
77IEEE Network • November/December 2020 0890-8044/20/$25.00 © 2020 IEEE

Abstract
Optimization methods are a common tool

to maximize the performance of wireless net-
works and systems. When addressing complex
optimization problems in wireless networks, a
key technical challenge is to find an optimal or
near-optimal solution in real-time, especially when
such a timing constraint is extremely short. Due
to this challenge, there is usually a serious dis-
parity between what a system can achieve opti-
mally (if an optimal solution were found in real
time) and what is actually achieved in the field
(due to the use of fast heuristics). In this article,
we present a novel approach that exploits prob-
lem decomposition techniques and the massive
parallel processing capability of GPU platforms to
address this challenge. Under the new approach,
an original complex optimization problem is
first decomposed into a large number of small
and mutually independent sub-problems. Then
the resulting sub-problems are fitted into mas-
sively parallel GPU cores and solved simultane-
ously. The optimal (or near-optimal) solution is
chosen among the solutions from all the parallel
sub-problems solved by GPU. We use the clas-
sic proportional-fair (PF) scheduling problem in
5G cellular networks as a case study to illustrate
this approach. Finally, we briefly review recent
advances in applying this approach to addressing
a wide array of real-time optimization problems in
wireless networks.

Introduction
There is a growing demand on wireless networks
to offer higher throughput, lower latency, and
more connectivity. Despite advances of radio
access technologies at the physical (PHY) layer,
the performance of wireless networks remains
constrained by limited frequency spectrum, unre-
liable channel conditions, complex interference,
and battery. To get the most of current and future
generations of wireless networks, it is important to
optimally design and utilize network infrastructure
and radio resources across multiple domains (fre-
quency, time, spatial, and power).

In this endeavor, optimization methods are
often used as a primary tool by researchers and
operators. Typically, a resource optimization prob-
lem involving design variables at multiple layers
such as routing, scheduling, power control, and
beamforming, among others, is first formulated as
a mathematical program, in the form of an objec-
tive function1 and a set of constraints [1]. Due

to the presence of integer decision variables and
nonlinear functions in many of these problems,
they are typically NP-hard and cannot be solved
optimally in real time. So in most cases, one
needs to develop a near-optimal solution (prov-
ably or heuristic). As expected, the better the per-
formance of the objective value, the higher the
complexity of the underlying solution.

In practice, the allowed time scale to compute
an optimal (or near-optimal) solution to an opti-
mization problem depends on the nature of the
problem and can be very limited. For example, in
4G LTE, the duration of a transmission sub-frame
is only 1 ms [2]. Since radio resources in LTE must
be allocated for every sub-frame, the scheduling
solution for each sub-frame must be determined
under 1 ms.2 But such timing requirement has
posed a serious challenge, which we call the
real-time challenge of finding an optimal (or
near-optimal) solution. Even more so, as wireless
communications evolve from 4G LTE to 5G, 6G
and beyond, the timing requirement from either
the applications or the radio interface appears
to become drastically more stringent. For exam-
ple, under the OFDM numerologies defined in
5G standards [4], the minimum duration for data
transmission is merely 125 ms (for time slot based
transmission), which is almost one order of magni-
tude shorter than 4G LTE (1 ms).

Such real-time requirements, although criti-
cal for wireless networks in the field, have never
been a focus in traditional optimization meth-
ods. In fact, the mainstream of research works
on wireless network optimizations relies on the
asymptotic complexity analysis (either in time
or space) for designing solution algorithms. But
asymptotic complexity analysis of an algorithm
is only concerned with the growth of its compu-
tational complexity as the input size n increases
(i.e., expressed in the big-O notation [5]). It is far
from adequate to address real-time requirements
that are measured in wall-clock time, (i.e., in terms
of ms or ms). For example, with an input size n =
100 (e.g., the number of users in a macro cell),
an algorithm (A1) with complexity 0.1n3 may be
10 faster than another algorithm (A2) with com-
plexity 100n2. Although with a higher asymptotic
complexity O(n3), A1 is a faster algorithm than A2
as measured in wall-clock time for a given input
size n = 100 and may meet real-time requirement
in the field. That is, the actual computation time
performance of an algorithm for a given problem
size could be more important than merely lower
asymptotic complexity of the algorithm.

GPU: A New Enabling Platform for Real-Time Optimization in Wireless Networks
Yan Huang, Shaoran Li, Yongce Chen, Y. Thomas Hou, Wenjing Lou, James Delfeld, and Vikrama Ditya

1 Multiple objectives are
possible under multi-criteria

optimization.

2 The computation of sched-
uling solutions, the delivery

of scheduling grants to users,
and the actual data trans-
missions may not happen

within the same sub-frame.
For example, the time gap
between scheduling grant

and uplink data transmission
is at least 4 ms [3].

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.011.2000016

Yan Huang, Shaoran Li, Yongce Chen, Y. Thomas Hou (corresponding author), and Wenjing Lou are with Virginia Polytechnic Institute and State University;
James Delfeld and Vikrama Ditya are with NVIDIA Corporation.

HUANG_LAYOUT.indd 77HUANG_LAYOUT.indd 77 11/19/20 3:40 PM11/19/20 3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 202078

In this article, we use wall-clock time as the
ultimate benchmark for timing complexity when
developing a solution to an optimization prob-
lem. We present a novel GPU-based optimization
approach to addressing this real-time challenge.
Our proposed approach decomposes a complex
optimization problem into a large number of inde-
pendent and structurally-identical small problems
and exploits GPU’s massive low-cost parallel pro-
cessing capability to find an optimal (or near-op-
timal) solution in real time. There are two basic
assumptions for our GPU-based optimization
approach. First, the optimization problem should
include integer variables, i.e, the problem should
belong to mixed-integer linear program (MILP)
or mixed-integer nonlinear program (MINLP)
(or integer linear program (ILP)/integer nonlin-
ear program (INLP)). This is necessary so that the
original problem can be decomposed into a large
number of sub-problems. Such decomposition is
usually done by fixing values for integer variables.
Second, we assume the optimization problem is
solved by a central controller in the network that
has all the information needed for the optimiza-
tion problem.

In the rest of this article, we first review exist-
ing solution approaches (based on wall-clock per-
formance) and discuss their limitations. Then we
present the new GPU-based approach to solving
complex optimization problems in real time. Final-
ly, we review recent advances in this direction.

Existing Approaches: A State of the Art
In this section, we classify existing optimization
methods in wireless networks based on their wall-
clock time performance. In this regard, we classify
three approaches:
•	 Offline optimization methods that can find

optimal (or near-optimal) solutions but usual-
ly incur excessive computation time.

•	 Fast heuristic algorithms which have the goal
of pursuing good solutions (not necessarily
optimal or near-optimal) and only require
polynomial-time complexity (but still may not
meet real-time requirement).

•	 Industry-grade real-time solutions that can
meet real-time requirement but usually with
performance far from optimum.

Offline Optimization Methods
Consider a typical mathematical formulation of
an optimization problem from wireless networks
that consists of an objective function and a set
of constraints depicting its feasible region. When
such a problem involves integer variables (com-
monly encountered in scheduling and routing)
and nonlinear functions (e.g., logarithmic function
to calculate channel capacity), the process of find-
ing an optimal (or near-optimal) solution can be
computationally intensive, particularly when the
search space (i.e., feasible region) is large.

One effective approach to addressing such
combinatorial optimization problems is to relax
the original problem into a linear programming
(LP) or nonlinear programming (NLP) problem.

The relaxed problems can be solved by the classic
simplex algorithm (for LP) or convex optimization
methods (for convex NLP or convex hull relax-
ations). When the solution to the relaxed problem
is infeasible to the original problem, one can use
a local search to find a feasible solution. Since
simplex and convex methods involve a large num-
ber of iterations, such an approach usually cannot
meet real-time requirement.

For MILPs, cutting plane (CP) is a widely used
method to find optimal solutions. CP iteratively
solves LP relaxations of an MILP and adds lin-
ear “cut” constraints without excluding integer
feasible points until an optimal solution is found.
Another class of solution methods is branch-and-
bound (BB), which can be used for solving both
MILPs and MINLPs. BB is a tree-search algorithm
that keeps track of upper and lower bounds on
the optimal solution and uses these bounds to
prune branches of the tree that do not contain an
optimal solution. By relaxing the optimality criteri-
on, BB can also be used to find solutions within
1 ± e of the optimum for any small positive value
e. Furthermore, a very popular solution approach
is branch-and-cut (BC), which combines BB with
CP. Basically, BC uses CP in addition to LP relax-
ations in the bounding steps, and is able to obtain
tighter bounds compared to BB. Although BB, CP
or BC can eventually find optimal (or near-opti-
mal) solutions, their computation time is long and
increases exponentially as problem size increas-
es. For example, a resource scheduling problem
in a 4G LTE or 5G NR cell may involve tens of
thousands of integer variables and constraints. A
solution based on BC may take tens of seconds
or even hours to find a near-optimal solution with
e = 5 percent [6]. Such performance in wall-clock
time limits these methods to be only useful as
offline benchmark solutions.

Fast Heuristics Methods
Since an exact optimization method such as BC is
too slow to be useful in the field, researchers are
pressed to design fast heuristic algorithms. A heu-
ristic represents a problem-solving scheme that is
not guaranteed to be optimal for a given problem
objective, but is believed or empirically validated
to be able to achieve good performance. Compu-
tational time complexity of a heuristic is expected
to be in polynomial-time and a common goal is
to make its order (measured in O(·)) as low as
possible.

There are many different types of heuristics
for solving optimization problems in wireless net-
works, such as local search, greedy algorithm,
and iterative partial fixing, to name a few. Greedy
algorithm is a heuristic scheme that always makes
locally optimal choices throughout the iterations.
For instance, a greedy scheduling algorithm will
assign each resource unit to a user that has the
highest data rate on it, regardless of the global
optimization objective. Local search is a heuristic
method that only explores candidate solutions
within a local sub-space instead of the entire
problem feasible region. With iterative partial fix-
ing, different subsets of variables are fixed and
optimized iteratively (in each iteration optimizing
one subset of variables while all other variables
are fixed) until there is no significant change of
variable values. In general, heuristics are designed

Only until very recently did the community get a glimpse of what a possible approach to achieving this
might be, that is, the use of GPU in solving optimization problems in real time.

HUANG_LAYOUT.indd 78HUANG_LAYOUT.indd 78 11/19/20 3:40 PM11/19/20 3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2020 79

to solve specific problems and may have very
diverse features and properties.

Although a heuristic algorithm may be of low
polynomial-time complexity, there is no guarantee
that it can meet real-time requirement. For exam-
ple, as shown in [10], many state-of-the-art heu-
ristics for proportional-fair (PF) scheduling are of
polynomial-time complexities. But none of them
is able to meet the stringent real-time requirement
in 5G NR. As a result, the common wisdom held
in the research community that a polynomial-time
algorithm is sufficient is simply false as there is
no guarantee that such an algorithm can meet
real-time requirement. In fact, many well-known
heuristic solutions in the literature can hardly satis-
fy real-time requirement (under any known imple-
mentation).

Industrial-Grade Real-Time Solutions
Given the limitations of offline optimization
methods and fast heuristic algorithms, wireless
engineers in the field have to resort to extremely
simple solutions that can meet real-time require-
ment. But unfortunately, many of these solutions
offer performance that is far from optimum (in
terms of objective value).

An example of industry-grade real-time algo-
rithms is the round-robin (RR) algorithm for
resource scheduling in cellular networks [7].
Here, the real-time requirement for allocating
100s of resource blocks (RBs) on a channel to
100s of users is 1 ms in 4G LTE and sub-1 ms in
5G NR. To reduce complexity, RR bundles RBs
within each transmission time interval (TTI) into
multiple RB groups (RBGs) and assigns these
RBGs to users in a cyclic manner regardless of
the users’ channel conditions. RR is attractive
for its simplicity and low computation cost and
can be easily implemented to meet real-time
requirement.

In summary, algorithms used in the field are
designed with real-time consideration as their first
and foremost criterion. However, such an algo-
rithm may experience severely compromised per-
formance in terms of optimization objective. As of
today, optimal (or near-optimal) solutions to most
of the complex optimization problems in wireless
networks can hardly be obtained in real time. As a
result, there is a serious disparity between what a
wireless network may achieve optimally (through
the use of offline optimization methods) and what
this same network is currently offering in the real
world.

GPU-Based Solution Approach:
A New Direction

Given the limitations of existing approaches,
one may wonder whether or not it is possible to
achieve the best of both worlds, that is, solving
hard problems with optimal/near-optimal perfor-
mance (as offline optimization methods) while still
meeting real-time requirements (as industry-grade
solutions). This objective has remained a holy grail
for academia and industry for decades. Only until
very recently did the community get a glimpse of
what a possible approach to achieving this might
be, that is, the use of GPU in solving optimization
problems in real time. In this section, we offer an
overview of this new approach.

Basic Idea
The core of this new approach is to decom-
pose an original optimization problem into
a large number of small and independent
sub-problems that have the same mathemati-
cal structure, and then employ a GPU’s mas-
sive parallel processing cores to solve the
sub-problems in parallel. A key in the problem
decomposition step is to ensure independence
among all sub-problems. This will ensure that
they can be solved simultaneously without any
inter-process communications, which are cost-
ly in time. In addition, each small sub-problem
should have the same mathematical structure
and problem size so that they can be solved
using the same set of instructions that are
implemented across all GPU cores in a sin-
gle-instruction multiple-data (SIMD) manner.3
Under SIMD, the sub-problems are solved at
about the same time on GPU. Then the final
output solution (to the original problem) can
be found by comparing the objective values
achieved among the sub-problem solutions.

The motivation to this approach is twofold.
First, the modern GPU platform offers massive
parallel processing capability that was once
unimaginable and has never been exploited to
solve real-time optimization problems. Second,
for a complex combinatorial optimization prob-
lem, there may exist some approach to decom-
posing the original problem into a large number
of tiny sub-problems where the solution to each
sub-problem is simple enough that it can just
be handled easily by a GPU core in real-time.
Therefore, the success of this approach hinges
upon a deep knowledge of the capability and
limitation of a GPU architecture and the math-
ematical techniques to decompose a complex
combinatorial optimization problem into tiny
sub-problems that can match nicely to a given
GPU architecture.

In the rest of this section, we review the state-
of-the-art of GPU architecture. We also compare
GPU with other computing platforms such as
CPU-based parallel computing, FPGA, and ASIC
based solutions. In the next section, we use a
case study to show how a complex combinato-
rial optimization problem can be decomposed
into numerous sub-problems and how a GPU
can be used to find a near-optimal solution in
real time.

FIGURE 1. An illustration of GPU architecture. This
diagram omits many components on a GPU
such as L1/L2 caches, memory controllers,
warp schedulers and so on.

SM SM SM SM SM

SM SM SM SM SM

SM SM SM SM SM

… … … … …

Global memory

PCIe interface

… … …

… … …

Shared memory

Register

CUDA
Core

GPU

3 SIMD means that the same
operation instruction is exe-
cuted by multiple processing
elements at different data
points [8]. In contrast, multi-
ple-instruction multiple-data
(MIMD) machines have
processing elements perform
different instructions at differ-
ent data points.

HUANG_LAYOUT.indd 79HUANG_LAYOUT.indd 79 11/19/20 3:40 PM11/19/20 3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 202080

GPU Architecture
The architecture of a GPU is best illustrated with
an example. Figure 1 illustrates a GPU architec-
ture from NVIDIA.4 A GPU is generally composed
of multiple streaming multi-processors (SMs), with
each SM consisting of a large number of parallel
processing cores (a.k.a., CUDA cores). The mas-
sive processing cores on a GPU offer enormous
capability for large-scale parallel computing. GPU
has a hierarchical memory structure as shown in
Fig. 1. Specifically, a GPU has its own on-board
global memory, which can be accessed by all SMs
within the GPU. In addition, each SM has local
shared memory that can be used for data com-
munication among processing cores on the SM.
Further, there are registers that are only accessible
to each processing core. An important feature of
GPU memory hierarchy is that each type of mem-
ory has very different access speed. Local registers
in a processing core are the fastest. Shared mem-
ories are also very fast for data sharing within the
SM. But access to global memory is much slower
than registers and shared memories. The proper
usage of a GPU’s hierarchical memories is a key
to algorithm design and implementation for meet-
ing real-time requirement.

On the software side, the CUDA programming
tool [9] is available to program NVIDIA GPUs for
parallel computing. It offers highly flexible pro-
gramming interfaces to directly control the mas-
sive CUDA cores. Under CUDA, a kernel (i.e., a
function to be executed on GPU) is composed of
multiple thread blocks (TBs) and each TB further
consists of a large number of concurrent threads
(up to 1024). During execution, each TB is run
by a single SM, while an SM may be assigned to
multiple TBs. All threads in a TB will be scheduled
to utilize the CUDA cores within an SM for exe-
cuting their programmed instructions.

GPU vs. Other Computing Platforms
Given that there are other parallel computing plat-
forms available, a natural question to ask is why a
GPU-based approach is more desirable here. To
address this question, we have prepared a table
for the comparison between GPU and other plat-
forms including CPU, FPGA and ASIC, as shown
in Table 1.

As described earlier, the key idea behind our
real-time solution design is to first decompose
an optimization problem into a large number

of structurally-identical sub-problems and then
solve the sub-problems through a SIMD com-
puting architecture. Thus an important criterion
for selecting a computing platform is how much
SIMD parallelism a platform can offer. As shown
in Table 1, GPU is much more capable than CPU
in terms of large-scale SIMD thanks to its massive
parallel CUDA cores, making it a better choice for
implementing our solution design.

Although FPGA can also offer a high level of
parallelism, its total number of parallel process-
ing units is no match to that from a GPU. In
addition, unlike GPU, FPGA is very inefficient for
floating-point processing, which is necessary for
addressing many optimization problems in wire-
less networks.

Compared with ASIC, the major advantages
of GPU are that it is general-purpose, of low-cost,
and available off-the-shelf. In contrast, the devel-
opment of ASIC for a specific algorithm is expen-
sive (both time and labor). Further, it is difficult
to make changes once an ASIC is made, which
is undesirable as algorithms are bound to evolve
over time.

A Case Study:
GPU-Based Real-Time Scheduler for 5G

As a case study to demonstrate how one can
decompose a complex combinatorial optimiza-
tion problem and use GPU cores to solve the
resulting sub-problems in parallel, consider the
classic PF resource scheduling in 5G NR [10].

The Problem
In 5G NR, the minimum time resolution for
resource scheduling is 125 ms under OFDM
Numerology 3 [4, 10]. This means that the real-
time requirement for finding a scheduling solution
should be no more than 125 ms. This is almost an
order of magnitude shorter than 4G LTE, which
has a 1 ms time interval for making a scheduling
decision.

The PF scheduling problem involves the allo-
cation of 100s of resource blocks (RBs) to up to
100 users in a cell, and the selection of one out
of 29 modulation and coding schemes (MCSs)
for each user. The optimization objective is to
maximize the PF among all users, defined as
S ilog ~Ri, where ~Ri is the long-term average data
rate of user i.

TABLE 1. Comparison of GPU to other parallel computing platforms.

Platform GPU CPU FGPA ASIC

Key features

> 1000 cores, general-
purpose, optimized for

SIMD, off-the-shelf, high
throughput

~10s cores, general-
purpose, optimized for
MIMD, off-the-shelf,

high clock speed

Massive re-programmable logic blocks,
general-purpose, optimized for fixed-

point operations, off-the-shelf, suitable
for low-volume hardware validation

Massive permanent logic gates, manufactured
for customized design, application-specific,

optimized for fixed-point operations, suitable for
high-volume production

SIMD parallelism High Low Medium Design-dependent

Programming flexibility High High Low Low

Reprogrammable Yes Yes Yes No

Floating-point efficiency High High Low Low

Off-the-shelf Yes Yes Yes No

Power efficiency Medium Medium High High

4 We choose to use NVIDIA
GPU in our illustration due to
the popularity of NVIDIA’s
CUDA programming plat-
form [9] and the large user
base of NVIDIA GPUs in the
industry.

HUANG_LAYOUT.indd 80HUANG_LAYOUT.indd 80 11/19/20 3:40 PM11/19/20 3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2020 81

This PF scheduling problem has been proved
to be NP-hard [11], which is attributed to the
following complexities. First, each user’s channel
conditions vary across different RBs due to fre-
quency-selective channel fading. Second, a user
must employ the same MCS for all of its allocated
RBs to generate the transport block. In 5G NR,
29 MCS levels [12] are defined, where a higher
MCS level corresponds to a higher spectral effi-
ciency ((b/s)/Hz) but requires a better channel
quality. In particular, an RB can only off er a non-
zero achievable data rate when the underlying
user channel quality is no worse than the select-
ed MCS’s requirement. Otherwise, this RB will
not be able to off er any usable throughput if the
channel quality cannot match up to the select-
ed MCS. This MCS selection problem is clearly a
trade-off between higher throughput per RB and
the number of RBs that can indeed contribute to
such throughput.

solutIon dEsIgn
The proposed solution is shown in Fig. 2. The
fi rst step is to decompose the original PF optimi-
zation problem into a large number of sub-prob-
lems. There may exist diff erent ways to achieve
this but it is suffi cient to illustrate one that works.
Specifically, we can decompose the original
problem by fixing the choice of MCS for each
user. For instance, when there are 100 users in
the cell, we have a total of 29100 sub-problems,
where each sub-problem has a fixed (given)
MCS selection for each user. Then for each
sub-problem we only need to find the optimal
RB allocation among all users, which is a much
smaller problem.

Based on this decomposition, the optimal solu-
tion to the original PF problem can be determined
by solving all sub-problems and then identifying
one solution that has the maximum PF objective
value. But clearly, 29100 is too large to fi t into the
available CUDA cores on a GPU. So our next
step is to determine a smaller set of sub-problems
from which it is more likely to fi nd an optimal or
near-optimal solution. This is called intensifi cation
in optimization [13]. Once we identify such a sub-
space, we can fit the sub-problems in this space
into GPU cores.

As a fi rst step to reduce the number of sub-prob-
lems, we can consider the most promising choice
of MCS levels, instead of enumerating all of them.

One plausible choice is to limit the range of MCS
to the highest several levels. For example, we could
consider only the three highest MCS levels that
can off er nonzero data rates on some RBs for each
user (e.g., MCS 7, 8 and 9 for user 1, MCS 20, 21,
and 22 for user 2, and so forth). Consequently, the
number of sub-problems will be reduced to 3100,
which is much smaller than 29100.

However, 3100 is still too large compared to
the number of CUDA cores on a GPU. Next, we
perform a random sampling over the search sub-
space to select a small subset of sub-problems.
The size of the subset depends on how many
CUDA cores are available. This sampling can be
done by randomly choosing the MCS for each
user from its highest three feasible MCS levels.
After this sampling step, all selected sub-problems
will be solved (fi nding the optimal RB allocation)
in parallel on GPU. Then the fi nal output solution
is determined by fi nding the sub-problem solution
that achieves the highest PF objective value.

The success of the two steps (intensification
and sampling) in reducing the problem space
hinges upon the characteristics of the original
problem as well as its physical properties. These
steps are necessary to fit a large-scale combi-
natorial optimization problem into GPU cores.
Each problem may call for a unique approach to
accomplishing this goal. Most importantly, one
must justify that they can still get an optimal or
near-optimal solution after these steps. For this
particular PF scheduling problem, there is some
rigorous science (based on probability theory
and empirical data) behind the intensifi cation and
sampling steps that guarantees one can find a
near-optimal solution. For readers who are inter-
ested in the details, we refer them to [10].

pErformAncE
We implemented this GPU-based PF scheduler on
an NVIDIA Quadro P6000 GPU, which has 30
SMs and 128 CUDA cores per SM (3840 total-
ly). Experimental results with 100 RBs on a 20
MHz channel, 29 MCS levels (following 5G NR
[12]), and diff erent numbers of users per cell (25,
50, 75, and 100) are given in Table 2. For find-
ing optimal solutions, we used the same desktop
computer that is equipped with the GPU. Instead
of using the GPU, we used the default CPU in the
desktop, which is an Intel Xeon E5-2687W v4. For
the solver, we employed the IBM CPLEX Optimiz-
er (version 12.7.1). Results of normalized objec-
tive values were obtained by normalizing our
experimental results with respect to the optimal
objectives. We see that in all cases the scheduler
can find near-optimal solutions and the average
computation time is well within the 125 ms real-
time requirement.

rEcEnt dEvElopmEnts
The proposed GPU-based solution approach has
the potential to solve many complex real-time
optimization problems arising from wireless net-
works. In this section, we describe some recent
advances in applying this approach to problems
in a wide range of areas, including hybrid beam-
forming (HB) for millimeter wave (mmWave) mas-
sive MIMO, LTE/WiFi coexistence in unlicensed
spectrum, and joint scheduling and power con-
trol.

FIGURE 2. A diagram for the GPU-based PF schedul-
er design. The design includes three steps:
1) decomposition of the original problem into
a large number of sub-problems, 2) selection
of sub-problems to fi t the available GPU cores,
and 3) parallel processing of sub-problems on
GPU cores.

GPF - Conceptual Abstraction

1

Problem
decomposition

…

Sub-problem
selection

…

GPU parallel
Processing

…

… … …

…

…

… … …

…

…
… … …

Step 1: Step 2: Step 3:

HUANG_LAYOUT.indd 81HUANG_LAYOUT.indd 81 11/19/20 3:40 PM11/19/20 3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 202082

HB for mmWave MIMO
HB uses a fewer number of RF chains than the
total number of antennas and is considered a
practical solution to implement massive MIMO
beamforming in mmWave frequency bands. HB
consists of both analog and digital beamforming.
A critical challenge in HB is to compute digital
beamforming weights in real time, where the tim-
ing requirement can be as short as 1 ms. How-
ever, almost all research efforts on HB remain
theoretical and none of the state-of-the-art efforts
is able to meet this real-time requirement. Recent-
ly, a GPU-based solution was proposed in [14] to
compute digital beamforming weights in real time.
Specifically, the design reduces the complexity of
singular-value-decomposition (SVD) by exploiting
the sparsity of channel matrices in the mmWave
band. Further, multi-user MIMO beamforming
across all RBs on the channel is decomposed into
a large number of independent single-user MIMO
beamforming sub-problems, which have the same
structure and much smaller problem size. Then
these single-user bearmforming problems are
computed in parallel using GPU cores. Implemen-
tation of this approach demonstrated that it can
meet the 1 ms real-time requirement, which is a
major milestone to demonstrate that the HB tech-
nique is feasible for deployment in the field.

LTE/WiFi Coexistence in Unlicensed Spectrum
Carrier sensing adaptive transmission (CSAT) is a
promising technique to achieve LTE/WiFi coexis-
tence in the unlicensed band. Under CSAT, an LTE
scheduler needs to decide the channel selection
for uplink (UL) and downlink (DL) traffic, the divi-
sion of air time for LTE and WiFi per channel, and
resource allocation within LTE’s “on” periods. The
scheduler must minimize the adverse impact of
LTE on WiFi while meeting LTE users’ UL and DL
rate requirements. Here the real-time requirement
is that LTE scheduling time interval is only 1 ms,
meaning that an optimal or near-optimal solution
must be found within this time interval. None of
the existing LTE schedulers designed for licensed
spectrum can be easily extended to address this
new coexistence problem. In a recent work [6], a
GPU-based solution was proposed to address this
optimal scheduling problem in real time. The orig-
inal optimization problem is decomposed into a
large number of feasibility-check sub-problems by
fixing channel assignment variables and objective
values. By evaluating all feasibility checks using
GPU cores in parallel, a near-optimal scheduling
solution can be determined within the 1 ms tim-
ing requirement.

Joint Scheduling and Power Control
In underlay coexistence, secondary users are
allowed to be active simultaneously as the pri-
mary users as long as their interference to the
primary users is under control. This can be

achieved through judicious design of joint sched-
uling and power control of secondary users. In
[15], this problem was studied under a sched-
uling time constraint of 250 ms, which can meet
Numerology 0, 1, and 2 in 5G NR. The authors
employed chance-constrained programming to
address channel uncertainty from the prima-
ry users to the secondary users. The proposed
solution scheme consists of three steps. The first
step is to decompose the original problem into
a large number of sub-problems by enumerating
all possible scheduling decisions. Then a subset
of sub-problems is selected (based on second-
ary users’ channel conditions) to fit the available
GPU cores. The last step is to solve selected
sub-problems on the GPU based on closed-form
starting point initialization and scaling-based
local search. The final output solution is deter-
mined by finding the best sub-problem solution.
Experimental results confirm that the proposed
solution achieves 90 percent-optimality on aver-
age within 150 ms.

Conclusion and Future Work
A holy grail in wireless networks (as well as in
many other systems) is to solve complex opti-
mization problems in real time. In this article,
we proposed a novel GPU-based solution
design that was shown to be highly effective in
addressing this challenge, particularly for com-
plex combinatorial optimization problems involv-
ing integer decision variables. The proposed
approach hinges upon effective problem decom-
position techniques to transform an original
combinatorial optimization problem into a large
number of tiny sub-problems, each of which is
easy to solve and independent from each other.
Then by employing the massive SIMD paral-
lel processing capability of the GPU platform
and a high-level programming language (e.g.,
CUDA), we showed that an optimal or near-op-
timal solution can be obtained in real time. We
used a classic PF scheduling problem in 5G NR
as a case study to illustrate the efficacy of this
approach. Further, we offered a brief review of
recent advances in applying such an approach to
addressing a number of hard optimization prob-
lems in wireless networks. Although this novel
approach is still in its infancy, we believe it has
the potential to be applied in the real world
when there is a need to solve complex optimi-
zation problems in real time. As future work,
we will explore more advanced techniques to
further improve this GPU-based optimization
approach. Potential improvements include using
machine learning methods to help identify prom-
ising search sub-space for sub-problem sampling,
employing hybrid CPU/GPU architectures to fur-
ther enhance the parallelism of the algorithm,
and investigating the provable performance gap
of this approach to the global optimum.

Acknowledgments
This research was supported in part by NSF grant
1800650. The authors from Virginia Tech thank
the NVIDIA AI Lab (NVAIL) in Santa Clara, CA for
its unrestricted gift and equipment donation. All
opinions expressed in this article are the authors’
and do not necessarily reflect the views and opin-
ions of NSF or NVIDIA.

TABLE 2. Experimental results of the GPU-based PF scheduler.

Number of users 25 50 75 100

Average time to compute optimum (ms) 3.20  106 1.06  107 1.82  107 3.02  107

Average comput. time by GPU (ms) 96.16 94.93 112.60 116.21

Normalized objective by GPU (%) 94.65 98.66 98.76 99.53

HUANG_LAYOUT.indd 82HUANG_LAYOUT.indd 82 11/19/20 3:40 PM11/19/20 3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • November/December 2020 83

References
[1] Y. T. Hou, Y. Shi, and H.D. Sherali, Applied Optimization

Methods for Wireless Networks. Cambridge, U.K.: Cam-
bridge University Press, 2014.

[2] 3GPP TS 36.211 version 16.0.0, “Evolved Universal Ter-
restrial Radio Access (E-UTRA); Physical Channels and
Modulation,” available: https://portal.3gpp.org/desktop-
modules/Specifications/SpecificationDetails.aspx?specifica-
tionId=2425.

[3] 3GPP TS 36.213 version 16.0.0, “Evolved Universal Terres-
trial Radio Access (E-UTRA); Physical Layer Procedures,”
available: https://portal.3gpp.org/desktopmodules/Specifi-
cations/SpecificationDetails.aspx?specificationId=2427.

[4] 3GPP TS 38.211 version 16.0.0, “NR; Physical Channels and
Modulation,” Available: https://portal.3gpp.org/desktop-
modules/ Specifications/SpecificationDetails.aspx?specifica-
tionId=3213.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, Chapter 1, New
York, NY, USA: Freeman, 1990.

[6] Y. Huang et al., “Achieving Fair LTE/Wi-Fi Coexistence with
Real-Time Scheduling,” IEEE Trans. Cognitive Commun. and
Networking, vol. 6, no. 1, Mar. 2020, pp. 366–80.

[7] F. Capozzi et al., “Downlink Packet Scheduling in LTE Cellu-
lar Networks: Key Design Issues and a Survey,” IEEE Com-
mun. Surveys & Tutorials, vol. 15, no. 2, 2013, pp. 678–700.

[8] K. Hwang and N. Jotwani, Advanced Computer Architecture,
3rd ed, Chapter 1, New York, NY, USA: McGraw-Hill Edu-
cation, 2016.

[9] NVIDIA, “CUDA C++ Programming Guide,” available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html.

[10] Y. Huang et al., “GPF: A GPU-Based Design to Achieve
∼100 ms Scheduling for 5G NR,” Proc. ACM MobiCom, Oct.
29-Nov. 2, 2018, New Delhi, India, pp. 207–22.

[11] S. B. Lee et al., “Downlink MIMO with Frequency-Domain
Packet Scheduling for 3GPP LTE,” Proc. IEEE INFOCOM,
Apr. 2009, Rio de Janeiro, Brazil, pp. 1269–77.

[12] 3GPP TS 38.214 version 16.0.0, “NR; Physical Layer
Procedures for Data,” available: https://portal.3gpp.org/
desktopmodules/ Specifications/SpecificationDetails.aspx-
?specificationId=3216.

[13] E. G. Talbi, Metaheuristics: From Design to Implementation,
Chapter 2 & 3, Hoboken, NJ, USA: Wiley, 2009.

[14] Y. Chen et al., “Turbo-HB: A Novel Design and Implemen-
tation to Achieve Ultra-Fast Hybrid Beamforming” Proc. IEEE
INFOCOM, July 6–9, 2020, Toronto, Canada.

[15] S. Li et al., “A Real-Time Solution for Underlay Coexistence
with Channel Uncertainty” Proc. IEEE GLOBECOM, Dec.
2019, Waikoloa, HI, USA.

Biographies
Yan Huang [S’15] received the B.S. and the M.S. degrees in
electrical engineering from Beijing University of Posts and Tele-
communications (BUPT), Beijing, China, in 2012 and 2015,
respectively. He is currently studying toward the Ph.D. degree
at Virginia Tech, Blacksburg, VA, USA. His research interests are
GPU-based real-time optimizations for wireless networks and
machine learning for communications.

Shaoran LI [S’17] received the B.S. degree from Southeast Univer-
sity, Nanjing, China, in 2014 and the M.S. degree from Beijing Uni-

versity of Posts and Telecommunications (BUPT), Beijing, China,
in 2017. He is a currently working toward the Ph.D. degree at
Virginia Tech, Blacksburg, VA, USA. His research interests include
algorithm design and implementation for wireless networks.

YongcE ChEn [S’16] received the B.S. and M.S. degrees in
electrical engineering from Beijing University of Posts and Tele-
communications (BUPT), Beijing, China, in 2013 and 2016,
respectively. He is currently working toward the Ph.D. degree at
Virginia Tech, Blacksburg, VA, USA. His current research inter-
ests include wireless network optimization, MIMO techniques
and real-time implementation of wireless systems.

Y. Thomas Hou [F’14] is the Bradley Distinguished Professor
of Electrical and Computer Engineering at Virginia Tech, Blacks-
burg, VA, USA, which he joined in 2002. He received his Ph.D.
degree from NYU Tandon School of Engineering in 1998. From
1997 to 2002, he was a member of research staff at Fujitsu Lab-
oratories of America, Sunnyvale, CA, USA. His current research
focuses on developing innovative solutions to complex science
and engineering problems arising from wireless and mobile net-
works. He is also interested in wireless security. He has over 300
papers published in IEEE/ACM journals and conferences. His
papers were recognized by eight best paper awards from IEEE
and ACM. He holds five U.S. patents. He has authored/co-au-
thored two graduate textbooks: Applied Optimization Methods
for Wireless Networks (Cambridge University Press, 2014) and
Cognitive Radio Communications and Networks: Principles and
Practices (Academic Press/Elsevier, 2009). He was named an
IEEE Fellow for contributions to modeling and optimization of
wireless networks. He was/is on the editorial boards of a num-
ber of IEEE and ACM transactions and journals. He served as
Steering Committee Chair of IEEE INFOCOM and was a mem-
ber of the IEEE Communications Society Board of Governors.
He was also a Distinguished Lecturer of the IEEE Communica-
tions Society.

WEnjIng Lou [F’15] is the W. C. English Endowed Professor of
Computer Science at Virginia Tech and a Fellow of the IEEE.
Her research interests cover many topics in the cybersecurity
field, with her current research interest focusing on blockchain,
privacy protection in machine learning systems, and security
and privacy problems in Internet of Things (IoT) systems. She
is a highly cited researcher by the Web of Science Group. She
received the Virginia Tech Alumni Award for Research Excel-
lence in 2018, which is the highest university level faculty
research award. She received the INFOCOM Test-of-Time paper
award in 2020. She is a TPC Chair for IEEE INFOCOM 2019
and ACM WiSec 2020. She is the Steering Committee Chair of
the IEEE CNS conference, steering committee member of IEEE
INFOCOM and IEEE Transactions on Mobile Computing. She
served as a program director at the U.S. National Science Foun-
dation (NSF) from 2014 to 2017.

JamEs DElfEld is a software engineer at NVIDIA working on
GPU-enabled virtual RAN. He received a Ph.D. degree in math-
ematics from the University of Texas at Austin, USA in 2015.

VIkrama DItya heads the Radio Access Networks compute
and standards group at NVIDIA. He holds an M.S. in computer
science from India. His areas of interests are distributed com-
puting, scheduling algorithms and telecom/network system
architecture.

HUANG_LAYOUT.indd 83HUANG_LAYOUT.indd 83 11/19/20 3:40 PM11/19/20 3:40 PM

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 04,2021 at 03:22:09 UTC from IEEE Xplore. Restrictions apply.

