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Abstract

The ridesharing services have been growing in recent years with the start of network service companies, and will
be further enhanced by the recently emerging trend of autonomous vehicles applications for future traveler mobility.
One fundamental question that transportation managers should address is how to capture the endogenous traffic
patterns with those upcoming new and uncertain elements for future transportation planning and management.
Therefore, by focusing on one ideal system optimal (SO) scenario in which (i) all vehicles are autonomous or can be
centrally guided and (ii) all passengers’ pickup/drop-off trip requests are given at the beginning, this paper aims to
integrate travel demand, vehicle supply and limited infrastructure supply by optimally assigning available rideshared
and autonomous vehicles from different (real/virtual) depots to satisfy passengers’ trip requests while considering the
endogenous congestion in capacitated networks. A number of decomposition approaches are adopted in this research.
Focusing on this primal problem, we propose an arc-based vehicle-based integer linear programming model in space-
time-state (STS) networks, which is solved by Dantzig-Wolfe decomposition. From the perspective of dynamic traffic
assignment, a space-time-state (STS) path-based flow-based linear programming model is also provided as an
approximation according to the mapping information between vehicle and passenger and between vehicle and space-
time arc in each STS path in our priori generated column pool. Later, we apply Alternating Direction Method of
Multipliers (ADMM) to solve this linear programming model and compare its results with standard solver. Finally,
numerical experiments are performed to demonstrate our decomposition approaches and their computation efficiency.
From our preliminary experiments, we have a few interesting observations: (i) without considering the road congestion,
the network performance/efficiency could be overestimated; (ii) passengers’ required pickup and drop-off time
windows could be a buffer to mitigate road congestion without impacting system performance; (iii) the ridesharing
service could reduce the total transportation system cost under centralized control; (iv) the curb design and
management should be important in future due to the possible high frequency of vehicle pickup/drop-off services.
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1. Introduction

The transportation sector is experiencing an unprecedented revolution with the emerging advanced sensing,
telecommunications and vehicular technologies, which are generating a new wave of rich information and providing
a great opportunity to better control and optimize transportation system operations. On the other hand, it results in
great challenges to estimate and predict their impacts on existing congested roadway infrastructure, new mobility
modes, and future transportation system design. For example, it has been a hot debate whether the new ride-hailing
service from Transportation Network Companies (TNCs) is adding to congestion in numerous downtowns. Officials
in San Francisco, Chicago and New York have cited congestion as the main rationale for new fees they recently
enacted on Lyft and Uber rides in each of the cities (Erhardt et al., 2019, Brown, 2020). One main challenge to evaluate
this kind of impacts is that any changes in a complex interdependent system may invoke a series of hardly predictable
interactions of endogenous variables. There has been a number of studies in transportation area to consider the
challenges caused by endogenous factors. For example, the bottleneck model (Vickrey, 1969) of congestion with
endogenous scheduling has been used to address a number of challenging transportation economics problems, such
as, time pattern of congestion, optimal pricing, unpriced equilibria (Small, 1982; Small and Verhoef, 2007; Small,
2015). In addition, Batarce and Ivaldi (2014) formulated a structural travel demand model with endogenous
congestions, Chow and Recker (2016) proposed an estimation model with endogenous arrive time constraints for
better calibrating the household activity pattern problem, de Almeida Correia and van Arem (2016) focused on the
household optimum privately owned automate vehicle assignment with endogenous road congestions by using
volume-delay functions, and Liu et al. (2018) considered the congestions based on a point queue traffic flow model
for finding household activity patterns. Therefore, one fundamental question that transportation managers should
address is how to capture the endogenous traffic patterns with those upcoming new and uncertain elements for future
transportation planning and management.

The uncertain elements in future transportation systems spread over travel demand, vehicle supply and
infrastructures, ranging from personal trip requirements (Martinez et al., 2015; Rayle et al., 2016; Davidson and
Spinoulas, 2016; Martinez and Viegas e, 2017; Lim et al., 2018; Ma et al., 2018; Tong et al., 2019), vehicle driving
modes (Chen et al., 2017; Wong et al., 2017, Nieuwenhuijsen et al., 2018), route behavior (Levin et al., 2017; Wong
et al., 2017; Hyland and Mahmassani, 2018; Tong et al., 2019), vehicle ownership (Davidson and Spinoulas, 2016;
Lavieri et al., 2017; Allahviranloo and Chow, 2019), to the update of infrastructure capacity due to sensor and
communication advancement (Varaiya 1993; Papadimitratos et al., 2009; Qu et al., 2010; Gentili and Mirchandani,
2012; Mahmassani, 2016; Dey et al., 2016; Din et al., 2019).

Various approaches to respond to these are being studied, most notably the recent Intelligent Transportation
Systems (ITS) initiatives of USDOT (e.g., the recent Dynamic Mobility Applications and Active Transportation
Demand Management (DMA-ATDM); and Connected Vehicles Programs). In addition, the concept of Mobility as a
service (MaaS) born in Finland and first launched at Hannover in Germany (Fred, 2016) has attracted much attention
by combining transportation services from public and private transportation providers through a unified gateway that
creates and manages the trip, which users can pay for with a single account (Heikkild, 2014; Kamargianni et al., 2016;
Hensher, 2017; Jittrapirom et al.,2017; Mulley, 2017; Djavadian and Chow, 2017; Bruun, 2018; Tong et al., 2019).
As autonomous vehicles potentially become increasingly popular among ride providers, freight operators and perhaps
some personal vehicles, the consideration of how these vehicles can be operated to meet temporally and spatially
distributed traveler mobility needs with a limited road expansion budget and constrained infrastructure capacity is
largely missing in studies of implementing large fleets of rideshared vehicles. In other words, it is crucial to study the
integration of travel demand, vehicle supply and infrastructure capacity under one unified modeling framework.

The interplay of travel demand and vehicle supply is similar to traditional vehicle routing problems (Toth and
Vigo, 2002) which are modeled in virtual point-to-point networks without physical roads. The link travel time is either
constant or time-dependent based on externally observed historical, real-time or predicted traffic congestions
(Taniguchi and Shimamoto, 2004; Kok et al., 2012). Meanwhile, the interaction between vehicle supply and physical
networks is usually used to model its internal road congestion as traditional dynamic traffic assignment problems
(Peeta and Ziliaskopoulos, 2001), which treats vehicles equal to their carried passengers at origin zones. Given the
development of emerging new technologies in information sharing and vehicle automation, it is more possible for
passengers to share their trips’ origin and destination with preferred time windows and for transportation control
centers to guide and control vehicles in the future. Therefore, by focusing on one ideal system optimal (SO) scenario



OCooONOOULL D WN P

for offline transportation planning from the viewpoint of society (Wardrop, 1952), this paper aims to consider demand,
vehicle and infrastructure simultaneously to capture the endogenous traffic pattern with a number of assumptions.
More specifically, (i) All vehicles are autonomous or can be systematically guided as human-driven vehicles by one
management center. As a note, the difference between autonomous vehicles or human-driven vehicles in this paper
can be reflected by the road capacity and backward wave speed due to the different vehicle reaction times and minimal
vehicle following distance (e.g. Wei et al. 2017), or the vehicle carrying capacity for ridesharing capability. (ii)
Vehicles have carrying capacity and depart from their origin depots to destination depots with specific working time
windows. (iii) All passengers submit their trip requests with pickup and/or drop-off locations and time windows in
advance and accept the ridesharing service. (iv) The road congestion is endogenously incurred by those guided
vehicles. As a note, the differences between autonomous vehicles and human-driven vehicles can be reflected by the
road capacity and backward wave speed due to their different vehicle reaction time and minimal vehicle-following
distance and the vehicle carrying capacity for ridesharing capability. In addition, from the perspective of traditional
Wardrop’s first principle, each user aims to find his/her best route. In our solution, the final traffic condition can also
be viewed as a kind of user equilibrium with accepted tolerance, because each user also finds his/her required route,
but this equilibrium may not be unique. If passengers just have their pickup time windows and do not have a tight
limit on the drop-off time, we can only state that our model is for system optimal rather than a kind of user equilibrium.

About the setting of vehicles’ origin and destination, there are two popular ways to address it. One way is to
predefine the origin and destination by assigning one origin zone (depot) and one destination zone (depot) for each
vehicle (such as, Scherr et al., 2019). The other way is to randomly generate the origin of each vehicle and its
destination is determined by the location of its last served trip. Our model chooses the first way, so all vehicles could
be managed and maintained at different depots at the end. In addition, if we define the household as the origin and
destination depot of its owned autonomous vehicles, our model is still applicable. Furthermore, if we do not want all
vehicles to finally return to the destination depot, we can treat this depot as one virtual depot and use one virtual link
to connect this virtual deport with all drop-off locations in the network, so the drop-off location of the last trip will be
the final parking location and the link travel cost from all the drop-off locations to the virtual depot will be assumed
to be 0. In addition, we believe that the new technologies associated with shared mobility and autonomous vehicles
will revoke more research about how and where the depots should be designed and how to better operate those vehicles
in the future, which are beyond the scope of this paper.

1.1 Challenges

The modeling approach for our problem with route coordination, ridesharing services and constrained road
capacity is similar to the integration of vehicle routing problem (VPR) and dynamic traffic assignment (DTA), so this
section aims to summarize the challenges of each separated problems and their integrations at first.

Without considering the endogenous road congestions, the first set of problems in our research context can be
simplified as the vehicle routing problem with pickup and delivery with time windows (VRPPDTW), which has been
proved to be NP-hard (Baldacci, et al., 2011). The difficulty of this problem arises from the complex categories of
constraints, (i) vehicle flow balance, (ii) the logic of passenger pickup and drop-off by the same vehicle within the
required time windows, and (iii) dynamic vehicle carrying capacity of the ridesharing choice. In particular, it is
sometimes challenging to even find a feasible solution due to the complicated interaction of all constraints. Recently,
Psaraftis et al. (2016) summarized the research of the last three decades and offered a systematic classification of
dynamic vehicle routing problem according to 11 criteria.

Focusing on the road congestion incurred by those assigned autonomous vehicles, the tight link capacity limitation
at each time point could greatly make a large number of side constraints. If the queue spillback and kinematic waves
(Newell, 1993; Daganzo, 1994) are further considered, the complex interaction among vehicles makes the problem
more challenging. A detailed discussion about the connection between different traffic flow models can be found in
the paper by (Zhang et al., 2013). Even in traditional dynamic traffic assignment models without considering passenger
pickup and drop-off requests, it is still difficult to calculate the path marginal cost in congested networks to reach the
system optimal goals (Ghali and Simth, 1995; Peeta and Mahmassani, 1995; Shen et al., 2007; Qian et al., 2012; Lu
et al., 2016), especially when there are overlapped paths in large scale networks. In addition, Kalifates (2010) proposed
a graph theoretic modeling framework with cell transmission model for generalized transportation systems to reduce
the problem complexity. The current mathematically tractable solutions (Arnott et al., 1990; Yang and Huang, 2005;
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Munoz and Laval, 2006) mainly apply in parallel networks with a single bottleneck originally studied in the paper
(Vickrey, 1969).

From the perspective of practice, simulation approaches are usually selected in dynamic traffic assignment
problems to capture the road congestion with queue spillback and first-in-first-out (FIFO) rule. However, those
approaches cannot explicitly handle the personalized user requests without optimization techniques. Therefore, the
integration of simulation and optimization would be the trend to serve the future urban mobility systems with
connected autonomous vehicles and ridesharing services.

Many researchers have been working on the autonomous control of vehicles (Reece and Shafer, 1993) and
automated intelligent vehicle/highway system design (Varaiya, 1993) for increasing the system safety, efficiency and
reliability by using simulated environment and optimization techniques (Hanebutte et al., 1998; Van Arem et al., 2006;
Talebpour and Mahmassani, 2016; Chen et al., 2017; Sun et al., 2017; Ghiasi et al., 2017; Ye and Yamamoto, 2018;
Stern et al., 2018). On the other hand, there is recently a large number of studies that focuses on the impacts of shared-
use mobility on future transportation systems with autonomous vehicles.

There is a number of simulation models that has been developed for system modeling and analytics. Behrisch et
al. (2011) developed an open-source traffic simulation package (SUMO) for the simulation of urban mobility with
automated driving and flexible traffic management strategy evaluations. Fagnant and Kockelman (2014) developed
an agent-based simulation model in a grid-based urban area where some strategies are provided to match passengers
with vehicles and relocate vehicles to reduce traveler waiting time, but the endogenous road congestion and vehicle
carrying capacity for ridesharing are not considered. Martinez et al. (2015) proposed an agent-based simulation model
for a shared-taxi system and Martinez and Viegas (2017) further improved the model to incorporate taxi-bus system
and consider the road congestion based on time-dependent flow capacity ratio and free-flow speed. Levin et al. (2017)
proposed a modeling framework to (i) capture the traffic congestion by simulation-based network loading based on
the updated flow-density diagram with autonomous vehicles (Levin and Boyles, 2016) and (ii) serve the ride-sharing
services by some heuristic algorithms. Maciejewski and Bischoff (2016) analyzed the impact of autonomous taxi on
traffic congestion based on their dynamic vehicle routing problem under an agent-based simulation environment.
Hyland and Mahmassani (2018) focused on the on-demand shared-use autonomous vehicle mobility services (SAMS)
without shared rides by proposing six vehicle-to-passenger assignment strategies tested in an agent-based simulation
tool.

A number of analytical solutions also have been provided based on different assumptions in the future mobility
system. By assuming that all automated vehicles are privately owned by each household, de Almeida Correia and van
Arem (2016) first proposed a mathematical model to minimize the household-level generalized travel cost by
combining the vehicle routing problem and dynamic traffic assignment in congestion networks in which a volume-
delay travel time function is adopted to capture the road congestions, and they further focus on the user (a whole
household) equilibrium solved under the framework of Method of Successive Average (MSA). By following the
modeling framework above, Liang et al. (2018) modified the nonlinear volume-delay travel time function by
introducing discrete congestion levels to make the formulation as an integer linear programming model, and then
applied rolling horizon to address the real-time trip assignment and dynamic routing for automated taxis with
congestions, and Van Essen and Correia (2019) also tried to replace the nonlinear travel time calculation by making
multiple link travel time choices at each time point of the link entry node, and then the study selects only one to
represent congestion time in the space-time network for solving system optimum and user equilibrium problems with
approximations. Alonso-Mora et al. (2017) studied the real-time ride-sharing problem with high-capacity vehicles and
large number of trips by dynamically generating the optimal route for the online demand and available vehicles with
high-quality solutions, but as the traditional vehicle routing problems, the road congestion is not embedded in the
models. Ma et al. (2017) proposed a linear programming model to assign available autonomous vehicles to satisfy
those trip requests by constructing its feasible service network in advance, but the ride-sharing option and road
congestion are not considered either. In congested networks, Rossi et al. (2018) studied the autonomous vehicle routing
and rebalancing, and Salazar et al. (2018) considered how to best assign travelers between autonomous vehicles in
traffic systems and public transit vehicles, and the road congestion is also simplified by flow-based travel cost function,
which is typically used for long-term transportation planning rather than short-term traffic operations, so it could affect
the accuracy of estimated congestions as well. Focusing on the household activity pattern problem, Liu et al. (2018)
first formulated the endogenous road congestion by a point queue traffic flow model, which is caused by household
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owned automated vehicles that are assigned to perform different mandatory or optional household daily activities.
Tong et al. (2019) offered a modeling framework in an open-source simulation engine (DTALite-S) to incorporate
agent-based simulation and optimization in a multimodal transportation environment with different trip requests to
capture complex traffic dynamics. Di and Ban (2019) explored the general static traffic equilibrium of new shared
mobility systems with driving solo, ridesharing, and e-hailing service in which the road congestion is represented by
one volume-delay travel time function and the ridesharing in e-hailing service is not respected. Recently, Mourad et
al. (2019) provided a survey on models and algorithms of shared mobility systems and it can be observed that the
endogenous dynamic congestion is still not well considered in current optimization models.

1.2 Problem Decomposition approaches

With the development of computer hardware, the computation capabilities for solving mathematical programming
models are evolving very quickly. However, many large-scale problems still lead to formulation that greatly goes
beyond the computation limit. One usual way is to find the special blocks in formulation to directly decompose models
as relatively solvable subproblems connected by coupling constraints. The decomposition can be grouped into two
categories, primal decomposition and dual decomposition (Boyd et al., 2007; Palomar and Chiang, 2006), where the
dual price in primal decomposition or the Lagrangian multiplier in dual decomposition for the coupling constraints is
used to update and control subproblems. In the primal decomposition, column generation and Dantzig-Wolfe
decomposition are widely used for linear programming and mixed integer programming with branch-and-price
methods (Barnhart et al., 1998). Lagrangian relaxation/decomposition (Fisher, 1981; Mahmoudi and Zhou, 2016; Wu
et al., 2019) is usually used for integer programming from the dual perspective. Huisman et al. (2005) summarized
that the dual price in linear programming (LP) relaxed restricted master problem in column generation can be replaced
by the Lagrangian multiplier in its LP relaxed dual problem through Lagrangian relaxation without using branch and
price. It should be noted that finding a feasible initial solution in primal decomposition or obtaining a good feasible
final solution in dual decomposition are also not straightforward in large-scale complicated problems, especially
having different categories of side constraints. Also, how to address the non-unique dual prices or Lagrangian
multipliers is important for the quality of solutions in the iterative process. In addition, from the perspective of primal-
dual algorithm, the alternating direction method of multipliers (ADMM) (Boyd, 2011) can be used to decompose the
overall problem as a number of sequentially connected subproblems, which are controlled by Lagrangian multipliers.
Therefore, ADMM is also viewed as an efficient way to break the symmetry issues compared with Lagrangian
relaxation. Recently, to address the stochastic mixed-integer programming models, Boland et al. (2018) applied
ADMM to this problem and use the Frank-Wolfe method based on simplicial decomposition to deal with the nonlinear
objective functions of subproblems, and then showed that their approach is theoretically supported, computationally
efficient, and parallelizable.

To solve the traditional static traffic assignment problem (Wardrop, 1952; Beckmann et al., 1956), LeBlanc et al.
(1975) offered a linearization algorithm to solve the classical model based on the Frank-Wolfe algorithm (Frank and
Wolfe, 1956). An important improvement of Frank-Wolfe algorithm is simplicial decomposition, which is a special
version of the Dantzig-Wolfe decomposition principle based on Carathéodory's theorem, where extreme points are
usually generated by the solution of the linear Frank-Wolfe. Larsson and Pattrikson (1992) proposed a disaggregate
simplicial decomposition (DSD) which treats each path of OD pairs as one extreme point rather than the network flow
solution in simplicial decomposition (SD). Then Larsson et al. (2004) focused on the side constrained traffic
equilibrium problem, which is solved by column generation based on their DSD approach. Moving forward to dynamic
traffic assignment, a similar disaggregated simplicial decomposition is also used for gap-function-based user
equilibrium (Lu et al., 2009) and eco-system optimum (Lu et al., 2016) with different traffic flow models. In addition,
based on the cell transmission model, Dantzig-Wolfe decomposition was also used to solve system optimal (Li et al.,
2003) and user optimal (Lin et al., 2010). Focusing on vehicle routing problems with ride-sharing services, Lagrangain
relaxation is also used decompose the problem as a number of shortest path finding problems (Mahmoudi and Zhou,
2016; Liu et al., 2018). Recently, Yao et al. (2018) applied ADMM to solve the vehicle routing problem with drop-
off requests only in the context of urban logistics to show the solution performance from the primal and dual aspects.

1.3 Potential contributions and structure of this paper

As stated by Gendreau et al. (2016), spatial and temporal behavior of traffic variations should be analyzed, but still
is an enormous challenge requiring consolidating knowledge from various disciplines (traffic flow theory, statistics,
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etc.) for vehicle routing problems with stochastic travel time (VRPSTT). This kind of challenges mainly arises from
the endogenous congestions among moving vehicles in capacitated transportation systems. Focusing on the specific
scenario stated before, the contributions of our research are listed as follows.

(1) Compared with the literature about vehicle routing problem and dynamic traffic assignment, this paper takes a
further step to integrate travel demand, vehicle supply and infrastructure supply to explicitly capture the new traffic
condition. Specifically, it aims to optimally assign vehicles from different depots to satisfy individuals’ temporally
and spatially distributed mobility requests under constrained road capacity and queue spillbacks.

(2) Due to the complexity of this problem, a primal decomposition approach, Dantzig-Wolfe decomposition, is
used to decompose the proposed space-time-state (STS) arc-based vehicle-based integer linear programming model
as a restricted master problem and a number of subproblems. The subproblems can be independently solved for each
vehicle by time-dependent state-dependent shortest path algorithms. To our best knowledge, this is the first study that
uses a three-dimensional STS path as an extreme point in Dantzig-Wolfe decomposition, compared with previous
research using physical paths or space-time paths.

(3) To solve the large-scale problems and to serve as an approximation from the perspective of dynamic traffic
assignment, an STS path-based flow-based linear programming model is proposed by building a column pool in
advance. ADMM is then applied to decompose this model as a number of sequential quadratic programming
subproblems solved by projected gradient method for each column. Specifically, each column represents a space-time-
state path with the vehicle-to-passenger assignment and vehicle-to-arc assignment information through solving the
primal arc-based vehicle-based model in a sampling dataset by ADMM, which can also decompose the primal problem
as a number of sequential time-dependent state-dependent shortest path problems for each vehicle.

The remainder of this paper is organized in the following manner. Section 2 formally state our focused problem
and conceptually illustrates our modeling approach in a space-time-state network. Section 3 provides an arc-based
vehicle-based integer linear programming model (Model 1) and an STS path-based flow-based linear programming
model (Model 2), which are decomposed and solved by Dantzig-Wolfe decomposition and column-pool-based
approximation approach, respectively, in Section 4. Numerical experiments are performed to demonstrate our
proposed methodology and algorithms in Section 5. Finally, our future research is discussed in Section 6.

2. Problem statement and illustrative example

Consider a physical transportation network with a set of nodes N and a set of links L. Each link can be denoted as
a directed link ({, j) from upstream node i to downstream node j with a given free-flow link travel time TT; jand link
capacity Cap; j. Each vehicle a has an origin depot 0, and a destination depot d, with a specific departure time
window [l,, m,] and an arrival time window [}, m,']. The number of seats in vehicle a is Cap, and is also named
vehicle carrying capacity. In addition, each passenger will submit his/her trip requests with origin o0,, destination d,,,
departure time window [L,,, m,] and arrival time window [L},, m,,"]. Our problem aims to optimally assign each vehicle
to meet those passengers’ requests while considering the road capacity constraint.

As shown in Fig. 1(a), assume that 2 travelers plan to go to office (node 4) from home (node 2) and 1 traveler
wants to go shopping (node 5) from home (node 3). They all have a specific departure time window and arrival time
window. There is a number of available autonomous vehicles at different depots waiting to be dispatched to serve
those time-dependent travel requests. Since the vehicle fleet size is probably large enough to incur traffic congestion,
the physical traffic network with specific road capacities should not be neglected. For the modeling needs, a pick-up
virtual node and a drop-off virtual node will be added at each passenger’s pick-up and drop-off locations, respectively,
as shown in Fig. 1(b). As a result, the passengers’ served status and vehicle carrying state can have changes only if
the vehicle visits those virtual nodes, which will be explained in detail later when constructing the space-time-state
network.
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Fig. 1 The physical and modified transportation networks
In order to take into account the time dimension, a space-time network is employed to explain how to model the
time window and road capacity at first, and then we will focus on a space-time-state network for modeling the whole
process of our problem. Taking the physical path 1 - 2 — 4 — 6 in Fig.1 (b) as an example, its corresponding space-
time network is built in Fig. 2. Each node i is extended as a set of vertices (i, t) at each time interval and each link
(i,)) is extended as a set of arcs (i, , t, s) from vertex (i, t) to vertex (j,s). The arc capacity is derived based on the
hourly link capacity and the number of intervals in one hour. In addition, the arc (i,i,¢,t + 1) from vertex (i, t) to
vertex (i, t + 1) means that vehicles can wait at node i at time t for one time interval in case there is not enough
capacity in the downstream arcs to accommodate them. The capacity of the waiting arcs is infinite, so the queuing
process will be similar to the point queue traffic flow model. As shown in Fig. 2, passengers 1 and 2 request the same

pickup and delivery time windows. Assume the carrying capacity of vehicles is always 1.
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Fig. 2 The physical and modified transportation networks

We consider the following two cases without/with road capacity.

Case 1: the road capacity is not considered. Then it needs 2 vehicles departing at time 1 to satisfy those trip requests.

Case 2: the road capacity is strictly constrained. Then one vehicle has to wait at the depot until time 2 to depart.
Moreover, one passenger cannot be served, because the vehicle waiting at depot can pick up one passenger but cannot
deliver him/her at the allowed time due to tight road capacity constraints.

Therefore, it shows the difference and difficulty of finding the best vehicle assignment and routing solutions under
tight physical facility limitations, compared with the traditional vehicle routing problems. This example in the space-
time network only illustrates the general process of vehicle routing under road capacity constraints, but it does not
consider (i) how to guarantee that once one passenger is picked up, he/she must be dropped off by the same vehicle
nor reckon (ii) that the vehicle carrying capacity (the number of seats) cannot be violated due to the ridesharing options.

In order to model the process of passenger’s pickup and delivery, the cumulative passenger served status is
introduced and defined as follows, 0: the passenger is not served, 1: the passenger is being served (picked up but not
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delivered), 2: the passenger is served (delivered). In addition to the dimensions of space and time, we introduce one
more dimension w as vehicle carrying state to record which passenger is being served during the vehicle routing
process. If passenger p is picked up by vehicle v with the carrying capacity of 1, the carrying state of vehicle v is p[1],
of which the first number is passenger number p and the number in square bracket mean the cumulative passenger
served status of passengers. Still, focusing on the case in Fig. 2, if the vehicle capacity is 1, the possible vehicle
carrying states include be (), (1[1]), (1[2]), (2[1]) or (2[2]). Similarly, if the vehicle capacity is 2, one possible vehicle
carrying state example could be (1[1] _2[1]), which represents that passengers 1 and 2 are currently picked up but not
dropped off by the vehicle. This state-dependent approach (Mahmoudi and Zhou, 2016) can satisfy vehicle carrying
capacity constraint and guarantee that one passenger can be picked up and dropped off by the same vehicle during the
state transition process. In addition, if one vehicle cannot satisfy a passenger, it can still pass the passenger’s
pickup/drop-off physical nodes (such as, node 2) to serve other passengers, but it cannot pass his or her virtual arc and
virtual node (such as, nodes 7 or 8). This is different from the traditional models in vehicle routing problems, which
just have a network composed by pickup and drop-off locations without explicitly modeling physical transportation
networks. Therefore, most VRP models do not allow vehicles to pass the pickup/drop-off node if that corresponding
client is not served, based on one assumption that the arc cost matrix always satisfies the triangle inequality (such as,
cost ¢; j < ¢; + C, ;). Actually, if the triangle inequality doesn’t hold in the real-world transportation networks based
on the real travel cost, it may not make sense to not allow vehicles to pass the node without serving the passenger.
Finally, we can construct a three-dimension space-time-state network for vehicle routing, where each vertex is
(i,t,w) and each arc is (i, ], t, s, w,w") from vertex (i, t,w) to vertex (j,s,w"). The vehicle carrying state transition
process (state w to state w') is highly connected with the space (location) and time. Specifically, the vehicle carrying
state will change when the vehicle picks up or drop off one passenger while ensuring that the vehicle carrying capacity
is not violated. Note that once one passenger is served with a cumulative served status as 2, the passenger is not
allowed to be served again, so there is no circle being selected in the state transition graph. The connection among
state, space and time is the foundation of our constructed space-time-state networks. Section 4 will illustrate how to
dynamically build this three-dimension network to find the time-dependent state-dependent shortest path for each
vehicle. Actually, it is also possible to build the whole three-dimension network in advance based on the relation of
space, time, and state, but the complexity will be explored in large-scale networks. Fig. 3 shows one feasible STS
vehicle trajectory along the physical path 1 = 2 — 4 — 6. This STS path contains the vehicle-to-passenger mapping
information when vehicle carrying states are changed at the pickup and drop-off locations within the required time
windows, and also has the vehicle-to-arc mapping information in the space-time dimension. This kind of mapping
information among vehicle, passenger and arc will be used in sections 3.2 and 4.2 for flow-based models.
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Fig. 3 A vehicle STS path with mapping information among vehicle, passenger and arc
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As a remark, this modeling framework can be extended to the first/last mile problem where (i) passengers and
vehicles have the same destination/origin and (ii) either pickup service or drop-off service is considered. The
difference is only about the state definition. We just need 0 and 1 for passenger service status to indicate if he/she is
served by the vehicle or not.

3. Mathematical Models

Table 1 lists the general indices, sets, parameters and variables used in our proposed arc-based vehicle-based model
(Model 1) in Section 3.1, where each vehicle and each passenger are represented as vehicle a and passenger p,
respectively. The notation of STS path-based flow-based model (Model 2) is listed in Table 2 where each vehicle
group v has a number of vehicles with the same origin depot, departure time window, destination depot and arrival
time window, and each passenger group q has a number of passengers with same trip requests (pickup location and
time window and/or drop-off location and time window). Some parameters in Table 1 can also be used for the flow-

based model.

Table 1 Indices, sets, parameters and variables in Model 1

Symbols Definition

Indices

i,j Index of nodes, i,j € N

@n Index of physical link between two adjacent nodes, (i,j) € L

a Index of vehicles

D Index of passengers

t,s Index of time intervals in the space-time network

w,w' Index of vehicle carrying state

Sets

N Set of nodes in the physical traffic network

L Set of links in the physical traffic network

Linfiow Set of inflow links of single links in the physical traffic network

Loutfiow Set of outflow links of single links in the physical traffic network

P Set of passengers

A Set of vertices in the space-time-state network

Ay Set of vertices of passenger p’s pickup location

An Set of vertices at the merge point in the space-time-state network

E Set of edges/arcs in the space-time-state network

Parameters

o(a) Index of origin depot of vehicle a

d(a) Index of destination depot of vehicle a

DT (a) Earliest departure time of vehicle a, equal to [,

[laymg] Departure time window of vehicle a at the origin depot

[l my] Arrival time window of vehicle a at the destination depot

[lp, mp] Departure time window of passenger p at the origin

[1, my] Arrival time window of passenger p at the destination

VCap, Carrying capacity of vehicle a

Cap;jts Capacity of arc (i, j, t, s) in the space-time network

h, Vehicle flow of vehicle a, is always equal to 1 for each vehicle

c{fj‘t_s_wiw, Travel cost of arc (i, ], t,s,w,w") of vehicle a

5f}§'S'W’W, Incidence between passenger pickup arc (i, j, t, s,w,w') and path k of vehicle = 1, matched;
otherwise, = 0.

Sicp Incidence between passenger p and path k of vehicle = 1, matched; otherwise, = 0.

‘[}La]"ts Incidence between arc (i, j, t, s) and path k of vehicle = 1, matched; otherwise, = 0.

FFTT;; Free-flow travel time of link (i, j)

n;; The number of lanes on link (i, j)

Kjam, ; Jam density of link (i, j)

10



I

O 00 NO WU,

10

11

12
13

14
15
16
17
18
19
20
21
22
23
24

Variables

x{“j’t’s‘w’w, Binary variable, vehicle a will choose arc (i, j, t, s, w,w") or not in the space-time-state
network

A% Binary variable, vehicle a will choose path k or not in the space-time-state network

Vil jtt+1 Positive integer variable, the outflow arc capacity on arc (j',j, ¢, t + 1)

T, Lagrangian multiplier of passenger p’s trip request

Tijts Lagrangian multiplier of capacity constraint of arc (i, j, t, s)

Table 2 Indices, sets, parameters and variables in Model 2

Symbols Definition

Indices

v Index of vehicle groups

q Index of passenger groups

Parameters

d(v) Total number of available vehicles of vehicle group v

9(q@) Total number of trip requests of passenger group g

ck Cost of path k of vehicle group v

5(’;"‘ Incidence between passenger gourp q and path k of vehicle group = 1, matched; otherwise,
= 0.

5;}{‘“ Incidence between arc (i, j, t, s) and path k of vehicle group = 1, matched; otherwise, = 0.

Variables

yk Positive continuous variable, the number of vehicles belonging to group v choosing path k in
the space-time-state network, finally simplified as y;

Vil jtt+1 Positive continuous variable, the outflow arc capacity on arc (j',j,t,t + 1)

Aq Lagrangian multiplier of passenger group q’s trip requests

Hijts Lagrangian multiplier of capacity constraints of arc (i, j, t, s)

3.1 Arc-based vehicle-based integer linear programming model (Model 1)

Based on the space-time-state network constructed in Section 2, our mathematical programming model is proposed
to minimize the total vehicle travel cost and satisfy passengers’ trip requests and road capacity constraints.

Objective function:

Subject to,

Min Z = Za Z(i,j,t,S,W,W’)(ClgjtSW,WI X xiajtsw,wl) (1)

vvvvvv

(1) Vehicle supply: Arc-based flow balance constraint for each vehicle

—1j=0(a),s =DT(a),w =[0,0, ...,0]

Zi,t,w:(i,j,t,s,w,wr) xic,lj,t,s,w,WI - Zi,t,w:(j,i,s,t,w’,w) xj‘,li,s,t,w’,w =31 Jj= D(a),s =T,w= [O;O; ---'0] Va (2)
0 otherwise
(i1) Travel demand: Passenger p’s pick-up request constraint
Za Z(i,t,w)EAp xi(?'j,t,s,w,wr = 1; v p (3)
(iii) Infrastructure supply: Tight road capacity constraint (endogenous congestion)
Za Zw xgj,t,s,w,wl < Capi,j,t,s’ v (i'j! ¢, S) (4)
(iv) Binary definitional constraint
xi‘,lj,t,s,w,WI S {0'1} (5)

Constraint (2) ensures that each vehicle follows the flow balance. By constraint (3), each passenger will be picked

up only once. For the problem with both pickup and drop-off requests, the state transit graph with cumulative
passenger served status can guarantee that the passenger will be dropped off once he/she is picked up, so the drop-off
constraint is always satisfied in our model. For the problem with pickup or drop-off requests only, we just need to
ensure that the passenger pickup arc is only visited once by all vehicles. To capture the endogenous congestions,
Constraint (4) forces the number of vehicles entering arc (i, j, t, s) to not exceed the arc capacity, which can be viewed
as a point queue model where the vehicle has to choose the waiting arc if the capacity of the downstream link is not

11
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is a binary variable, which indicates whether or not vehicle a will visit arc (i, j, t, s, w, w"). This proposed model is an
integer linear programming model, so it can be solved directly by standard solvers. However, for the large-scale
network applications, we will apply different decomposition approaches to decompose the problem as a number of
relatively easy sub-problems in next sections. In addition, as introduced in section 1.1, de Almeida Correia and van
Arem (2016) first proposed a mathematical model to minimize the household-level generalized travel cost by
combining the vehicle routing problem and dynamic traffic assignment in congestion networks, so a comparison
between their system optimum model and our Model 1 is listed in Appendix A.

As mentioned in the introduction, our depots can also be treated as virtual depots. By building the virtual links
connected those destination depots with drop-off locations and making those virtual link cost as 0, all vehicles can
park at the drop-off location of the last served passenger rather than forcing them to return to a physical depot.
Therefore, our model approach is also applicable to address the real-time on-demand ridesharing problem when a real-
time update scheme is incorporated. Actually, by improving the offline household-level nonlinear system optimal
model (de Almeida Correia and van Arem, 2016), Liang et al. (2018) proposed a mixed integer programming model
and applied it under the framework of rolling horizon algorithm to solve the real-time ridesharing problem while
considering the endogenous road congestion, and their optimization model was finally solved by the commercial
solver, Xpress.

3.2 Path-based flow-based linear programming model (Model 2)

The arc-based vehicle-based integer programming model in section 3.1 finds the best route guidance and captures
the traffic condition in capacitated transportation networks. Admittedly, it is greatly challenging to solve this vehicle-
based model in large-scale networks with a large number of vehicles and passenger requests. Looking into classical
flow-based dynamic traffic assignment problems, all vehicles are assigned to the network based on each origin-
destination (OD) pair as continuous flows rather than each individual vehicle, which could greatly reduce the number
of variables to improve the computational efficiency. Therefore, from this perspective, if (i) vehicles and passengers
can be grouped by its origin, destination and required service time period, and (ii) if all possible space-time-state path
information with (a) vehicle (group)-to-passenger (group) and (b) vehicle (group)-to-arc assignment can be
enumerated in advance for our overall problems, the remaining task is just to assign vehicles from each vehicle group
to the network to satisfy the passenger group trip requests and to not violate the road capacity limitations. The linear
programming model is listed as follows.

min ¥, (¢ X ) (6)
Subject to
(i) Vehicle supply: Path-based vehicle group flow balance constraint:
ey =d@),vv (M
(i1) Travel demand: Pickup requests on passenger group q:
w0y X 8;,) = 9(a),vq ®)
(iii) Infrastructure supply: Road capacity constraints (endogenous congestion):
Zewio 0% X 8yk"°) < €apyjpe ¥(0,),t,5) ©)
(iv) Positive continuous variable:
yi =0 (10)

Since each STS path of each vehicle group is provided in advance, the cost of path k of vehicle group v for one
specific OD pair is given. Constraint (7) ensures that the total number of vehicles in each vehicle group v is assigned
to the network, which is consistent with constraint (2) for all vehicles in the vehicle-based model. Eq.(8) makes the
total demand of passenger group q completely satisfied and also corresponds to Eq. (3) of passenger trip requests.
Road capacity is considered in constraint (9), similar to constraint (4). Finally, we can generate a linear programming
model, which is possible to be solved for large-scale transportation networks. Usually, it is difficult to enumerate all
possible space-time-state paths, so a decomposition-based solution is helpful to generate a number of available paths,
which can be viewed as the column pool construction used in Section 4.2.

4. Problem decomposition approaches

12
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4.1 Dantzig-Wolfe decomposition for arc-based vehicle-based formulation (Model 1)

In our proposed mathematical models in section 3.1, the flow balance constraint for each vehicle is a special block
and can be solved independently. Therefore, Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) is applied to
solve our models and the flow balance constraints are used to develop the sub-problems. In addition, as mentioned by
Larsson and Patriksson (1992), the generated paths (extreme points) from this decomposition approach are helpful for
re-optimization if the demand or network has any updates in the future. Based on the point queue model to capture the
road congestion, the primal model is decomposed as a master problem and different sub-problems for each vehicle as
follows.

The master problem:
Objective function:

Min T 3 jswmwn[C8 eswwr X Tl X hg X 85 )] (11)
Subject to,
o Xij tsmwwneam) Se( X hy X SEE Y =1,Vp (12)
Yo Zw Tk X hg X B0 S capyjes ¥ ()L, S) (13)
Zklﬁ =1,Va (14)
¢ ={0,1} (15)

The sub-problem for each vehicle a:
1 I — a a —_— P a —_— P P
MinZ" = Z(i,f,t,&W,W’)(ci jtsww’ x xi.j.t.s.w.w') ZP Z(l.J.f.S.W'W')EA(P)(T[P X X; Jjit,s W.W') Z(’J'f's)('l’t"l't's X

Tw Xt oww') — @a (16)

Subject to vehicle flow balance constraint. 7, u; ;s and w, are the duals of side constraints (12), (13) and (14),
ic,lj,t,s,w,w
usually formulated by arc-based formulation, so we still use variable x

respectively, and x / is a binary variable. It should be noted that the shortest path problem (our subproblem) is

L' t0 Write the model, but actually the
output of the shortest path is still a path, which is composed of a number of passed arcs.

In the master problem, h,, is the vehicle flow of vehicle a and is always equal to 1 for each vehicle, so it can be
removed. A§ determines whether vehicle a will select path k or not. The sub-problem generates paths for each vehicle
at each iteration, so it is convenient to use a path-based formulation for our master problem.

Objective function (11) can be reformulated as

Min ¥, Y (cg X A5) (17)
Passenger pickup constraint (12) can be updated as
Yo XA X 8p) =L,V p (18)
Space-time arc capacity constraint (13) is renewed as
Ta Tk X B(jes) < CaPijes V() t,5) (19)

The algorithm procedure is shown in Fig. 4.

13



OCOONOOU D WNE

Y e
UDdWNRO

[EY
(<))

1. Initialization

Feasible solution finding (paths)

A\ 4

2. Restricted Master Problem:
Integer linear programming

Dual prices of travel demand constraints
and infrastructure supply constraints

A 4

3. Sub-problems:
Time-dependent state-dependent | New e?“treme
. o1nts
least cost path finding P

Reduced cost

Non-negative

Optimal solution

Fig. 4 The algorithm procedure of Dantzig-Wolfe decomposition

At step 1, the purpose is to find an initial feasible solution. Kalvelagen (2003) provided a mathematical model by
adding virtual variables to find the feasible solution. Another way is to sequentially load each vehicle by using the
solution from Lagrangian relaxation (Zhou et al., 2018). Specifically, once one vehicle finds its best route, the
passengers served by this vehicle will be given a flag so that the following vehicles cannot visit those passengers
anymore. Meanwhile, the space-time trajectory of that vehicle is recorded, so the capacity of visited space-time arcs
will be updated by reducing 1. Once there is no available capacity on that arc, its arc travel time will be infinity. The
pseudo-code is shown in Fig. 5.

At step 2, the restricted master problem is an integer linear programming model, which can be solved by a standard
solver or a hybrid of solvers and branch-and bound, and then the model provides the dual prices of side constraints
for the sub-problems.

At step 3, the sub-problem is a time-dependent state-dependent shortest path problem and offers new extreme
points (paths) for each vehicle for the master problem at step 2, if all reduced cost is not non-negative; otherwise, the
optimal solution is found. Note that path cost of c¥, passenger-vehicle assignment incidence of 8ip and path-arc

incidence of S (i,jt,s) are obtained once a new path (path k) is generated for vehicle a.

1 //initialization: passenger status, relation between vehicle and passenger
2 for passenger p=1 to total number of passengers
3 number of visits of passenger [p] =0 // passenger p is not served
4 end// passenger
5 for vehicle a=1 to total number of vehicles
6 for passenger p=1 to total number of passengers
7 vehicle passenger visit allowed flag[a][p] =1 //ais allowed to serve p
8 end //passenger
9 end// vehicle
10  // sequentially loading each vehicle to find its own least cost path
11 for vehicle a=1 to total number of vehicles
| run the beam search algorithm to find the best route for vehicle a and number_of visits_of passenger [p] =1 if
passenger p is served
13 if (a <total number of vehicles)
14 for p = 1 to total number of passengers
15 if (number of visits of passenger [p] = 1)
16 / thﬁc following Vchic.lc.s cannot visit passenger p
vehicle passenger visit allowed flagfa + 1][p]=0
17 end
18 end // passenger

14
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19 end

20 // update current available road capacity after loading vehicle a to obtain the visited link and time sequence
21 for link no = 1 to total number of visited links of vehicle a

22 visit_time = visit_time sequence[link no] of vehicle a

23 link capacity[link no][visit time]= max (0, link_capacity[link no][visit_time]- 1)

24 if (link_capacity[link no][visit time]=0) // no available capacity

25 link time dependent travel time[link no][ visit time] = infinity // arc cost is infinity

26 end

27 end// link

28 end // vehicle

Fig. 5 Pseudo-code of proposed feasible solution finding algorithm

A beam search algorithm is proposed as an approximate dynamic programming approach to dynamically construct
the space-time-state network and find the optimal routing with the least generalized route cost for each vehicle. As an
improved version of the previous beam-search algorithm (Zhou et al., 2018), we add one more loop on each node so
that more possible vehicle states will be considered during the beam search process shown in Fig. 6. The key part is
to update vehicles’ states based on the state transition rule considering the sequence and time windows of passenger
pickup and delivery and vehicles’ carrying capacity. In addition, this algorithm is also applicable to solve the problems
with pickup or drop-off only when the vehicle’s state definition is correspondingly changed based on this new problem.

//definition: vehicle: v , node: n
td_state[v][n][t][w]
for t = departure time to ending time T
for n = 0 to total number of nodes N
//beam-search: find the best k vehicle states with least travel costs from depot to current node and time
state_size = min{k, state size of vehicle v at node n and time ¢t}
for w = 0 to state_size
Current node =n
for to_node =1 to the outbound node_size of current node
if (to_node is passenger pickup or drop-off node)
Update the vehicle state td_state[v][n][t][w] with passenger pickup or drop-
off, current_node, current_time, travel cost from the depot to current node and
time with benefits of serving passengers, based on previous node n, previous
time t and link travel time, previous state w, and the whole state transition logic.
11 if (to_node is physical network node)
Update the vehicle state td_state[v][n][t][w] with current node, current_time

, time: t , state: w , vehicle location-dependent time-dependent states:

—_

O 001NN kAW

12 and current travel cost, and state w doesn’t change.

13 if (to_node is destination node of vehicle v)
Update the vehicle state td_state[v][n][t][w] and update the corresponding

14 Vector vehicle_ending_state [v], which will be used to find the least cost route
for vehicle v after all loops.

15 end // downstream node of one link

16 end // states

17 end // nodes

18 end// times

Fig. 6 Pseudo-code of our proposed beam search algorithm for each vehicle v

To improve the computation efficiency, we also consider a tree-based path representation embedded in the beam
search algorithms, which can provide the one-to-all shortest path tree during the search process. Therefore, when one
vehicle finds its three-dimensional shortest path, the shortest path tree from its origin vertex (with its depot node and
departure time) to all vertex is also found. Then if another vehicle also departs from that origin vertex but to a different
destination depot, it does not need to run the beam-search algorithm again. Instead, we can directly find its shortest
path in the one-to-all shortest path tree, which will reduce the total computation time.

4.2 Column-pool-based approximation for STS path-based flow-based formulation (Model 2)
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In reality, it is impossible to enumerate all possible STS paths to obtain the connection of vehicle-to-passenger and
vehicle-to-arc relationship in advance, as assumed in section 3.2 for Model 2. Therefore, we propose one
approximation approach, which is similar to scale factors but with some key differences.

To our knowledge, some traffic simulation tools have tried to use scale factors to consider city-wide applications
in order to reduce the computer memory use and computation efficiency. In our approach, we aim to study a relatively
small focused system (e.g. an AV test bed, a subarea such as city downtown) with more complex traffic conditions.
By doing so, we hope to fully examine the relation between each vehicle group and all passenger groups, and clearly
calculate the mutual impact between each vehicle group and space-time paths from a system with sampled passengers,
vehicles and reduced link capacities.

A space-time-state path of one vehicle with served passengers and visited space-time arcs is called one column in
the column pool. The more columns we can build in advance, the more candidates we can choose to satisfy passengers’
requests and road capacity by vehicle flow assignment. Different vehicles from the same group could serve different
passengers from different passenger groups and also visit different arcs, so we can have more relations among vehicle
groups, passenger groups, and space-time arcs. Then, based on the real-world passenger requests and road capacity,
we will determine how to assign available vehicles with vehicle group ID to serve those passengers with passenger
group ID under arc capacity constraints to reach the minimal system travel cost. In other words, we need to do the
vehicle assignment under the passenger request constraint (8) and road capacity (9) based on the obtained relations,
rather than multiplying the unique scale factor.

As shown in Fig. 7, the complex primal problem is divided into two stages. Stage A focuses on a sampled traffic
system to build a column pool by generating a number of columns (space-time-state paths) for each vehicle group by
solving the arc-based vehicle-based formulation using ADMM. The other advantage of column pool generation is for
re-optimization in case the demand, vehicle or network has any changes in the future, so we can use those available
columns as a starting point instead of performing the optimization model from the beginning. Stage B is to solve the
STS path-based flow-based linear programming model by ADMM to assign vehicles from different vehicle groups to
serve passengers from different passenger groups while satisfying the time-dependent road capacity constraints.

Step A: A prior generation of . .
. s e Step B: Vehicle flow assignment
column pool
1. Determine sample data set with 1. Input column pool with sampled space-
amp . oo P ‘mpiec Sp 2. Solve by Standard Solvers
passengers and vehicles from its group and »| time-state paths for each vehicle group and . .
. . . as linear programming model
network with reduced link capacity passenger group
2. Vehicle-based ADMM for Model 1 4. Flow-based ADMM for Model 2 A 4
3. Output optimal solution of
2.1 Initialize Lagrangian multiplers and 4.1 Initialize Lagrangian multiplers and ath flow
penalty parameters penalty parameters p
2.2 Sequentially solving time-dependent 4.2 Sequentially solving quadratic l )
state-dependent shortest path problem programming model for each path by ‘ 7. Gap calcuation ‘
for each vehicle Projected Gradient method T
2.3 Update Lagrangian multiplers 4.3 Update Lagrangian multiplers ‘ 6. Generate feasible solution
and upper bound
3. Output t'l tat ths with l No
. Output space-time-state paths wi .
uiput sp p: 5. Output ADMM path flow solution and .
vehicle-to-passenger and vehicle-to-arc . Feasible
. . objective values
mapping relation

Fig. 7 The flow chart of column-pool-based approximation
4.2.1 A priori generation of column pool based on Model 1

As mentioned above for addressing large-scale networks, the possible relation between different vehicle groups,
passenger groups and space-time arcs needs to be obtained, so we select a number of passengers and vehicles from
their groups as a sample set. Also, the arc capacity is reduced correspondingly to produce the possible congestions. If
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the generated column pool is too small, it is possible to have an infeasible solution or a sub-optimal solution. Therefore,
the key is to find the balance among column number, computation time, and solution quality. How to determine this
sample set and how to dynamically manage the column pool (Barnhart et al., 1998) will be studied in our future
research.

Then an arc-based vehicle-based model in section 3.1 is used to generate the column (space-time-state path) for
each vehicle. ADMM is selected to decompose this problem as a number of sequential time-dependent state-dependent
shortest path problem without using any standard solvers. In addition, it is also possible to try other heuristic methods
to generate different columns, such as, changing the benefits of serving different passengers, local search algorithms,
and so on.

The objective function of ADMM:

2 1Hb,S,

;;;;;;;;

2
e [Za Zw X s — €aPij1s] (20)

Subject to the flow-balance constraint for each vehicle at constraint (2). x? = x if x = {0,1}, so the quadratic terms
in objective function can be converted to being linear with binary variables, when the problem is solved for each
vehicle sequentially based on the standard procedure of ADMM (Boyd, 2011). For the illustration purpose, we assume
that there is a model with objective function (x; + x, — a)?and two binary variables x; and x,. When solving x;, we
can have (x;+x, —a)? =[x; + (x; —a)]? =x2 + 2x,(x; —a) + (x; — a)? = (2x, — 2a + Dx; + (x, — a)?
where x, is fixed and a is a parameter.

The penalty parameters of p;and p, for passenger service constraint and arc capacity constraints are given in this
paper, but they can also be updated based on some rules used in previous augmented Lagrangian relaxation models.
The iterative scheme of ADMM is shown in Fig.8.

// initialization
Set up initial values for all Lagrangian multiplers and penalty parameters
for n = 1 to Ny, // total number of iterations
for a = 1 to a,q, //total number of vehicles
Find the time-dependent state-dependent shortest path for vehicle a with the fixed solution of other vehicles
Update the network-arc costs based on the new solution of vehicle a for vehicle a + 1
end // vehicle
Update Lagrangian multipliers of passenger pickup constraints and arc capacity constraints
end // iterations

Fig. 8 The iterative scheme of ADMM
At iteration n + 1 of ADMM:

xg,H-l = arg min {L(xIH—ll x;l+1’ o Xas lel+1' e xlrllmax’ ng’ n2j,t,s)} (21)
an+1

7'['{}"’1 = T[g - p1[2a Z(i,j,t,s,w.w')EA(p)(xi,j,t,s,w,w' X 6{?1"15'5) —1] 22)
1 _ an+1

s = Max {0,701 = PalXa Zw X} g’ — CAPijts] @)

The subproblem for each vehicle is a time-dependent state-dependent shortest path problem due to the linear
relation in the objective function. Once one vehicle finds its best solution, the network arc cost will be updated for the
next vehicle’s subproblem solving. All Lagrangian multipliers are updated at the end of each iteration.

4.2.2 Dynamic vehicle flow assignment based on Model 2

Once the columns are generated for each vehicle group, the remaining task is to assign vehicles to satisfy
passengers’ trip requests and network capacities. Assume that the total number of vehicles from each vehicle group is
also unknown, then we can apply ADMM to convert the flow-based linear programming model as a quadratic
programming model as follows.

Objective function:

min Ne(c* X ¥9) + Tq(Ag X [(Te@* x 88) = g(@] + 2 Eq ((Be* x 65) - g(q))2 + Xijs(lijes X
AR 6il,cj,t,s) —cap;jisl) + pz_ZZi,j,t,s(Zk(yk x 55,';,5) - Capi,j,t,s)z (24)
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where y¥ is the path flow of path k, and p;, p, are parameters. For simplicity, ¥ for each OD pair (o, d, T) is replaced
by y* by resorting all path numbers.
Its Hessian Matrix in y can be derived as,

Kmax kmax

p1 Z 55 +p, z  Oljes pP1 Z 8585 + ps Z ; 8ljesOijes - P1 Z 858, + pa z  BesOifes
it t,s 14 ijts

kmax Kmax

plz 5162+Pzz ; 61][5612155 plz 6121 +pZZ . 5121 t,s plz 6561) +p22 ) 6i2,j,t,56i,j,t,s
t,s 14 ij,t;s 14 ijts

k k k k k k
Lt p ijt, p Lits

Since it is d1fﬁcu1t to directly obtaln its inverse matrix H™, espec1ally in large-scale networks, we apply ADMM to
decompose the primal problem to sequentially solve the subproblem for each column as

yitt= al‘f:.’mln{ld(}’ﬁ1 VI e Vio Vi ""y’?max Ag. ”U“)}

The subproblem for y* is a quadratic programming model which could be solved by the projected gradient method
(Rosen, 1960) as follows:

1 ,
vt =max {0,yf — =X L) (25)

where L) =ck+ Yqlg X 55 + p1 (Zq 5k ((Zk(yl? X 5k) - g(Q))) + XijtsHijits X 61'kjts +
P2 (Zi,]’,t,s 6i,fj,t,s(2k(yk X 6l.k] ts) Capi,j,t,s))a and s = % P1 Zq 6 + P2 Zl} ts 1] ts* In addltlon prOJected
gradient method also has been used in solving the path-based nonlinear programming models in equilibrium traffic
assignment (Larsson and Patriksson, 1992; Jayakrishnan et al, 1994; Florian et al., 2009), and it is more efficient,
compared with arc-based nonlinear programming models, but it needs more memory use.

At each iteration of ADMM, the Lagrangian multipliers are updated as follows,

Passenger group trip requestS' gt =2+ p1 (T % 6") 9(@)

Arc capacny constraints: nulj ts = max {0 nulj t,s + P2 (Zk(}/k x 61] ts) Capi,j,t,s)}

As a discussion, it is possible to assign different vehicles within different blocks, and each block can be
sequentially solved in ADMM and vehicles within a same block can find the best solution with parallel computing
techniques.

We need to note that the solution from ADMM cannot always guarantee its feasibility. In order to find a feasible
solution and upper bound value, we can sequentially load each column flow from ADMM. Path flows that exceed the
required passenger trip requests or arc capacity will be removed during the sequential loading process. Finally, if some
passenger requests cannot be satisfied, virtual vehicles will be used to find a feasible solution as the upper bound.

5. Numerical examples

Section 5.1 shows how vehicles carrying passengers switch routes to reach the optimal solution in a capacitated
network iteration by iteration using Dantzig-Wolfe decomposition. Section 5.2 focuses on both pickup and drop-off
requests in the Sioux-Fall network. The restricted master problem is solved by CPLEX in GAMS, and the sub-
problems are solved by a beam search algorithm. In section 5.3, we consider the pickup only in the Chicago sketch
network with a large number of autonomous vehicles and passengers belonging to different groups. A column-pool-
based approximation approach is used to solve this problem. All corresponding source codes are shared online at
https://github.com/TonyLiu2015/AVRLite.

5.1 A simple case in a capacitated network

Fig. 9 shows a simple capacitated network with 4 nodes, 6 links and 4 possible paths. Assume that there are 2
vehicles and each vehicle picks up one passenger from origin node 1 to destination node 4. Our goal is to minimize
the total vehicle travel cost by Dantzig-Wolfe decomposition approach.
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Table 3 lists the details of each iteration where A, is the weight of selecting path k of from node 1 to node 4, y; ;
is the dual price of tight capacity constraint of link (i, j), and 7 is the dual price of path weight constraint. Iterations 1
and 2 are used to generate a feasible solution by adopting the approach (Kalvelagen, 2003) in Dantzig-Wolfe
decomposition. After 4 iterations, one vehicle chooses path land the other selects route 2. The reduced cost is
YAk X o X 2) = Xii e Mij X fij — mw Where ¢ is the cost of path k and f; ; is the flow on link (i, ). Finally, the

3,1

1L1)

~

\\@}// 4,1)

Path ID | Node Sequence | Path Cost | Path Trajectory
Path 1 1—-2—4 4 /\
Path 2 1-3—4 5 \\\A 4
Path 3 1—4 7 ps - “a
Path 4 1-3-52—4 3 ~_ \j\\\*

(link cost, link capacity)

Fig. 9 A simple capacitated network

reduced costis 4 + 5 — (—1) — (—2) — 12 = 0 and reaches the optimal solution.
Table 3 The process of vehicle routing with endogenous congestions in Dantzig-Wolfe decomposition

Iteration NO.

Decomposed problem

Solution of different subproblems

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Subproblem
Restricted master
problem
Subproblem
Restricted master
problem
Subproblem
Restricted master
problem
Subproblem
Restricted master
problem

New column: path 4

Aa=1L3==1, 11, =0,3, =0, 4 =0,34 =0,
Ur10=0,m=2

New column: path 3

Ag =053 =05,p34=0,p1, =0, 3, =0, s 3 = —4,
Mza=0,p14=0,m=15

New column: path 1

Ay =0523=05 33 =—1,pips = =3, U1, =0, 3, =
0,u34=0,114=0,m=14

New column: path 2

A =052, =05p3=—1 lps=—2,11,=0,p3, =
0,u34=0,p14=0m=12

6.2 Trips with pickup and drop-off requests in the Sioux-Fall test network

As shown in Fig. 10, the Sioux-Fall network has 24 nodes, 84 links with hourly capacity, and 5 vehicle depots.
We assume that there are 30 trip requests with specific pickup and drop-off location and time windows, which are not
listed due the space limit of this paper. In addition, 30 candidate vehicles depart from different origin depots at different
departure time to its corresponding destination depots to serve those trip requests. The optimization time horizon is
110 time units to cover those time windows and possible trip time. The generalized benefit of serving one trip request

is -20 time units, and the waiting generalized cost of vehicles is half of its waiting time.
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Fig. 10 Sioux-Fall network with five vehicle depots

Four scenarios are examined to compare the total generalized transportation cost and vehicle uses. Scenarios 1 and
2 have no endogenous road congestion due to the large road capacity. Then we change the road capacity with a very
small value to incur congestions in Scenarios 3 and 4. In addition, in Scenarios 1 and 3, vehicle carrying capacity is 1,
and in Scenarios 2 and 4, vehicle carrying capacity is increased to 2 to provide the ridesharing service.

For Scenarios 1 and 2, based on the algorithm for the initial feasible solution generation in section 4.1, 30 vehicles
can serve 30 passengers in the physical network. Further, Dantzig-Wolfe decomposition is used to improve the initial
solution. Similarly, the process is also implemented to scenarios 3 and 4 with road congestions. Table 4 lists the
comparison on served passengers in each vehicle under different scenarios.

Table 4. Comparison on served passengers under different scenarios

no road congestion with road congestion

veh ID initial s veh cap=1 veh cap=2 initial s veh cap=1 veh cap=2

1 [15] [15][25] [15][25] [15] [15][25] [15][25]
2 [8] [8] [8] [8] [8] [8]

3 [1] [1] [1] [1] [1] [1]
4 [7] [7] [7109] [7] [7] [7]

5 [9] [9] [9] [9] [9]

6 [11] [11] [11] [11] [11]
7 [29] [29]

8 [28] [28] [28] [28] [28] [28]

9 [17] [17][29]  [17][29][30]  [17] [17][29]  [17][29][30]
10 [21] [21] [21] [21] [21]
11 [20] [20] [20] [20]
12 [26] [26] [26] [26] [26] [26]
13 [16] [16] [16] [16] [16] [16]
14 [18] [18] [18] [18] [18] [18]
15 2] [2] 2] [2] [2] [2]
16 [10] [10] [10] [10] [10] [10]
17 [3] [3] [3] [12] [12] [12]
18 [12] [12] [12] [22] [22] [22]
19 [27] [27] [27] [27] [27] [27]
20 [30] [30] [30] [30]
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21 [23] [23] [23] [23] [23] [23]
22 [25] [20][21] [11][20] [25]

23 [22] [22] [22] [19] [19] [19]
24 [13] [13] [13] [13] [13] [13]
25 [4] [4] [4] [3] [3] [3]
26 [5] [5] [5] [5] [5] [5]
27 [19] [19] [19] [24] [24] [24]
28 [24] [24] [24] [14] [14] [14]
29 [14] [14] [14] [4] [4] [4]
30 [6] [6] [6] [6] [6] [6]

Focusing on vehicle 9, in the scenarios 1 and 2 without road congestion, it picks up and then drops off passenger
17 in the initial solution, but in the improved solution by Dantzig-Wolfe decomposition it serves passenger 17 and
then continues to serve passenger 29. In addition, when the vehicle carrying capacity is 2, vehicle 9 serves passenger
17, and then picks up passenger 30 and goes to picks up passenger 29, and finally drops off passenger 29 first and
then drops off passenger 30. In addition, the number of vehicles used under different scenarios in Table 4 is displayed
in Fig. 11. As expected, the number of vehicles used under congestion conditions would be increased in order to serve
passengers with specific pickup and drop-off windows. We also compare the total transportation cost in different
scenarios in Fig. 12. It can be observed that the total system costs decrease when vehicle carrying capacity is increased
with high ridesharing chances, and the road congestion would increase the system cost compared to the scenario
without road capacity but with the same vehicle carrying capacity.

It should be emphasized that this paper focuses on an offline system optimal solution rather than the real-time
vehicle scheduling problem, so the number of vehicles required in different scenarios could be different. In addition,
pickup and drop-off windows can be a buffer time to mitigate traffic congestions and vehicles are allowed to wait at
some points to further serve the next passengers. In other words, the required time windows from passengers are also
important factors and inputs for system optimization.
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(o] (o]
N
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INITIAL_S VEH_CAP=1 VEH_CAP=2 INITIAL_S VEH_CAP=1 VEH_CAP=2

NUMBER OF VEHLCES

NO ROAD CONGESTION WITH ROAD CONGESTION
DIFFERENT SCENARIOS

Fig. 11 Number of vehicles used in different scenarios
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Fig. 12 Total generalized system travel cost in different scenarios

6.3 Trip with pickup only request in the Chicago sketch test network

Step A: A priori generation of column pool in Model 1
The Chicago sketch network has 1320 nodes and 5431 links in Fig. 13. We assume that all passengers have the pick-
up only trip requests as the first mile problem, which indicates that each passenger group with a number of passengers
will have the same destination with a vehicle group. We treat them as one pair of vehicle group and passenger group.
To generate the column pool, two scenarios are designed:

Scenario 1: 10 pairs of vehicle groups and passenger groups. In each pair, as a sample set, we assume that (i) 243
vehicles departs from different origins to one destination with different working time windows and (ii) 387 passengers
submit trip requests with different pickup locations and time windows. The time horizon is 60 min (time unit). Since
this is a simple set, the space-time arc capacity in each minute is assumed to be 5 vehicles. Vehicle carrying capacity
is given as 1, so each vehicle aims to pick up one passenger from the origin depot to their same destination. It has
2430 binary variables and 332,160 constraints.

Scenario 2: 20 pair of vehicle groups and passenger groups. For each pair, similar to scenario 1, we also assume
the same number of vehicles and passenger trip request but with different vehicle inputs (origin, destination, working
time windows) and passenger inputs (pickup locations and time windows). It has 4860 binary variables and 338,460
constraints
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Fig. 13 Chicago sketch network for passenger pickup only

Then the vehicle-based ADMM in section 4.2.1 is used to find the vehicle-to-passenger and vehicle-to-arc
assignment. Since the input data is randomly generated, some passengers may not be served and some vehicles may
not serve any passengers. The final results are that (i) in scenario 1, 1789 vehicles find their paths/columns to serve
1084 passengers, and 23357 space-time arcs are generated based on vehicles’ paths, and (ii) in scenario 2, 3686
vehicles find their paths/columns to serve 2226 passengers, and 36454 space-time arcs are generated based on vehicles’
paths. The computation times for scenarios 1 and 2 are about 70 seconds and 140 seconds, respectively, from the
laptop with 2.80GHz.

Step B: customized algorithm for flow-based ADMM

Note that each passenger has a specific pickup location, time window and destination, and vehicle can only pick
up passengers within a group with the same destination location. Therefore, we can build a column pool where each
path of vehicles represents one column and each passenger represents one passenger group from Model 1. The question
that arises is how many vehicles from different vehicle groups are required to satisfy those trip request from different
passenger groups under tight road capacity constraints. Based on the last two scenarios, we design two experiments:

Experiment 1: there are 1084 passenger groups and each passenger group has 4 passenger trip requests.
Experiment 2: there are 2226 passenger groups and each passenger group has 2 passenger trip requests. In this
physical network, we assume that all space-time arc capacity in each minute is 35 vehicles, equal to 2100 vehicles per
hour. To solve this problem, we try three approaches: (i) flow-based ADMM, (ii) upper bound generation by
sequentially loading the column flow solution from ADMM, (iii) optimal solution from standard solver CPLEX in
GAMS.

In experiment 1: three cases with different penalty parameters of p; for passenger trip constraints and p, for arc
capacity constraints in ADMM are performed. Case 1: p; = 3 and p, = 1; Case 2: p; = 3 and p, = 3; Case 3: p; =
3 and p, = 5. The results from ADMM by running 250 iterations and the optimal solution from CPLEX are shown
in Fig. 14. The ADMM can converge to different objective values in three cases with different penalty parameters.
Since capacity values and the number of capacity constraints are much higher than that of passenger trip requests, it
is better to assign a smaller penalty value for p, in the objective function of ADMM.
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Fig. 14 Solution of each iteration of ADMM in three cases and CPLEX in experiment 1

Then the upper bound generation algorithm is also implemented to find a feasible solution based on the results of
ADMM. Fig. 15 shows the objective values of upper bound in three cases and the optimal solution. The Gap values
of three cases compared with the optimal solution are 4.3%, 3.4% and 3.1%, respectively. It is observed that the three
cases can finally reach good solutions with very small gap values. Further, the ADMM result of case 3 has the biggest
gap value, but its upper bound solution can still have a small gap value. The possible reason is that the total path flow
is a variable, so the upper bound generation can reduce the total path flow from ADMM to have a better feasible
solution to satisfy those passenger trip demands and not violate the arc capacity constraints.

Gap_case_1=4.2%
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Fig. 15 Upper bound in three cases and the optimal value in CPLEX in Experiment 1
From the upper bound solution, 4737 space-time waiting arcs (i,i,t,t + 1) at 405 nodes have assigned vehicle
flows, which indicates that the waiting happens at those nodes. By calculating the total waiting flow at those congested
nodes during 60 mins, its heat map and the top10 of the most congested nodes are shown in Fig. 16(a) and (b),
respectively. It can be observed that the destination areas of different passengers with pickup request only become
congested, so it also raises one question about how to design the drop-off location in the future when a large number
of passengers have the same destination with similar arrival time.
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(a) The heat map on waiting flows in experiment 1 (b) Top 10 of congested nodes in experiment 1

Fig. 16 Visualization of congested nodes in experiment 1

In order to compare the computation efficiency and memory use of the ADMM algorithm and CPLEX in GAMS
(version 24.7.4), we also implement three other cases with different numbers of columns based on experiment 1. All
tests are performed in the laptop with 8 G memory and i5-4210U CPU @1.7GHz. The result is listed in Table 5. It can
be observed that that CPLEX is much more efficient, but our customized algorithm can better utilize the memory.
Specifically, our flow-based model is a linear programming (LP) model. How to efficiently solve LP model has been
studied for almost 80 years, and most commercial solvers are powerful in solving LP models. Actually, most LP
solvers apply some preconditioning techniques, such as, a simple geometric mean scaling in combination with
equilibration, to reduce the condition number of the constraint matrix in order to decrease the computational efforts.
As we know, CPLEX also has its “scaling routine” to preprocess LP models. In most of the literature in transportation
domain, we haven’t found any papers which proposed an algorithm for LP and ultimately beat CPLEX in computation
efficiency. Most comparisons happened when solving mixed integer programming, because CPLEX usually applied
branch and cut to deal with those integer variables and the process is relatively time-consuming. In addition, it is still
a research topic about how to improve the computation efficiency of ADMM, such as, by parallel computing (Boyd
et al., 2010), which will be our future research. Also, we should emphasize that our ADMM is a general algorithm
which can deal with nonlinear programming rather than just linear programming by CPLEX. Therefore, when the
column cost is a nonlinear function of column flows, such as, for paths with reliability and variance (Xing and Zhou,
2011), our model could still be appliable and CPLEX will not deal with it. Another advantage of our column pool-
based model is that a large number of columns has been stored in advance, so it will be beneficial for re-optimization
and real-time optimization in the future and doesn’t need to read all the input data every time, which needs to be done
in the case of CPLEX.

Table 5. Computation efficiency comparison between ADMM and CPLEX in GAMS
Flow-based ADMM_C++ (250 iterations) GAMS (solver: CPLEX)

computation_time computation_time

Num of columns

memory_use memory_use

1789 12s 20m 0.8s 16m
17890 81.9s 43.4m 3.2s 77m
89450 344s 134.7m 15.2s 345m
178900 514s 264.1m 31.5s 686m

Then the same procedure is also applied to experiment 2. The solution process and comparison among different
cases are shown in Fig. 17 and Fig. 18, respectively. The Gap values of the three cases compared with the optimal
solution are 3.9%, 2.9% and 2.5%, respectively. From the upper bound solution, 7173 space-time waiting arcs
(i,i,t, t + 1) at 448 nodes have assigned vehicle flows. Its heat map and the top10 of the most congested nodes are
shown in Fig. 19(a) and (b), respectively.
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(a) The heat map on waiting flows in experiment 2 (b) Top 10 of congested nodes in experiment 2

Fig. 19 Visualization of congested nodes in two experiments
6. Conclusions and future research

This paper focuses on one ideal future scenario in which all vehicles can be centrally guided to pick up and drop
off passengers within their required windows while considering endogenous congestion in capacitated networks. A
vehicle-based arc-based integer programming model is proposed in our space-time-state networks for each vehicle
and each passenger, which is solved by Dantzig-Wolfe decomposition. Then, based on the relations between vehicles
and passengers and between vehicles and links from the vehicle-based model above, we further propose a flow-based
path-based linear programming model from the perspective of dynamic traffic assignment. We then apply Alternating
Direction Method of Multipliers (ADMM) to solve this linear programming model. The transportation system
performance is highly related to different component layers in this system, including passengers’ requests with pickup
and drop-off location and time windows, vehicle carrying capacity and working rules, physical infrastructure
capacities, etc. Therefore, any conclusions based on one specific input may not be universal.

From our preliminary experiments in this paper, we have a few interesting observations: (i) without considering
the road congestion, the network performance/efficiency could be overestimated; (ii) passengers’ required pickup and
drop-off time windows could be a buffer to mitigate road congestion without impacting system performance; (iii) the
ridesharing service could reduce the total transportation system cost under centralized control; (iv) the curb area design
and management is important due to the possible high frequency of vehicle pickup/drop-off services. Therefore, in
the future, with the increase of autonomous vehicle implementation, the resulting increased road capacity could
enlarge the network capacity to better serve passengers, and the ridesharing travel modes should be encouraged to
better utilize the carrying capacity of vehicles (car, bus, etc.)

Focusing on the algorithm part, we will improve the beam search algorithm (approximate dynamic programming)
to address larger cases for finding the shortest path for pickup and drop-off requests. In addition, it is better to apply
branch and bound to solve the relaxed problem in the master problem to obtain the dual prices in the Dantzig-Wolfe
decomposition algorithm. Also, (i) how to determine the sample size and what algorithms can be used to generate the
column pool and (ii) how to dynamically manage column pool are also important for the future application in large-
scale networks. Since our proposed models are similar to dynamic system optimal traffic assignment models, it is also
possible to calculate the path marginal cost to solve our model under the space-time-state framework. The
implementation of ADMM with parallel computing should also be considered.

In a boarder sense, we will consider different kinds of trip requests and travel behaviors in a unified model to
capture more complicated traffic conditions. Liu and Zhou (2016) showed how the tight road/vehicle capacity
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constraints could invoke travelers’ bounded rationality based on their day-to-day learning due to the inner system’s
uncertainty, which is incurred when identical travelers are competing for the limited resources without an assignment
rule. This bound on trip cost is similar to (i) the concept of travel time budget in travel activity analysis, (ii) the
changeable departure time of dynamic traffic assignment, and (iii) the required time windows for pickup and drop-off
in vehicle routing problem. Therefore, it could be a suitable way to use time windows to model travel behavior in
future congested multi-modal transportation systems. However, it is also challenging to estimate and predict those
time windows from travel demand generation. In addition, the participants from different parties, such as, traffic
regulator, mobility service providers, human drivers, and passengers, could lead to a more complex leader-follower

game in the future research.
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Appendix A. Model Comparison

Comparison Category

Model A (System Optimum POAVAP,
de Almeida Correia and van Arem,
2016)

Model B (This paper)

(1). User behavior
(2) Modeling approach
(3) Objective function

(4) Vehicle ownership

(5) Vehicle flow balance
(6) Vehicle origin/destination

(7) Passenger/household
member pickup/drop-off
request satisfaction

(8) Pickup/drop-off time
windows

(9) Vehicle carrying capacity
(10) Road congestion and
dynamic link travel time
calculation

(11) Vehicles can pass
passenger pickup/drop-off
nodes without serving them.

(12) Empty vehicle
elimination

Household-level optimum
Time-discretized space-time network
Minimizing total generalized transport
cost: including travel distance, public
transit cost, parking cost, penalty for
carly and late arrival. Formula (5).
Private vehicles in each household.
Vehicles don’t have the departure
/arrive time window, or the working
hours.

Constraint (23)

Vehicle origin is home, and its
destination is the arrival node of the last
served trip.

Constraints (10), (12), (14)-(17).

Each household member has desired
pickup/drop-off time, earliest pickup
time, and latest drop-off time.
Constraints (19) and (20).

BPR travel time function, but needs to
calibrate t,;,;,, and t,,4, and makes the
model nonlinear. Constraints (24)-(27).
Yes. If passengers/household members
are not served, they will be assumed to
be served by public transit. Constraint

(8) (9), (1), (13), (18).

Cannot eliminate an empty vehicle.
Constraint (22).

Transportation system optimum

Time-discretized space-time-state network
Minimizing total generalized transport cost: travel
time, waiting time, profit of serving passengers.
Formula (1).

Public vehicles managed by depots. Vehicles have
departure/arrival time windows and its working
hours.

Constraint (2)

Vehicle origin is the origin depot, and its
destination is the destination depot. The depot can
be extended as home.

Constraint (3). The logic of passenger pickup and
drop-off process is satisfied in the vehicle carrying
state transit process (w — w'), implemented in the
time-dependent state-dependent shortest path
finding in the beam-searching algorithm.

Each passenger has a specific pickup/drop-off
time windows embedded in the space-time-state
networks.

Satisfied in vehicle carrying state transit process.
Point queue model by building waiting arc at each
node in the space-time-state networks and having
tight arc capacity constraint (4).

Yes. Though adding virtual pickup/drop-off nodes
and links, vehicles can pass the real passenger
pickup/drop-off physical nodes without serving
them, but cannot pass those virtual service
nodes/links without serving them.

Cannot eliminate an empty vehicle. However,
when based on the solutions from Lagrangian
Relaxation (Mahmoudi and zhou, 2016) or
ADMM, a sequential vehicle loading for upper
bound generation can eliminate the remaining
vehicles if all passengers have been served.
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(13) Route with empty Route with empty vehicle is not Route with empty vehicle is generated to satisfy

vehicles generated. Constraint (38). the flow balance constraint, but can be eliminated
after obtaining the solution.
(14) Vehicles stop at any not allowed to stop idle when the We have tight pickup/drop-off windows, so if
nodes vehicle is transporting a person. vehicles arrive early, they need to wait to pick up/
Constraint (21). drop off the passenger until within the time

windows. That is different with the desired
pickup/drop-off time with early and late arrival

penalty.
(15) First-in-First-out (FIFO)  Considered, but adding constraint (28) Not considered in the model. However, the
could force link travel time not follow sequential vehicle loading in the upper bound
volume-delay travel time calculation. solution from Lagrangian Relaxation (Mahmoudi

and zhou, 2016) or ADMM can satisfy FIFO.

Appendix B. Discussions on modeling queue spillback

In order to capture the queue spillback, we proposed a spatial queue model by improving the approach proposed
by Drissi-Kaitouni and Hameda-Benchekroun (1992) where the link storage capacity with jam density and backward
wave speed are not considered in space-time networks. Take the simple network in Fig.B1 (a) as an example. A virtual
node as the waiting node is added for each link in the modified network in Fig.B1 (b). The travel time of link (2, 2)
is assumed to be 1 time unit and its length is a small value as an approximation, so this link is used for discharging
flows, and its capacity as the outflow capacity of link (1,2) as a variable will be determined by its downstream links.
The inflow capacity of link (1,2) is the capacity of link (1,2"), equal to Cap; ,. The link storage capacity of link (1,2)
is Len; ; X ny, X Jam, , and will be represented on link (1,2"). The corresponding space-time network is constructed
in Fig.B3 (c). Specifically, at time t on link (1,2), (i) the inflow capacity constraint is X; 7 pprr, ,, ¢ <

IN

Capy ' ¢ prrry ,,¢ for arc (1,2',t — FFTT,,,t) shown in purple; (ii) the outflow capacity constraint is X,/ ;¢4
Capy 541 for arc (2',2,t,t + 1) shown in orange; (iii) the link storage capacity constraint is CA;, — CD; ¢ =
Xplotpoqp + Zg;%_FFTTl'Z,H X190 sp < Leny,r Xny 0 X Kjamy,, . CAq,p and €Dy, are the cumulative arrival
count and the cumulative departure count of link (1,2) at time t. The link outflow capacity is calculated and given by
the capacities of its downstream links.

Space 4
e

w — — g

>

o

Outflow rate at time ¢

Flow on link at time ¢

Inflow rate at time ¢

[\S)
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{ Time

(a) Physical network (b) Modified physical network (c) Space-time network for modeling the queue on link (1, 2)

Fig. B1 Illustration for the spatial queue model in a space-time network
Focusing on the vehicle routing in our proposed space-time-state networks, the spatial queue model can be
formulated as follows where X; j 1 s ww: = 2a xl."_‘]._t‘ sw,w' I Model 1,

Inflow arc capacity constraint:
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2w Xij! t—FFTT; j+ 1t wwr = Capi,j',t—FFTTi_j+1,t' V(i,j') € Linfiow, Vt (B.1)

Outflow arc capacity constraint:

Zw xj’,j,t,t+1,w,w1 = yj’,j,t,t+1' V(j"j) € Loutflow' vt (B~2)
Outflow arc capacity balance constraint at points without merge and diverge:
Vit jote1r = Capjitrs (B.3)
Outflow arc capacity balance constraint at merger points:
XG0 Y e+ < Capji1s V0, t+ 1) € Ay (B.4)
Outflow arc capacity balance constraint at diverge points:
Viljete1r = Z(i,s) Capjitsr,s V@G, t+1) €Ay (B.5)

Link storage capacity constraint:
Zw xj’,j',t—l,t,w,wr + Zw Zg;%—FFTTL-,j, xi,j’,s,t,w,Wl = Leni,jr X ni,jl X K]ami,jn V(i'j’) € Linflow' vt (B~6)
Furthermore, to consider the backward wave speed under congested conditions, Newell’s simplified kinematic
wave model (Newell, 1993) considers the link storage capacity by CAq jr) — CD;jr—pwrr(,j) < Len;; X n;; X
Jam, ;. Similar to the derivation of the spatial queue model above, Newell’s simplified kinematic wave model can

have the following constrain for link storage capacity.
t

Yw Zg:t—BWTT(i,ji) Xt it s—1swwr T 2w s;%—FFTTi_j,—BWTTU,
Kjam; ;,,V(i,j') € Linfiow, VYt (B.7)
As a note, from the perspective of car-following models, the backward wave speed depends on drivers’ average
reaction time and minimal following safety distance, and Newell’s simplified microscopic car-following model
(Newell, 2002) is consistent with his macroscopic kinematic wave model. Wei et al. (2017) proposed a binary integer
programming model to optimally control vehicle trajectory based on Newell’s simplified car-following model in time-
extended space-time networks, which can be incorporated in our modeling framework in state-space-time networks

but will cause a huge number of variables and constraints.

xi,j',s,s+FFTTijr,w,wl <Len;j Xngj X
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