices),

e choose the A/2 elements to use from these at most ¢B distinct
elements (at most ()ffz) choices),

e choose A/2 arbitrary other elements (at most ()Lr/lz) choices).

The total number of such combinations should be at least (3)
which is the possible set of queries, or A-subsets. Using the inequal-

k k
ities (%) < (p) < (%) < n* this gives us:

(el >

() (e)L oy
2z) \a2 =
2t/2 (1Be) [ne. m?
= (/1/2)(/1/2) > (3)
77 L
T 4e%tB

=1

\V2
~
.
Q
o
—_——
NG
s3]

One may be interested in a query time of [A/a] I/Os, where
1<a<B

COROLLARY 2.2. Any indexing scheme for the relaxed A-set work-
load with worst case query time of [A/] I/Os, where 1 < a < B must

use Q ((%\/%)a) blocks of space.

This lower bound is essentially tight: Achieving a query time of
[A/a] I/Os using O((Z)) space is easy by just preprocessing all «
combinations of the n items. By doing an analogous calculation for
the exact workload, we are able to give the following tradeoff for
the standard A-set workload.

LEMMA 2.3 (A-SET WORKLOAD TRADEOFF). Any indexing scheme
for the A-set workload with worst case query time of [A/a’| I/Os, where

o
1 < a < B must use Q ((%)) blocks of space.

Lemma 2.3 generalizes Theorem 7.2 in [17] which considered
the case of @ = 1.

3 A 3-APPROXIMATION INDEXING SCHEME
FOR GENERAL METRICS

We prove Theorem 1.2 in this section, that asserts that (a relatively
simple) indexing scheme provides a 3-approximation for the k-NN
problem in any metric space. Note that we are only presenting an
indexing scheme as opposed to a data structure; i.e., we assume
that once the query is given, an oracle provides the smallest set of
blocks that contain a valid answer to the query.

Let P be a set of n points in a metric space. Consider the in-
dexing scheme I that consists of the set of { = n[k/B] blocks
B = {b1,by,...,be} where we store p; € P and the set P; =
{Pi,1-Pi,2, ... pi i } of the k-nearest neighbors of the point p; (in-
cluding itself). This requires [k/B] blocks per element of P, as
claimed. For a query point q let p;« be the nearest neighbor of q.
The oracle then returns the set P;+, i.e., the k nearest neighbors of
¢’s nearest neighbor, using [k/B] I/Os.

THEOREM 3.1. Let {pf, e ,pZ} be the set of the exact k nearest
neighbors of a query q, and let {p;+ 1, - p;+ i} be the set of points
returned by the indexing scheme described above. Then for any 1 <
Jj <k, d(g,pirj) < 3d(q,pZ). That is, all the returned points are
within a factor3 of the distance of the query to its kth nearest neighbor.

Proor. The proof is a case analysis. Let D be the smallest ball
centered at pf := p;~ that contains p;« i (the “k nearest neighbor

disk” of pi*). The cases are:

(1) Both g and pZ are outside D. For each j, we have that

d(q, pi,j) < d(pi*,j,pf) +d(pl,q) (triangle inequality)
< d(pi*,j,pf) + d(q,pZ) (pz is farther from g than pé)
< d(q,p?) + d(q,pZ) (q is outside D)
< 2d(g.p}) .

(2) gisinside D, and pZ is outside D. For each j, we have that

d(g,pi+,j) < d(pi*,j,p;[) +d(p?,q) (triangle inequality)
< d(pi*,j,pf) + d(q,pZ) (pz is farther from q than p?)
<d(pl.p!) +dq.p}) (p}is outside D)
<d(pl,q) +d(g.p]) +d(g.p]) (triangle inequality)
<3d(g.p}) .
(3) Both g and pZ are inside D. In this case, we first claim that it
is sufficient to consider that for some i ¢ {1, k}, p? is outside
D. If that was not the case, we have reported all {p?}, ie.,

the exact k nearest neighbors of g. For each j we now have
that

d(q.pivj) < d(q.pT) + d(p].pi+ ;) (triangle inequality)
< d(q,pZ) + d(pf,pi*,j) (pz is farther from g than p;])
< d(q,p,‘f) + d(P;Z,p?) (p:] is outside D)
< d(q.p]) +d(p{.q) +d(g.p}) (triangle inequality)
<3d(g.p}) .

(4) qis outside D, and pZ is inside D. In this case we have that

d(q.pir,j) < d(pi~ j, pl) + d(p?,q) (triangle inequality)
< d(q,p?) + d(p?, q) (g is outside D; p;« ; is inside)
< 2d(q,pZ) (pZ is farther from q than p?)

O

Tightness of the analysis: Next, we give an example of n = k + 1
points where the indexing scheme above does not achieve a better
approximation factor than 3(1 — ¢), for arbitrary ¢ > 0. Consider
the scenario when all points including the query lie on a line:

q=1/2, p?:O, pZ:1+€/2, PZ+1:_1’ and

p? = —c¢i/2k forall i ¢ {1,k,k+ 1} .
The disk D contains all points but pZ, pZ+ , will be reported, and
d(g.p},,) =3/2>3(1-e)1/2+¢/2) = 3(1 -)d(g. py).

4 LOWER BOUNDS

In this section we prove Theorems 1.1 and 1.3.

4.1 Lower bound for the L-infinity metric

We warm up with a proof of a lower bound in n dimensions, a slight
variant of a reduction by Indyk [22].

LEmMA 4.1. Consider the approximate k-NN problem in R™ with
loo metric. There exists a set of n points p; fori € {1,...,n} that has
a k-set workload. Specifically, for every subset I C [n] there exists a
query point qg such that the {o-distance is

o | 1/2 foriel
llps qu|°°_{3/2 forigl

Hence, the (c, k)-NN for ¢ < 3 in n-dimensional (s space leads to a
k-set workload.

ProoF. The set consists of the n unit vectors p; = e; (where only
the ith entry is 1 and all other entries are 0). ForasetI c {1,...,n}
the query vector is defined as

| +1/2 foriel
I'=) -1/2 foriel
|

To deterministically reduce the dimensionality of the space we
use an expander and switch to relaxed k-set workloads. Expanders
were previously used for deterministic embeddings of Euclidean
space into ¢1 by Indyk [23]. There is a vast literature on expanders
and the results we are using are standard by now. For the sake of
concreteness, we take the definitions and precise results almost
literally from [30]. We define (m, d, 1/3)-expander graphs and state
some results concerning these graphs. For the rest of this paper we
will assume § to divide 1/3, as this makes statements and proofs
simpler. This will be without loss of generality, as the statements
we show do not change when rounding § down to the nearest such
value. Let G = (U, V, E) be a bipartite graph with left vertex set U ,
right vertex set V, and edge set E. We denote the set of neighbors
of aset S C U by I'(S) = Uses{v | (s,v) € E}, and use I'(x) as a
shorthand for T'({x}), x € U.

DEFINITION 4.1 (DEFINITION 3 OF [30]). A bipartite graph G =
(U, V,E) is 6-regular if the degree of all nodes in U is §. A bipartite
d-regular graph G = (U, V,E) is an (m, 8, 1/3)-expander if for each
S C U with |S| < m it holds that |T'(S)| > (1 — 1/3)]S|.

LEMMA 4.2 (COROLLARY 5 IN [30]). For every constant ¢ > 0
there exists an (m, 8, €)-expander G = (U,V,E) with |[U| = u, § =
O(log(2u/m)) and |V| = O(mlog(2u/m)).

Next, we discuss how to give an analogue of the hard query set
in Lemma 4.1 with O(k log n) dimensions.

LEMMA 4.3. Let n, k(n) be arbitrary integer parameters. Consider
(¢, k)-NN with ¢ < 3. There exists a set D of n points in dimension
O(klog n) such that for any I C [n] with |I| = k there exists a query
point qy such that thesetI’ = {p € D | ||p—qillc < 1/2} of potential
answer points hasI C I’ and |I'| < 3k/2.

Proor. Fix n and k(n). Let m = k(n) and let G = (U, V, E) be an
(m,6 = O(log(n/m)), 1/3)-expander with |U| = nand |[V| =d =
O(k&). For concreteness we take U = [n].

Construct the set of points py, . .., pn where

L _ |1 ifjeT(@)
i)y = { 0 otherwise
Define the query point for set I with |I| = k where

(o)) = { tiﬁ for j € T(I)

Itis easy to see that ||p; —pr|lco = 1/2foralli € I, so py has at least
k neighbors at distance 1/2. It remains to show that this leads to a
relaxed k-set workload, i.e., that for any gy any set of 1/2-near points
in the set has at least k/2 points in common with I. Fix a subset I
and consider the query point g;. Let I’ = {i | [|pi — prlleo < 1/2}

otherwise

be the indices of the points of with distance at most 1/2 to qj.

Observe that I C I’ by construction. Let I* = I’ \ I be the indices
of “unintended near points”. Observe that every point p; that does

not fulfill T'(i) ¢ T(I) has ||p; — prllcc = 3/2 and cannot be reported
since ¢ < 3. Hence

I' ={i | T({) cT(OI\I .

Observe |T'(I)| < §|I| and [TT U I*)| > (1 — 1/3)5|I U I*|, by the
definition of G and |[T'(I U I'*)| = |T(I)| by the definition of I*. Com-
bining this we get §|I|] > %5|I U I, or |l = %(|I| + |I*|). That

1/3
* 23
load.]

is |I| = |I*|, as desired. Hence we have a relaxed k-set work-

This means that we can apply Lemma 2.1 and Corollary 2.2:

COROLLARY 4.4. (Theorem 1.1) Any indexing scheme for (c, k)-NN
in O(k log(n/k))-dimensional £« space with ¢ < 3 with worst case

¢4
query time of [k/a’| I/Os, where1 < a < B must use Q ((i) /z—g))
blocks of space.

4.2 Lower Bound for the Hamming metric

We now prove Theorem 1.3, giving a lower bound on indexes on
sets of vectors in Hamming space with approximation factor ¢ > 1.
This directly implies a lower bound in the ¢; metric, as well as a
lower bound for ¢, with approximation factor /.

LEmMMA 4.5. Consider the approximate k-NN problem in Hamming
space of dimension d. There exists a set of n pointsp;,i € {1,...,n} of
dimension d = n that is a k-set workload, i.e, for every subset I C [n]
with |I| = k there exists a query point qr such that the Hamming (or
(1) distance is:

k-1 foriel
Ioi-al={ {1 e

Hence, the (¢, k)-NN forc < 1+ 2/(k — 1) in n-dimensional Hamming
space leads to a k-set workload.

ProoF. The set consists of the n unit vectors e;. The query vector
for set I is the characteristic vector of I. It is easy to verify that the
distances from the query to the vectors in I is k — 1, and to those
not in I is k + 1. Note that (k + 1)/(k — 1) = 1 + 2/(k — 1), which
gives the bound on c. O

LEMMA 4.6. Consider the approximate k-NN problem in Hamming
space of dimension d. There exists a set of n points p;, i € {1,...,n},
and d = O(klog(n/k)) that is a relaxed k-set workload, i.e, for every
subset I C [n] with |I| = k there exists a query point qr such that the
Hamming (1)-distance is

<ds foriel
lpi —qrllr =14 o 4 (1 + 4(k1_1)) forigl
foranI’ > I with|I’| < 1.5|1|. Hence, ¢ < l+m leads to a relaxed

k-set workload for (c,k)-NN in O(k log n)-dimensional Hamming
space.

Proor. Fix n and k(n). Let G = (U,V,E) be an (m = k(n),§ =
O(log n), 1/4)-expander with |U| = n and |V| = d = O(klogn),
which exists by Lemma 4.2. For concreteness we take U = [n].

Construct the set of points p1, . .., pp in the same way as earlier:

N _] 1 forhel(i)
(pi)n = { 0 otherwise

We define the query point gy for each set I with |I| = k where

(@D = 1 forh eT()
=1 0 otherwise

In other words, the vectors are the characteristic vectors of the
neighbor-sets in G.
We define d; := ||pj — grll1. For i € I we have d; = [T(I)] - § and

di >ké6(1-1/49)-5=6(k(1-1/4)-1) .

For any j (in particular j ¢ I) we have d; = ||p; —qll1 = [T(D)| -6+
2|T(j) \ T(1)|, leading to the definition y; = |T'(j) \ ['(I)|. We can set
the distance threshold ratio such that the number of unintended
neighbors is again at most k/2:

We can set the distance threshold ratio to 1 + 1/(4(k — 1)) such
that the set of unintended near neighbors are the j with y; < §/4:
dj/d[=1+ }/j/dj <1+ 1/(4(/(— 1)) =y < d]/(4(k - 1)) < 5/4
To calculate the set of indices of unintended neighbors we define

=y <8/4\1 .

Then
[T UTY)| <8I+ (5/4)|IF)
ITAUT)| > (1-1/4)5[TUT| = 25(1 + |I*])

leading to

ST+ (8/4)II*) = 38(111 + 1)

= (8/4)I*| = 361" - |115/4

= |I|16/4 > %5|I*| —(8/|I"| .
Hence

. 1/4
|| < |I|3— =k/2 .
2—-1/4
This means that the described workload is a relaxed k-set workload.
Applying Lemma 2.1 and Corollary 2.2 now completes the proof of

Theorem 1.3. O

5 HAMMING METRIC INDEXING SCHEME

The general 3-approximate indexing scheme described in Section 3
can be improved for specific metrics. In this section we prove The-
orem 1.4. For any given approximation factor ¢ > 1 we wish to
construct an indexing scheme that answers (c, k)-NN queries in
d-dimensional Hamming space using polynomial space and with
[k/B] I/Os. Our construction is an application of the dimension
reduction technique of Kushilevitz et al. [25].

For each r € {1,...,d} we create a data structure that handles
the case where the kth closest point to q is at distance r. The data
structure must report k points that have distance at most cr from q.
The central idea of [25] is to use a randomized mapping

t:{0,1}¢ - {0,1}P,

where D = O(logn), such that for each g € {0, 1}4 with high
probability for all x,y € P:

d(g,x) < r nd(g.y) > er = d(i(g), t(x)) < d(t(q). t(y) - (2)

(We note that the required dimension D grows as ¢ approaches 1,
hence we need to keep c fixed.) Consider the mapped multiset ¢(P) =
{t(x) | x € P} and create a data structure that for each i € {0, 1}?
lists, for the k nearest neighbors of i in #(P), the corresponding
vectors in P (breaking ties arbitrarily), using [k/B] blocks. If (2)

holds then list i = t(q) contains only c-approximate k-nearest
neighbors of ¢. To eliminate the error probability, choose O(d) such
random mappings and construct corresponding data structures:
With high probability there will be no query g € {0, 1} that does
not have at least one data structure that returns a correct result. If
this fails for some g, start over from the beginning and choose new
mappings.

The total space usage is 0(2Pd[k/BY), which is polynomial in n
and d, as desired. Queries can be answered in [k/B] I/Os since we
are taking full advantage of the power of the indexability model:
To answer a query g it is necessary to know which mapping ¢ can
be used to answer it correctly, and where in storage the blocks with
index t(g) reside.

Of course, we can also get an algorithm in the standard I/O model
with a multiplicative query time overhead of O(d) by querying all
repetitions and returning the k closest points seen.

6 CONCLUSION AND OPEN PROBLEMS

We have shown that nontrivial lower bounds can be shown in
the indexability model, even under approximation. The main open
problem that we leave is whether our hardness result for Hamming
distance can be extended to approximation factor ¢ = 1 + Q(1),
where the constant in Q(1) is independent of k. This would give an
unconditional analogue of the recent conditional lower bound of
Rubinstein [34].

Acknowledgement. We thank the anonymous reviewers for
constructive feedback.

REFERENCES

[1] Peyman Afshani. 2012. Improved pointer machine and I/O lower bounds for
simplex range reporting and related problems. In Proceedings of 28th Symposium
on Computational Geometry (SoCG). ACM, 339-346.

Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. 2009. Orthogonal range
reporting in three and higher dimensions. In 50th IEEE Symposium on Foundations
of Computer Science (FOCS). IEEE, 149-158.

[3] Alok Aggarwal and Jeffrey S Vitter. 1988. The input/output complexity of sorting
and related problems. Commun. ACM 31 (1988), 1116-1127. Issue 9.

[4] Josh Alman and Ryan Williams. 2015. Probabilistic Polynomials and Hamming
Nearest Neighbors. In Proceedings of 56th symposium on Foundations of Computer
Science (FOCS). 136-150. https://doi.org/10.1109/FOCS.2015.18

[5] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. 2018. Approximate nearest
neighbor search in high dimensions. arXiv preprint 1806.09823 (2018). Also
appears in proceedings of ICM 2018.

[6] Alexandr Andoni, Thijs Laarhoven, Ilya P. Razenshteyn, and Erik Waingarten.
2017. Optimal Hashing-based Time-Space Trade-offs for Approximate Near
Neighbors. In Proceedings of 28th ACM-SIAM Symposium on Discrete Algorithms
(SODA). 47-66. https://doi.org/10.1137/1.9781611974782.4

[7] Lars Arge, Vasilis Samoladas, and Ke Yi. 2009. Optimal external memory planar
point enclosure. Algorithmica 54, 3 (2009), 337-352.

[8] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale
datasets of deep descriptors. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition. 2055-2063.

[9] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. 2014.
Neural codes for image retrieval. In European conference on computer vision.
Springer, 584-599.

[10] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. 2012. Efficient distributed
locality sensitive hashing. In Proceedings of 21st ACM international conference on
information and knowledge management (CIKM). ACM, 2174-2178.

Omer Barkol and Yuval Rabani. 2002. Tighter Lower Bounds for Nearest Neighbor
Search and Related Problems in the Cell Probe Model. J. Comput. Syst. Sci. 64, 4
(June 2002), 873-896. https://doi.org/10.1006/jcss.2002.1831

Stefan Berchtold, Christian Bohm, Daniel A. Keim, and Hans-Peter Kriegel. 1997.
A Cost Model For Nearest Neighbor Search in High-Dimensional Data Space. In
Proceedings of 6th ACM Symposium on Principles of Database Systems (PODS).

[2

[11

[12

https://doi.org/10.1109/FOCS.2015.18
https://doi.org/10.1137/1.9781611974782.4
https://doi.org/10.1006/jcss.2002.1831

Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. 1999. Lower bounds for high
dimensional nearest neighbor search and related problems. In Proceedings of 31st
Symposium on Theory of Computation (STOC). 312-321.

Amit Chakrabarti and Oded Regev. 2004. An Optimal Randomised Cell Probe
Lower Bound for Approximate Nearest Neighbour Searching. In Proceedings of
45th IEEE Symposium on Foundations of Computer Science (FOCS ’04). 473-482.
https://doi.org/10.1109/FOCS.2004.12

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proceedings of 25th International Conference on
Very Large Data Bases (VLDB). Morgan Kaufmann, 518-529. http://www.vldb.
org/conf/1999/P49.pdf

Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. 2012. Approximate Nearest
Neighbor: Towards Removing the Curse of Dimensionality. Theory of Computing
8,1(2012), 321-350. https://doi.org/10.4086/toc.2012.v008a014

Joseph Hellerstein, Elias Koutsoupias, Daniel Miranker, Christos Papadimitriou,
and Samoladas Vasilis. 2002. On a Model of Indexability and Its Bounds for Range
Queries. 7. ACM 49, 1 (2002), 35-55.

Joseph Hellerstein, Elias Koutsoupias, and Christos Papadimitriou. 1997. On
the Analysis of Indexing Schemes. In Proceedings of 16th ACM Symposium on
Principles of Database Systems (PODS). ACM, 249-256.

[19] Joseph.M. Hellerstein, Jeffrey. F. Naughton, and Avi Pfeffer. 1995. Generalized

Search Tree for Database Systems. In Proceedings of 21th International Conference
on Very Large Data Bases (VLDB). ACM, 562-573.

Xiaocheng Hu, Miao Qiao, and Yufei Tao. 2014. Independent range sampling.
In Proceedings of 33rd ACM Symposium on Principles of database systems (PODS).
ACM, 246-255.

Xiao Hu, Ke Yi, and Yufei Tao. 2019. Output-Optimal Massively Parallel Algo-
rithms for Similarity Joins. ACM Transactions on Database Systems 44, 2 (April
2019), 1-36. https://doi.org/10.1145/3311967

Piotr Indyk. 2001. On approximate nearest neighbors under I, norm. J. Comput.
System Sci. 63, 4 (2001), 627-638.

Piotr Indyk. 2007. Uncertainty principles, extractors, and explicit embeddings
of L2 into L1. In Proceedings of 39th ACM Symposium on Theory of Computing
(STOC). 615-620. https://doi.org/10.1145/1250790.1250881

Michael Kapralov. 2015. Smooth tradeoffs between insert and query complexity
in nearest neighbor search. In Proceedings of 34th ACM Symposium on Principles
of Database Systems (PODS). ACM, 329-342.

Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. 2000. Efficient search for
approximate nearest neighbor in high dimensional spaces. SIAM J. Comput. 30, 2

[26

[27

[28

[29

@
=

[31

[32

[33

[35

[36

(37]

[38

(2000), 457-474.

Kasper Green Larsen and Jelani Nelson. 2017. Optimality of the Johnson-
Lindenstrauss lemma. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 633-638.

Kasper Green Larsen and Freek Van Walderveen. 2013. Near-optimal range report-
ing structures for categorical data. In Proceedings of 24th ACM-SIAM symposium
on discrete algorithms (SODA). SIAM, 265-276.

Jifi Matousek. 1996. On the distortion required for embedding finite metric spaces

into normed spaces. Israel Journal of Mathematics 93, 1 (1996), 333-344.
Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227-2240.

Anna Ostlin and Rasmus Pagh. 2002. One-Probe Search. In Proceedings of 29th
international colloquium on automata, languages and programming (ICALP). 439-
450.

Rina Panigrahy, Kunal Talwar, and Udi Wieder. 2010. Lower bounds on near
neighbor search via metric expansion. In 2010 IEEE 51st Symposium on Foundations
of Computer Science. IEEE, 805-814.

Vladimir Pestov. 2013. Lower bounds on performance of metric tree indexing
schemes for exact similarity search in high dimensions. Algorithmica 66, 2 (2013),
310-328.

Vladimir Pestov and Aleksandar Stojmirovi¢. 2006. Indexing schemes for sim-
ilarity search: An illustrated paradigm. Fundamenta Informaticae 70, 4 (2006),
367-385.

Aviad Rubinstein. 2018. Hardness of approximate nearest neighbor search. In
Proceedings of 50th ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, Ilias Diakonikolas, David Kempe, and
Monika Henzinger (Eds.). ACM, 1260-1268. https://doi.org/10.1145/3188745.
3188916

Micha Streppel and Ke Yi. 2011. Approximate range searching in external memory.
Algorithmica 59, 2 (2011), 115-128.

Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2010. Efficient and accurate
nearest neighbor and closest pair search in high-dimensional space. ACM Trans.
Database Syst. 35, 3 (2010), 20:1-20:46. https://doi.org/10.1145/1806907.1806912
Zhewei Wei, Ke Yi, and Qin Zhang. 2009. Dynamic external hashing: The limit
of buffering. In Proceedings of 21st symposium on Parallelism in algorithms and
architectures. ACM, 253-259.

Ke Yi. 2009. Dynamic indexability and lower bounds for dynamic one-dimensional

range query indexes. In Proceedings of 28th ACM Symposium on Principles of
Database Systems (PODS). ACM, 187-196.

https://doi.org/10.1109/FOCS.2004.12
http://www.vldb.org/conf/1999/P49.pdf
http://www.vldb.org/conf/1999/P49.pdf
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1145/3311967
https://doi.org/10.1145/1250790.1250881
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1145/1806907.1806912

	Abstract
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	2.1 Approximate indexing schemes

	3 A 3-approximation indexing scheme for general metrics
	4 Lower bounds
	4.1 Lower bound for the L-infinity metric
	4.2 Lower Bound for the Hamming metric

	5 Hamming metric indexing scheme
	6 Conclusion and open problems
	References

