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Abstract

Individual Foraminiferal Analysis (IFA) has proven to be a useful tool in reconstructing the
amplitude of high-frequency climate signals such as the annual cycle and the El Nifio — Southern
Oscillation (ENSO). However, using IFA to evaluate past changes in climate variability is
complicated by many factors including geographic location, foraminiferal ecology, methods of
sample processing, and the influence of multiple, superimposed high-frequency climate signals.
Robust statistical tools and rigorous uncertainty analysis are therefore required to ensure the
reliability of IFA-based interpretations of paleoclimate change. Here, we present a new proxy
system model—called the Quantile Analysis of Temperature using Individual Foraminiferal
Analyses (QUANTIFA)—that combines methods for assessing IFA detection sensitivity with
analytical tools for processing and interpreting IFA data to standardize and streamline
reconstructions employing IFA-Mg/Ca measurements. Model exercises with simulated and real
IFA data demonstrate that the dominant signal retained by IFA populations is largely determined
by the annual-to-interannual ratio of climate variability at a given location and depth and can be
impacted by seasonal biases in foraminiferal productivity. In addition, our exercises reveal that
extreme quantiles can be reliable indicators of past changes in climate variability, are often more
sensitive to climate change than quantiles within the distributional interior, and can be used to
distinguish changes in interannual phenomena like ENSO from seasonality. Altogether,
QUANTIFA provides a useful tool for modeling IFA uncertainties and processing IFA data that
can be leveraged to establish a history of past climate variability.

Plain Language Summary

The chemistry of fossil shells formed by marine protists called “foraminifera” has been a
valuable tool for reconstructing long-term trends in past climate change. However, establishing a
history of important climate phenomena that occur on timescales more relevant to humans, like
the strength of the seasonal cycle or the intensity of El Nifio events, is much more difficult to
achieve. Recently, researchers have begun to address these questions by analyzing individual
foraminiferal shells through a technique called Individual Foraminiferal Analysis (IFA).
Populations of these individually analyzed shells give us a snapshot of how variable Earth’s
climate was in the past. However, comparing estimates of climate variability between two
distinct time periods, like between our present warm period and the last Ice Age, requires
stringent statistics and rigorous estimates of uncertainty. In this paper, we introduce an algorithm
designed to handle these challenges by mimicking laboratory sampling procedures on a virtual
sediment sample modeled after real oceanographic data. The algorithm also incorporates a set of
statistical tools that aid the user in deciphering the patterns exhibited by their data. We then
demonstrate how it can be a helpful new tool for the research community to quickly process and
interpret IFA data.

1. Introduction

The geochemical composition of foraminiferal calcite has served as the backbone of
paleoceanographic reconstructions for decades and has been a critical tool in developing our
understanding of the ocean’s role in past climate change (Kucera, 2007). Conventionally, long-
term records from marine sediment cores are generated by pooling and analyzing multiple
monospecific foraminiferal shells, generating a single datum for each stratigraphic layer that
represents an average of oceanic conditions at that time. However, in recent years, advances in
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analytical precision coupled with growing interest in reconstructing past changes in high-
frequency (i.e. sub-millennial) climate signals—such as the annual cycle and the El Nifio —
Southern Oscillation (ENSO)—has led to the development of a novel single-shell analytical
technique known as Individual Foraminiferal Analysis, or IFA (Koutavas et al., 2006; Leduc et
al., 2009b; Wit et al., 2010; Ganssen et al., 2011; Khider et al., 2011; Scroxton et al., 2011;
Koutavas and Joanides, 2012; Sadekov et al., 2013; Rustic et al., 2015; Vetter et al., 2017; White
et al., 2018; Schmitt et al., 2019; Thirumalai et al., 2019; White and Ravelo, 2020; Rustic et al.,
2020). By virtue of the two- to four-week life span of most planktic foraminifera (Spero, 1998),
the geochemical signature of a single shell represents a quasi-monthly “snapshot” of the ambient
ocean conditions in which the shell precipitated. Thus, differences in shell chemistry among
individual foraminifera from the same stratigraphic layer nominally represent a composite
sample of hydrographic variability over the timescale represented by the core interval
(Thirumalai et al., 2013).

In regions of the global ocean where hydrographic variability is strongly influenced by a
particular climate oscillation, relative differences between IFA populations can be used to
resolve changes in the amplitude of that oscillation through time. However, interpreting IFA
population distributions as a reflection of past climate variability is not straightforward and can
be complicated by (1) the influence of multiple, superimposed high-frequency climate signals,
and (2) uncertainties associated with a number of environmental, biological, and sample
processing factors (Thirumalai et al., 2013; Wit et al., 2010; Groeneveld et al., 2019). Thus, the
quality and reliability of IFA-based reconstructions rests heavily on the strength of the statistical
methods applied to disentangle competing climatic influences and constrain sources of
uncertainty.

Recent efforts to successfully disentangle the signal-of-interest from the “noise” of ambient
background climate have led to improvements in how IFA data are processed and interpreted. In
earlier studies, differences between IFA distributions were characterized through direct
comparison of parametric measures of scale such as standard deviation and variance (Koutavas
et al., 2006; Koutavas and Joanides, 2012; Leduc et al., 2009b; Sadekov et al., 2013). The
problem with the approach, however, is that it relies on a priori assumptions regarding the
normality of the underlying climate signal (Lanzante, 1996). Aside from concerns regarding the
influence of outlying values (Lanzante, 1996) or the non-gaussian behavior of climate
oscillations such as ENSO (Khider et al., 2011), these metrics only provide a simple measure of
population spread that, by design, ignores variability in the overall shape and structure of IFA
distributions. Such differences could hold climatically meaningful information that allows
researchers to distinguish the relative influence of overlapping high-frequency climate signals
with inherently different time scales. More recent IFA studies have been successful in
characterizing variability in IFA distributional shape by employing quantile-quantile (Q-Q)
analysis—a common yet powerful and statistically robust tool for comparing distribution data
(Ford et al., 2015; White et al., 2018; Thirumalai et al., 2019; White and Ravelo, 2020; Rustic et
al., 2020). By plotting the evenly-spaced quantiles of one data distribution against another, Q-Q
plots capture differences in location, scale, and skew in one convenient plot, without the need for
any underlying assumptions regarding the data (Lodder and Heiftje, 1988). Moreover, Q-Q
analysis is capable of detecting differences between particular regions of a data distribution—
such as within the interior or out in the tails—whereas traditional metrics characterize data
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distributions holistically. Recent IFA work suggests this latter feature of Q-Q analysis is valuable
for parsing changes in annual vs. interannual climate phenomena (Ford et al., 2015; White et al.,
2018; Thirumalai et al., 2019; White and Ravelo, 2020; Rustic et al., 2020). For example, in the
equatorial Pacific, ENSO events are typically characterized by large sea surface temperature
(SST) anomalies that exceed the total seasonal temperature range (Wang and Fielder, 2006). As a
result, changes in ENSO amplitude could ostensibly be inferred from IFA paleotemperature
distributions as differences in the extent of the tails, with changes in the annual cycle presumably
confined to the middle of the distribution (Ford et al., 2015; White et al., 2018; White and
Ravelo, 2020; Rustic et al., 2020).

At the same time, however, a combination of environmental, biological, and sample processing
factors can also have a significant impact on the shape and structure of IFA distributions,
complicating interpretations of past climate variability. For example, the relative influence of
annual and interannual climate phenomena on a region’s hydrographic variability can vary
significantly, both laterally and with depth (Thirumalai et al., 2013). As a result, the location of a
sediment core and the mean calcification depth of the foraminiferal species used for the
reconstruction exerts a first order control on the ability of IFA distributions to detect certain
climate signals. Further complications arise when considering changes in foraminiferal ecology
(Groeneveld et al., 2019) and post-depositional effects such as bioturbation (Dolman et al.,
2018). In addition, the physical recovery of IFA distributions is associated with its own sources
of uncertainty, including: (1) sampling error, related to IFA population size; (2) analytical error,
determined by instrument precision; and (3) calibration error, introduced when translating raw
geochemical values to inferred environmental parameters (Thirumalai et al., 2013). The impact
of sampling error can be especially influential on the tails of IFA distributions, where the
presence/absence of outlying values have led some to questions their reliability as indicators of
past climate variability. Thus, one of the outstanding challenges in IFA Q-Q analyses rests in
developing methods that weigh the impact of climate signals vs. other external influences on
quantile behavior.

One approach to constraining these uncertainties is to utilize proxy system models that capture
the translation of high-frequency climate signals into fossil foraminiferal populations and
replicate their recovery by simulating the selection and analysis of individual foraminifera
(Dolman et al., 2018; Evans et al., 2013). An early study to adopt this approach introduced the
Individual Foraminiferal Approach Uncertainty Analysis (INFAUNAL) algorithm (Thirumalai et
al., 2013), which has been used to estimate IFA detection sensitivity at a particular location by
modeling changes in IFA-3'30 population spread in response to prescribed changes in high-
frequency climate variability (Thirumalai et al., 2013). However, INFAUNAL primarily relies
on standard metrics of population spread such as standard deviation and range. At present, a
similar tool that constrains variability in the shape and structure of IFA distributions is not yet
available. Moreover, there is currently no proxy system model available that explores the
uncertainties inherent to IFA reconstructions derived from magnesium-to-calcium (Mg/Ca) ratios
of foraminiferal calcite, an arguably more direct proxy for ocean temperature variability (Ford et
al., 2015; White et al., 2018; White and Ravelo, 2020; Rustic et al., 2020). Although recent IFA-
Mg/Ca studies have independently developed and incorporated their own form of uncertainty
analysis, methods vary between studies (see, e.g., uncertainty analyses conducted by Ford et al.,
2015 vs. Thirumalai et al., 2019). A centralized computational tool for [FA-related uncertainty

This article is protected by copyright. All rights reserved.



analysis and data processing could provide a common statistical framework that standardizes
IFA data analysis and streamlines future reconstructions of seasonality, ENSO, and other high-
frequency climate signals (Greene and Thirumalai, 2019).

To that end, we developed a user-friendly proxy system model, called the Quantile Analysis of
Temperature using Individual Foraminiferal Analyses (QUANTIFA), that combines rigorous
uncertainty analysis with robust analytical tools to provide a standardized statistical framework
for IFA data analysis. Using INFAUNAL as a basis (Thirumalai et al., 2013), we combine
pseudoproxy forward-modeling techniques with a bootstrap resampling scheme to constrain
variability in IFA distributional shape in response to prescribed changes in climate variability.
However, QUANTIFA goes one step further by combining INFAUNAL’s core function of
modeling IFA detection sensitivity with a data processing element that both facilitates Q-Q
analyses of two inputted IFA populations and performs additional analyses that aid the user in
deciphering the significance of their results. These analyses include false positive tests that
estimate the frequency of type I errors, as well as a data-model consistency analysis that
compares the user’s results against modeled results from hypothetical scenarios of altered high-
frequency climate variability. This combination of conventional Q-Q analyses with estimates of
uncertainty, detection sensitivity, false positivity, and data-model consistency builds a unique
interpretative framework that can more thoroughly inform IFA-based interpretations of past
climate variability. In this work, we first detail the statistical and mathematical basis our new
algorithm. We then utilize QUANTIFA to explore the influence of IFA sample size on the
feasibility of using extreme quantiles in the tails to diagnose changes in high-frequency climate
variability. Finally, we apply our algorithm to three previously published IFA datasets from
throughout the tropical Pacific Ocean. Our model exercises demonstrate QUANTIFA’s potential
as a useful exploratory and data analysis tool that can help bolster the efficiency and accuracy of
future IFA-based reconstructions.

2. Model Description

QUANTIFA is an open-source proxy system model available for MATLAB™ designed to (1)
test the ability of the IFA technique to resolve changes in high-frequency climate variability,
primarily focusing on seasonality and ENSO, and (2) establish a statistical and interpretive
framework for analyzing IFA data (Figure 1). Accordingly, QUANTIFA is flexible in its use.
Without the input of IFA data, the algorithm can be used to model the sensitivity of
paleotemperature distributions to changes in the amplitude of annual and interannual climate
variability. This is achieved by simulating the IFA sampling procedure (along with its associated
uncertainties) on modeled pseudoproxy time series representing both modern climate conditions
and hypothetical scenarios of altered climate variability. Alternatively, QUANTIFA can be used
as an analytical tool for comparing down-core IFA populations or for comparing core-top
populations with modern reanalysis data (this latter exercise is not performed here, although the
algorithm includes documentation for such a procedure). QUANTIFA identifies significant
differences between the two distributions by coupling Q-Q analysis with an iterative
bootstrapping subroutine that constructs uncertainty envelopes incorporating analytical,
calibration, and sampling errors. In addition, QUANTIFA provides an interpretive framework to
aid the user in deciphering the pattern exhibited by their data. This framework includes a series
of false positive tests to provide a measure of reliability in the observed results, as well as data-
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model consistency maps that compare the configuration of the user’s quantiles in Q-Q space
against simulated quantiles from each modeled climate scenario.

2.1 Pseudoproxy Time Series

Both of QUANTIFA'’s core applications—modeling IFA detection sensitivity and facilitating
IFA population comparisons—rely on creating a collection of synthetic Mg/Ca time series that
simulate paleodata entrained within an idealized virtual sediment sample (Figure 1). These time
series are constructed using subsets of the Ocean Reanalysis System 5 (ORA-S5) data
assimilation containing a three-dimensional gridded field of potential temperature data (Zuo et
al., 2019). In our model exercises below, we utilize a subset spanning the tropical Pacific Ocean
(30°N — 30°S, 120°E — 70°W; 0 — 5902 m), although we note that subsets from the tropical
Atlantic and Indian Oceans are also available for use with QUANTIFA (see section 4). The
ORA-SS5 data structures have a 1° x 1° horizontal resolution and 75 depth levels, with the highest
vertical resolution in the upper 200 m where most planktic foraminifera live. Each grid box
contains a 61-year time series of monthly mean potential temperature data extending from Jan
1958 — Dec 2018. Using coordinates and depth information prescribed by the user (Table 1),
QUANTIFA extracts the temperature time series from the nearest ORA-S5 grid box and converts
the values into Mg/Ca ratios (in mmol/mol) using a calibration equation specified by the user.
Users can either select from a set of pre-programmed calibration equations (see Table S1 for a
complete list) or incorporate their own. Additionally, QUANTIFA can be coupled to Bayesian,
multivariate Mg/Ca calibration models (such as those by Khider et al., 2015, Tierney et al., 2019,
and Holland et al., 2020) to account for factors other than temperature that influence
foraminiferal Mg/Ca. It should be noted, however, that (to our knowledge) all existing
foraminiferal Mg/Ca-T calibrations have been developed using multi-specimen samples.
Therefore, absolute temperatures calculated from IFA data using these equations may produce
different results than if a calibration developed from individual foraminifera was used.

The resulting forward-modeled Mg/Ca time series is used to generate a number of pseudoproxy
time series covering a broad range of potential paleoclimate scenarios. First, the algorithm
models paleodata reflective of modern climate variability (hereafter referred to as the “modeled
modern time series”). Following procedures adopted from INFAUNAL (Thirumalai et al., 2013),
QUANTIFA calculates monthly averaged Mg/Ca ratios for all neutral (i.e., non-ENSO) years to
establish a mean seasonal climatology at the location. Monthly mean Mg/Ca ratios are also
calculated for all El Nifio and La Nifa years (as identified by the Oceanic Nifio Index) and
subtracted from the base climatology to establish monthly mean anomalies associated with
ENSO. To extend the modeled modern time series and match it to the theorized length of time
represented by the sediment sample, QUANTIFA repeatedly splices the climatological seasonal
cycle for a number of years specified by the user (Table 1). El Nifio and La Nifia events are
inserted into the time series by adding the ENSO anomalies atop this annual cycle. Finally, to
ensure that the modeled paleodata are similar to the instrumental record both visibly and in
frequency space, red and white noise is added to the time series.

QUANTIFA then generates a collection of pseudoproxy time series representing hypothetical
scenarios of altered climate variability by gradually modifying the amplitude of the seasonal
cycle and ENSO events within the modeled modern time series. We opted not to adjust the
number of ENSO events in our altered climate time series given prior evidence that ENSO
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frequency has little-to-no control over the IFA signal (Thirumalai et al., 2013). Seasonality is
altered by amplifying/damping the magnitude of the quasi-sinusoidal seasonal climatology
calculated from the forward-modeled Mg/Ca data. To manipulate ENSO amplitude, the Mg/Ca
anomalies associated with ENSO events are modified so that the events can grow in phase and
peak with the annual cycle. Both seasonality and ENSO amplitude are adjusted in 10%
increments, ranging from a complete damping of the signal (-100%) to a doubling of the signal
(+100%), generating 440 altered climate scenarios with different permutations of seasonality and
ENSO change (Thirumalai et al., 2013).

We acknowledge that this method of statistically modeling altered states of climate variability
relies on the assumption that the structure of month-to-month patterns in seasonality and
interannual anomalies at a given location does not change with time. Changes in the relative
strength or the spatial footprint of these phenomena, such as what has been suggested for the
ENSO during the last glacial period (Liu et al., 2020), could represent a potential limitation of
our forward modeling scheme.

2.2 Modeling IFA Detection Sensitivity

QUANTIFA assesses the ability of IFA populations to resolve changes in annual and interannual
climate variability by simulating the IFA sampling procedure on the modeled time series and
subjecting the resulting pseudo-IFA populations to Q-Q analysis (Figure 1). First, QUANTIFA
constrains the uncertainties associated with the IFA approach by employing a smoothed
bootstrap resampling scheme (Efron, 1979) designed to simulate the random selection of
individual foraminifera from a sediment sample, as well as the errors associated with their
analysis and translation to paleotemperature values. The algorithm repeatedly selects monthly
mean Mg/Ca ratios from each modeled time series to produce pseudo-IFA populations for a set
number of realizations. Each population is then converted into a paleotemperature distribution
following the calibration equation prescribed by the user at the beginning of the model run. At
each step within this “picking loop”, uncertainties associated with analytical precision and
calibration error are incorporated as Gaussian distributions (1o defined by the user; Table 1),
creating a range where picked Mg/Ca ratios and translated paleotemperature values are permitted
to vary.

QUANTIFA then performs a series of Q-Q analyses that compare all modeled paleotemperature
distributions from the altered climate scenarios against those generated from the modeled
modern time series, an exercise analogous to performing down-core IFA population comparisons
(Figure 1). In doing so, QUANTIFA produces multiple Q-Q realizations that approximate the
uncertainty related to subsampling a larger population. To emphasize differences between the
two populations apart from changes in mean temperature, each paleotemperature distribution is
centered before quantiles are computed. The algorithm sorts the modeled quantiles into bins
according to their proximity along the x-axis to the mean quantiles of the modeled modern time
series (calculated by averaging across model realizations). Within each bin, the algorithm
computes: (1) the mean of the binned quantiles, (2) the standard deviation, and (3) the mean
distance each quantile falls from the 1:1 line, hereafter referred to as “residuals”. Residuals are
used to characterize the overall shape of the quantiles in Q-Q space. For example, if two
distributions are closely identical, the quantiles within each bin will cluster tightly around the 1:1
line, and the corresponding mean residual values would be near zero. The larger the difference
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between the two distributions, the further the cloud of Q-Q realizations will deviate from the 1:1
line, resulting in greater mean residuals. This exercise is repeated for all altered climate
scenarios, creating a set of mean quantiles and residuals that describe a characteristic shape in Q-
Q space corresponding to a particular configuration of ENSO and seasonality change when
compared to modern climate conditions.

QUANTIFA uses these idealized Q-Q patterns to assess the response of paleotemperature
distributions to changes in high-frequency climate variability. To better characterize the
dominant climatic influences within different parts of the paleotemperature distribution, mean
residual values are sorted into three distinct regions: the interior of the distribution (the middle
68%) and the warm and cold tails (the upper and lower 16%, respectively). The algorithm
computes the proportion of the quantiles within each group that fall within & 16 from the 1:1
line, a range we define as exhibiting close conformity with the “modern” distribution.
Populations from the altered climate scenarios that conform closely with the shape of the
“modern” distribution would return high conformity values (%) for each region and would, in
theory, be difficult to detect in real IFA populations. Scenarios with poor conformity indicate
large differences between the “altered” and “modern” distributions, suggesting a high probability
of detection. The calculated percent of conformity for each Q-Q comparison is displayed on a
contour plot, where the structure of the contours can be used as a visual diagnostic for relative
signal strength (ENSO vs. seasonality) and IFA detection sensitivity. Contours with a fully
vertical orientation, for example, indicate a sensitivity to changes in ENSO amplitude, while
horizontal contours indicate a greater sensitivity to seasonality. Diagonal contours, by extension,
would suggest some combination of both. Likewise, the gradient of the plotted contours can be
used to infer detection sensitivity. Contours plotted close to one another would suggest
heightened sensitivity to a particular climate signal, and contours plotted farther apart would
suggest the opposite.

2.3 Processing IFA Data and Building an Interpretive Framework

In addition to modeling IFA detection sensitivity, QUANTIFA can be used as an analytical tool
to compare real [IFA populations against one another or to compare an IFA population with
modern reanalysis data (Figure 1). Inputted IFA-Mg/Ca data are first converted into
paleotemperature values with user-selected calibrations, centered, and then subdivided into
quantiles. To identify potential differences between the two populations (or between an IFA
population and the reanalysis data), QUANTIFA constructs uncertainty envelopes by repeatedly
resampling the modeled modern time series using the same “picking loop” and binning strategy
detailed in section 2.2. This exercise is performed twice: once to derive error in the X direction
and again for error in the Y direction. The only difference between the two operations is the size
of the resulting pseudo-IFA populations, which is determined by the size of the IFA dataset
assigned to that axis. QUANTIFA produces a Q-Q plot of the user’s data that includes an inset
with a smoothed, gaussian kernel density estimate of the inputted IFA populations, emphasizing
differences between the shapes of the two distributions reflected in the Q-Q plot. We stress that
our choice in kernel function has no bearing on the results of the Q-Q analyses, given that the
quantiles are computed from the raw data. The Q-Q plots also include uncertainty bounds at a
user-specified degree of confidence: 85%, 90%, 95%, or 99% (Table 1). Whenever a quantile
deviates from the 1:1 line beyond this region of uncertainty, it is considered significantly
different at that corresponding level of confidence.
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Built within the data processing element of QUANTIFA are two additional routines that together
constitute an interpretative framework intended to help make sense of any observed differences
between two IFA distributions. The first plank of this framework involves conducting false
positive tests at the individual quantile level to quantify how often each may commit a type I
error—that is, how often a quantile reports a spuriously significant result when the two IFA
distributions are known to come from the same population. This is achieved by repeatedly
subsampling the site-specific modeled modern time series (using the same “picking loop”
detailed above) to generate two pseudo-IFA populations, comparing them via Q-Q analysis, and
tallying how often each quantile significantly deviates from the 1:1 line beyond the specified
level of confidence. In essence, these false positive rates are meant to serve as a simple measure
of a quantile’s “reliability” as an indicator of past climate variability. For example, if a
quantile—say, an extreme quantile in the tails of a distribution—reports a high false positive
rate, then its significance in the user’s data should not be taken as a sign of changes in climate
variability. Although potential drivers behind high false positive rates—a region’s particular
climatology, sampling exceedances when partitioning a small IFA population into too many
quantiles, etc.—should ultimately be left to the user to investigate, QUANTIFA’s false positive
tests provide a simple yet powerful measure of assessing a quantile’s climatic significance.

The second plank of QUANTIFA’s interpretive framework involves constructing data-model
consistency maps, where the position of the user’s significant quantiles in Q-Q space is
compared against the position of those same quantiles from each hypothetical climate scenario
(Figure 1). The purpose of this exercise is to highlight the set of altered climate scenarios that
most closely conform to the user’s data, providing a foundation from which to infer past changes
in climate variability. To this end, QUANTIFA first identifies and calculates the residuals of user
quantiles which significantly deviate from the 1:1 line. Next, the algorithm assesses data-model
fit by calculating a parameter called the residual difference (AR), which we define as the
difference between the residual of the user’s quantile and the mean residual values for that
quantile from each altered vs. modern Q-Q comparison:

AR = |RQuser - RQmodell (1)

where Rq, ., refers to the residual of quantile Q of the user’s data, and Rq_ ., represents a 21 x
21 matrix of mean residual values for quantile Q from each hypothetical climate scenario.
Applying equation (1) to each significant quantile generates a matrix of AR values which reflect
the quantile’s “goodness-of-fit” for each hypothetical scenario, where the lower the AR value
(i.e., the smaller the difference between the user’s residuals and the modeled residuals), the better
the fit. Climate scenarios where the AR value is less than the 1o error for that quantile are
identified by QUANTIFA as a scenario that exhibits good data-model consistency. The
algorithm then collates the AR matrices for each significant quantile and calculates the
proportion of those quantiles that exhibit good data-model fit for each climate scenario. These
proportions are presented as heat maps, where regions of high percentages indicate the set of
hypothetical climate scenarios that are most consistent with the user’s data. We emphasize that,
given the inherent uncertainties associated with IFA, data-model consistency results for an
individual climate scenario can vary slightly across model runs. Therefore, these maps should be
used as qualitative diagnostic tools for identifying broad patterns of high-frequency climate
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change (e.g., enhanced vs. reduced variability) rather than attributing user results to a specific
scenario of altered climate variability. Any quantitative interpretations should be carefully and
independently vetted. Nevertheless, these data-model consistency maps are a useful tool for
deciphering the signals preserved within IFA populations.

3. Model Application Exercises

To demonstrate the utility of QUANTIFA as an exploratory and data analysis tool, we perform
two different exercises. In the first, we explore the influence of IFA sample size on extreme
quantile behavior to better understand under what circumstances the tails of IFA distributions
can be viewed as reliable indicators of high-frequency climate change, given their sensitivity to
outlying values. We perform a series of false positive tests on pseudo-IFA populations of
variable sample sizes (n = 25, 50, 75, 100, 125, and 150) derived from forward-modeled SSTs in
the Nifio 3.4 region. We hold the number of quantiles constant at 50, to see whether over- or
under-discretization of the paleotemperature distribution also plays a role in extreme quantile
behavior.

In the second exercise, we conduct three case studies where we apply QUANTIFA to previously
published IFA datasets collected throughout the tropical Pacific. For each case, we conduct a
sensitivity analysis to constrain the relative influence of annual and interannual climate
variability over the IFA signal at the core location (see Text S1 for details on model input). We
then run the IFA data through QUANTIFA to identify any significant differences between the
two populations and attribute these differences to changes in ENSO or seasonal cycle amplitude
(or some combination of both). We stress that the purpose of this latter exercise is not to
investigate the underlying mechanisms that could produce any observed changes in high-
frequency climate variability. Instead, our purpose is to illustrate how the individual output
products generated by QUANTIFA can by brought together to more thoroughly inform
interpretations of past climate variability.

3.1 Exploring the Influence of Sample Size on Tail Sensitivity in the Niiio 3.4 Region
Repeated subsampling and Q-Q analysis of pseudo-IFA populations from the Nifio 3.4 region
consistently report low levels of false positive results at the 90% confidence level for all extreme
quantiles regardless of sample size, with mean rates remaining below 6% (Figure 2).
Interestingly, with regards to the warm tail, our estimates closely match those reported by Rustic
et al. (2020), despite their use of an algorithm that employs a different analytical approach for
constraining uncertainty. However, stress testing our results by running the model exercise 100
times (each with 5,000 Q-Q realizations) reveals a considerable degree of variability, with the
largest differences often observed between quantiles rather than among different sample sizes
within a single quantile. According to our results, the relationship between false positive rate and
IFA sample size is inconsistent. For example, smaller [FA sample sizes do not always report
higher false positive rates, while larger IFA sample sizes do not necessarily reduce the risk of a
false positive result. As such, it appears IFA sample size does not have an impact on an
individual quantile’s false positive rate, even in cases where the number of quantiles exceeds the
total number of individual foraminifera that comprise the IFA distribution.
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Instead, inter-quantile differences are more readily apparent, with variability in false positive
rates tending to be greatest for tail quantiles than for those in the distributional interior (Figure
S1). The exact pattern of false positive rates between the cold and warm tails is not symmetrical,
however, which can likely be attributed to the region’s particular climatological response
(asymmetries in warm and cold anomalies of the underlying time series force differences in the
response of warm and cold tails). As such, the quantiles with the highest mean false positive
rates are not always the most extreme quantiles, as might be expected. Regardless, tail quantiles
remain quite variable, with rates reaching >20% in some cases (although this is very rare:
~0.13% of 300,000 computed rates). In most cases (94%), false positive rates remain below 10%
for all quantiles across all sample sizes, which approximates the presumed probability of type I
error based on our 90% confidence envelopes. Therefore, it seems reasonable to conclude that
tail quantiles can be viewed as generally reliable indicators of past climate variability. However,
it should be emphasized that this conclusion is highly dependent on the dynamics of the
underlying reanalysis time series, which varies with location and depth. Our exercise thus
highlights the importance of integrating estimates of false positive rates into QUANTIFA’s
interpretive framework, so similar analyses can be conducted for a user’s region of interest.

3.2 Case Studies from the Tropical Pacific

3.2.1 The Western Tropical Pacific

For our first case study, we use Holocene and Last Glacial Maximum (LGM) populations of the
surface-dwelling species Globigerinoides ruber (white variety; sensu stricto and sensu lato
morphotypes) from core MD06-3018 (23°00°S, 166°09°E; 2470 m) off the coast of New
Caledonia (Figure 3; Schmitt et al., 2019).

Our sensitivity analysis at the core site reveals that the IFA signal preserved by G. ruber
populations off the New Caledonian coast is almost exclusively controlled by changes in the
strength of the annual cycle. At the core location, peak Mg/Ca anomalies associated with El Nifio
(-0.06 mmol/mol) and La Nina events (0.09 mmol/mol) are marginal compared to the amplitude
of the annual cycle (0.38 mmol/mol), resulting in a high ratio of annual-to-interannual variability
(Figure 4). The dominance of seasonality over the New Caledonian IFA signal is reflected in the
horizontal orientation of the conformity contours generated by QUANTIFA (Figure 5).
According to our results, changing ENSO amplitude (moving to the left and right of the yellow
stars in Figure 5) has little to no influence over the shape of the modeled paleotemperature
distributions. For example, in a scenario where ENSO is doubled (+100%) and seasonality is
held constant, all quantiles from the “altered” distribution exhibit 100% conformity with the
“modern” distribution (i.e., no quantiles deviate from the 1:1 line beyond 1c). The results are
similar if ENSO is completely damped (-100%), suggesting that even in the most extreme cases,
paleotemperature distributions recorded by G. ruber populations from MD06-3018 are largely
insensitive to changes in ENSO amplitude. These results remain unchanged even if we apply a
seasonal weighting to QUANTIFA’s picking algorithm to account for a mild late summer bias in
G. ruber flux to the sediments (Jonkers and Kucera, 2015) (Figure S2). Instead, our modeled
paleotemperature distributions from the west Pacific show an acute response to changes in the
strength of the annual cycle (moving above and below the yellow stars in Figure 5). Yet, based
on the more diffuse contour gradient exhibited by quantiles in the interior (Figure Sb), our
results suggest that extreme quantiles in the tails are more sensitive to changes in seasonality
than those closer to the median. For example, in a scenario where seasonality is increased by
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50% while holding ENSO amplitude constant, quantiles out in the tails of the “altered”
distribution exhibit no conformity with the “modern” distribution. Under the same scenario,
however, as much as 75% of quantiles in the interior are statistically indistinguishable from
modeled modern variability. Despite this asymmetry in detection sensitivity, the annual cycle
remains the dominate signal shaping upper-ocean paleotemperature distributions in waters near
New Caledonia.

Q-Q analysis of the late Holocene and LGM populations from MD06-3018 reveals three
quantiles (out of 30; see supplemental information) that significantly deviate from the 1:1 line
with 90% confidence (Figure 6a). Based on our sensitivity analysis above, these quantiles could
be indicative of differences in seasonality between the two time slices. False positive rates for all
three quantiles are relatively low (mean rates for the 1%, 26", and the 27" quantiles are 2.99%,
1.13%, and 1.03%, respectively; Figure S3a), providing some support for a climate-driven
signal. However, with these tools alone, it is difficult to discern the direction of seasonality
change. If we compare the position of the three quantiles against the idealized Q-Q patterns for
this location, the resulting data-model consistency map reveals broad agreement with scenarios
of varying degrees of ENSO amplitude (Figure 6b), confirming the relative insensitivity of G.
ruber populations from MD06-3018 to changes in interannual climate variability. Regarding the
state of the glacial annual cycle, however, the results are ambiguous. QUANTIFA suggests two
distinct possibilities: two of the three quantiles are consistent with scenarios of reduced
seasonality, whereas a third significant quantile aligns more closely with scenarios of moderately
enhanced seasonality (Figure 6b). Therefore, while it could be argued that the MD06-3018 IFA
dataset likely represents a reduction in seasonality during the LGM relative to the Holocene, with
this dataset and at the present level of confidence, the possibility of an enhanced seasonal cycle
cannot be definitively ruled out.

While it is unlikely that these quantiles may have registered as significant by random chance
(taking the high end of the standard deviation in our false positive rates, the compounded
probability of a type I error is (0.10)(0.04)(0.04) = 0.02%; Figure S3a), it is more likely that at
least some of the ambiguity in interpretation can be attributed to the small sample size of the
MDO06-3018 IFA dataset (» = 30). Smaller sample sizes risk misrepresenting the true shape of the
larger population distribution and, as a result, are subject to greater sampling uncertainty
(Thirumalai et al., 2013). As such, although a small sample size may not increase the risk of
encountering false positives (see section 3.1), it can impact the resolution of the recovered
paleotemperature distribution, potentially obscuring tell-tale signs of past climate variability. To
illustrate this effect, we run a second sensitivity analysis for the MD06-3018 site but with a
larger and more conventional pseudo-IFA population size (n = 70; Thirumalai et al., 2013). Our
results show that the estimated 1o sampling error for all 30 quantiles (in both X and Y
directions) decreases by 36% from an average of 0.28 mmol/mol to 0.18 mmol/mol.
Consequently, the conformity contours for this experiment show a contraction in the area of the
100% conformity region and an increase in the conformity contour gradient, both indicators of
increased detection sensitivity (Figure S4). Therefore, it is likely that the small IFA dataset from
core MD06-3018 underrepresents the true structure of the population distribution, precluding a
clear interpretation regarding the state of the annual cycle during the LGM. Supplementing the
existing dataset with additional measurements would be required to address this question.
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3.2.2 The Central Equatorial Pacific

Next, we compare Holocene and Younger Dryas (YD) populations of the mixed-layer species
Trilobatus sacculifer from cores MGL1208-14MC and MGL1208-12GC (0°13’S, 155°58°W,
3049 m) recovered from the Line Islands in the central equatorial Pacific (Figure 3; White et al.,
2018).

Our sensitivity analysis reveals that the IFA signal recorded by 7. sacculifer populations in the
Line Islands predominantly reflects variability in ENSO amplitude, supporting the inferences
made in the original reconstruction (White et al., 2018). At the core site, El Nifio and La Nifia
events are characterized by large Mg/Ca anomalies in the modeled modern time series (0.81
mmol/mol and -0.65 mmol/mol, respectively) that dwarf the amplitude of the mean annual cycle
(0.15 mmol/mol), resulting in a small ratio of annual-to-interannual climate variability (Figure
7). Consequently, the conformity contours for the central equatorial Pacific exhibit a
dramatically different structure than those for the western tropical Pacific (Figure 8). The
vertical orientation of the plotted contours signifies that the modeled paleotemperature
distributions are insensitive to changes in seasonal cycle amplitude. For example, doubling the
strength of seasonality (+100%) or damping it completely (-100%) while holding ENSO
amplitude constant results in 100% conformity between the “altered” and “modern”
paleotemperature distributions. Thus, large fluctuations in the strength of the annual cycle are not
registered by 7. sacculifer populations from the Line Islands region. Changing ENSO amplitude,
by comparison, alters the modeled paleotemperature distributions in ways that are more readily
distinguishable from modern variability. This remains true if we account for a late summer bias
in 7. sacculifer shell flux observed in a global sediment trap compilation (Jonkers and Kucera,
2015; Figure S5). However, a more diffuse contour gradient and a broad region of 100%
conformity exhibited by the quantiles within the middle of the distribution (Figure 8b) suggests
that the ENSO signal is most easily detected as changes in the extent of the tails. Moreover, an
asymmetry in the contour gradient of the warm and cold tails indicates that extreme quantiles are
more sensitive to reductions than enhancements in ENSO amplitude. For example, damping
ENSO amplitude by half (-50%) while holding seasonality constant registers as a significant
retraction in the tails of the “altered” paleotemperature distribution, resulting in no conformity
with the “modern” distribution. In contrast, amplifying ENSO by 50% results in ~40%
conformity in the tails. Taken together, our sensitivity analysis provides strong evidence that
down-core T. sacculifer populations from the Line Islands preserve a record of ENSO amplitude,
with little to no influence from the annual cycle.

Q-Q analysis of the two central Pacific IFA populations reveals enhanced paleotemperature
variability during the YD relative to the Holocene (Figure 9a). Out of 50 total quantiles (see
supplemental information), QUANTIFA identifies 24 that significantly deviate from the 1:1 line
with 95% confidence and 11 that deviate with 99% confidence. Notably, the Q-Q results indicate
that the greatest differences between the two distributions exist within the interior, where false
positive rates are among the lowest (Figure S3b) and our sensitivity results suggest a large
change in interannual climate variability would be required to drive these quantiles from the 1:1
line. Model fit results reveal broad consistency with scenarios of varied seasonal cycle amplitude
that suggests insensitivity towards fluctuations in seasonality, consistent with our analysis above.
With regards to ENSO, the greatest concentration of data-model consistency for quantiles at the
95% confidence level align with modeled scenarios of enhanced ENSO amplitude (30+11% of
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significant quantiles; Figure 9b). Although a few quantiles show some correspondence with
scenarios of reduced ENSO variability (18+5% of significant quantiles), the data suggest this can
be ruled out almost entirely at a higher (99%) level of confidence (Figure 9¢). However, we do
observe some “patchiness” in our data-model consistency map for quantiles at the 99%
confidence level, where scenarios with high data-model correspondence closely adjoin those
with lower correspondence. We speculate that this patchiness stems from sources of
paleotemperature variability not constrained by our algorithm, which may cause quantiles to
diverge from the 1:1 line in a pattern that may contain elements of QUANTIFA’s idealized Q-Q
patterns from different hypothetical scenarios. In this particular case, this additional source of
variability could be driven by decadal-scale climate oscillations, considering that the sampling
resolution of cores MGL1208-14MC and 12GC is ~800 years (White et al., 2018). Nevertheless,
despite some potential interference from other modes of climate variability, our results
collectively advocate for enhanced ENSO amplitude during the YD compared to the Holocene.

Our interpretation is consistent with that of the original study (White et al., 2018), where the
authors observe a slight (although statistically insignificant) increase in ENSO amplitude during
the YD. Their conclusion was based solely on the behavior of the three warmest quantiles, which
they interpret as representing surface ocean temperatures experienced exclusively during El Nifio
events in the Line Islands region. However, our sensitivity analysis reveals that the behavior of
all quantiles responds strongly to changes in ENSO variability and can collectively be leveraged
to diagnose past ENSO changes. Our interpretation is also in agreement with transient climate
model simulations that indicate amplified ENSO activity during the YD (Liu et al., 2014). We do
note, however, that the age of the Holocene population from 14MC (4.03 kyrs) dates to a period
of pronounced ENSO reduction, as revealed by paleo-ENSO records recovered from fossil corals
(McGregor and Gagan, 2004; Emile-Geay et al., 2016), speleothem deposits (Chen et al., 2016),
fossil mollusk shells (Carré et al., 2014), lake sediments (Rodbell et al., 1999; Moy et al., 2002;
Conroy et al., 2008), and other marine sediment cores (Rein et al., 2005; Koutavas et al., 2006;
Koutavas and Joanides, 2012). Therefore, our interpretation of enhanced YD ENSO amplitude
could change if the YD population from MGL1208-12GC was compared against a younger core-
top population.

3.2.3 The Eastern Equatorial Pacific

Lastly, we examine Holocene and LGM populations of 7. sacculifer from ODP Site 849
(0°11°N, 110°31°W, 3851 m) located within the cold tongue extension of the eastern equatorial
Pacific (EEP) (Figure 3; Ford et al., 2015).

The climatic controls over the IFA signal in the EEP are more complex compared to the western
and central Pacific. Variability in mixed-layer temperatures at the core site is driven equally by
seasonal fluctuations in upwelling intensity and ENSO phase changes (Wallace et al., 1989;
Wang and McPhaden, 2000), resulting in a near even balance between annual and interannual
climate variability. Indeed, peak El Nifo and La Nifia anomalies in the modeled modern time
series (0.81 mmol/mol and -0.66 mmol/mol, respectively) are close in magnitude to the
amplitude of the annual cycle (0.61 mmol/mol) (Figure 10). As a result, paleotemperature
distributions derived from 7. sacculifer populations in the region represent a mixed signal of
ENSO and seasonality change which would be difficult to disentangle using conventional
metrics such as the standard deviation. The generally diagonal orientation of the conformity
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contours indicates that all quantiles respond to some combination of ENSO and seasonality
change (Figure 11). However, the more horizontally-oriented contours within the interior of the
distribution (Figure 11b) suggests that quantiles close to the median more readily respond to
changes in seasonality than to ENSO. In contrast, quantiles out in the tails, which represent the
most extreme temperatures within the EEP, exhibit a relatively vertical orientation (Figures 11a
and 11c¢), suggesting that ENSO exerts a greater (although not necessarily consistent) influence
over extreme quantile behavior. Notably, the structure of the conformity contours in the warm
tail, and to a lesser extent in the cold tail, exhibit a kind of threshold behavior related to the
strength of the annual cycle. Under scenarios of reduced seasonality, the contours are mostly
vertical in orientation, indicative of a predominant ENSO influence. However, once seasonality
is amplified beyond modern day amplitudes (>0%), the structure of the contours changes to a
more horizontal orientation, signifying an increased seasonal influence in the extent of the tails.
This suggests that although the relative influence of ENSO is greatest in the tails when compared
to the distributional interior, this influence can be modified by changes in the strength of the
annual cycle.

Collectively, the quantiles from the ODP Site 849 Holocene and LGM populations indicate
reduced glacial temperature variability (Figure 12a). QUANTIFA identifies 27 quantiles (out of
50; see supplemental information) that significantly deviate from the 1:1 line: 15 at the 95%
confidence level and 12 at the 99% confidence level. Generally, model fit results for quantiles at
each level of confidence indicate a region of data-model consistency in the lower half of the heat
map, suggestive of reduced glacial seasonality (Figures 12b and 12¢). Additionally, we observe
a “hot spot” of data-model consistency in the lower left quadrant of the heat map (55+25% of
quantiles at 95% confidence and 61+26% of quantiles at 99% confidence), signifying that of the
scenarios where seasonality is reduced, those where ENSO is also reduced produce modeled
quantiles that best align with the IFA data from ODP Site 849. With respect to ENSO, our
results support the conclusions reached by the original reconstruction (Ford et al., 2015), which
interpret the data as indicative of a reduced glacial ENSO. However, in attempting to reconcile
their results with those from core VM21-30 near the Galapagos (Koutavas and Joanides, 2012),
Ford et al. (2015) posit that glacial seasonality could have been enhanced while ENSO was
reduced, a prediction consistent with some simulations of past ENSO activity (Chang et al.,
1994, 1995; Liu, 2002; Timmerman et al., 2007; Lu et al., 2016). Our reanalysis of the ODP Site
849 dataset instead suggests that both the annual cycle and ENSO amplitude were weakened
during the LGM relative to modern conditions, providing support for the idea that ENSO and
seasonal cycle amplitude need not have negatively covaried in the past (Emile-Geay et al., 2016).

Notably, these results change slightly if we weigh our picking algorithm to align with maximum
T. sacculifer productivity in the region. Sediment trap data from the Panama Basin indicates that
T. sacculifer flux patterns peak during boreal summer (Thunell and Reynolds, 1984). Imposing
this seasonal bias in our picking algorithm results in the near complete disappearance of the
annual cycle’s influence over the EEP IFA signal, leaving ENSO as the dominant force shaping
paleotemperature distributions in the region, particularly in the tails (Figure S6). Indeed, the new
conformity contour structure strongly resembles that from the central Pacific (Figure 8).
Comparing these new modeled results against observations suggests the IFA data from ODP Site
849 is a more direct indicator of ENSO amplitude change than suggested by the unweighted
analysis (Figure S7). Although the interpretation implied by the new data-model consistency
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maps still suggests that ENSO amplitude was reduced during the LGM relative to the modern
day, the near erasure of the annual signal means it cannot address the question of covariance
between ENSO and seasonality amplitude changes in the past. This example underscores the
importance of considering biases in shell flux when interpreting IFA population variability; in
some cases, such as for ODP Site 849, imposing shell flux biases can change the very nature of
the scientific questions a user’s dataset can address. Moreover, our results reinforce seasonal-
weighting exercises conducted using INFAUNAL (Thirumalai et al., 2013), collectively
suggesting that seasonal preferences in calcification carry strong implications for reconstructing
high-frequency climate signals regardless of choice in either geochemical proxy system (Mg/Ca
vs. 8!30) or statistical approach (parametric vs. non-parametric statistics).

4. Summary and Conclusions

In this work, we have detailed a new proxy system model—QUANTIFA—which statistically
clarifies the uncertainty and interpretation involved in IFA-Mg/Ca reconstructions. As
demonstrated above, using QUANTIFA to model the translation of high-frequency climate
signals into fossil foraminiferal populations and to constrain the uncertainties associated with
their recovery can be a valuable tool for interpreting IFA data. By combining subroutines for
generating and subsampling pseudoproxy data, performing robust statistical tests, and building
interpretive tools for deciphering user results, QUANTIFA is uniquely capable of both exploring
the influence of high-frequency climate signals over IFA distributional shape and providing a
statistical basis for establishing [FA-Mg/Ca records of past climate variability.

In a series of model application exercises, we reaffirm several aspects of Q-Q analysis reported
in earlier IFA reconstructions (Ford et al., 2015; White et al., 2018; Thirumalai et al., 2019;
White and Ravelo, 2020; Rustic et al., 2020). First, we demonstrate that I[FA sample size has a
weak impact on the false positive rates of extreme quantiles, suggesting that they may be viewed
as reliable indicators of high-frequency climate variability, a finding that carries significant
implications for paleo-ENSO reconstructions based on tail quantiles (White et al., 2018; White
and Ravelo, 2020; Rustic et al., 2020). However, smaller IFA sample sizes still run the risk of
underrepresenting the larger population distribution and can lead to ambiguous results,
underscoring the importance of sample size considerations when reconstructing past
paleotemperature distributions (Thirumalai et al., 2013). Secondly, case studies across the
tropical Pacific suggest that the dominant climate signal retained by IFA populations is largely
determined by the annual-to-interannual ratio of climate variability at a given location and depth,
a finding consistent with results from the original INFAUNAL algorithm (Thirumalai et al.,
2013). Finally, our case studies reveal that in regions where annual and interannual climate
variability play equally important roles in shaping IFA population distributions (such as in the
upper-mixed layer at ODP Site 849), isolating quantile behavior in the interior and the tails of
paleotemperature distributions, as well as accounting for biases in shell flux to the sediments, can
provide clarity in parsing a particular climate signal of interest.

Although our exercises above are restricted to the tropical Pacific, we note that QUANTIFA can
be used to support IFA reconstructions in other tropical oceans. ORA-S5 datasets spanning the
tropical Atlantic and Indian Oceans are available to download alongside the QUANTIFA
algorithm. With these data, QUANTIFA can be leveraged to reconstruct seasonality and
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interannual climate phenomena associated with those basins, such as the Atlantic Nifio or the
Indian Ocean Dipole. However, given evidence for strong interactions between ENSO and these
other tropical modes of climate variability with different seasonal phasing (Saravanan and
Chang, 2000; Li et al., 2003; Behera et al., 2006), we caution that QUANTIFA is not capable of
isolating the ENSO-only component of interannual climate variability in the Atlantic or Indian
Oceans. Users should therefore keep these teleconnections in mind when applying QUANTIFA
to regions outside of the tropical Pacific.

It should also be emphasized that, at present, the uncertainty and interpretative framework
offered in QUANTIFA is not comprehensive. For sediment samples with long temporal
resolution (e.g., the Holocene and YD intervals from the Line Islands cores), QUANTIFA does
not account for the influence of decadal- or centennial-scale climate oscillations that could
contribute to IFA population variability. Moreover, uncertainties related to migrations in the
mean calcification depth of foraminifera, as well as post-depositional effects such as
bioturbation, are not simulated here. However, we anticipate future additions to QUANTIFA’s
core code that would provide more comprehensive constraints on the non-environmental
influences regulating IFA variability.

Overall, QUANTIFA represents a potentially valuable computational tool that can be easily
implemented to provide a strong statistical foundation for future IFA-based reconstructions.
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Figure 1. A flowchart detailing QUANTIFA’s order of operations. Blue and purple regions
represent iterative subroutines built within the algorithm (purple used where loops are nested).
See Table 1 for description of variable names (italicized).
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Input Parameters for QUANTIFA

Parameter

Variable

Description

Individual Foraminiferal Data

Reference Population

Comparison Population

Reanalysis Data

ORA-S5 Data Structure

Core Location

Latitude
Longitude
Depth

Calibration Equation

Calibration Equation

Dissolution Correction

Initializing Conditions

»

Number of Picked “Foraminifera
Number of Quantiles
Seasonal Weighting
Pseudoproxy Time Series Length
Model Realizations
False Positive Rate Exercises

Confidence Level
Analytical Error

Calibration Error

lat
lon

dep

eqn

num_p
num_q
seas
tsl
run
/4
cl

anerr

calerr

IFA Population to be plotted along the X-axis [Omit if performing sensitivity analysis]

IFA Population to be plotted along the Y-axis [Omit if performing sensitivity analysis]

A subset of Ocean Reanalysis System 5 potential temperature data (available for download).

Latitude of the core location (XX.5°)
Longitude of the core location (XX°)

Mean calcification depth for foraminiferal species of interest

Select from a bank of preloaded Mg/Ca-T calibrations (see Table S1) or program your own.

For preloaded calibration equations that incorporate dissolution correction terms, the term (in km
core depth, [CO3%], or any other variable) can be entered here.

No. of individuals in pseudo-IFA populations “picked” by QUANTIFA.

No. of quantiles computed from pseudo-IFA data (ideally num_g < nump_p).

Months weighted in QUANTIFA’s picking algorithm (1 — 12 by default).

Length (in yrs) of the pseudoproxy time series (equal to sampling resolution if running IFA data).
No. of pseudo-IFA populations (and, by extension, Q-Q realizations) generated by QUANTIFA.
No. of false positive rate exercises (recommended: 100 for »un = 1000 — 5000)

Confidence level for uncertainty envelopes (85%, 90%, 95%, or 99%)
Analytical uncertainty (in mmol/mol) from IFA measurements (choose a generic value, e.g., 0.1
mmol/mol, if running sensitivity tests).

Error (in °C) for the selected calibration equation. [OPTIONAL)]

Table 1. Input parameters for QUANTIFA.
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Figure 2. Average false positive rates for extreme quantiles in the tails of pseudo-IFA
populations from the Nifio 3.4 region under variable IFA sample sizes. Mean and standard
deviation (10) computed by averaging false positive rates across 100 model exercises (each with
5,000 model realizations). Note that a false positive result reports a significant difference
between two pseudo-IFA distributions when both are known to have come from the same
population distribution.
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Figure 3. Core locations for core MD06-3018 (23°00°S, 166°09°E; 2470 m) (Schmitt et al.,
2019), cores MGL1208-14MC and MGL1208-12GC (0°13°S, 155°58’W, 3049 m) (White et al.,
2018), and ODP Site 849 (0°11°N, 110°31°W, 3851 m) (Ford et al., 2015) plotted atop mean sea
surface temperatures from ORA-S5 (1958 — 2018). Latitudinal and longitudinal bounds of the
map correspond to the lateral domain of the ORA-SS5 tropical Pacific dataset.
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A. Western Tropical Pacific (MD06-3018) Scenario
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Figure 4. Modeled results from the core site of MD06-3018 in the western Pacific. (A)
Pseudoproxy time series from select paleoclimate scenarios (listed to the right of the time series)
and (B) their associated expression in QQ space when compared against modeled modern
climate variability.
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Figure 5. Conformity contour plots (%) for theoretical paleotemperature distributions from G.
ruber at the site of MD06-3018 (depth = 40 m; see supplemental information). Contours report
the proportion of quantiles within the (A) cold tail, (B) interior, and (C) warm tail that conform
to the modeled modern time series (i.e., lie within +1c from the 1:1 line). The yellow star
represents modern climate variability (0% change in ENSO and seasonal cycle amplitude).
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Figure 6. IFA results from MD06-3018. (A) A Q-Q plot comparing the normalized quantiles of
the LGM population against the normalized quantiles of the Holocene population. X and Y error
bars and the associated red enveloped represent 90% confidence bounds in both dimensions.
Significant quantiles are indicated by the colored diamonds (see legend in the lower right
corner). Inset shows smoothed kernel density functions for the Holocene (black) and LGM (red)
populations. (B) A heat map displaying the proportion of significant quantiles that exhibit good
data-model agreement for each hypothetical climate scenario (proportions calculated from total
significant quantiles, gq).
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A. Central Equatorial Pacific (MGL1208-14MC and 12GC) Scenario
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Figure 7. Modeled results from the core site of MGL1208-14MC and 12GC in the central
equatorial Pacific. (A) Pseudoproxy time series from select paleoclimate scenarios (listed to the
right of the time series) and (B) their associated expression in QQ space when compared against
modeled modern climate variability.

This article is protected by copyright. All rights reserved.



Central Equatorial Pacific (MGL1208-14MC and 12GC)
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Figure 8. Conformity contour plots (%) for theoretical paleotemperature distributions from 7.
sacculifer populations at cores 14MC and 12GC in the central equatorial Pacific (depth = 58 m;
see supplemental information). Contours report the proportion of quantiles within the (A) cold
tail, (B) interior, and (C) warm tail that conform to the modeled modern time series (i.e., lie
within +1c from the 1:1 line). The yellow star represents modern climate variability (0% change
in ENSO and seasonal cycle amplitude). Note the dramatic difference in the structure of the
contours relative to the mixed layer of the western tropical Pacific.
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Figure 9. IFA results from cores 14MC and 12GC. (A) A Q-Q plot comparing the normalized
quantiles of the YD population against the normalized quantiles of the Holocene population. X
and Y error bars and the associated red enveloped represent 95% confidence bounds in both
dimensions, although quantiles significant at greater levels of confidence are indicated by the
colored diamonds (see legend in the lower right corner). Inset shows smoothed kernel density
functions for the Holocene (black) and YD (red) populations. Q-Q results are accompanied by
data-model consistency maps displaying the proportion of quantiles significant at (B) 95% and
(C) 99% confidence that exhibit good data-model agreement for each hypothetical climate
scenario (proportions calculated from total significant quantiles, g).

This article is protected by copyright. All rights reserved.



Eastern Equatorial Pacific (ODP Site 849) Scenario
6
4y \ ‘ ‘ ‘ ' | Modeled Modern
2 ¥ Time Series
| | | | |
_ : ‘ ‘ ‘ ‘ | 2x Seasonality
3, Il Il 2x ENSO
E | | | | |
3 6
g 4k ‘ \ ‘ ‘ ‘ | Normal Seasonality
E LI f| 2xEnso
o |
= 6 T
g It Il ' ' T No Seasonalit
24\\ ?L1 ‘L‘Ju\ | L“HL*W 1| ﬁuﬂ HH ‘ NL o Seasonality
3 o HJ»J o LWH J MMN W‘H‘ f erU HJ 1 ML Ww iz W» UH M 2% ENSO
3
<] ‘ ‘ 2x Seasonality
3 ;‘WWmWWW‘WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWMMWWWWM Normal ENSO
- 1 | | | | | |
[
g 6 ‘ ‘ : ‘ : ‘ ‘ 2x Seasonality
w4 il No ENSO
2 | | | | | | |
6
A lostttemestisbodbomtpeetiogmet et bromdssenigoeompomnattemtoncs] O SEBSONAIIEY
2 - T ) | ) | ' \' “'"" | o I 1 No ENSO
] 50 100 150 200 250 300 350
Years
B. 6 —
® Modeled Modern Variability °
@ 2x Seasonality / 2x ENSO L
@ Normal Seasonality / 2x ENSO .. °
G 4 © NoSeasonality/2xENSO ° ,8°
< ® 2xSeasonality / Normal ENSO o :8. °
H @ 2xSeasonality / No ENSO ) *0:. :
z @ No Seasonality / No ENSO % e
: o0
]
=4 °
°
£ o
£
S
4
S
]
s 2
5 o3
=]
© [
H E
2 -4 ° ° : |
> ° °8
] ')
2 e O
< 6
e
_8 1 1 1 1 1 1 |
-4 -3 -2 -1 0 1 2 3

Modern Population Mean Normalized Quantiles (°C)

Figure 10. Modeled results from the core site of ODP Site 849 in the EEP. (A) Pseudoproxy
time series from select paleoclimate scenarios (listed to the right of the time series) and (B) their
associated expression in QQ space when compared against modeled modern climate variability.
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Eastern Equatorial Pacific (ODP Site 849)
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Figure 11. Conformity contour plots (%) for theoretical paleotemperature distributions from 7.
sacculifer populations at ODP Site 849 (depth = 15 m; see supplemental information). Contours
report the proportion of quantiles within the (A) cold tail, (B) interior, and (C) warm tail that
conform to the modeled modern time series (i.e., lie within +1c from the 1:1 line). The yellow
star represents modern climate variability (0% change in ENSO and seasonal cycle amplitude).
The diagonal structure exhibited by the conformity contours suggests a mixed influence of
annual and interannual climate variability.

This article is protected by copyright. All rights reserved.



—— Holocene Population (n = 58)

6 —— LGM Population (n = 62)
05
5 04
2
4l & o3
2
2 02
3
2
&
01
PN

20 22 24 26 28 30 32
Temperature (°C)

LGM Normalized Quantiles (°C)
o
T

el ’ Quantiles Significant w/ 99% Confidence
’ Quantiles Significant w/ 95% Confidence
’ Insignificant Quantiles

-6 1 1 L 1 L 5
-6 -4 -2 0 2 4 6

Holocene Normalized Quantiles (°C)

C For Quantiles Significant w/ 99% Confidence (g =12)
100% 100%

For Quantiles Significant w/ 95% Confidence (q = 27)

100[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 100[0 o 0 0 0 0 0 0 0 0 0 0 00 0 00 00 0 0
(0 0 0 0 00000 0O 0O 0O 0 0 0 0 0 0 0 0 O 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 O
8 0 0o 0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 © 20% 8|0 0 0 0 0 8 0 0 0 0 0 0 0 00 0 0 00 0 0 2
70(11 4 7 4 0 0 0 19 0 0 0 0 0 0 0 O O O O O O 70/0 o 0 0 0 17 0 17 0 0 0 0 0O 0 O O O O O 0 O
60/0 4 4 4 11 0 0 0 0 4 0 0 0 0 0 0 0 0 0 4 0 80% 60{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0%
50(19 0 0 4 11 0 4 0 0 0 0 0 0 7 0 0 0 7 0 0 © 50{177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 400 7 4 22 7 0 03 0 0 4 0 0 0 0 0 0 4 0 0 0 70% g 40 0o 0 25 0 0 0 . 0 0 0 0 0 8 0 0 0 0 0 0 0 70%
L 30 7 4 0 7 4 7 4 00 7 037 4000000 0 2 30fo 03 0 8 0 0 0 0 0 0 00000 OO0 OO0 O
G 20[n 15 1s -n 7 4 01 01 0 0 0 0 4 00 4 0 0 60% g 20/s 8 sf@@s o258 8 0 0000000 00 0 0 60%
T 10|77 2619 112211112 4 04 4 01 40007 0N € 10]033 25 33 02517 000 0 0 0 0 0 0 0 0 033
% o |48 19 19199 4 11 7 0 0 11 0 0 0 0 7 4 0 50% % o 8 -15 3 8 8 17 0 0 0 0 0 0 0 0 0 33 0 50%
ﬁ -10 1133 4 22 1915 0 15 0 0 0 7 0 0 0 0 A $10 42 25 25 33 8 33 33 0 0 0 25 8 0 0 0
T 20 37 7 7 15 11 19 7 26 26 0 7 7 (30 0 15 7 40% ‘o 20 7 o 325 0 0 3 25.25 40%
g -30 £ 37 -37 126 22 7 0 2615 0 0 0 19 0 % -30 8 0 n-’ﬁ 0 17 25 0
S 40 33 26 [ 26 1M 1126 19 7 0 0 37 30% 5 83 ({674 83 42 b s o o @] 30%
-50 30 2 4 7133 030 22 4 -50 67 75 33 0 0
-60 4 I37 26 22 30 30 © 20% 50 839283 28] ‘ L/ 20%
70 ] 70 83 100 75 67 E 33 0 33 o
-80 ok -80 92 100 100 83 67 67 10%
-90 % -90 100 100 83 67 67 |
-100 7 19 @1 0 ‘ 1 30 o -100 83 83 100 75 67 67 0%
AR o0 20 A0 6© o0 40 20 20 A0 O A0 10 20 40 O & 10 ¢ o (P AP 9O 20 A0 O o0 a0 50 20 A0 O A0 90 20 40 O O 10 ¢ o\
Change in ENSO Amplitude (%) Change in ENSO Amplitude (%)

Figure 12. IFA results from ODP Site 849. (A) A Q-Q plot comparing the normalized quantiles
of the LGM population against the normalized quantiles of the Holocene population. X and Y
error bars and the associated red enveloped represent 95% confidence bounds in both
dimensions, although quantiles significant at greater levels of confidence are indicated by the
colored diamonds (see legend in the lower right corner). Inset shows smoothed kernel density
functions for the Holocene (black) and LGM (red) populations. Q-Q results are accompanied by
heat maps displaying the proportion of quantiles significant at (B) 95% and (C) 99% confidence
that exhibit good data-model agreement for each hypothetical climate scenario (proportions
calculated from total significant quantiles, g).
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Forward-Modeled Mg/Ca (mmol/mol)
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Forward-Modeled Mg/Ca (mmol/mol)

Central Equatorial Pacific (MGL1208-14MC and 12GC)
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Change in Seasonal Cycle (%)
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Eastern Equatorial Pacific (ODP Site 849)
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Input Parameters for QUANTIFA

Parameter Variable Description
Individual Foraminiferal Data
Reference Population X IFA Population to be plotted along the X-axis [Omit if performing sensitivity analysis]
Comparison Population Y IFA Population to be plotted along the Y-axis [Omit if performing sensitivity analysis]
Reanalysis Data
ORA-S5 Data Structure N A subset of Ocean Reanalysis System 5 potential temperature data (available for download).
Core Location
Latitude lat Latitude of the core location (XX.5°)
Longitude lon Longitude of the core location (XX°)
Depth dep Mean calcification depth for foraminiferal species of interest
Calibration Equation
Calibration Equation eqn Select from a bank of preloaded Mg/Ca-T calibrations (see Table S1) or program your own.
Dissolution Correction D For preloaded calibration equations that incorporate dissolution correction terms, the term (in km
core depth, [COs*], or any other variable) can be entered here.
Initializing Conditions
Number of Picked “Foraminifera” num _p  No. of individuals in pseudo-IFA populations “picked” by QUANTIFA.
Number of Quantiles num_g  No. of quantiles computed from pseudo-IFA data (ideally num_g < nump_p).
Seasonal Weighting seas Months weighted in QUANTIFA’s picking algorithm (1 — 12 by default).
Pseudoproxy Time Series Length tsl Length (in yrs) of the pseudoproxy time series (equal to sampling resolution if running IFA data).
Model Realizations run No. of pseudo-IFA populations (and, by extension, Q-Q realizations) generated by QUANTIFA.
False Positive Rate Exercises fr No. of false positive rate exercises (recommended: 100 for run = 1000 — 5000)
Confidence Level cl Confidence level for uncertainty envelopes (85%, 90%, 95%, or 99%)
Analytical Error aherr Analytical uncertainty (in 1-n-m.01/m01) from IFA measurements (choose a generic value, e.g. 0.1
mmol/mol, if running sensitivity tests).
Calibration Error calerr  Error (in °C) for the selected calibration equation. [OPTIONAL]
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