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Abstract
Optimization methods are a common tool 

to maximize the performance of wireless  net-
works and systems. When addressing complex 
optimization problems in wireless networks, a 
key technical challenge is to find an optimal or 
near-optimal solution in real-time, especially when 
such a timing constraint is extremely short. Due 
to this challenge, there is usually a serious dis-
parity between what a system can achieve opti-
mally (if an optimal solution were found in real 
time) and what is actually achieved in the field 
(due to the use of fast heuristics). In this article, 
we present a novel approach that exploits prob-
lem decomposition techniques and the massive 
parallel processing capability of GPU platforms to 
address this challenge. Under the new approach, 
an original complex optimization problem is 
first decomposed into a large number of small 
and mutually independent sub-problems. Then 
the resulting sub-problems are fitted into mas-
sively parallel GPU cores and solved simultane-
ously. The optimal (or near-optimal) solution is 
chosen among the solutions from all the parallel 
sub-problems solved by GPU. We use the clas-
sic proportional-fair (PF) scheduling problem in 
5G cellular networks as a case study to illustrate 
this approach. Finally, we briefly review recent 
advances in applying this approach to addressing 
a wide array of real-time optimization problems in 
wireless networks.

Introduction
There is a growing demand on wireless networks 
to offer higher throughput, lower latency, and 
more connectivity. Despite advances of radio 
access technologies at the physical (PHY) layer, 
the performance of wireless networks remains 
constrained by limited frequency spectrum, unre-
liable channel conditions, complex interference, 
and battery. To get the most of current and future 
generations of wireless networks, it is important to 
optimally design and utilize network infrastructure 
and radio resources across multiple domains (fre-
quency, time, spatial, and power).

In this endeavor, optimization methods are 
often used as a primary tool by researchers and 
operators. Typically, a resource optimization prob-
lem involving design variables at multiple layers 
such as routing, scheduling, power control, and 
beamforming, among others, is first formulated as 
a mathematical program, in the form of an objec-
tive function1 and a set of constraints [1]. Due 

to the presence of integer decision variables and 
nonlinear functions in many of these problems, 
they are typically NP-hard and cannot be solved 
optimally in real time. So in most cases, one 
needs to develop a near-optimal solution (prov-
ably or heuristic). As expected, the better the per-
formance of the objective value, the higher the 
complexity of the underlying solution.

In practice, the allowed time scale to compute 
an optimal (or near-optimal) solution to an opti-
mization problem depends on the nature of the 
problem and can be very limited. For example, in 
4G LTE, the duration of a transmission sub-frame 
is only 1 ms [2]. Since radio resources in LTE must 
be allocated for every sub-frame, the scheduling 
solution for each sub-frame must be determined 
under 1 ms.2 But such timing requirement has 
posed a serious challenge, which we call the 
real-time challenge of finding an optimal (or 
near-optimal) solution. Even more so, as wireless 
communications evolve from 4G LTE to 5G, 6G 
and beyond, the timing requirement from either 
the applications or the radio interface appears 
to become drastically more stringent. For exam-
ple, under the OFDM numerologies defined in 
5G standards [4], the minimum duration for data 
transmission is merely 125 ms (for time slot based 
transmission), which is almost one order of magni-
tude shorter than 4G LTE (1 ms).

Such real-time requirements, although criti-
cal for wireless networks in the field, have never 
been a focus in traditional optimization meth-
ods. In fact, the mainstream of research works 
on wireless network optimizations relies on the 
asymptotic complexity analysis (either in time 
or space) for designing solution algorithms. But 
asymptotic complexity analysis of an algorithm 
is only concerned with the growth of its compu-
tational complexity as the input size n increases 
(i.e., expressed in the big-O notation [5]). It is far 
from adequate to address real-time requirements 
that are measured in wall-clock time, (i.e., in terms 
of ms or ms). For example, with an input size n = 
100 (e.g., the number of users in a macro cell), 
an algorithm (A1) with complexity 0.1n3 may be 
10 faster than another algorithm (A2) with com-
plexity 100n2. Although with a higher asymptotic 
complexity O(n3), A1 is a faster algorithm than A2 
as measured in wall-clock time for a given input 
size n = 100 and may meet real-time requirement 
in the field. That is, the actual computation time 
performance of an algorithm for a given problem 
size could be more important than merely lower 
asymptotic complexity of the algorithm.
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1 Multiple objectives are 
possible under multi-criteria 

optimization.

2 The computation of sched-
uling solutions, the delivery 

of scheduling grants to users, 
and the actual data trans-
missions may not happen 

within the same sub-frame. 
For example, the time gap 
between scheduling grant 

and uplink data transmission 
is at least 4 ms [3].

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.011.2000016

Yan Huang, Shaoran Li, Yongce Chen, Y. Thomas Hou (corresponding author), and Wenjing Lou are with Virginia Polytechnic Institute and State University;  
James Delfeld and Vikrama Ditya are with NVIDIA Corporation.

HUANG_LAYOUT.indd   77HUANG_LAYOUT.indd   77 11/19/20   3:40 PM11/19/20   3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 202078

In this article, we use wall-clock time as the 
ultimate benchmark for timing complexity when 
developing a solution to an optimization prob-
lem. We present a novel GPU-based optimization 
approach to addressing this real-time challenge. 
Our proposed approach decomposes a complex 
optimization problem into a large number of inde-
pendent and structurally-identical small problems 
and exploits GPU’s massive low-cost parallel pro-
cessing capability to find an optimal (or near-op-
timal) solution in real time. There are two basic 
assumptions for our GPU-based optimization 
approach. First, the optimization problem should 
include integer variables, i.e, the problem should 
belong to mixed-integer linear program (MILP) 
or mixed-integer nonlinear program (MINLP) 
(or integer linear program (ILP)/integer nonlin-
ear program (INLP)). This is necessary so that the 
original problem can be decomposed into a large 
number of sub-problems. Such decomposition is 
usually done by fixing values for integer variables. 
Second, we assume the optimization problem is 
solved by a central controller in the network that 
has all the information needed for the optimiza-
tion problem.

In the rest of this article, we first review exist-
ing solution approaches (based on wall-clock per-
formance) and discuss their limitations. Then we 
present the new GPU-based approach to solving 
complex optimization problems in real time. Final-
ly, we review recent advances in this direction.

Existing Approaches: A State of the Art
In this section, we classify existing optimization 
methods in wireless networks based on their wall-
clock time performance. In this regard, we classify 
three approaches: 
•	 Offline optimization methods that can find 

optimal (or near-optimal) solutions but usual-
ly incur excessive computation time.

•	 Fast heuristic algorithms which have the goal 
of pursuing good solutions (not necessarily 
optimal or near-optimal) and only require 
polynomial-time complexity (but still may not 
meet real-time requirement).

•	 Industry-grade real-time solutions that can 
meet real-time requirement but usually with 
performance far from optimum.

Offline Optimization Methods
Consider a typical mathematical formulation of 
an optimization problem from wireless networks 
that consists of an objective function and a set 
of constraints depicting its feasible region. When 
such a problem involves integer variables (com-
monly encountered in scheduling and routing) 
and nonlinear functions (e.g., logarithmic function 
to calculate channel capacity), the process of find-
ing an optimal (or near-optimal) solution can be 
computationally intensive, particularly when the 
search space (i.e., feasible region) is large.

One effective approach to addressing such 
combinatorial optimization problems is to relax 
the original problem into a linear programming 
(LP) or nonlinear programming (NLP) problem. 

The relaxed problems can be solved by the classic 
simplex algorithm (for LP) or convex optimization 
methods (for convex NLP or convex hull relax-
ations). When the solution to the relaxed problem 
is infeasible to the original problem, one can use 
a local search to find a feasible solution. Since 
simplex and convex methods involve a large num-
ber of iterations, such an approach usually cannot 
meet real-time requirement.

For MILPs, cutting plane (CP) is a widely used 
method to find optimal solutions. CP iteratively 
solves LP relaxations of an MILP and adds lin-
ear “cut” constraints without excluding integer 
feasible points until an optimal solution is found. 
Another class of solution methods is branch-and-
bound (BB), which can be used for solving both 
MILPs and MINLPs. BB is a tree-search algorithm 
that keeps track of upper and lower bounds on 
the optimal solution and uses these bounds to 
prune branches of the tree that do not contain an 
optimal solution. By relaxing the optimality criteri-
on, BB can also be used to find solutions within 
1 ± e of the optimum for any small positive value 
e. Furthermore, a very popular solution approach 
is branch-and-cut (BC), which combines BB with 
CP. Basically, BC uses CP in addition to LP relax-
ations in the bounding steps, and is able to obtain 
tighter bounds compared to BB. Although BB, CP 
or BC can eventually find optimal (or near-opti-
mal) solutions, their computation time is long and 
increases exponentially as problem size increas-
es. For example, a resource scheduling problem 
in a 4G LTE or 5G NR cell may involve tens of 
thousands of integer variables and constraints. A 
solution based on BC may take tens of seconds 
or even hours to find a near-optimal solution with 
e = 5 percent [6]. Such performance in wall-clock 
time limits these methods to be only useful as 
offline benchmark solutions.

Fast Heuristics Methods
Since an exact optimization method such as BC is 
too slow to be useful in the field, researchers are 
pressed to design fast heuristic algorithms. A heu-
ristic represents a problem-solving scheme that is 
not guaranteed to be optimal for a given problem 
objective, but is believed or empirically validated 
to be able to achieve good performance. Compu-
tational time complexity of a heuristic is expected 
to be in polynomial-time and a common goal is 
to make its order (measured in O(·)) as low as 
possible.

There are many different types of heuristics 
for solving optimization problems in wireless net-
works, such as local search, greedy algorithm, 
and iterative partial fixing, to name a few. Greedy 
algorithm is a heuristic scheme that always makes 
locally optimal choices throughout the iterations. 
For instance, a greedy scheduling algorithm will 
assign each resource unit to a user that has the 
highest data rate on it, regardless of the global 
optimization objective. Local search is a heuristic 
method that only explores candidate solutions 
within a local sub-space instead of the entire 
problem feasible region. With iterative partial fix-
ing, different subsets of variables are fixed and 
optimized iteratively (in each iteration optimizing 
one subset of variables while all other variables 
are fixed) until there is no significant change of 
variable values. In general, heuristics are designed 

Only until very recently did the community get a glimpse of what a possible approach to achieving this 
might be, that is, the use of GPU in solving optimization problems in real time.
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to solve specific problems and may have very 
diverse features and properties. 

Although a heuristic algorithm may be of low 
polynomial-time complexity, there is no guarantee 
that it can meet real-time requirement. For exam-
ple, as shown in [10], many state-of-the-art heu-
ristics for proportional-fair (PF) scheduling are of 
polynomial-time complexities. But none of them 
is able to meet the stringent real-time requirement 
in 5G NR. As a result, the common wisdom held 
in the research community that a polynomial-time 
algorithm is sufficient is simply false as there is 
no guarantee that such an algorithm can meet 
real-time requirement. In fact, many well-known 
heuristic solutions in the literature can hardly satis-
fy real-time requirement (under any known imple-
mentation).

Industrial-Grade Real-Time Solutions
Given the limitations of offline optimization 
methods and fast heuristic algorithms, wireless 
engineers in the field have to resort to extremely 
simple solutions that can meet real-time require-
ment. But unfortunately, many of these solutions 
offer performance that is far from optimum (in 
terms of objective value).

An example of industry-grade real-time algo-
rithms is the round-robin (RR) algorithm for 
resource scheduling in cellular networks [7]. 
Here, the real-time requirement for allocating 
100s of resource blocks (RBs) on a channel to 
100s of users is 1 ms in 4G LTE and sub-1 ms in 
5G NR. To reduce complexity, RR bundles RBs 
within each transmission time interval (TTI) into 
multiple RB groups (RBGs) and assigns these 
RBGs to users in a cyclic manner regardless of 
the users’ channel conditions. RR is attractive 
for its simplicity and low computation cost and 
can be easily implemented to meet real-time 
requirement.

In summary, algorithms used in the field are 
designed with real-time consideration as their first 
and foremost criterion. However, such an algo-
rithm may experience severely compromised per-
formance in terms of optimization objective. As of 
today, optimal (or near-optimal) solutions to most 
of the complex optimization problems in wireless 
networks can hardly be obtained in real time. As a 
result, there is a serious disparity between what a 
wireless network may achieve optimally (through 
the use of offline optimization methods) and what 
this same network is currently offering in the real 
world.

GPU-Based Solution Approach: 
A New Direction

Given the limitations of existing approaches, 
one may wonder whether or not it is possible to 
achieve the best of both worlds, that is, solving 
hard problems with optimal/near-optimal perfor-
mance (as offline optimization methods) while still 
meeting real-time requirements (as industry-grade 
solutions). This objective has remained a holy grail 
for academia and industry for decades. Only until 
very recently did the community get a glimpse of 
what a possible approach to achieving this might 
be, that is, the use of GPU in solving optimization 
problems in real time. In this section, we offer an 
overview of this new approach.

Basic Idea
The core of this new approach is to decom-
pose an original optimization problem into 
a large number of small and independent 
sub-problems that have the same mathemati-
cal structure, and then employ a GPU’s mas-
sive parallel processing cores to solve the 
sub-problems in parallel. A key in the problem 
decomposition step is to ensure independence 
among all sub-problems. This will ensure that 
they can be solved simultaneously without any 
inter-process communications, which are cost-
ly in time. In addition, each small sub-problem 
should have the same mathematical structure 
and problem size so that they can be solved 
using the same set of instructions that are 
implemented across all GPU cores in a sin-
gle-instruction multiple-data (SIMD) manner.3 
Under SIMD, the sub-problems are solved at 
about the same time on GPU. Then the final 
output solution (to the original problem) can 
be found by comparing the objective values 
achieved among the sub-problem solutions.

The motivation to this approach is twofold. 
First, the modern GPU platform offers massive 
parallel processing capability that was once 
unimaginable and has never been exploited to 
solve real-time optimization problems. Second, 
for a complex combinatorial optimization prob-
lem, there may exist some approach to decom-
posing the original problem into a large number 
of tiny sub-problems where the solution to each 
sub-problem is simple enough that it can just 
be handled easily by a GPU core in real-time. 
Therefore, the success of this approach hinges 
upon a deep knowledge of the capability and 
limitation of a GPU architecture and the math-
ematical techniques to decompose a complex 
combinatorial optimization problem into tiny 
sub-problems that can match nicely to a given 
GPU architecture.

In the rest of this section, we review the state-
of-the-art of GPU architecture. We also compare 
GPU with other computing platforms such as 
CPU-based parallel computing, FPGA, and ASIC 
based solutions. In the next section, we use a 
case study to show how a complex combinato-
rial optimization problem can be decomposed 
into numerous sub-problems and how a GPU 
can be used to find a near-optimal solution in 
real time.

FIGURE 1. An illustration of GPU architecture. This 
diagram omits many components on a GPU 
such as L1/L2 caches, memory controllers, 
warp schedulers and so on.
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3 SIMD means that the same 
operation instruction is exe-
cuted by multiple processing 
elements at different data 
points [8]. In contrast, multi-
ple-instruction multiple-data 
(MIMD) machines have 
processing elements perform 
different instructions at differ-
ent data points.
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GPU Architecture
The architecture of a GPU is best illustrated with 
an example. Figure 1 illustrates a GPU architec-
ture from NVIDIA.4 A GPU is generally composed 
of multiple streaming multi-processors (SMs), with 
each SM consisting of a large number of parallel 
processing cores (a.k.a., CUDA cores). The mas-
sive processing cores on a GPU offer enormous 
capability for large-scale parallel computing. GPU 
has a hierarchical memory structure as shown in 
Fig. 1. Specifically, a GPU has its own on-board 
global memory, which can be accessed by all SMs 
within the GPU. In addition, each SM has local 
shared memory that can be used for data com-
munication among processing cores on the SM. 
Further, there are registers that are only accessible 
to each processing core. An important feature of 
GPU memory hierarchy is that each type of mem-
ory has very different access speed. Local registers 
in a processing core are the fastest. Shared mem-
ories are also very fast for data sharing within the 
SM. But access to global memory is much slower 
than registers and shared memories. The proper 
usage of a GPU’s hierarchical memories is a key 
to algorithm design and implementation for meet-
ing real-time requirement.

On the software side, the CUDA programming 
tool [9] is available to program NVIDIA GPUs for 
parallel computing. It offers highly flexible pro-
gramming interfaces to directly control the mas-
sive CUDA cores. Under CUDA, a kernel (i.e., a 
function to be executed on GPU) is composed of 
multiple thread blocks (TBs) and each TB further 
consists of a large number of concurrent threads 
(up to 1024). During execution, each TB is run 
by a single SM, while an SM may be assigned to 
multiple TBs. All threads in a TB will be scheduled 
to utilize the CUDA cores within an SM for exe-
cuting their programmed instructions.

GPU vs. Other Computing Platforms
Given that there are other parallel computing plat-
forms available, a natural question to ask is why a 
GPU-based approach is more desirable here. To 
address this question, we have prepared a table 
for the comparison between GPU and other plat-
forms including CPU, FPGA and ASIC, as shown 
in Table 1.

As described earlier, the key idea behind our 
real-time solution design is to first decompose 
an optimization problem into a large number 

of structurally-identical sub-problems and then 
solve the sub-problems through a SIMD com-
puting architecture. Thus an important criterion 
for selecting a computing platform is how much 
SIMD parallelism a platform can offer. As shown 
in Table 1, GPU is much more capable than CPU 
in terms of large-scale SIMD thanks to its massive 
parallel CUDA cores, making it a better choice for 
implementing our solution design.

Although FPGA can also offer a high level of 
parallelism, its total number of parallel process-
ing units is no match to that from a GPU. In 
addition, unlike GPU, FPGA is very inefficient for 
floating-point processing, which is necessary for 
addressing many optimization problems in wire-
less networks.

Compared with ASIC, the major advantages 
of GPU are that it is general-purpose, of low-cost, 
and available off-the-shelf. In contrast, the devel-
opment of ASIC for a specific algorithm is expen-
sive (both time and labor). Further, it is difficult 
to make changes once an ASIC is made, which 
is undesirable as algorithms are bound to evolve 
over time.

A Case Study:  
GPU-Based Real-Time Scheduler for 5G

As a case study to demonstrate how one can 
decompose a complex combinatorial optimiza-
tion problem and use GPU cores to solve the 
resulting sub-problems in parallel, consider the 
classic PF resource scheduling in 5G NR [10].

The Problem
In 5G NR, the minimum time resolution for 
resource scheduling is 125 ms under OFDM 
Numerology 3 [4, 10]. This means that the real-
time requirement for finding a scheduling solution 
should be no more than 125 ms. This is almost an 
order of magnitude shorter than 4G LTE, which 
has a 1 ms time interval for making a scheduling 
decision.

The PF scheduling problem involves the allo-
cation of 100s of resource blocks (RBs) to up to 
100 users in a cell, and the selection of one out 
of 29 modulation and coding schemes (MCSs) 
for each user. The optimization objective is to 
maximize the PF among all users, defined as 
S ilog ~Ri, where ~Ri is the long-term average data 
rate of user i.

TABLE 1. Comparison of GPU to other parallel computing platforms. 

Platform GPU CPU FGPA ASIC

Key features

> 1000 cores, general-
purpose, optimized for 

SIMD, off-the-shelf, high 
throughput

~10s cores, general-
purpose, optimized for 
MIMD, off-the-shelf, 

high clock speed

Massive re-programmable logic blocks, 
general-purpose, optimized for fixed-

point operations, off-the-shelf, suitable 
for low-volume hardware validation

Massive permanent logic gates, manufactured 
for customized design, application-specific, 

optimized for fixed-point operations, suitable for 
high-volume production

SIMD parallelism High Low Medium Design-dependent

Programming flexibility High High Low Low

Reprogrammable Yes Yes Yes No

Floating-point efficiency High High Low Low

Off-the-shelf Yes Yes Yes No

Power efficiency Medium Medium High High

4 We choose to use NVIDIA 
GPU in our illustration due to 
the popularity of NVIDIA’s 
CUDA programming plat-
form [9] and the large user 
base of NVIDIA GPUs in the 
industry.

HUANG_LAYOUT.indd   80HUANG_LAYOUT.indd   80 11/19/20   3:40 PM11/19/20   3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 2020 81

This PF scheduling problem has been proved 
to be NP-hard [11], which is attributed to the 
following complexities. First, each user’s channel 
conditions vary across different RBs due to fre-
quency-selective channel fading. Second, a user 
must employ the same MCS for all of its allocated 
RBs to generate the transport block. In 5G NR, 
29 MCS levels [12] are defined, where a higher 
MCS level corresponds to a higher spectral effi-
ciency ((b/s)/Hz) but requires a better channel 
quality. In particular, an RB can only off er a non-
zero achievable data rate when the underlying 
user channel quality is no worse than the select-
ed MCS’s requirement. Otherwise, this RB will 
not be able to off er any usable throughput if the 
channel quality cannot match up to the select-
ed MCS. This MCS selection problem is clearly a 
trade-off  between higher throughput per RB and 
the number of RBs that can indeed contribute to 
such throughput.

solutIon dEsIgn
The proposed solution is shown in Fig. 2. The 
fi rst step is to decompose the original PF optimi-
zation problem into a large number of sub-prob-
lems. There may exist diff erent ways to achieve 
this but it is suffi  cient to illustrate one that works. 
Specifically, we can decompose the original 
problem by fixing the choice of MCS for each 
user. For instance, when there are 100 users in 
the cell, we have a total of 29100 sub-problems, 
where each sub-problem has a fixed (given) 
MCS selection for each user. Then for each 
sub-problem we only need to find the optimal 
RB allocation among all users, which is a much 
smaller problem.

Based on this decomposition, the optimal solu-
tion to the original PF problem can be determined 
by solving all sub-problems and then identifying 
one solution that has the maximum PF objective 
value. But clearly, 29100 is too large to fi t into the 
available CUDA cores on a GPU. So our next 
step is to determine a smaller set of sub-problems 
from which it is more likely to fi nd an optimal or 
near-optimal solution. This is called intensifi cation 
in optimization [13]. Once we identify such a sub-
space, we can fit the sub-problems in this space 
into GPU cores.

As a fi rst step to reduce the number of sub-prob-
lems, we can consider the most promising choice 
of MCS levels, instead of enumerating all of them. 

One plausible choice is to limit the range of MCS 
to the highest several levels. For example, we could 
consider only the three highest MCS levels that 
can off er nonzero data rates on some RBs for each 
user (e.g., MCS 7, 8 and 9 for user 1, MCS 20, 21, 
and 22 for user 2, and so forth). Consequently, the 
number of sub-problems will be reduced to 3100, 
which is much smaller than 29100.

However, 3100 is still too large compared to 
the number of CUDA cores on a GPU. Next, we 
perform a random sampling over the search sub-
space to select a small subset of sub-problems. 
The size of the subset depends on how many 
CUDA cores are available. This sampling can be 
done by randomly choosing the MCS for each 
user from its highest three feasible MCS levels. 
After this sampling step, all selected sub-problems 
will be solved (fi nding the optimal RB allocation) 
in parallel on GPU. Then the fi nal output solution 
is determined by fi nding the sub-problem solution 
that achieves the highest PF objective value.

The success of the two steps (intensification 
and sampling) in reducing the problem space 
hinges upon the characteristics of the original 
problem as well as its physical properties. These 
steps are necessary to fit a large-scale combi-
natorial optimization problem into GPU cores. 
Each problem may call for a unique approach to 
accomplishing this goal. Most importantly, one 
must justify that they can still get an optimal or 
near-optimal solution after these steps. For this 
particular PF scheduling problem, there is some 
rigorous science (based on probability theory 
and empirical data) behind the intensifi cation and 
sampling steps that guarantees one can find a 
near-optimal solution. For readers who are inter-
ested in the details, we refer them to [10].

pErformAncE
We implemented this GPU-based PF scheduler on 
an NVIDIA Quadro P6000 GPU, which has 30 
SMs and 128 CUDA cores per SM (3840 total-
ly). Experimental results with 100 RBs on a 20 
MHz channel, 29 MCS levels (following 5G NR 
[12]), and diff erent numbers of users per cell (25, 
50, 75, and 100) are given in Table 2. For find-
ing optimal solutions, we used the same desktop 
computer that is equipped with the GPU. Instead 
of using the GPU, we used the default CPU in the 
desktop, which is an Intel Xeon E5-2687W v4. For 
the solver, we employed the IBM CPLEX Optimiz-
er (version 12.7.1). Results of normalized objec-
tive values were obtained by normalizing our 
experimental results with respect to the optimal 
objectives. We see that in all cases the scheduler 
can find near-optimal solutions and the average 
computation time is well within the 125 ms real-
time requirement.

rEcEnt dEvElopmEnts
The proposed GPU-based solution approach has 
the potential to solve many complex real-time 
optimization problems arising from wireless net-
works. In this section, we describe some recent 
advances in applying this approach to problems 
in a wide range of areas, including hybrid beam-
forming (HB) for millimeter wave (mmWave) mas-
sive MIMO, LTE/WiFi coexistence in unlicensed 
spectrum, and joint scheduling and power con-
trol.

FIGURE 2. A diagram for the GPU-based PF schedul-
er design. The design includes three steps: 
1) decomposition of the original problem into 
a large number of sub-problems, 2) selection 
of sub-problems to fi t the available GPU cores, 
and 3) parallel processing of sub-problems on 
GPU cores.
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HB for mmWave MIMO
HB uses a fewer number of RF chains than the 
total number of antennas and is considered a 
practical solution to implement massive MIMO 
beamforming in mmWave frequency bands. HB 
consists of both analog and digital beamforming. 
A critical challenge in HB is to compute digital 
beamforming weights in real time, where the tim-
ing requirement can be as short as 1 ms. How-
ever, almost all research efforts on HB remain 
theoretical and none of the state-of-the-art efforts 
is able to meet this real-time requirement. Recent-
ly, a GPU-based solution was proposed in [14] to 
compute digital beamforming weights in real time. 
Specifically, the design reduces the complexity of 
singular-value-decomposition (SVD) by exploiting 
the sparsity of channel matrices in the mmWave 
band. Further, multi-user MIMO beamforming 
across all RBs on the channel is decomposed into 
a large number of independent single-user MIMO 
beamforming sub-problems, which have the same 
structure and much smaller problem size. Then 
these single-user bearmforming problems are 
computed in parallel using GPU cores. Implemen-
tation of this approach demonstrated that it can 
meet the 1 ms real-time requirement, which is a 
major milestone to demonstrate that the HB tech-
nique is feasible for deployment in the field.

LTE/WiFi Coexistence in Unlicensed Spectrum
Carrier sensing adaptive transmission (CSAT) is a 
promising technique to achieve LTE/WiFi coexis-
tence in the unlicensed band. Under CSAT, an LTE 
scheduler needs to decide the channel selection 
for uplink (UL) and downlink (DL) traffic, the divi-
sion of air time for LTE and WiFi per channel, and 
resource allocation within LTE’s “on” periods. The 
scheduler must minimize the adverse impact of 
LTE on WiFi while meeting LTE users’ UL and DL 
rate requirements. Here the real-time requirement 
is that LTE scheduling time interval is only 1 ms, 
meaning that an optimal or near-optimal solution 
must be found within this time interval. None of 
the existing LTE schedulers designed for licensed 
spectrum can be easily extended to address this 
new coexistence problem. In a recent work [6], a 
GPU-based solution was proposed to address this 
optimal scheduling problem in real time. The orig-
inal optimization problem is decomposed into a 
large number of feasibility-check sub-problems by 
fixing channel assignment variables and objective 
values. By evaluating all feasibility checks using 
GPU cores in parallel, a near-optimal scheduling 
solution can be determined within the 1 ms tim-
ing requirement.

Joint Scheduling and Power Control
In underlay coexistence, secondary users are 
allowed to be active simultaneously as the pri-
mary users as long as their interference to the 
primary users is under control. This can be 

achieved through judicious design of joint sched-
uling and power control of secondary users. In 
[15], this problem was studied under a sched-
uling time constraint of 250 ms, which can meet 
Numerology 0, 1, and 2 in 5G NR. The authors 
employed chance-constrained programming to 
address channel uncertainty from the prima-
ry users to the secondary users. The proposed 
solution scheme consists of three steps. The first 
step is to decompose the original problem into 
a large number of sub-problems by enumerating 
all possible scheduling decisions. Then a subset 
of sub-problems is selected (based on second-
ary users’ channel conditions) to fit the available 
GPU cores. The last step is to solve selected 
sub-problems on the GPU based on closed-form 
starting point initialization and scaling-based 
local search. The final output solution is deter-
mined by finding the best sub-problem solution. 
Experimental results confirm that the proposed 
solution achieves 90 percent-optimality on aver-
age within 150 ms.

Conclusion and Future Work
A holy grail in wireless networks (as well as in 
many other systems) is to solve complex opti-
mization problems in real time. In this article, 
we proposed a novel GPU-based solution 
design that was shown to be highly effective in 
addressing this challenge, particularly for com-
plex combinatorial optimization problems involv-
ing integer decision variables. The proposed 
approach hinges upon effective problem decom-
position techniques to transform an original 
combinatorial optimization problem into a large 
number of tiny sub-problems, each of which is 
easy to solve and independent from each other. 
Then by employing the massive SIMD paral-
lel processing capability of the GPU platform 
and a high-level programming language (e.g., 
CUDA), we showed that an optimal or near-op-
timal solution can be obtained in real time. We 
used a classic PF scheduling problem in 5G NR 
as a case study to illustrate the efficacy of this 
approach. Further, we offered a brief review of 
recent advances in applying such an approach to 
addressing a number of hard optimization prob-
lems in wireless networks. Although this novel 
approach is still in its infancy, we believe it has 
the potential to be applied in the real world 
when there is a need to solve complex optimi-
zation problems in real time. As future work, 
we will explore more advanced techniques to 
further improve this GPU-based optimization 
approach. Potential improvements include using 
machine learning methods to help identify prom-
ising search sub-space for sub-problem sampling, 
employing hybrid CPU/GPU architectures to fur-
ther enhance the parallelism of the algorithm, 
and investigating the provable performance gap 
of this approach to the global optimum.
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TABLE 2. Experimental results of the GPU-based PF scheduler.

Number of users 25 50 75 100

Average time to compute optimum (ms) 3.20  106 1.06  107 1.82  107 3.02  107

Average comput. time by GPU (ms) 96.16 94.93 112.60 116.21

Normalized objective by GPU (%) 94.65 98.66 98.76 99.53
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