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Abstract 
Individual Foraminiferal Analysis (IFA) has proven to be a useful tool in reconstructing the 
amplitude of high-frequency climate signals such as the annual cycle and the El Niño – Southern 
Oscillation (ENSO). However, using IFA to evaluate past changes in climate variability is 
complicated by many factors including geographic location, foraminiferal ecology, methods of 
sample processing, and the influence of multiple, superimposed high-frequency climate signals. 
Robust statistical tools and rigorous uncertainty analysis are therefore required to ensure the 
reliability of IFA-based interpretations of paleoclimate change. Here, we present a new proxy 
system model—called the Quantile Analysis of Temperature using Individual Foraminiferal 
Analyses (QUANTIFA)—that combines methods for assessing IFA detection sensitivity with 
analytical tools for processing and interpreting IFA data to standardize and streamline 
reconstructions employing IFA-Mg/Ca measurements. Model exercises with simulated and real 
IFA data demonstrate that the dominant signal retained by IFA populations is largely determined 
by the annual-to-interannual ratio of climate variability at a given location and depth and can be 
impacted by seasonal biases in foraminiferal productivity. In addition, our exercises reveal that 
extreme quantiles can be reliable indicators of past changes in climate variability, are often more 
sensitive to climate change than quantiles within the distributional interior, and can be used to 
distinguish changes in interannual phenomena like ENSO from seasonality. Altogether, 
QUANTIFA provides a useful tool for modeling IFA uncertainties and processing IFA data that 
can be leveraged to establish a history of past climate variability. 
 
Plain Language Summary 
The chemistry of fossil shells formed by marine protists called “foraminifera” has been a 
valuable tool for reconstructing long-term trends in past climate change. However, establishing a 
history of important climate phenomena that occur on timescales more relevant to humans, like 
the strength of the seasonal cycle or the intensity of El Niño events, is much more difficult to 
achieve. Recently, researchers have begun to address these questions by analyzing individual 
foraminiferal shells through a technique called Individual Foraminiferal Analysis (IFA). 
Populations of these individually analyzed shells give us a snapshot of how variable Earth’s 
climate was in the past. However, comparing estimates of climate variability between two 
distinct time periods, like between our present warm period and the last Ice Age, requires 
stringent statistics and rigorous estimates of uncertainty. In this paper, we introduce an algorithm 
designed to handle these challenges by mimicking laboratory sampling procedures on a virtual 
sediment sample modeled after real oceanographic data. The algorithm also incorporates a set of 
statistical tools that aid the user in deciphering the patterns exhibited by their data. We then 
demonstrate how it can be a helpful new tool for the research community to quickly process and 
interpret IFA data. 
 
 
1. Introduction 
The geochemical composition of foraminiferal calcite has served as the backbone of 
paleoceanographic reconstructions for decades and has been a critical tool in developing our 
understanding of the ocean’s role in past climate change (Kucera, 2007). Conventionally, long-
term records from marine sediment cores are generated by pooling and analyzing multiple 
monospecific foraminiferal shells, generating a single datum for each stratigraphic layer that 
represents an average of oceanic conditions at that time. However, in recent years, advances in 
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analytical precision coupled with growing interest in reconstructing past changes in high-
frequency (i.e. sub-millennial) climate signals—such as the annual cycle and the El Niño – 
Southern Oscillation (ENSO)—has led to the development of a novel single-shell analytical 
technique known as Individual Foraminiferal Analysis, or IFA (Koutavas et al., 2006; Leduc et 
al., 2009b; Wit et al., 2010; Ganssen et al., 2011; Khider et al., 2011; Scroxton et al., 2011; 
Koutavas and Joanides, 2012; Sadekov et al., 2013; Rustic et al., 2015; Vetter et al., 2017; White 
et al., 2018; Schmitt et al., 2019; Thirumalai et al., 2019; White and Ravelo, 2020; Rustic et al., 
2020). By virtue of the two- to four-week life span of most planktic foraminifera (Spero, 1998), 
the geochemical signature of a single shell represents a quasi-monthly “snapshot” of the ambient 
ocean conditions in which the shell precipitated. Thus, differences in shell chemistry among 
individual foraminifera from the same stratigraphic layer nominally represent a composite 
sample of hydrographic variability over the timescale represented by the core interval 
(Thirumalai et al., 2013).  
 
In regions of the global ocean where hydrographic variability is strongly influenced by a 
particular climate oscillation, relative differences between IFA populations can be used to 
resolve changes in the amplitude of that oscillation through time. However, interpreting IFA 
population distributions as a reflection of past climate variability is not straightforward and can 
be complicated by (1) the influence of multiple, superimposed high-frequency climate signals, 
and (2) uncertainties associated with a number of environmental, biological, and sample 
processing factors (Thirumalai et al., 2013; Wit et al., 2010; Groeneveld et al., 2019). Thus, the 
quality and reliability of IFA-based reconstructions rests heavily on the strength of the statistical 
methods applied to disentangle competing climatic influences and constrain sources of 
uncertainty. 
 
Recent efforts to successfully disentangle the signal-of-interest from the “noise” of ambient 
background climate have led to improvements in how IFA data are processed and interpreted. In 
earlier studies, differences between IFA distributions were characterized through direct 
comparison of parametric measures of scale such as standard deviation and variance (Koutavas 
et al., 2006; Koutavas and Joanides, 2012; Leduc et al., 2009b; Sadekov et al., 2013). The 
problem with the approach, however, is that it relies on a priori assumptions regarding the 
normality of the underlying climate signal (Lanzante, 1996). Aside from concerns regarding the 
influence of outlying values (Lanzante, 1996) or the non-gaussian behavior of climate 
oscillations such as ENSO (Khider et al., 2011), these metrics only provide a simple measure of 
population spread that, by design, ignores variability in the overall shape and structure of IFA 
distributions. Such differences could hold climatically meaningful information that allows 
researchers to distinguish the relative influence of overlapping high-frequency climate signals 
with inherently different time scales. More recent IFA studies have been successful in 
characterizing variability in IFA distributional shape by employing quantile-quantile (Q-Q) 
analysis—a common yet powerful and statistically robust tool for comparing distribution data 
(Ford et al., 2015; White et al., 2018; Thirumalai et al., 2019; White and Ravelo, 2020; Rustic et 
al., 2020). By plotting the evenly-spaced quantiles of one data distribution against another, Q-Q 
plots capture differences in location, scale, and skew in one convenient plot, without the need for 
any underlying assumptions regarding the data (Lodder and Heiftje, 1988). Moreover, Q-Q 
analysis is capable of detecting differences between particular regions of a data distribution—
such as within the interior or out in the tails—whereas traditional metrics characterize data 
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distributions holistically. Recent IFA work suggests this latter feature of Q-Q analysis is valuable 
for parsing changes in annual vs. interannual climate phenomena (Ford et al., 2015; White et al., 
2018; Thirumalai et al., 2019; White and Ravelo, 2020; Rustic et al., 2020). For example, in the 
equatorial Pacific, ENSO events are typically characterized by large sea surface temperature 
(SST) anomalies that exceed the total seasonal temperature range (Wang and Fielder, 2006). As a 
result, changes in ENSO amplitude could ostensibly be inferred from IFA paleotemperature 
distributions as differences in the extent of the tails, with changes in the annual cycle presumably 
confined to the middle of the distribution (Ford et al., 2015; White et al., 2018; White and 
Ravelo, 2020; Rustic et al., 2020).  
 
At the same time, however, a combination of environmental, biological, and sample processing 
factors can also have a significant impact on the shape and structure of IFA distributions, 
complicating interpretations of past climate variability. For example, the relative influence of 
annual and interannual climate phenomena on a region’s hydrographic variability can vary 
significantly, both laterally and with depth (Thirumalai et al., 2013). As a result, the location of a 
sediment core and the mean calcification depth of the foraminiferal species used for the 
reconstruction exerts a first order control on the ability of IFA distributions to detect certain 
climate signals. Further complications arise when considering changes in foraminiferal ecology 
(Groeneveld et al., 2019) and post-depositional effects such as bioturbation (Dolman et al., 
2018). In addition, the physical recovery of IFA distributions is associated with its own sources 
of uncertainty, including: (1) sampling error, related to IFA population size; (2) analytical error, 
determined by instrument precision; and (3) calibration error, introduced when translating raw 
geochemical values to inferred environmental parameters (Thirumalai et al., 2013). The impact 
of sampling error can be especially influential on the tails of IFA distributions, where the 
presence/absence of outlying values have led some to questions their reliability as indicators of 
past climate variability. Thus, one of the outstanding challenges in IFA Q-Q analyses rests in 
developing methods that weigh the impact of climate signals vs. other external influences on 
quantile behavior. 
 
One approach to constraining these uncertainties is to utilize proxy system models that capture 
the translation of high-frequency climate signals into fossil foraminiferal populations and 
replicate their recovery by simulating the selection and analysis of individual foraminifera 
(Dolman et al., 2018; Evans et al., 2013). An early study to adopt this approach introduced the 
Individual Foraminiferal Approach Uncertainty Analysis (INFAUNAL) algorithm (Thirumalai et 
al., 2013), which has been used to estimate IFA detection sensitivity at a particular location by 
modeling changes in IFA-δ18O population spread in response to prescribed changes in high-
frequency climate variability (Thirumalai et al., 2013). However, INFAUNAL primarily relies 
on standard metrics of population spread such as standard deviation and range. At present, a 
similar tool that constrains variability in the shape and structure of IFA distributions is not yet 
available. Moreover, there is currently no proxy system model available that explores the 
uncertainties inherent to IFA reconstructions derived from magnesium-to-calcium (Mg/Ca) ratios 
of foraminiferal calcite, an arguably more direct proxy for ocean temperature variability (Ford et 
al., 2015; White et al., 2018; White and Ravelo, 2020; Rustic et al., 2020). Although recent IFA-
Mg/Ca studies have independently developed and incorporated their own form of uncertainty 
analysis, methods vary between studies (see, e.g., uncertainty analyses conducted by Ford et al., 
2015 vs. Thirumalai et al., 2019). A centralized computational tool for IFA-related uncertainty 
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analysis and data processing could provide a common statistical framework that standardizes 
IFA data analysis and streamlines future reconstructions of seasonality, ENSO, and other high-
frequency climate signals (Greene and Thirumalai, 2019). 
 
To that end, we developed a user-friendly proxy system model, called the Quantile Analysis of 
Temperature using Individual Foraminiferal Analyses (QUANTIFA), that combines rigorous 
uncertainty analysis with robust analytical tools to provide a standardized statistical framework 
for IFA data analysis. Using INFAUNAL as a basis (Thirumalai et al., 2013), we combine 
pseudoproxy forward-modeling techniques with a bootstrap resampling scheme to constrain 
variability in IFA distributional shape in response to prescribed changes in climate variability. 
However, QUANTIFA goes one step further by combining INFAUNAL’s core function of 
modeling IFA detection sensitivity with a data processing element that both facilitates Q-Q 
analyses of two inputted IFA populations and performs additional analyses that aid the user in 
deciphering the significance of their results. These analyses include false positive tests that 
estimate the frequency of type I errors, as well as a data-model consistency analysis that 
compares the user’s results against modeled results from hypothetical scenarios of altered high-
frequency climate variability. This combination of conventional Q-Q analyses with estimates of 
uncertainty, detection sensitivity, false positivity, and data-model consistency builds a unique 
interpretative framework that can more thoroughly inform IFA-based interpretations of past 
climate variability. In this work, we first detail the statistical and mathematical basis our new 
algorithm. We then utilize QUANTIFA to explore the influence of IFA sample size on the 
feasibility of using extreme quantiles in the tails to diagnose changes in high-frequency climate 
variability. Finally, we apply our algorithm to three previously published IFA datasets from 
throughout the tropical Pacific Ocean. Our model exercises demonstrate QUANTIFA’s potential 
as a useful exploratory and data analysis tool that can help bolster the efficiency and accuracy of 
future IFA-based reconstructions. 
 
 
2. Model Description 
QUANTIFA is an open-source proxy system model available for MATLABTM designed to (1) 
test the ability of the IFA technique to resolve changes in high-frequency climate variability, 
primarily focusing on seasonality and ENSO, and (2) establish a statistical and interpretive 
framework for analyzing IFA data (Figure 1). Accordingly, QUANTIFA is flexible in its use. 
Without the input of IFA data, the algorithm can be used to model the sensitivity of 
paleotemperature distributions to changes in the amplitude of annual and interannual climate 
variability. This is achieved by simulating the IFA sampling procedure (along with its associated 
uncertainties) on modeled pseudoproxy time series representing both modern climate conditions 
and hypothetical scenarios of altered climate variability. Alternatively, QUANTIFA can be used 
as an analytical tool for comparing down-core IFA populations or for comparing core-top 
populations with modern reanalysis data (this latter exercise is not performed here, although the 
algorithm includes documentation for such a procedure). QUANTIFA identifies significant 
differences between the two distributions by coupling Q-Q analysis with an iterative 
bootstrapping subroutine that constructs uncertainty envelopes incorporating analytical, 
calibration, and sampling errors. In addition, QUANTIFA provides an interpretive framework to 
aid the user in deciphering the pattern exhibited by their data. This framework includes a series 
of false positive tests to provide a measure of reliability in the observed results, as well as data-
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model consistency maps that compare the configuration of the user’s quantiles in Q-Q space 
against simulated quantiles from each modeled climate scenario. 
 
2.1 Pseudoproxy Time Series 
Both of QUANTIFA’s core applications—modeling IFA detection sensitivity and facilitating 
IFA population comparisons—rely on creating a collection of synthetic Mg/Ca time series that 
simulate paleodata entrained within an idealized virtual sediment sample (Figure 1). These time 
series are constructed using subsets of the Ocean Reanalysis System 5 (ORA-S5) data 
assimilation containing a three-dimensional gridded field of potential temperature data (Zuo et 
al., 2019). In our model exercises below, we utilize a subset spanning the tropical Pacific Ocean 
(30°N – 30°S, 120°E – 70°W; 0 – 5902 m), although we note that subsets from the tropical 
Atlantic and Indian Oceans are also available for use with QUANTIFA (see section 4). The 
ORA-S5 data structures have a 1° x 1° horizontal resolution and 75 depth levels, with the highest 
vertical resolution in the upper 200 m where most planktic foraminifera live. Each grid box 
contains a 61-year time series of monthly mean potential temperature data extending from Jan 
1958 – Dec 2018. Using coordinates and depth information prescribed by the user (Table 1), 
QUANTIFA extracts the temperature time series from the nearest ORA-S5 grid box and converts 
the values into Mg/Ca ratios (in mmol/mol) using a calibration equation specified by the user. 
Users can either select from a set of pre-programmed calibration equations (see Table S1 for a 
complete list) or incorporate their own. Additionally, QUANTIFA can be coupled to Bayesian, 
multivariate Mg/Ca calibration models (such as those by Khider et al., 2015, Tierney et al., 2019, 
and Holland et al., 2020) to account for factors other than temperature that influence 
foraminiferal Mg/Ca. It should be noted, however, that (to our knowledge) all existing 
foraminiferal Mg/Ca-T calibrations have been developed using multi-specimen samples. 
Therefore, absolute temperatures calculated from IFA data using these equations may produce 
different results than if a calibration developed from individual foraminifera was used. 
 
The resulting forward-modeled Mg/Ca time series is used to generate a number of pseudoproxy 
time series covering a broad range of potential paleoclimate scenarios. First, the algorithm 
models paleodata reflective of modern climate variability (hereafter referred to as the “modeled 
modern time series”). Following procedures adopted from INFAUNAL (Thirumalai et al., 2013), 
QUANTIFA calculates monthly averaged Mg/Ca ratios for all neutral (i.e., non-ENSO) years to 
establish a mean seasonal climatology at the location. Monthly mean Mg/Ca ratios are also 
calculated for all El Niño and La Niña years (as identified by the Oceanic Niño Index) and 
subtracted from the base climatology to establish monthly mean anomalies associated with 
ENSO. To extend the modeled modern time series and match it to the theorized length of time 
represented by the sediment sample, QUANTIFA repeatedly splices the climatological seasonal 
cycle for a number of years specified by the user (Table 1). El Niño and La Niña events are 
inserted into the time series by adding the ENSO anomalies atop this annual cycle. Finally, to 
ensure that the modeled paleodata are similar to the instrumental record both visibly and in 
frequency space, red and white noise is added to the time series. 
 
QUANTIFA then generates a collection of pseudoproxy time series representing hypothetical 
scenarios of altered climate variability by gradually modifying the amplitude of the seasonal 
cycle and ENSO events within the modeled modern time series. We opted not to adjust the 
number of ENSO events in our altered climate time series given prior evidence that ENSO 
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frequency has little-to-no control over the IFA signal (Thirumalai et al., 2013). Seasonality is 
altered by amplifying/damping the magnitude of the quasi-sinusoidal seasonal climatology 
calculated from the forward-modeled Mg/Ca data. To manipulate ENSO amplitude, the Mg/Ca 
anomalies associated with ENSO events are modified so that the events can grow in phase and 
peak with the annual cycle. Both seasonality and ENSO amplitude are adjusted in 10% 
increments, ranging from a complete damping of the signal (-100%) to a doubling of the signal 
(+100%), generating 440 altered climate scenarios with different permutations of seasonality and 
ENSO change (Thirumalai et al., 2013).  
 
We acknowledge that this method of statistically modeling altered states of climate variability 
relies on the assumption that the structure of month-to-month patterns in seasonality and 
interannual anomalies at a given location does not change with time. Changes in the relative 
strength or the spatial footprint of these phenomena, such as what has been suggested for the 
ENSO during the last glacial period (Liu et al., 2020), could represent a potential limitation of 
our forward modeling scheme.  
 
2.2 Modeling IFA Detection Sensitivity 
QUANTIFA assesses the ability of IFA populations to resolve changes in annual and interannual 
climate variability by simulating the IFA sampling procedure on the modeled time series and 
subjecting the resulting pseudo-IFA populations to Q-Q analysis (Figure 1). First, QUANTIFA 
constrains the uncertainties associated with the IFA approach by employing a smoothed 
bootstrap resampling scheme (Efron, 1979) designed to simulate the random selection of 
individual foraminifera from a sediment sample, as well as the errors associated with their 
analysis and translation to paleotemperature values. The algorithm repeatedly selects monthly 
mean Mg/Ca ratios from each modeled time series to produce pseudo-IFA populations for a set 
number of realizations. Each population is then converted into a paleotemperature distribution 
following the calibration equation prescribed by the user at the beginning of the model run. At 
each step within this “picking loop”, uncertainties associated with analytical precision and 
calibration error are incorporated as Gaussian distributions (1σ defined by the user; Table 1), 
creating a range where picked Mg/Ca ratios and translated paleotemperature values are permitted 
to vary. 
 
QUANTIFA then performs a series of Q-Q analyses that compare all modeled paleotemperature 
distributions from the altered climate scenarios against those generated from the modeled 
modern time series, an exercise analogous to performing down-core IFA population comparisons 
(Figure 1). In doing so, QUANTIFA produces multiple Q-Q realizations that approximate the 
uncertainty related to subsampling a larger population. To emphasize differences between the 
two populations apart from changes in mean temperature, each paleotemperature distribution is 
centered before quantiles are computed. The algorithm sorts the modeled quantiles into bins 
according to their proximity along the x-axis to the mean quantiles of the modeled modern time 
series (calculated by averaging across model realizations). Within each bin, the algorithm 
computes: (1) the mean of the binned quantiles, (2) the standard deviation, and (3) the mean 
distance each quantile falls from the 1:1 line, hereafter referred to as “residuals”. Residuals are 
used to characterize the overall shape of the quantiles in Q-Q space. For example, if two 
distributions are closely identical, the quantiles within each bin will cluster tightly around the 1:1 
line, and the corresponding mean residual values would be near zero. The larger the difference 
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between the two distributions, the further the cloud of Q-Q realizations will deviate from the 1:1 
line, resulting in greater mean residuals. This exercise is repeated for all altered climate 
scenarios, creating a set of mean quantiles and residuals that describe a characteristic shape in Q-
Q space corresponding to a particular configuration of ENSO and seasonality change when 
compared to modern climate conditions. 
 
QUANTIFA uses these idealized Q-Q patterns to assess the response of paleotemperature 
distributions to changes in high-frequency climate variability. To better characterize the 
dominant climatic influences within different parts of the paleotemperature distribution, mean 
residual values are sorted into three distinct regions: the interior of the distribution (the middle 
68%) and the warm and cold tails (the upper and lower 16%, respectively). The algorithm 
computes the proportion of the quantiles within each group that fall within ± 1σ from the 1:1 
line, a range we define as exhibiting close conformity with the “modern” distribution. 
Populations from the altered climate scenarios that conform closely with the shape of the 
“modern” distribution would return high conformity values (%) for each region and would, in 
theory, be difficult to detect in real IFA populations. Scenarios with poor conformity indicate 
large differences between the “altered” and “modern” distributions, suggesting a high probability 
of detection. The calculated percent of conformity for each Q-Q comparison is displayed on a 
contour plot, where the structure of the contours can be used as a visual diagnostic for relative 
signal strength (ENSO vs. seasonality) and IFA detection sensitivity. Contours with a fully 
vertical orientation, for example, indicate a sensitivity to changes in ENSO amplitude, while 
horizontal contours indicate a greater sensitivity to seasonality. Diagonal contours, by extension, 
would suggest some combination of both. Likewise, the gradient of the plotted contours can be 
used to infer detection sensitivity. Contours plotted close to one another would suggest 
heightened sensitivity to a particular climate signal, and contours plotted farther apart would 
suggest the opposite. 
 
2.3 Processing IFA Data and Building an Interpretive Framework 
In addition to modeling IFA detection sensitivity, QUANTIFA can be used as an analytical tool 
to compare real IFA populations against one another or to compare an IFA population with 
modern reanalysis data (Figure 1). Inputted IFA-Mg/Ca data are first converted into 
paleotemperature values with user-selected calibrations, centered, and then subdivided into 
quantiles. To identify potential differences between the two populations (or between an IFA 
population and the reanalysis data), QUANTIFA constructs uncertainty envelopes by repeatedly 
resampling the modeled modern time series using the same “picking loop” and binning strategy 
detailed in section 2.2. This exercise is performed twice: once to derive error in the X direction 
and again for error in the Y direction. The only difference between the two operations is the size 
of the resulting pseudo-IFA populations, which is determined by the size of the IFA dataset 
assigned to that axis. QUANTIFA produces a Q-Q plot of the user’s data that includes an inset 
with a smoothed, gaussian kernel density estimate of the inputted IFA populations, emphasizing 
differences between the shapes of the two distributions reflected in the Q-Q plot. We stress that 
our choice in kernel function has no bearing on the results of the Q-Q analyses, given that the 
quantiles are computed from the raw data. The Q-Q plots also include uncertainty bounds at a 
user-specified degree of confidence: 85%, 90%, 95%, or 99% (Table 1). Whenever a quantile 
deviates from the 1:1 line beyond this region of uncertainty, it is considered significantly 
different at that corresponding level of confidence.  
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Built within the data processing element of QUANTIFA are two additional routines that together 
constitute an interpretative framework intended to help make sense of any observed differences 
between two IFA distributions. The first plank of this framework involves conducting false 
positive tests at the individual quantile level to quantify how often each may commit a type I 
error—that is, how often a quantile reports a spuriously significant result when the two IFA 
distributions are known to come from the same population. This is achieved by repeatedly 
subsampling the site-specific modeled modern time series (using the same “picking loop” 
detailed above) to generate two pseudo-IFA populations, comparing them via Q-Q analysis, and 
tallying how often each quantile significantly deviates from the 1:1 line beyond the specified 
level of confidence. In essence, these false positive rates are meant to serve as a simple measure 
of a quantile’s “reliability” as an indicator of past climate variability. For example, if a 
quantile—say, an extreme quantile in the tails of a distribution—reports a high false positive 
rate, then its significance in the user’s data should not be taken as a sign of changes in climate 
variability. Although potential drivers behind high false positive rates—a region’s particular 
climatology, sampling exceedances when partitioning a small IFA population into too many 
quantiles, etc.—should ultimately be left to the user to investigate, QUANTIFA’s false positive 
tests provide a simple yet powerful measure of assessing a quantile’s climatic significance.   
 
The second plank of QUANTIFA’s interpretive framework involves constructing data-model 
consistency maps, where the position of the user’s significant quantiles in Q-Q space is 
compared against the position of those same quantiles from each hypothetical climate scenario 
(Figure 1). The purpose of this exercise is to highlight the set of altered climate scenarios that 
most closely conform to the user’s data, providing a foundation from which to infer past changes 
in climate variability. To this end, QUANTIFA first identifies and calculates the residuals of user 
quantiles which significantly deviate from the 1:1 line. Next, the algorithm assesses data-model 
fit by calculating a parameter called the residual difference (∆R), which we define as the 
difference between the residual of the user’s quantile and the mean residual values for that 
quantile from each altered vs. modern Q-Q comparison: 
 

∆R = R − 
 1 

 
where R refers to the residual of quantile Q of the user’s data, and 

 represents a 21 x 
21 matrix of mean residual values for quantile Q from each hypothetical climate scenario. 
Applying equation (1) to each significant quantile generates a matrix of ∆R values which reflect 
the quantile’s “goodness-of-fit” for each hypothetical scenario, where the lower the ∆R value 
(i.e., the smaller the difference between the user’s residuals and the modeled residuals), the better 
the fit. Climate scenarios where the ∆R value is less than the 1σ error for that quantile are 
identified by QUANTIFA as a scenario that exhibits good data-model consistency. The 
algorithm then collates the ∆R matrices for each significant quantile and calculates the 
proportion of those quantiles that exhibit good data-model fit for each climate scenario. These 
proportions are presented as heat maps, where regions of high percentages indicate the set of 
hypothetical climate scenarios that are most consistent with the user’s data. We emphasize that, 
given the inherent uncertainties associated with IFA, data-model consistency results for an 
individual climate scenario can vary slightly across model runs. Therefore, these maps should be 
used as qualitative diagnostic tools for identifying broad patterns of high-frequency climate 
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change (e.g., enhanced vs. reduced variability) rather than attributing user results to a specific 
scenario of altered climate variability. Any quantitative interpretations should be carefully and 
independently vetted. Nevertheless, these data-model consistency maps are a useful tool for 
deciphering the signals preserved within IFA populations. 
 
 
3. Model Application Exercises 
To demonstrate the utility of QUANTIFA as an exploratory and data analysis tool, we perform 
two different exercises. In the first, we explore the influence of IFA sample size on extreme 
quantile behavior to better understand under what circumstances the tails of IFA distributions 
can be viewed as reliable indicators of high-frequency climate change, given their sensitivity to 
outlying values. We perform a series of false positive tests on pseudo-IFA populations of 
variable sample sizes (n = 25, 50, 75, 100, 125, and 150) derived from forward-modeled SSTs in 
the Niño 3.4 region. We hold the number of quantiles constant at 50, to see whether over- or 
under-discretization of the paleotemperature distribution also plays a role in extreme quantile 
behavior.  
 
In the second exercise, we conduct three case studies where we apply QUANTIFA to previously 
published IFA datasets collected throughout the tropical Pacific. For each case, we conduct a 
sensitivity analysis to constrain the relative influence of annual and interannual climate 
variability over the IFA signal at the core location (see Text S1 for details on model input). We 
then run the IFA data through QUANTIFA to identify any significant differences between the 
two populations and attribute these differences to changes in ENSO or seasonal cycle amplitude 
(or some combination of both). We stress that the purpose of this latter exercise is not to 
investigate the underlying mechanisms that could produce any observed changes in high-
frequency climate variability. Instead, our purpose is to illustrate how the individual output 
products generated by QUANTIFA can by brought together to more thoroughly inform 
interpretations of past climate variability. 
 
3.1 Exploring the Influence of Sample Size on Tail Sensitivity in the Niño 3.4 Region 
Repeated subsampling and Q-Q analysis of pseudo-IFA populations from the Niño 3.4 region 
consistently report low levels of false positive results at the 90% confidence level for all extreme 
quantiles regardless of sample size, with mean rates remaining below 6% (Figure 2). 
Interestingly, with regards to the warm tail, our estimates closely match those reported by Rustic 
et al. (2020), despite their use of an algorithm that employs a different analytical approach for 
constraining uncertainty. However, stress testing our results by running the model exercise 100 
times (each with 5,000 Q-Q realizations) reveals a considerable degree of variability, with the 
largest differences often observed between quantiles rather than among different sample sizes 
within a single quantile. According to our results, the relationship between false positive rate and 
IFA sample size is inconsistent. For example, smaller IFA sample sizes do not always report 
higher false positive rates, while larger IFA sample sizes do not necessarily reduce the risk of a 
false positive result. As such, it appears IFA sample size does not have an impact on an 
individual quantile’s false positive rate, even in cases where the number of quantiles exceeds the 
total number of individual foraminifera that comprise the IFA distribution.  
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Instead, inter-quantile differences are more readily apparent, with variability in false positive 
rates tending to be greatest for tail quantiles than for those in the distributional interior (Figure 
S1). The exact pattern of false positive rates between the cold and warm tails is not symmetrical, 
however, which can likely be attributed to the region’s particular climatological response 
(asymmetries in warm and cold anomalies of the underlying time series force differences in the 
response of warm and cold tails). As such, the quantiles with the highest mean false positive 
rates are not always the most extreme quantiles, as might be expected. Regardless, tail quantiles 
remain quite variable, with rates reaching >20% in some cases (although this is very rare: 
~0.13% of 300,000 computed rates). In most cases (94%), false positive rates remain below 10% 
for all quantiles across all sample sizes, which approximates the presumed probability of type I 
error based on our 90% confidence envelopes. Therefore, it seems reasonable to conclude that 
tail quantiles can be viewed as generally reliable indicators of past climate variability. However, 
it should be emphasized that this conclusion is highly dependent on the dynamics of the 
underlying reanalysis time series, which varies with location and depth. Our exercise thus 
highlights the importance of integrating estimates of false positive rates into QUANTIFA’s 
interpretive framework, so similar analyses can be conducted for a user’s region of interest. 
 
3.2 Case Studies from the Tropical Pacific 
3.2.1 The Western Tropical Pacific 
For our first case study, we use Holocene and Last Glacial Maximum (LGM) populations of the 
surface-dwelling species Globigerinoides ruber (white variety; sensu stricto and sensu lato 
morphotypes) from core MD06-3018 (23°00’S, 166°09’E; 2470 m) off the coast of New 
Caledonia (Figure 3; Schmitt et al., 2019). 
 
Our sensitivity analysis at the core site reveals that the IFA signal preserved by G. ruber 
populations off the New Caledonian coast is almost exclusively controlled by changes in the 
strength of the annual cycle. At the core location, peak Mg/Ca anomalies associated with El Niño 
(-0.06 mmol/mol) and La Niña events (0.09 mmol/mol) are marginal compared to the amplitude 
of the annual cycle (0.38 mmol/mol), resulting in a high ratio of annual-to-interannual variability 
(Figure 4). The dominance of seasonality over the New Caledonian IFA signal is reflected in the 
horizontal orientation of the conformity contours generated by QUANTIFA (Figure 5). 
According to our results, changing ENSO amplitude (moving to the left and right of the yellow 
stars in Figure 5) has little to no influence over the shape of the modeled paleotemperature 
distributions. For example, in a scenario where ENSO is doubled (+100%) and seasonality is 
held constant, all quantiles from the “altered” distribution exhibit 100% conformity with the 
“modern” distribution (i.e., no quantiles deviate from the 1:1 line beyond 1σ). The results are 
similar if ENSO is completely damped (-100%), suggesting that even in the most extreme cases, 
paleotemperature distributions recorded by G. ruber populations from MD06-3018 are largely 
insensitive to changes in ENSO amplitude. These results remain unchanged even if we apply a 
seasonal weighting to QUANTIFA’s picking algorithm to account for a mild late summer bias in 
G. ruber flux to the sediments (Jonkers and Kučera, 2015) (Figure S2). Instead, our modeled 
paleotemperature distributions from the west Pacific show an acute response to changes in the 
strength of the annual cycle (moving above and below the yellow stars in Figure 5). Yet, based 
on the more diffuse contour gradient exhibited by quantiles in the interior (Figure 5b), our 
results suggest that extreme quantiles in the tails are more sensitive to changes in seasonality 
than those closer to the median. For example, in a scenario where seasonality is increased by 
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50% while holding ENSO amplitude constant, quantiles out in the tails of the “altered” 
distribution exhibit no conformity with the “modern” distribution. Under the same scenario, 
however, as much as 75% of quantiles in the interior are statistically indistinguishable from 
modeled modern variability. Despite this asymmetry in detection sensitivity, the annual cycle 
remains the dominate signal shaping upper-ocean paleotemperature distributions in waters near 
New Caledonia. 
 
Q-Q analysis of the late Holocene and LGM populations from MD06-3018 reveals three 
quantiles (out of 30; see supplemental information) that significantly deviate from the 1:1 line 
with 90% confidence (Figure 6a). Based on our sensitivity analysis above, these quantiles could 
be indicative of differences in seasonality between the two time slices. False positive rates for all 
three quantiles are relatively low (mean rates for the 1st, 26th, and the 27th quantiles are 2.99%, 
1.13%, and 1.03%, respectively; Figure S3a), providing some support for a climate-driven 
signal. However, with these tools alone, it is difficult to discern the direction of seasonality 
change. If we compare the position of the three quantiles against the idealized Q-Q patterns for 
this location, the resulting data-model consistency map reveals broad agreement with scenarios 
of varying degrees of ENSO amplitude (Figure 6b), confirming the relative insensitivity of G. 
ruber populations from MD06-3018 to changes in interannual climate variability. Regarding the 
state of the glacial annual cycle, however, the results are ambiguous. QUANTIFA suggests two 
distinct possibilities: two of the three quantiles are consistent with scenarios of reduced 
seasonality, whereas a third significant quantile aligns more closely with scenarios of moderately 
enhanced seasonality (Figure 6b). Therefore, while it could be argued that the MD06-3018 IFA 
dataset likely represents a reduction in seasonality during the LGM relative to the Holocene, with 
this dataset and at the present level of confidence, the possibility of an enhanced seasonal cycle 
cannot be definitively ruled out. 
 
While it is unlikely that these quantiles may have registered as significant by random chance 
(taking the high end of the standard deviation in our false positive rates, the compounded 
probability of a type I error is (0.10)(0.04)(0.04) = 0.02%; Figure S3a), it is more likely that at 
least some of the ambiguity in interpretation can be attributed to the small sample size of the 
MD06-3018 IFA dataset (n = 30). Smaller sample sizes risk misrepresenting the true shape of the 
larger population distribution and, as a result, are subject to greater sampling uncertainty 
(Thirumalai et al., 2013). As such, although a small sample size may not increase the risk of 
encountering false positives (see section 3.1), it can impact the resolution of the recovered 
paleotemperature distribution, potentially obscuring tell-tale signs of past climate variability. To 
illustrate this effect, we run a second sensitivity analysis for the MD06-3018 site but with a 
larger and more conventional pseudo-IFA population size (n = 70; Thirumalai et al., 2013). Our 
results show that the estimated 1σ sampling error for all 30 quantiles (in both X and Y 
directions) decreases by 36% from an average of 0.28 mmol/mol to 0.18 mmol/mol. 
Consequently, the conformity contours for this experiment show a contraction in the area of the 
100% conformity region and an increase in the conformity contour gradient, both indicators of 
increased detection sensitivity (Figure S4). Therefore, it is likely that the small IFA dataset from 
core MD06-3018 underrepresents the true structure of the population distribution, precluding a 
clear interpretation regarding the state of the annual cycle during the LGM. Supplementing the 
existing dataset with additional measurements would be required to address this question. 
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3.2.2 The Central Equatorial Pacific 
Next, we compare Holocene and Younger Dryas (YD) populations of the mixed-layer species 
Trilobatus sacculifer from cores MGL1208-14MC and MGL1208-12GC (0°13’S, 155°58’W, 
3049 m) recovered from the Line Islands in the central equatorial Pacific (Figure 3; White et al., 
2018). 
 
Our sensitivity analysis reveals that the IFA signal recorded by T. sacculifer populations in the 
Line Islands predominantly reflects variability in ENSO amplitude, supporting the inferences 
made in the original reconstruction (White et al., 2018). At the core site, El Niño and La Niña 
events are characterized by large Mg/Ca anomalies in the modeled modern time series (0.81 
mmol/mol and -0.65 mmol/mol, respectively) that dwarf the amplitude of the mean annual cycle 
(0.15 mmol/mol), resulting in a small ratio of annual-to-interannual climate variability (Figure 
7). Consequently, the conformity contours for the central equatorial Pacific exhibit a 
dramatically different structure than those for the western tropical Pacific (Figure 8). The 
vertical orientation of the plotted contours signifies that the modeled paleotemperature 
distributions are insensitive to changes in seasonal cycle amplitude. For example, doubling the 
strength of seasonality (+100%) or damping it completely (-100%) while holding ENSO 
amplitude constant results in 100% conformity between the “altered” and “modern” 
paleotemperature distributions. Thus, large fluctuations in the strength of the annual cycle are not 
registered by T. sacculifer populations from the Line Islands region. Changing ENSO amplitude, 
by comparison, alters the modeled paleotemperature distributions in ways that are more readily 
distinguishable from modern variability. This remains true if we account for a late summer bias 
in T. sacculifer shell flux observed in a global sediment trap compilation (Jonkers and Kučera, 
2015; Figure S5). However, a more diffuse contour gradient and a broad region of 100% 
conformity exhibited by the quantiles within the middle of the distribution (Figure 8b) suggests 
that the ENSO signal is most easily detected as changes in the extent of the tails. Moreover, an 
asymmetry in the contour gradient of the warm and cold tails indicates that extreme quantiles are 
more sensitive to reductions than enhancements in ENSO amplitude. For example, damping 
ENSO amplitude by half (-50%) while holding seasonality constant registers as a significant 
retraction in the tails of the “altered” paleotemperature distribution, resulting in no conformity 
with the “modern” distribution. In contrast, amplifying ENSO by 50% results in ~40% 
conformity in the tails. Taken together, our sensitivity analysis provides strong evidence that 
down-core T. sacculifer populations from the Line Islands preserve a record of ENSO amplitude, 
with little to no influence from the annual cycle. 
 
Q-Q analysis of the two central Pacific IFA populations reveals enhanced paleotemperature 
variability during the YD relative to the Holocene (Figure 9a). Out of 50 total quantiles (see 
supplemental information), QUANTIFA identifies 24 that significantly deviate from the 1:1 line 
with 95% confidence and 11 that deviate with 99% confidence. Notably, the Q-Q results indicate 
that the greatest differences between the two distributions exist within the interior, where false 
positive rates are among the lowest (Figure S3b) and our sensitivity results suggest a large 
change in interannual climate variability would be required to drive these quantiles from the 1:1 
line. Model fit results reveal broad consistency with scenarios of varied seasonal cycle amplitude 
that suggests insensitivity towards fluctuations in seasonality, consistent with our analysis above. 
With regards to ENSO, the greatest concentration of data-model consistency for quantiles at the 
95% confidence level align with modeled scenarios of enhanced ENSO amplitude (30±11% of 
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significant quantiles; Figure 9b). Although a few quantiles show some correspondence with 
scenarios of reduced ENSO variability (18±5% of significant quantiles), the data suggest this can 
be ruled out almost entirely at a higher (99%) level of confidence (Figure 9c). However, we do 
observe some “patchiness” in our data-model consistency map for quantiles at the 99% 
confidence level, where scenarios with high data-model correspondence closely adjoin those 
with lower correspondence. We speculate that this patchiness stems from sources of 
paleotemperature variability not constrained by our algorithm, which may cause quantiles to 
diverge from the 1:1 line in a pattern that may contain elements of QUANTIFA’s idealized Q-Q 
patterns from different hypothetical scenarios. In this particular case, this additional source of 
variability could be driven by decadal-scale climate oscillations, considering that the sampling 
resolution of cores MGL1208-14MC and 12GC is ~800 years (White et al., 2018). Nevertheless, 
despite some potential interference from other modes of climate variability, our results 
collectively advocate for enhanced ENSO amplitude during the YD compared to the Holocene.  
 
Our interpretation is consistent with that of the original study (White et al., 2018), where the 
authors observe a slight (although statistically insignificant) increase in ENSO amplitude during 
the YD. Their conclusion was based solely on the behavior of the three warmest quantiles, which 
they interpret as representing surface ocean temperatures experienced exclusively during El Niño 
events in the Line Islands region. However, our sensitivity analysis reveals that the behavior of 
all quantiles responds strongly to changes in ENSO variability and can collectively be leveraged 
to diagnose past ENSO changes. Our interpretation is also in agreement with transient climate 
model simulations that indicate amplified ENSO activity during the YD (Liu et al., 2014). We do 
note, however, that the age of the Holocene population from 14MC (4.03 kyrs) dates to a period 
of pronounced ENSO reduction, as revealed by paleo-ENSO records recovered from fossil corals 
(McGregor and Gagan, 2004; Emile-Geay et al., 2016), speleothem deposits (Chen et al., 2016), 
fossil mollusk shells (Carré et al., 2014), lake sediments (Rodbell et al., 1999; Moy et al., 2002; 
Conroy et al., 2008), and other marine sediment cores (Rein et al., 2005; Koutavas et al., 2006; 
Koutavas and Joanides, 2012). Therefore, our interpretation of enhanced YD ENSO amplitude 
could change if the YD population from MGL1208-12GC was compared against a younger core-
top population. 
 
3.2.3 The Eastern Equatorial Pacific 
Lastly, we examine Holocene and LGM populations of T. sacculifer from ODP Site 849 
(0°11’N, 110°31’W, 3851 m) located within the cold tongue extension of the eastern equatorial 
Pacific (EEP) (Figure 3; Ford et al., 2015). 
 
The climatic controls over the IFA signal in the EEP are more complex compared to the western 
and central Pacific. Variability in mixed-layer temperatures at the core site is driven equally by 
seasonal fluctuations in upwelling intensity and ENSO phase changes (Wallace et al., 1989; 
Wang and McPhaden, 2000), resulting in a near even balance between annual and interannual 
climate variability. Indeed, peak El Niño and La Niña anomalies in the modeled modern time 
series (0.81 mmol/mol and -0.66 mmol/mol, respectively) are close in magnitude to the 
amplitude of the annual cycle (0.61 mmol/mol) (Figure 10). As a result, paleotemperature 
distributions derived from T. sacculifer populations in the region represent a mixed signal of 
ENSO and seasonality change which would be difficult to disentangle using conventional 
metrics such as the standard deviation. The generally diagonal orientation of the conformity 
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contours indicates that all quantiles respond to some combination of ENSO and seasonality 
change (Figure 11). However, the more horizontally-oriented contours within the interior of the 
distribution (Figure 11b) suggests that quantiles close to the median more readily respond to 
changes in seasonality than to ENSO. In contrast, quantiles out in the tails, which represent the 
most extreme temperatures within the EEP, exhibit a relatively vertical orientation (Figures 11a 
and 11c), suggesting that ENSO exerts a greater (although not necessarily consistent) influence 
over extreme quantile behavior. Notably, the structure of the conformity contours in the warm 
tail, and to a lesser extent in the cold tail, exhibit a kind of threshold behavior related to the 
strength of the annual cycle. Under scenarios of reduced seasonality, the contours are mostly 
vertical in orientation, indicative of a predominant ENSO influence. However, once seasonality 
is amplified beyond modern day amplitudes (>0%), the structure of the contours changes to a 
more horizontal orientation, signifying an increased seasonal influence in the extent of the tails. 
This suggests that although the relative influence of ENSO is greatest in the tails when compared 
to the distributional interior, this influence can be modified by changes in the strength of the 
annual cycle. 
 
Collectively, the quantiles from the ODP Site 849 Holocene and LGM populations indicate 
reduced glacial temperature variability (Figure 12a). QUANTIFA identifies 27 quantiles (out of 
50; see supplemental information) that significantly deviate from the 1:1 line: 15 at the 95% 
confidence level and 12 at the 99% confidence level. Generally, model fit results for quantiles at 
each level of confidence indicate a region of data-model consistency in the lower half of the heat 
map, suggestive of reduced glacial seasonality (Figures 12b and 12c). Additionally, we observe 
a “hot spot” of data-model consistency in the lower left quadrant of the heat map (55±25% of 
quantiles at 95% confidence and 61±26% of quantiles at 99% confidence), signifying that of the 
scenarios where seasonality is reduced, those where ENSO is also reduced produce modeled 
quantiles that best align with the IFA data from ODP Site 849.  With respect to ENSO, our 
results support the conclusions reached by the original reconstruction (Ford et al., 2015), which 
interpret the data as indicative of a reduced glacial ENSO. However, in attempting to reconcile 
their results with those from core VM21-30 near the Galápagos (Koutavas and Joanides, 2012), 
Ford et al. (2015) posit that glacial seasonality could have been enhanced while ENSO was 
reduced, a prediction consistent with some simulations of past ENSO activity (Chang et al., 
1994, 1995; Liu, 2002; Timmerman et al., 2007; Lu et al., 2016). Our reanalysis of the ODP Site 
849 dataset instead suggests that both the annual cycle and ENSO amplitude were weakened 
during the LGM relative to modern conditions, providing support for the idea that ENSO and 
seasonal cycle amplitude need not have negatively covaried in the past (Emile-Geay et al., 2016). 
 
Notably, these results change slightly if we weigh our picking algorithm to align with maximum 
T. sacculifer productivity in the region. Sediment trap data from the Panama Basin indicates that 
T. sacculifer flux patterns peak during boreal summer (Thunell and Reynolds, 1984). Imposing 
this seasonal bias in our picking algorithm results in the near complete disappearance of the 
annual cycle’s influence over the EEP IFA signal, leaving ENSO as the dominant force shaping 
paleotemperature distributions in the region, particularly in the tails (Figure S6). Indeed, the new 
conformity contour structure strongly resembles that from the central Pacific (Figure 8). 
Comparing these new modeled results against observations suggests the IFA data from ODP Site 
849 is a more direct indicator of ENSO amplitude change than suggested by the unweighted 
analysis (Figure S7). Although the interpretation implied by the new data-model consistency 



A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

maps still suggests that ENSO amplitude was reduced during the LGM relative to the modern 
day, the near erasure of the annual signal means it cannot address the question of covariance 
between ENSO and seasonality amplitude changes in the past. This example underscores the 
importance of considering biases in shell flux when interpreting IFA population variability; in 
some cases, such as for ODP Site 849, imposing shell flux biases can change the very nature of 
the scientific questions a user’s dataset can address. Moreover, our results reinforce seasonal-
weighting exercises conducted using INFAUNAL (Thirumalai et al., 2013), collectively 
suggesting that seasonal preferences in calcification carry strong implications for reconstructing 
high-frequency climate signals regardless of choice in either geochemical proxy system (Mg/Ca 
vs. δ18O) or statistical approach (parametric vs. non-parametric statistics). 
 
 
4. Summary and Conclusions 
In this work, we have detailed a new proxy system model—QUANTIFA—which statistically 
clarifies the uncertainty and interpretation involved in IFA-Mg/Ca reconstructions. As 
demonstrated above, using QUANTIFA to model the translation of high-frequency climate 
signals into fossil foraminiferal populations and to constrain the uncertainties associated with 
their recovery can be a valuable tool for interpreting IFA data. By combining subroutines for 
generating and subsampling pseudoproxy data, performing robust statistical tests, and building 
interpretive tools for deciphering user results, QUANTIFA is uniquely capable of both exploring 
the influence of high-frequency climate signals over IFA distributional shape and providing a 
statistical basis for establishing IFA-Mg/Ca records of past climate variability. 
 
In a series of model application exercises, we reaffirm several aspects of Q-Q analysis reported 
in earlier IFA reconstructions (Ford et al., 2015; White et al., 2018; Thirumalai et al., 2019; 
White and Ravelo, 2020; Rustic et al., 2020). First, we demonstrate that IFA sample size has a 
weak impact on the false positive rates of extreme quantiles, suggesting that they may be viewed 
as reliable indicators of high-frequency climate variability, a finding that carries significant 
implications for paleo-ENSO reconstructions based on tail quantiles (White et al., 2018; White 
and Ravelo, 2020; Rustic et al., 2020). However, smaller IFA sample sizes still run the risk of 
underrepresenting the larger population distribution and can lead to ambiguous results, 
underscoring the importance of sample size considerations when reconstructing past 
paleotemperature distributions (Thirumalai et al., 2013). Secondly, case studies across the 
tropical Pacific suggest that the dominant climate signal retained by IFA populations is largely 
determined by the annual-to-interannual ratio of climate variability at a given location and depth, 
a finding consistent with results from the original INFAUNAL algorithm (Thirumalai et al., 
2013). Finally, our case studies reveal that in regions where annual and interannual climate 
variability play equally important roles in shaping IFA population distributions (such as in the 
upper-mixed layer at ODP Site 849), isolating quantile behavior in the interior and the tails of 
paleotemperature distributions, as well as accounting for biases in shell flux to the sediments, can 
provide clarity in parsing a particular climate signal of interest. 
 
Although our exercises above are restricted to the tropical Pacific, we note that QUANTIFA can 
be used to support IFA reconstructions in other tropical oceans. ORA-S5 datasets spanning the 
tropical Atlantic and Indian Oceans are available to download alongside the QUANTIFA 
algorithm. With these data, QUANTIFA can be leveraged to reconstruct seasonality and 
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interannual climate phenomena associated with those basins, such as the Atlantic Niño or the 
Indian Ocean Dipole. However, given evidence for strong interactions between ENSO and these 
other tropical modes of climate variability with different seasonal phasing (Saravanan and 
Chang, 2000; Li et al., 2003; Behera et al., 2006), we caution that QUANTIFA is not capable of 
isolating the ENSO-only component of interannual climate variability in the Atlantic or Indian 
Oceans. Users should therefore keep these teleconnections in mind when applying QUANTIFA 
to regions outside of the tropical Pacific. 
 
It should also be emphasized that, at present, the uncertainty and interpretative framework 
offered in QUANTIFA is not comprehensive. For sediment samples with long temporal 
resolution (e.g., the Holocene and YD intervals from the Line Islands cores), QUANTIFA does 
not account for the influence of decadal- or centennial-scale climate oscillations that could 
contribute to IFA population variability. Moreover, uncertainties related to migrations in the 
mean calcification depth of foraminifera, as well as post-depositional effects such as 
bioturbation, are not simulated here. However, we anticipate future additions to QUANTIFA’s 
core code that would provide more comprehensive constraints on the non-environmental 
influences regulating IFA variability. 
 
Overall, QUANTIFA represents a potentially valuable computational tool that can be easily 
implemented to provide a strong statistical foundation for future IFA-based reconstructions. 
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Figure 1. A flowchart detailing QUANTIFA’s order of operations. Blue and purple regions 
represent iterative subroutines built within the algorithm (purple used where loops are nested). 
See Table 1 for description of variable names (italicized). 
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Table 1. Input parameters for QUANTIFA. 
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Figure 2. Average false positive rates for extreme quantiles in the tails of pseudo-IFA 
populations from the Niño 3.4 region under variable IFA sample sizes. Mean and standard 
deviation (1σ) computed by averaging false positive rates across 100 model exercises (each with 
5,000 model realizations). Note that a false positive result reports a significant difference 
between two pseudo-IFA distributions when both are known to have come from the same 
population distribution.  
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Figure 3. Core locations for core MD06-3018 (23°00’S, 166°09’E; 2470 m) (Schmitt et al., 
2019), cores MGL1208-14MC and MGL1208-12GC (0°13’S, 155°58’W, 3049 m) (White et al., 
2018), and ODP Site 849 (0°11’N, 110°31’W, 3851 m) (Ford et al., 2015) plotted atop mean sea 
surface temperatures from ORA-S5 (1958 – 2018). Latitudinal and longitudinal bounds of the 
map correspond to the lateral domain of the ORA-S5 tropical Pacific dataset.  
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Figure 4. Modeled results from the core site of MD06-3018 in the western Pacific. (A) 
Pseudoproxy time series from select paleoclimate scenarios (listed to the right of the time series) 
and (B) their associated expression in QQ space when compared against modeled modern 
climate variability.  
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Figure 5. Conformity contour plots (%) for theoretical paleotemperature distributions from G. 
ruber at the site of MD06-3018 (depth = 40 m; see supplemental information). Contours report 
the proportion of quantiles within the (A) cold tail, (B) interior, and (C) warm tail that conform 
to the modeled modern time series (i.e., lie within ±1σ from the 1:1 line). The yellow star 
represents modern climate variability (0% change in ENSO and seasonal cycle amplitude).  
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Figure 6. IFA results from MD06-3018. (A) A Q-Q plot comparing the normalized quantiles of 
the LGM population against the normalized quantiles of the Holocene population. X and Y error 
bars and the associated red enveloped represent 90% confidence bounds in both dimensions. 
Significant quantiles are indicated by the colored diamonds (see legend in the lower right 
corner). Inset shows smoothed kernel density functions for the Holocene (black) and LGM (red) 
populations. (B) A heat map displaying the proportion of significant quantiles that exhibit good 
data-model agreement for each hypothetical climate scenario (proportions calculated from total 
significant quantiles, q).  
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Figure 7. Modeled results from the core site of MGL1208-14MC and 12GC in the central 
equatorial Pacific. (A) Pseudoproxy time series from select paleoclimate scenarios (listed to the 
right of the time series) and (B) their associated expression in QQ space when compared against 
modeled modern climate variability. 
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Figure 8. Conformity contour plots (%) for theoretical paleotemperature distributions from T. 
sacculifer populations at cores 14MC and 12GC in the central equatorial Pacific (depth = 58 m; 
see supplemental information). Contours report the proportion of quantiles within the (A) cold 
tail, (B) interior, and (C) warm tail that conform to the modeled modern time series (i.e., lie 
within ±1σ from the 1:1 line). The yellow star represents modern climate variability (0% change 
in ENSO and seasonal cycle amplitude). Note the dramatic difference in the structure of the 
contours relative to the mixed layer of the western tropical Pacific.  
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Figure 9. IFA results from cores 14MC and 12GC. (A) A Q-Q plot comparing the normalized 
quantiles of the YD population against the normalized quantiles of the Holocene population. X 
and Y error bars and the associated red enveloped represent 95% confidence bounds in both 
dimensions, although quantiles significant at greater levels of confidence are indicated by the 
colored diamonds (see legend in the lower right corner). Inset shows smoothed kernel density 
functions for the Holocene (black) and YD (red) populations. Q-Q results are accompanied by 
data-model consistency maps displaying the proportion of quantiles significant at (B) 95% and 
(C) 99% confidence that exhibit good data-model agreement for each hypothetical climate 
scenario (proportions calculated from total significant quantiles, q).  
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Figure 10. Modeled results from the core site of ODP Site 849 in the EEP. (A) Pseudoproxy 
time series from select paleoclimate scenarios (listed to the right of the time series) and (B) their 
associated expression in QQ space when compared against modeled modern climate variability. 
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Figure 11. Conformity contour plots (%) for theoretical paleotemperature distributions from T. 
sacculifer populations at ODP Site 849 (depth = 15 m; see supplemental information). Contours 
report the proportion of quantiles within the (A) cold tail, (B) interior, and (C) warm tail that 
conform to the modeled modern time series (i.e., lie within ±1σ from the 1:1 line). The yellow 
star represents modern climate variability (0% change in ENSO and seasonal cycle amplitude). 
The diagonal structure exhibited by the conformity contours suggests a mixed influence of 
annual and interannual climate variability.  
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Figure 12. IFA results from ODP Site 849. (A) A Q-Q plot comparing the normalized quantiles 
of the LGM population against the normalized quantiles of the Holocene population. X and Y 
error bars and the associated red enveloped represent 95% confidence bounds in both 
dimensions, although quantiles significant at greater levels of confidence are indicated by the 
colored diamonds (see legend in the lower right corner). Inset shows smoothed kernel density 
functions for the Holocene (black) and LGM (red) populations. Q-Q results are accompanied by 
heat maps displaying the proportion of quantiles significant at (B) 95% and (C) 99% confidence 
that exhibit good data-model agreement for each hypothetical climate scenario (proportions 
calculated from total significant quantiles, q). 
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Central Equatorial Paci�c (MGL1208-14MC and 12GC)

Modern Population Mean Normalized Quantiles (°C)
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Eastern Equatorial Paci�c (ODP Site 849)

Modern Population Mean Normalized Quantiles (°C)
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Input Parameters for QUANTIFA 

Parameter Variable Description 

Individual Foraminiferal Data   

Reference Population X IFA Population to be plotted along the X-axis    [Omit if performing sensitivity analysis] 
Comparison Population Y IFA Population to be plotted along the Y-axis    [Omit if performing sensitivity analysis] 

Reanalysis Data   

ORA-S5 Data Structure -- A subset of Ocean Reanalysis System 5 potential temperature data (available for download). 

Core Location   

Latitude lat Latitude of the core location (XX.5°) 
Longitude lon Longitude of the core location (XX°) 

Depth dep Mean calcification depth for foraminiferal species of interest 

Calibration Equation   

Calibration Equation eqn Select from a bank of preloaded Mg/Ca-T calibrations (see Table S1) or program your own. 

Dissolution Correction D For preloaded calibration equations that incorporate dissolution correction terms, the term (in km 
core depth, [CO3

2-], or any other variable) can be entered here. 

Initializing Conditions   

Number of Picked “Foraminifera” num_p No. of individuals in pseudo-IFA populations “picked” by QUANTIFA. 
Number of Quantiles num_q No. of quantiles computed from pseudo-IFA data (ideally num_q < nump_p). 
Seasonal Weighting seas Months weighted in QUANTIFA’s picking algorithm (1 – 12 by default). 

Pseudoproxy Time Series Length tsl Length (in yrs) of the pseudoproxy time series (equal to sampling resolution if running IFA data). 
Model Realizations run No. of pseudo-IFA populations (and, by extension, Q-Q realizations) generated by QUANTIFA. 

False Positive Rate Exercises fp No. of false positive rate exercises (recommended: 100 for run = 1000 – 5000) 
Confidence Level cl Confidence level for uncertainty envelopes (85%, 90%, 95%, or 99%) 

Analytical Error anerr Analytical uncertainty (in mmol/mol) from IFA measurements (choose a generic value, e.g. 0.1 
mmol/mol, if running sensitivity tests). 

Calibration Error calerr Error (in °C) for the selected calibration equation.     [OPTIONAL] 
 

 


