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ABSTRACT

The Multi-Task Learning (MTL) leverages the inter-relationship
across tasks and is useful for applications with limited data. Exist-
ing works articulate different task relationship assumptions, whose
validity is vital to successful multi-task training. We observe that,
in many scenarios, the inter-relationship across tasks varies across
different groups of data (i.e., topic), which we call within-topic task
relationship hypothesis. In this case, current MTL models with homo-
geneous task relationship assumption cannot fully exploit different
task relationships among different groups of data. Based on this
observation, in this paper, we propose a generalized topic-wise
multi-task architecture, to capture the within-topic task relation-
ship, which can be combined with any existing MTL designs. Fur-
ther, we propose a new specialized MTL design, topic-task-sparsity,
along with two different types of sparsity constraints. The archi-
tecture, combined with the topic-task-sparsity design, constructs
our proposed TOMATO model. The experiments on both synthetic
and 4 real-world datasets show that our proposed models consis-
tently outperform 6 state-of-the-art models and 2 baselines with
improvement from 5% to 46% in terms of task-wise comparison,
demonstrating the validity of the proposed within-topic task rela-
tionship hypothesis. We release the source codes and datasets of
TOMATO at: https://github.com/JasonLC506/MTSEM.
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1 INTRODUCTION

The development of advanced machine learning techniques (e.g.,
deep learning) often requires a large amount of labeled samples to
train a good model. However, this requirement is hard to meet for
many applications due to the prohibitive cost of data collection and
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Figure 1: Illustration of EXAMPLE 1, different news topics
result in different relationships between readers’ reactions
to them in different news channels. Icons are adopted from
the Fox News channel www.facebook.com/FoxNews/ and
the New York Times channel www.facebook.com/nytimes in
Facebook.

labeling. To mitigate this problem, the Multi-Task Learning (MTL)
approach takes an advantage of multiple related tasks to facilitate
the training of some or all of the tasks that have limited training
samples [21]. It has been successfully applied to many learning
problems in domains such as computer vision [22, 23, 25, 27, 34, 36]
and natural language processing [5, 9, 19, 29, 30].

The principle of MTL is to leverage the relationship assump-
tions among tasks through a model design—-e.g., commonalities
across tasks. Some well-known MTL design categories are feature
selection [10, 12, 26], where tasks shared a feature-wise sparsity
structure, task structure [8, 11, 16, 17, 37, 38], where model pa-
rameters of different tasks share common structures, and the low
rank structure of model parameters of tasks [3, 13, 14] in linear
models [35], and parameter sharing [7, 18, 32] and information shar-
ing [20, 22, 23] in neural network models [24]. Each of the above
designs corresponds to an assumption of the task relationship. The
validity of the task-relationship assumption in these models is vital
to achieve successful learning.

However, we observe that, such a task relationship used in previ-
ous methods does not always hold. More specifically, a task relation-
ship can often hold only within topics—i.e., commonalities across
tasks hold only for certain topics (or groups) of data. Consider the
following two motivating examples.

ExaMPLE 1 (PREDICTING USER EMOTIONS, F1G. 1). Consider the
problem to accurately predict news readers’ reactions (e.g., LIKE,
ThumbsDown) toward news posts from different news channels (e.g.,
NYT, Wapo, Fox). To overcome insufficient data per new channel, one
models the problem as MTL (i.e., news channels as tasks), assuming
that readers’ reactions across tasks be similar. However, in practice,
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such an assumption on the task relationship may not hold. For in-
stance, readers’ reactions can be highly consistent across different
news channels for news on the topics of natural events and festivals;
however, different standing points of different channels often result in
exactly opposite readers’ reactions for the news on the topics of sports
and political news.

EXAMPLE 2 (SEARCHING RELEVANT PrRODUCTS). In e-commerce
applications, consider a problem of searching products for different
user groups. For instance, both male and female users (i.e., different
user groups as tasks) may have similar taste for products related to
food (i.e., topic), but different taste for books or music (i.e., topic). In
this case, considering the same task relationship across all products
will either miss the similarity (i.e., treating two tasks as independent)
or cause negative knowledge transfer (i.e., treating two tasks the same).

Based on these observations, therefore, we propose a “within-
topic” task relationship hypothesis to reveal the data-dependent
task relationship. This hypothesis assumes that task relationship
may appear different within data if from different topics. The topics
are determined by input features of data (clusters of data), different
from task groups in within-group clustering design [13]. Compared
with the recent works [20, 23] on data-dependent task relation-
ship, with the clear notion of topics, the data dependency and task
relationship can be “decoupled” here, which enables the applica-
tion of any existing task relationship designs to reveal within-topic
task relationship. In this work, therefore, we propose a topic-wise
multi-task architecture using a topic module to distribute data from
different topics to different modules, so that different task relation-
ship can be learned. Within each topic, we propose two topic-task-
sparsity constraints to enforce a multi-task sparsity structure for
task relationship, where only a few tasks are allowed to deviate
from a global structure shared by all other tasks. This multi-task
sparsity structure is consistent with the aforementioned example,
where only a few news channels are different from the others per
topic.

Our contributions can be summarized as follows:

(1) We propose the within-topic task relationship hypothesis
for the MTL problem;

(2) we propose a topic-wise multi-task architecture based on
the hypothesis;

(3) we propose two types of topic-task sparsity constraints,
topic-task-element and topic-task-exclusive and the opti-
mization algorithms with proof;

(4) the proposed topic-wise multi-task sparsity model consis-
tently outperforms state-of-the-art MTL models in experi-
ments on both synthetic and real world datasets.

The remaining of the paper is organized as following: we first
introduce related works. The problem and the hypothesis are de-
scribed next. After that, We present the detail of the model design
and its optimization. Finally, the experiment results are presented,
followed by the conclusion.

2 RELATED WORK

In this section, we review related works on linear MTL models, MTL
neural networks and sparsity constraints used in neural networks.

We summarize the existing MTL works both based on linear mod-
els and neural network and the proposed TOMATO for comparison
in Table. 1.

There are a lot of works on linear MTL models. Interested read-
ers are referred to [35] for a comprehensive survey. Those models
are designed based on different assumptions of task relationships.
More specifically, [10, 12, 26] assume different tasks share simi-
lar sparse feature selection pattern. [8, 11, 16, 17, 37, 38] assume
that the weight vectors. With similar spirit of above task struc-
ture assumption,[3, 13, 14] directly assume that the weight matrix
should be low-rank, which enforce different tasks to share the same
low-dimension feature transformation. Though the simplicity of
the linear structure provides such flourishing of MTL designs, it is
less flexible compared with neural network models.

The neural network MTL models are based on two designs, pa-
rameter sharing and information sharing. The most common shared-
bottom model is similar to the feature selection design in linear MTL
models. Built upon the shared-bottom design, 7, 18, 32] propose
further constraints on parameter sharing. Unique for neural net-
work MTL models is information sharing [22], where cross-stitch
structures are used to enable information flows from one task to
another. Though neural network provides more flexibility of model
design, as the information sharing, task relationship still relies only
on design assumptions but not further information.

There are two recent works [20, 23], whose task-specific gates
can be considered as data-dependent task relationship design. The
distribution of weights given to different experts by different tasks
are determined by the inputs. When such distributions of two tasks
given a group of input samples are similar, those two tasks are
related and vice versa. However, both data-dependency and task
relationship are modeled by the weights of different tasks, which
excludes the application of more flexible task relationship designs.
Moreover, it can be seen later that MMoE [20] can be seen as a
special instantiation of our proposed architecture.

Many task relationships in linear MTL models are achieved
by constraints over weight matrix, especially sparsity constraints
(e.g., I1,q penalty). Within neural network models, the sparsity con-
straints are recently applied to model compression [1, 4, 28, 33]. For
example, [1, 28] use group sparsity (I1,4) loss to zero-out the entire
neurons to learn a sparse model for both memory and computation
efficiency. [33] combines both group sparsity (I2,1) and exclusive
penalty (I,2). In this work, we adopt group sparsity as topic-task-
element penalty (I1,1,2) and propose group exclusive penalty as
topic-task-exclusive penalty (I2 1 2), together with its optimization
algorithm.

3 PROBLEM DEFINITION
We formally define the multi-task learning (MTL) problem.

DEFINITION 1 (MULTI-TASK LEARNING PrROBLEM). Given T tasks,
for each task t € [T], there are Ny samples (X;, Y;), with each x; €
R% gs input feature and y; € RPt as labels. Here in this work, we
take homogeneous MTL setting, where the dimensions and types of
the features and labels for different tasks are the same, respectively,
that is, forVt € [T], d; = d and p; = p. Then, the MTL problem is to



Model Task Relationship Assumption (MTL design) Data Dependency

feature selection N.A.
Linear Models [35] task structure N.A.
low rank N.A.
Shared-bottom shared feature extraction N.A.
Inter-task-Iy [7] weights similarity by I constraint N.A.
DMTRL [32], MRN [18] low rank N.A.
Cross-stitch [22] cross-task communication N.A.

MMOoE [20], Routing [23] weights of shared experts weights of shared experts

TOMATO topic-task-sparsity topic-wise multi-task architecture

Table 1: Summary of existing MTL works and the proposed TOMATO.

find a mapping f : RY x [T] — RP, such that the overall cost
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] n; €[Ne]
is minimized.

The proposed within-topic task relationship hypothesis can be
formally defined as follows:

DEFINITION 2 (WITHIN-TOPIC TASK RELATIONSHIP HYPOTHESIS).
Given each sample input x, there is a topic h(x) given by h : RY —
[K], where K is the number of topics. The prediction function f :
R X [T] — RP can be decomposed as f(x,t) = g(h(x), x, t). Within
each topick € [K], g(k,.,.) shows the task relationship between each
g(k, .. t1) and g(k, ., t2) witht; # t3.

4 TOPIC-WISE MULTI-TASK SPARSITY
MODEL

In this section, we describe the proposed topic-wise multi-task
sparsity model. First, the topic-wise multi-task architecture is de-
scribed as the overview of the model, which can be combined with
any existing MTL design as within-topic task relationship. Second,
the two sparsity constraints are introduced for within-topic task
relationship. Third, the optimization algorithm is described.

4.1 Topic-Wise Multi-Task Architecture

The topic-wise multi-task architecture is designed based on the
within-topic task relationship hypothesis. Specifically, given input x,
itis cast by a set of topic-task-specific functions {g(k, x, t)||k € [K]}
into the topic-task-specific hidden layers, and the task-specific
layer afterward is obtained by aggregating topic-task-specific layers
over different topics weighted by topic distribution A(x) such that
>k h(x)r = 1, which can be formulated as

ft) = Y h(x)kg(k x,1). (1)
k

When a task relationship is enforced in topic-task-specific func-
tions {g(k, x, t)} within each topic k, the topic-wise multi-task ar-
chitecture reveals Definition. 2. Compared with the existing shared-
bottom architecture (Fig. 2), the topic module h(x) distributes data
samples to different within-topic task relationship, rather than all
data with the same task relationship. This clearer task relationship
within each topic leads to more compact structure of g(k, x, t) (i.e.,

low-rank structure, parameter sharing), compensating the redun-
dancy by the extra topic dimension and boosts the performance.

We compare the proposed architecture to the recent MMoE
work [20], that models data-dependent task relationship. From
its viewpoint, our work decouples the data-dependent task rela-
tionship into data-dependence (h(x)) and within-topic task rela-
tionship (g(k, x, t)), which enables the application of all existing
task relationship designs for the latter. To see this, if we choose
the factorization structure (DMTRL) [32] for within-topic task re-
lationship, g(k, x,t) = 3, p(k,t)eq(x, €), Eq. 1 becomes f(x,t) =
Dk e h(x0)p(k,t)eq(x, ). Compared with Eq. 7 in [20], MMoE
can be seen as a special instantiation of the proposed architecture
by setting gate(x, t)e = 2 h(x)rp(k, t)e.

4.2 Topic-Task Sparsity

In this subsection, we describe a new MTL design, called topic-task
sparsity, to capture task relationship with the help of the proposed
topic-wise multi-task architecture.

We assume that, within each topic, only a few tasks (news chan-
nels) may deviate from the majority. For example, within political
topic, the readers’ reactions to similar posts under extreme con-
servative or liberal news channels are usually different from those
under the majority milder channels. We proposed the topic-task-
sparsity design that

O = 0"+ 06}, )

where 0 ; is the vector of the parameters of topic-task-specific
function g(k,x,t) = g(x|0k;), 69 is the global parameters that
shared by different topics k and tasks ¢, and 6y , is the topic-task-
sparse part of the parameters. We note ©° as the tensor combining
6, , for all topics and tasks.

"To enforce sparsity structure in ©%, we proposed two types of
topic-task-sparsity constraints Q(®%). First, an element-wise spar-
sity structure is assumed for ®°, which is enforced by topic-task-
element constraint defined as

(@) =" 3116}l (3)
Kkt

where ||.||q is the I; norm. The entire topic-task-element constraint
Q¢l()isa Iy 1,1 norm, which is also known as group sparsity con-
straints. It is used in [1, 28] to zero out entire neurons for compres-
sion. Here, similar property is used to enforce certain topic-task-
specific parameters 0 ; to be the same as the global ones 6°. The



(a) Existing neural network MTL architectures

(b) Topic-wise multi-task architecture

Figure 2: Neural Network MTL architectures. Compared with existing neural network MTL architectures (a), our proposed
topic-wise multi-task architecture (b) expand the task-specific modules f; to topic-task-specific modules g;;, and a topic mod-
ule h decides which topic a given sample belongs to and the corresponding topic-task-specific models g; to apply. This new
architecture allows data from different topics to enjoy different task relationships.

effect of the additional topic dimension in the above topic-task-
element constraint lies in its element-wise sparsity. Without topics,
it is reduced to task-wise sparsity, often a too-strong assumption
for task relationship.

Next, we consider another topic-task-sparsity constraint that
more explicitly takes advantage of the topic dimension. It is called
topic-task-exclusive constraint, defined as

0 (0%) = 5 D (X 116 1) @
k t

The entire topic-task-exclusive constraint Q¢* is the square of a
I51,2 norm. The I; norm for the task dimension still enforces the
entire 0; , parameters to zero for certain topics k and task ¢. The
I norm for the topic dimension however, tends to balance the
deviation of topic-task-specific parameters 0y ;, from the global
0° to be similar. In other words, the competition is now across
tasks within each topic rather than among topic-task pairs under
topic-task-element constraint. This norm is first applied to sparsity
constraint, to our best knowledge. The usage of similar exclusive
sparsity constraint, the square of I; » norm in [33] shows its effect
to find sparse feature selection structure for each neuron. The topic-
task-sparsity designs given two proposed constraints are visualized
as the norms of the learned topic-task-sparse parameters in Fig. 3.

4.3 Topic-Wise Multi-Task Sparsity Model

The TOpic-wise Multi-tAsk sparsiTy mOdel (TOMATO) is the com-
bination of the topic-wise multi-task architecture and either of
the topic-task-element or topic-task-exclusive constraint. A typical
model implementation, as used in the experiments of this work, is
described as following from bottom to top, as shown in Fig. 2. First,
the shared bottom module ¢(x) can be any feature extraction mod-
ules (e.g., multi-layer perceptron, convolutional neural network or
recurrent neural network), from which the multi-layer perceptron

<2
Tasks

Figure 3: Topic-task-sparsity parameters under sparsity con-
straints. Gray dash blocks represent topic-task-sparsity pa-
rameters 07, that are zero.

B

is used. More specifically,
$(x) = a(wla(wlx +b7) +59), )

where wgs (W?) is the weight for first (second) hidden layers of the

shared bottom module ¢(x), similar for bias bgS (b‘lﬁ), and a() is the
activation function. The topic module upon that h(¢(x)) is simple
linear transformation with a softmax activation

h(¢(x)) = softmax(w(x) + bM). (6)

At the same time, the topic-task-specific function g(k, ¢(x), t) for
each topic k and each task ¢ is typically set as multi-layer perceptron
of m layers as

g(k, $(x),t) = a(wz’t,m_l..,a(wz’t’oq‘)(x)+bi’t’0)...+bz’hm_1), )

. . g g .
where the sets of all weights and biases {Wk,t,j—l’ bk,t,j—l |j € [m]}
is flattened and concatenated into the topic-task-specific parameter
O ;- Finally, the topic-weighted combined task-specific linear layer

f(P(x),t) = X (h(p(x))g(k, §(x),t)) optionally goes through a



final task-specific linear layer § = ¥/(f(¢(x),t), ). When this fi-
nal task-specific layer is used, some task-wise difference can be
conserved no matter the topic-task-sparsity.

The overall loss function £ is defined as

1
L=y -
telT] " ne[N]

L(g,ye) + 1Q(€%), ®

where Q can either be Q¢! or Q¢*, and A controls the strength of the
sparsity penalty. When A — +oo, the topic-task-specific functions
g(x, 6 ;) reduce to a global function g(x, 69), leading to the closest
task relationship, and vice versa.

4.4 Optimization

Both topic-task-element and topic-task-exclusive constraints are
non-smooth functions, which exclude the usage of the conventional
stochastic gradient descent (SGD) method to minimize Eq. 8. Alter-
natively, therefore, we use the stochastic proximal gradient method.
At each iteration j, it calculates an intermediate parameters ©%
using the conventional SGD step and optimizes the solution or
proximal operator as

. 1 _
©%/*! = argmin —||©° - ©°|[5 + Q(6°), )
oS 2}.?’

where r is the learning rate of the current iteration.

As for the topic-task-element constraint Q¢/(®%) in Eq. 3, the
proximal operator, the proximal operator from Eq. 9 for each topic
k and each task t can be calculated independently. Therefore, the
proximal operator can be easily derived as

-2 6, (10)

prove(0,) = (1= 1o i

where ()4 is the clip function max(, 0).

The proximal operator for the topic-task-exclusive constraint
Q% (©%) is more complicated because the parameters for different
tasks are coupled by the I; norm at the topic-dimension.

LEMMA 1. The solution for Eq. 9 with Q = Q¢¥ is

Ay g (11)

Proxex(ei,t) =(1- || || k.t
2

where Ay is maximum of the “diluted" average Aq- of {1167 ,1l21t €
T'Y N7’ c [T],

A = max Ap g
k T c[T] kT

1 i (12)
i p— 1167 /112
L7 2, 151l

e’

S.t.,Akjrr/

And we denote T = arg maxq Ay 7.

The key of the proof is to notice that the maximum “diluted”
average Ay is a threshold that divide the tasks into two sets, 7 and
[T1\7k, where Ty = arg maxq Ay q7.

LEMMA 2. Ift € T, then ||9_,Sct||2 > Ay and if t € [T\Tg,

165 112 < A

Proor. First, assume otherwise ”élsc z||2 < Ay, for some t € Tg.
It is equivalent as

167,112 < Ag

1
& (- +ITDIG Iz < D 116} 112
t'eTx

1 _
& (- + IOl < > 116,z

e\ {t}

(13)

& 116y 112 < Ag\ (1)

On the other hand,
A = AT\ (1}

1 1

0L +ITMBD D 16 2= (= + 1D >, 116, 1k
t' €Tk teTi\{t}
1 _
=52+ ITMBD 111l - Ay )]
<0,
(14)

where § = 1 > 0. It contradicts with the condi-

G T D) (F+1 T\ {£3])
tion that Ay is the maximum “diluted" average. Second, for the sec-
ond statement, because Eq. 13 and Eq. 14 only involve equivalence
relationship, it is straightforward to prove with 7\{¢} replaced by

7 U{t} o

With Lemma. 2, the proximal operator in Eq. 11 can be rewritten
as
)9 teTx

€ [TI\7k
which can be easily proved being the sub-differential calculus solu-
tion of Eq. 9, with Q = Q®*_ It therefore proves Lemma. 1.

( - s
Proxex(ez,t): |6 il

Algorithm 1 Greedy Calculation Ay

Input: ||9_Z’t||2 fort € [T], A,r

output: Ag

1: Sort ||9_IS<J||2, and denote a; = ||9_]S(!
st,a; >2az>...>ar >20;

2: So«—0,S; «—Sj—1+a;fori=1,2,..,T;

3: Si fﬂ_si forie [T];

Ar

4: Return Ap = max; S;.

t'||2 fori € [T]

The remaining challenge is to efficiently calculate Ay in Eq. 11.
We prove that it can be obtained by a simple greedy algorithm, as
Algorithm. 1.

The time complexity in terms of number of tasks T is Tlog(T).
The correctness of Algorithm. 1 is proved below.

Proor. Using Lemma. 2, we can prove that 7 must be the subset
of the largest | 7| norms.
From Lemma. 2, Vt € T, t” € [T\ 7%,

163 112 > Ag,
165 112 < A (15)
= 1165112 = 1165 , 12



Dataset Synthetic MNIST-MTL AwA2 School MCSEM
input dim d 64 64 500 28 756
output dim p 5 2 2 3 5
#tasks T 12 10 50 139 12
# samples/task Ny 2,000 1,800 100 111 3,523
Table 2: Data statistics summary
Therefore the greedy Algorithm. 1 will not miss A. ]

The name “diluted" average is from the observation that for the
given subset 77 C [T], the Ay 4~ from Eq. 12, can be treated as the

average of the union of % zeros and {||9]SCJ,||2 |t € 7'}. When
A — o0, Ay reduces to the maximum of all subset averages, which
is the largest norm a; = max;¢|7) ||9_]5<’t||2. Going back to Eq. 11, in
this case, the resulting proximal operators are zero for all the tasks,
as expected. On the other hand, when A < o0, a; > Ap. Back to
Eq. 11, this means that with finite strength of the sparsity penalty
A, the topic-task-exclusive constraint Q¢* will not zero out the
parameters for all tasks within each topic.

5 EXPERIMENTS

In this section, we apply the proposed models against one synthetic
and four real-world datasets to validate the proposal. All codes and
datasets used in the experiments are available !.

5.1 Datasets

We evaluate our proposal against one synthetic dataset and four
real datasets.

(1) Synthetic Dataset: We generate a synthetic MTL dataset
following the within-topic task relationship hypothesis.

e Input feature: K topic cores e, € RY are sampled from
normal distributions N (0, 62) for each k € [K]. Input
features are generated as x; € R¢ from normal distribu-
tions AV(0, 62). The topic distribution h(x) of an input x

is determined as h(x)g o exp (||x — ek||§/0't20pic).

e Parameters: a global linear weight wy € R¥*? is element-
wise sampled from N (0, cr%vo). Topic-task-sparsity weight
W/sc, ; are generated in the way that within each topic, z <

T tasks 7 C [T] are randomly sampled and their topic-

task-sparsity weight are assigned random values from

N (0, cr?vs), while the rest are assigned 0. The topic-task-

specific weight is wy , = wo + Wlsc,t'

e Label: The linear output g; for input x; is generated by
Ur = sof),‘max(Z;.i:1 Xt,i 2115:1 h(xt) Wk ti). We add non-
linearity to the final label y; = B(3;), with § the non-linear
function used in [20].

(2) MNIST-MTL Dataset: We use the multi-task version of
the MNIST data (MNIST-MTL) [15]. Each task is a binary
classification problem that distinguish one digit from the
others. For each of the T = 10 tasks, we sample 900 positive
samples and 900 negative samples with 100 samples for each
of the other digits. We adopt the feature extraction method
used in linear methods [12] to get input of dimension d = 64.

Thttps://github.com/JasonLC506/MTSEM

(3) AWA2 Dataset: AwA2 is a benchmark dataset containing
37,322 images of 50 animals [31]. Each task is a binary classi-
fication problem similar to MNIST-MTL data. For each of the
T = 50 tasks, we sample 50 positive samples and 1 negative
samples for each of the other animals. We use the pre-trained
features [31] and reduce the dimension to 500 with PCA.

(4) School Dataset: School data is a benchmark dataset con-
taining performance of 15362 students from 139 schools [2].
The score performance is partitioned to 3 segments, [0, 10),
[10,20) and [20, 71). Each task is to classify the performance
of students from a school. It is a challenging dataset due to
relatively smaller relevance between features and labels as
indicated by the regression performance reported in [2].

(5) MCSEM Dataset: The multi-channel social emotion mining
(MCSEM) data is crawled from public posts from 12 news
channels on Facebook, together with their public users’ emo-
tional reactions (i.e., clicks on the emoticon buttons, love,
angry, wow, happy, and sad). We used the pre-trained BERT
model [6] to obtain the document embeddings as the input
with d = 756. The emotional reactions for each post are nor-
malized to label distributions over the five emoticon labels.
Each task is to predict the label distribution given the posts
of each channel.

The data statistics is summarized in Table. 2. We use sample
weighting to ensure that the sums of all sample weights for different
tasks are the same, following £ in Definition 1. The task-wise data
imbalance problem is beyond the scope of this work. For each
dataset, 20% samples are used for testing the remaining 80% as
training. The results reported are averages from 10 iterations of
random splits. The split uses stage-wise sampling with tasks as
stages to avoid random imbalance across tasks.

5.2 Competing Models

We compare the proposed models with a list of baselines and state-
of-the-art MTL neural network models.

(1) Separate: It learns each task with separate neural network
modules that do not correlate. It is a baseline model to test
the necessity of the use of MTL framework.

(2) Shared-bottom: It is a broadly used MTL model where all
tasks share bottom feature extraction module and own their
own top modules.

(3) Single: It learns all tasks with a single neural network mod-

ule. It is a baseline model to test the necessity of the use of

MTL framework.

Inter-task-I; [7]: Based on Shared-bottom model, the [2

penalty is assigned to the difference of task-specific mod-

ule parameters of each pair of tasks. This model therefore
assumes that the parameters of different tasks should be
similar.

(5) DMTRL [32]: Based on Shared-bottom model, the tensor
consisting of task-specific parameters of all tasks are as-
sumed of a low-rank structure, modeled by tensor factoriza-
tion. In our comparison, we adopt the Tucker decomposition
as it shows the most reliable results in [32].

(6) MRN [18]: Based on Shared-bottom model, the tensor con-
sisting of task-specific parameters of all tasks are assumed

4
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with a fully-decomposed tensor normal distribution, whose
parameters are jointly learnt with the model parameters. The
task relationship is assumed as the shared prior distributions
for corresponding parameters of modules for different tasks.

(7) Cross-stitch [22]: Based on Shared-bottom model, the
task-specific modules are assumed able to communicate with
each other by stitches connection between each pair of them.
The task relationship is assumed as information sharing.

(8) MMOE [20]: This model consists of multiple expert modules
and task-specific expert distribution modules to combine the
output of experts for each task. For fair comparison, we also
add shared-bottom feature extraction modules as the most
bottom layers.

(9) TOMATO-el: It is the proposed topic-wise multi-task spar-
sity model with topic-task-element constraint Q¢! from Eq.3.

(10) TOMATO-ex: It is the proposed topic-wise multi-task spar-

sity model with topic-task-exclusive constraint Q¢* from
Eq. 4.

Here in this work, we only focus on their capability to capture
task relationship in MTL problems. Therefore, we implement a
unified architecture for all models. They share the same shared-
bottom module structure as MLP (multi-layer perceptron) of one
layer except Separate and other modules of different models are
MLP. All models are trained using stochastic gradient descent (SGD)
with learning rate at iteration i, r; = royi/ . where ry is the initial
learning rate, y is the decay rate and 7 is the decay steps. Random
dropout for certain layers and I regularization are used to avoid
overfitting.

5.3 Hyperparameter Tuning

The list of tunable hyperparameters for different models and their
choice ranges are provided as following.

e common hyperparameters
— initial learning rate ry: {0.001,0.01,0.1, 1.0} ,
- decay rate y: {0.8,0.9},
— decay steps n: {100, 1000},
— input dropout rate dry: {0.0,0.1,0.2}
— bottom hidden dropout rate dr;: {0.0,0.1,0.2},
— bottom hidden layer dimension hdpytom: {32, 64},
— top-most hidden layer dimension hdmp: {4,8,16,32, 64},2
— Iy regularization for all parameters Ag: {0.0,0.01,0.1, 1.0};
o model-specific hypeparameters
— Inter-task-l,
* inter-task parameter difference I, regularization:
{0.0,0.0001,0.001,0.01,0.1, 1.0},
- MRN
* multi-linear prior norm regularization:
{0.0,0.0001, 0.001,0.01,0.1, 1.0},
* prior update frequency: {30, 100}3,
- MMoE
* number of experts: {1, 2, 4, 8},

2For Shared-bottom, Inter-task-I,, DMTRL and MRN, it is the dimension of the
hidden layer of the task-specific top module; for TOMATO-el and TOMATO-ex, it
is the dimension of the hidden layer of the topic-task-specific top module; for MMoE,
it is the dimension of the output layer of each expert module.

3100 is the default value used in [18], we add 30 for an alternative as different datasets
are used

- TOMATO-el and TOMATO-ex
% number of topics: {1,2,4,8, 16},
* sparsity penalty A: {0.0,0.00001,0.0001,0.001,0.01,0.1}.

We use 20% training data as validation set to find the best hy-
perparameters for each model on each dataset using grid search
over the union of common and model-specific hyperparameters. In
order to decrease the time cost of hyperparameter tuning and also
minimize impact of feature extraction on model performance, for
each dataset, we first find the best shared-bottom hyperparameters
dro, dr1 and hdpytt0m» and fix them for all other models on that
data.

For TOMATO-el and TOMATO-ex, the number of layers m
of the topic-task-specific modules are chosen from {1, 2}. In order
to make fair comparison with other models, the top task-specific
linear layer is added when m = 1 while omitted when m = 2. When
m = 2, the output dimensions of the topic-task-specific modules
should be the dimension p of the label.

5.4 Evaluation Measure

As the evaluation measures, we use the popularly-used misclassifi-
cation rate for the experiments on Synthetic, MNIST-MTL, AwA2
and School datasets, and the cross-entropy for the experiments on
MCSEM dataset where label distribution rather than a single true
label is given for each data sample.

5.5 Results

55.1 QI1:Arethe proposed models able to capture the within-
topic task relationship? We show the I; norm of topic-task-sparsity
parameters learned from the synthetic data in Fig. 4. Compared
to Fig. 4.(a), the ground truth parameters, both the TOMATO-el
(c) and TOMATO-ex (d) models can exactly capture the sparsity
structure. We also test the case without topic by TOMATO-el (Simi-
lar results can be obtained by TOMATO-ex) (b), which cannot find
the similarity between the majority tasks and task 2 and 7 (task 0
and 9) in data from topic 0 (1), but only treat all of them different
from other tasks. This shows the effect of the topic-wise multi-task
architecture.

5.5.2 Q2:Howdo the proposed models perform? The overall
performance results are presented in Table. 3. First, the proposed
models TOMATO-el and TOMATO-ex consistently outperforms
all the competing models. This validates the superiority of the
proposed topic-wise multi-task architecture and also the proposed
two topic-task-sparsity MTL designs. Second, the task relationship
varies a lot across different datasets. On the one hand, comparing
Single and Separate, which are the two extreme cases in MTL,
their performance difference in different datasets varies. Therefore,
some of the datasets (e.g., MNIST-MTL) have task relationship that is
hard to catch, while others (e.g., synthetic) make it more beneficial
to risk negative transfer for more data. On the other hand, the
performance of different models, which are different assumptions
of task-relationship, vary across different datasets. For example,
Cross-stitch performs good on MCSEM data, but even worse than
Separate baseline on synthetic data. This shows that the topic-wise
multi-task architecture is more flexible in leveraging different task
relationship.



Dataset || synthetic (4800) MNIST-MTL (3600) AwA2 (1000) School (3086) [ MCSEM (8455)
Separate 16.55 (794) 2.59 (93) 7.49 (75) 50.95 (1,572) 1.371
Shared-bottom 14.51 (696) 2.68 (96) 4.92 (49) 50.01 (1,543) 1.326
Single 14.24 (684) 49.98 (1,799) 16.75 (168)  51.80 (1,599) 1.342
Inter-task-I; 14.21 (682) 2.49 (90) 4.92 (49) 50.41 (1,556) 1.322
DMTRL 15.08 (724) 2.60 (94) 4.75 (48) 49.34 (1,523) 1.333
MRN 14.47 (695) 2.68 (96) 9.81 (98) 51.06 (1,576) 1.329
Cross-stitch 14.69 (705) 2.68 (96) 4.63 (46) 50.22 (1,550) 1.327
MMoE 14.40 (691) 2.59 (93) 13.60 (136)  48.18 (1,487) 1.337
TOMATO-el 14.09 (676) 2.44 (88) 4.16 (42)  45.00 (1,389) 1322
TOMATO-ex 14.10 (677) 2.32 (84) 5.50 (55) 46.72 (1,442) 1.321

Table 3: Overall performance in misclassification rate in percentage or cross-entropy for MCSEM data. The numbers in paren-
thesis besides misclassification rate indicate the numbers of the misclassified samples and those besides dataset names are the

size of the corresponding test set. Bold (underlined) are the best (second) for each data set.
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Figure 4: The topic-wise multi-task structures as the I, norm of topic-task-sparsity parameters from the synthetic data: (a)
ground truth as the weight w} | used to generate the data; (b) without topic as learned by TOMATO-el with K = 1; (c) TOMATO-
el, as learned by TOMATO-el with K = 2; (d) TOMATO-ex, as learned by TOMATO-ex with K = 2.

5.5.3 Q3: How is the trade-off between positive and nega-
tive transfer? The topic-wise multi-task architecture is proposed
to capture more subtle task relationship so that achieve better trade-
off between positive and negative transfer. Table. 3 gives an overall
view of the answer, that the proposed architecture does perform

better. Further more, here we take a detail view. In Table. 4, the av-
erage task-wise improvement is presented. For each model on each
dataset, we calculate its performance on each task t as per frodel
of the dataset. After that, for each task, we calculate the rela-
tive improvement over the Separate model 100 * (per fseparate,r —
Per fmodel,t)/ PeT fSeparate,r- This task-wise improvement provides



Dataset [ synthetic MNIST-MTL AwA2 School | MCSEM
Separate 0.00 0.00 0.00 0.00 0.00
Shared-bottom 2.44 -0.09 3.05 3.18 3.08
Single 2.75 -48.66 -9.70 -2.04 2.20
Inter-task-Iz 2.79 0.10 3.05 1.96 3.39
DMTRL 1.75 -0.01 3.22 5.56 2.68
MRN 2.49 -0.08 -2.34 -0.05 3.00
Cross-stitch 2.23 -0.08 3.35 2.76 2.98
MMOoE 2.57 0.00 -6.29 8.96 2.39
TOMATO-el 2.94 0.16 3.88 16.74 3.38
TOMATO-ex 2.92 0.28 241 1293 | 3.62

Table 4: Average task-wise improvement percentage. Bold
(underlined) are the best (second) for each data set.
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Figure 5: Ablation Study in MNIST-MTL data

the judgement of positive or negative transfer. When this improve-
ment is negative, for the specific task, there is no benefit to take
into account other tasks, which is negative transfer, and vice versa.
For each entry in Table. 4, we report the average task-wise im-
provement percentage over all tasks of a datasets from a model.
We observe that the proposed models give consistent and better
improvement over all datasets (i.e., from 5% to 46% better than
competing models in different datasets). Therefore, it shows that
the proposed methods do achieve better trade-off between positive
and negative transfer.

554 Q4.Ablation study: Are the proposed architecture and
MTL design nontrivial in real world data? We notice that there
are two hyperparameters that distinguish the proposed models from
the existing ones. Here we show ablation study results in MNIST-
MTL data. Similar results can be obtained in other datasets. First
when the number of topics K = 1, the proposed topic-wise multi-
task architecture reduces to conventional MTL architecture. From
the ablation study with different K values, Fig. 5(a), the perfor-
mance of TOMATO-el (TOMATO-ex) with K = 16 (K = 4) is better
than that of trivial model with K = 1. This validates the topic-wise
multi-task architecture. Second when the sparsity penalty strength
vanishes, A = 0, the sparsity constraints are disabled. From the ab-
lation study with different A values, Fig. 5(b), the best performance
is achieved with A = 1e — 2. It validates the topic-task-sparsity MTL
design.

Further, we show the I norm of the learnt topic-task-sparsity pa-
rameter Qi « norm in Fig. 6 which manifests the design visualized in
Fig. 3. Both TOMATO-el and TOMATO-ex show the proposed topic-
wise multi-task sparsity structures, where within different topics,
task relationship is different. For example, in Fig. 6(b), only topic 0
shows clear sparsity structure among tasks, which indicates strong
task relationship among data from topic 0. Such data-dependent
task relationship helps TOMATO explore task relationship within
certain groups of data and avoid negative transfer effect from data
without task relationship.

Moreover, the topic-task-element constraints result in topics
with all topic-task-sparsity parameters zero-out, as shown in Fig. 6(a),
while the topic-task-exclusive constraints will not, in Fig. 6(b), as
expected from the analysis in Section. 4.4. More specifically, we
notice there are more than one topics with all topic-task-sparsity
parameters zero-out for TOMATO-el, as shown in Fig. 6(a). From
the viewpoint of task relationship, those topics should be degen-
erated as the task relationship among them are the same (i.e., all
tasks are the same). However, if we use smaller number of topics
K = 8, which is sufficient for the optimal parameters state shown
in Fig. 6(a) for K = 16, the performance gets worse, as shown in
Fig. 5(a). It may be attributed to the effect of optimization process
on the final local optimal parameter state.

6 CONCLUSION

In this work, from a closer look into the validity of task relationship,
we propose a within-topic task relationship hypothesis and develop
a topic-wise multi-task architecture which is general enough to be
combined with existing MTL designs. Further, we propose the topic-
task-sparsity MTL design, specially designed for the topic-wise
multi-task architecture, along with two types of sparsity constraints.
The architecture, combined with the topic-task-sparsity design,
constructs our proposed TOpic-wise Multi-tAsk sparsiTy mOdel
(TOMATO). The experiments on both synthetic and real-world
datasets show that the proposed models consistently outperform
existing state-of-the-art models, which supports the validity of the
within-topic-task relationship hypothesis.
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