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Abstract  1 

The ridesharing services have been growing in recent years with the start of network service companies, and will 2 
be further enhanced by the recently emerging trend of autonomous vehicles applications for future traveler mobility. 3 
One fundamental question that transportation managers should address is how to capture the endogenous traffic 4 
patterns with those upcoming new and uncertain elements for future transportation planning and management. 5 
Therefore, by focusing on one ideal system optimal (SO) scenario in which (i) all vehicles are autonomous or can be 6 
centrally guided and (ii) all passengers’ pickup/drop-off trip requests are given at the beginning, this paper aims to 7 
integrate travel demand, vehicle supply and limited infrastructure supply by optimally assigning available rideshared 8 
and autonomous vehicles from different (real/virtual) depots to satisfy passengers’ trip requests while considering the 9 
endogenous congestion in capacitated networks. A number of decomposition approaches are adopted in this research. 10 
Focusing on this primal problem, we propose an arc-based vehicle-based integer linear programming model in space-11 
time-state (STS) networks, which is solved by Dantzig-Wolfe decomposition. From the perspective of dynamic traffic 12 
assignment, a space-time-state (STS) path-based flow-based linear programming model is also provided as an 13 
approximation according to the mapping information between vehicle and passenger and between vehicle and space-14 
time arc in each STS path in our priori generated column pool. Later, we apply Alternating Direction Method of 15 
Multipliers (ADMM) to solve this linear programming model and compare its results with standard solver. Finally, 16 
numerical experiments are performed to demonstrate our decomposition approaches and their computation efficiency. 17 
From our preliminary experiments, we have a few interesting observations: (i) without considering the road congestion, 18 
the network performance/efficiency could be overestimated; (ii) passengers’ required pickup and drop-off time 19 
windows could be a buffer to mitigate road congestion without impacting system performance; (iii) the ridesharing 20 
service could reduce the total transportation system cost under centralized control; (iv) the curb design and 21 
management should be important in future due to the possible high frequency of vehicle pickup/drop-off services. 22 
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Multipliers (ADMM); Dantzig-Wolfe decomposition; Column pool; 25 

  26 



3 
 

1. Introduction 1 

The transportation sector is experiencing an unprecedented revolution with the emerging advanced sensing, 2 
telecommunications and vehicular technologies, which are generating a new wave of rich information and providing 3 
a great opportunity to better control and optimize transportation system operations. On the other hand, it results in 4 
great challenges to estimate and predict their impacts on existing congested roadway infrastructure, new mobility 5 
modes, and future transportation system design. For example, it has been a hot debate whether the new ride-hailing 6 
service from Transportation Network Companies (TNCs) is adding to congestion in numerous downtowns. Officials 7 
in San Francisco, Chicago and New York have cited congestion as the main rationale for new fees they recently 8 
enacted on Lyft and Uber rides in each of the cities (Erhardt et al., 2019, Brown, 2020). One main challenge to evaluate 9 
this kind of impacts is that any changes in a complex interdependent system may invoke a series of hardly predictable 10 
interactions of endogenous variables. There has been a number of studies in transportation area to consider the 11 
challenges caused by endogenous factors. For example, the bottleneck model (Vickrey, 1969) of congestion with 12 
endogenous scheduling has been used to address a number of challenging transportation economics problems, such 13 
as, time pattern of congestion, optimal pricing, unpriced equilibria (Small, 1982; Small and Verhoef, 2007; Small, 14 
2015). In addition, Batarce and Ivaldi (2014) formulated a structural travel demand model with endogenous 15 
congestions, Chow and Recker (2016) proposed an estimation model with endogenous arrive time constraints for 16 
better calibrating the household activity pattern problem, de Almeida Correia and van Arem (2016) focused on the 17 
household optimum privately owned automate vehicle assignment with endogenous road congestions by using 18 
volume-delay functions, and Liu et al. (2018) considered the congestions based on a point queue traffic flow model 19 
for finding household activity patterns. Therefore, one fundamental question that transportation managers should 20 
address is how to capture the endogenous traffic patterns with those upcoming new and uncertain elements for future 21 
transportation planning and management. 22 

The uncertain elements in future transportation systems spread over travel demand, vehicle supply and 23 
infrastructures, ranging from personal trip requirements (Martinez et al., 2015; Rayle et al., 2016; Davidson and 24 
Spinoulas, 2016; Martinez and Viegas e, 2017; Lim et al., 2018; Ma et al., 2018; Tong et al., 2019), vehicle driving 25 
modes (Chen et al., 2017; Wong et al., 2017, Nieuwenhuijsen et al., 2018), route behavior (Levin et al., 2017; Wong 26 
et al., 2017; Hyland and Mahmassani, 2018; Tong et al., 2019), vehicle ownership (Davidson and Spinoulas, 2016; 27 
Lavieri et al., 2017; Allahviranloo and Chow, 2019), to the update of infrastructure capacity due to sensor and 28 
communication advancement (Varaiya 1993; Papadimitratos et al., 2009; Qu et al., 2010; Gentili and Mirchandani, 29 
2012; Mahmassani, 2016; Dey et al., 2016; Din et al., 2019).  30 

Various approaches to respond to these are being studied, most notably the recent Intelligent Transportation 31 
Systems (ITS) initiatives of USDOT (e.g., the recent Dynamic Mobility Applications and Active Transportation 32 
Demand Management (DMA-ATDM); and Connected Vehicles Programs). In addition, the concept of Mobility as a 33 
service (MaaS) born in Finland and first launched at Hannover in Germany (Fred, 2016) has attracted much attention 34 
by combining transportation services from public and private transportation providers through a unified gateway that 35 
creates and manages the trip, which users can pay for with a single account (Heikkilä, 2014; Kamargianni et al., 2016; 36 
Hensher, 2017; Jittrapirom et al.,2017; Mulley, 2017; Djavadian and Chow, 2017; Bruun, 2018; Tong et al., 2019). 37 
As autonomous vehicles potentially become increasingly popular among ride providers, freight operators and perhaps 38 
some personal vehicles, the consideration of how these vehicles can be operated to meet temporally and spatially 39 
distributed traveler mobility needs with a limited road expansion budget and constrained infrastructure capacity is 40 
largely missing in studies of implementing large fleets of rideshared vehicles. In other words, it is crucial to study the 41 
integration of travel demand, vehicle supply and infrastructure capacity under one unified modeling framework. 42 

The interplay of travel demand and vehicle supply is similar to traditional vehicle routing problems (Toth and 43 
Vigo, 2002) which are modeled in virtual point-to-point networks without physical roads. The link travel time is either 44 
constant or time-dependent based on externally observed historical, real-time or predicted traffic congestions 45 
(Taniguchi and Shimamoto, 2004; Kok et al., 2012). Meanwhile, the interaction between vehicle supply and physical 46 
networks is usually used to model its internal road congestion as traditional dynamic traffic assignment problems 47 
(Peeta and Ziliaskopoulos, 2001), which treats vehicles equal to their carried passengers at origin zones. Given the 48 
development of emerging new technologies in information sharing and vehicle automation, it is more possible for 49 
passengers to share their trips’ origin and destination with preferred time windows and for transportation control 50 
centers to guide and control vehicles in the future. Therefore, by focusing on one ideal system optimal (SO) scenario 51 
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for offline transportation planning from the viewpoint of society (Wardrop, 1952), this paper aims to consider demand, 1 
vehicle and infrastructure simultaneously to capture the endogenous traffic pattern with a number of assumptions. 2 
More specifically, (i) All vehicles are autonomous or can be systematically guided as human-driven vehicles by one 3 
management center.  As a note, the difference between autonomous vehicles or human-driven vehicles in this paper 4 
can be reflected by the road capacity and backward wave speed due to the different vehicle reaction times and minimal 5 
vehicle following distance (e.g. Wei et al. 2017), or the vehicle carrying capacity for ridesharing capability. (ii) 6 
Vehicles have carrying capacity and depart from their origin depots to destination depots with specific working time 7 
windows. (iii) All passengers submit their trip requests with pickup and/or drop-off locations and time windows in 8 
advance and accept the ridesharing service. (iv) The road congestion is endogenously incurred by those guided 9 
vehicles. As a note, the differences between autonomous vehicles and human-driven vehicles can be reflected by the 10 
road capacity and backward wave speed due to their different vehicle reaction time and minimal vehicle-following 11 
distance and the vehicle carrying capacity for ridesharing capability. In addition, from the perspective of traditional 12 
Wardrop’s first principle, each user aims to find his/her best route. In our solution, the final traffic condition can also 13 
be viewed as a kind of user equilibrium with accepted tolerance, because each user also finds his/her required route, 14 
but this equilibrium may not be unique. If passengers just have their pickup time windows and do not have a tight 15 
limit on the drop-off time, we can only state that our model is for system optimal rather than a kind of user equilibrium.  16 

About the setting of vehicles’ origin and destination, there are two popular ways to address it. One way is to 17 
predefine the origin and destination by assigning one origin zone (depot) and one destination zone (depot) for each 18 
vehicle (such as, Scherr et al., 2019). The other way is to randomly generate the origin of each vehicle and its 19 
destination is determined by the location of its last served trip. Our model chooses the first way, so all vehicles could 20 
be managed and maintained at different depots at the end. In addition, if we define the household as the origin and 21 
destination depot of its owned autonomous vehicles, our model is still applicable. Furthermore, if we do not want all 22 
vehicles to finally return to the destination depot, we can treat this depot as one virtual depot and use one virtual link 23 
to connect this virtual deport with all drop-off locations in the network, so the drop-off location of the last trip will be 24 
the final parking location and the link travel cost from all the drop-off locations to the virtual depot will be assumed 25 
to be 0. In addition, we believe that the new technologies associated with shared mobility and autonomous vehicles 26 
will revoke more research about how and where the depots should be designed and how to better operate those vehicles 27 
in the future, which are beyond the scope of this paper. 28 

 29 
1.1 Challenges 30 

The modeling approach for our problem with route coordination, ridesharing services and constrained road 31 
capacity is similar to the integration of vehicle routing problem (VPR) and dynamic traffic assignment (DTA), so this 32 
section aims to summarize the challenges of each separated problems and their integrations at first. 33 

Without considering the endogenous road congestions, the first set of problems in our research context can be 34 
simplified as the vehicle routing problem with pickup and delivery with time windows (VRPPDTW), which has been 35 
proved to be NP-hard (Baldacci, et al., 2011). The difficulty of this problem arises from the complex categories of 36 
constraints, (i) vehicle flow balance, (ii) the logic of passenger pickup and drop-off by the same vehicle within the 37 
required time windows, and (iii) dynamic vehicle carrying capacity of the ridesharing choice. In particular, it is 38 
sometimes challenging to even find a feasible solution due to the complicated interaction of all constraints. Recently, 39 
Psaraftis et al. (2016) summarized the research of the last three decades and offered a systematic classification of 40 
dynamic vehicle routing problem according to 11 criteria. 41 

Focusing on the road congestion incurred by those assigned autonomous vehicles, the tight link capacity limitation 42 
at each time point could greatly make a large number of side constraints. If the queue spillback and kinematic waves 43 
(Newell, 1993; Daganzo, 1994) are further considered, the complex interaction among vehicles makes the problem 44 
more challenging. A detailed discussion about the connection between different traffic flow models can be found in 45 
the paper by (Zhang et al., 2013). Even in traditional dynamic traffic assignment models without considering passenger 46 
pickup and drop-off requests, it is still difficult to calculate the path marginal cost in congested networks to reach the 47 
system optimal goals (Ghali and Simth, 1995; Peeta and Mahmassani, 1995; Shen et al., 2007; Qian et al., 2012; Lu 48 
et al., 2016), especially when there are overlapped paths in large scale networks. In addition, Kalifates (2010) proposed 49 
a graph theoretic modeling framework with cell transmission model for generalized transportation systems to reduce 50 
the problem complexity. The current mathematically tractable solutions (Arnott et al., 1990; Yang and Huang, 2005; 51 
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Munoz and Laval, 2006) mainly apply in parallel networks with a single bottleneck originally studied in the paper 1 
(Vickrey, 1969). 2 

From the perspective of practice, simulation approaches are usually selected in dynamic traffic assignment 3 
problems to capture the road congestion with queue spillback and first-in-first-out (FIFO) rule. However, those 4 
approaches cannot explicitly handle the personalized user requests without optimization techniques. Therefore, the 5 
integration of simulation and optimization would be the trend to serve the future urban mobility systems with 6 
connected autonomous vehicles and ridesharing services.  7 

Many researchers have been working on the autonomous control of vehicles (Reece and Shafer, 1993) and 8 
automated intelligent vehicle/highway system design (Varaiya, 1993) for increasing the system safety, efficiency and 9 
reliability by using simulated environment and optimization techniques (Hanebutte et al., 1998; Van Arem et al., 2006; 10 
Talebpour and Mahmassani, 2016; Chen et al., 2017; Sun et al., 2017; Ghiasi et al., 2017; Ye and Yamamoto, 2018; 11 
Stern et al., 2018).  On the other hand, there is recently a large number of studies that focuses on the impacts of shared-12 
use mobility on future transportation systems with autonomous vehicles.  13 

There is a number of simulation models that has been developed for system modeling and analytics. Behrisch et 14 
al. (2011) developed an open-source traffic simulation package (SUMO) for the simulation of urban mobility with 15 
automated driving and flexible traffic management strategy evaluations. Fagnant and Kockelman (2014) developed 16 
an agent-based simulation model in a grid-based urban area where some strategies are provided to match passengers 17 
with vehicles and relocate vehicles to reduce traveler waiting time, but the endogenous road congestion and vehicle 18 
carrying capacity for ridesharing are not considered. Martinez et al. (2015) proposed an agent-based simulation model 19 
for a shared-taxi system and Martinez and Viegas (2017) further improved the model to incorporate taxi-bus system 20 
and consider the road congestion based on time-dependent flow capacity ratio and free-flow speed. Levin et al. (2017) 21 
proposed a modeling framework to (i) capture the traffic congestion by simulation-based network loading based on 22 
the updated flow-density diagram with autonomous vehicles (Levin and Boyles, 2016) and (ii) serve the ride-sharing 23 
services by some heuristic algorithms. Maciejewski and Bischoff (2016) analyzed the impact of autonomous taxi on 24 
traffic congestion based on their dynamic vehicle routing problem under an agent-based simulation environment. 25 
Hyland and Mahmassani (2018) focused on the on-demand shared-use autonomous vehicle mobility services (SAMS) 26 
without shared rides by proposing six vehicle-to-passenger assignment strategies tested in an agent-based simulation 27 
tool. 28 

A number of analytical solutions also have been provided based on different assumptions in the future mobility 29 
system. By assuming that all automated vehicles are privately owned by each household, de Almeida Correia and van 30 
Arem (2016) first proposed a mathematical model to minimize the household-level generalized travel cost by 31 
combining the vehicle routing problem and dynamic traffic assignment in congestion networks in which a volume-32 
delay travel time function is adopted to capture the road congestions, and they further focus on the user (a whole 33 
household) equilibrium solved under the framework of Method of Successive Average (MSA). By following the 34 
modeling framework above, Liang et al. (2018) modified the nonlinear volume-delay travel time function by 35 
introducing discrete congestion levels to make the formulation as an integer linear programming model, and then 36 
applied rolling horizon to address the real-time trip assignment and dynamic routing for automated taxis with 37 
congestions, and Van Essen and Correia (2019) also tried to replace the nonlinear travel time calculation by making 38 
multiple link travel time choices at each time point of the link entry node, and then the study selects only one to 39 
represent congestion time in the space-time network for solving system optimum and user equilibrium problems with 40 
approximations. Alonso-Mora et al. (2017) studied the real-time ride-sharing problem with high-capacity vehicles and 41 
large number of trips by dynamically generating the optimal route for the online demand and available vehicles with 42 
high-quality solutions, but as the traditional vehicle routing problems, the road congestion is not embedded in the 43 
models. Ma et al. (2017) proposed a linear programming model to assign available autonomous vehicles to satisfy 44 
those trip requests by constructing its feasible service network in advance, but the ride-sharing option and road 45 
congestion are not considered either. In congested networks, Rossi et al. (2018) studied the autonomous vehicle routing 46 
and rebalancing, and Salazar et al. (2018) considered how to best assign travelers between autonomous vehicles in 47 
traffic systems and public transit vehicles, and the road congestion is also simplified by flow-based travel cost function, 48 
which is typically used for long-term transportation planning rather than short-term traffic operations, so it could affect 49 
the accuracy of estimated congestions as well. Focusing on the household activity pattern problem, Liu et al. (2018) 50 
first formulated the endogenous road congestion by a point queue traffic flow model, which is caused by household 51 
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owned automated vehicles that are assigned to perform different mandatory or optional household daily activities. 1 
Tong et al. (2019) offered a modeling framework in an open-source simulation engine (DTALite-S) to incorporate 2 
agent-based simulation and optimization in a multimodal transportation environment with different trip requests to 3 
capture complex traffic dynamics. Di and Ban (2019) explored the general static traffic equilibrium of new shared 4 
mobility systems with driving solo, ridesharing, and e-hailing service in which the road congestion is represented by 5 
one volume-delay travel time function and the ridesharing in e-hailing service is not respected. Recently, Mourad et 6 
al. (2019) provided a survey on models and algorithms of shared mobility systems and it can be observed that the 7 
endogenous dynamic congestion is still not well considered in current optimization models.  8 

 9 
1.2 Problem Decomposition approaches 10 

With the development of computer hardware, the computation capabilities for solving mathematical programming 11 
models are evolving very quickly. However, many large-scale problems still lead to formulation that greatly goes 12 
beyond the computation limit. One usual way is to find the special blocks in formulation to directly decompose models 13 
as relatively solvable subproblems connected by coupling constraints. The decomposition can be grouped into two 14 
categories, primal decomposition and dual decomposition (Boyd et al., 2007; Palomar and Chiang, 2006), where the 15 
dual price in primal decomposition or the Lagrangian multiplier in dual decomposition for the coupling constraints is 16 
used to update and control subproblems. In the primal decomposition, column generation and Dantzig-Wolfe 17 
decomposition are widely used for linear programming and mixed integer programming with branch-and-price 18 
methods (Barnhart et al., 1998). Lagrangian relaxation/decomposition (Fisher, 1981; Mahmoudi and Zhou, 2016; Wu 19 
et al., 2019) is usually used for integer programming from the dual perspective. Huisman et al. (2005) summarized 20 
that the dual price in linear programming (LP) relaxed restricted master problem in column generation can be replaced 21 
by the Lagrangian multiplier in its LP relaxed dual problem through Lagrangian relaxation without using branch and 22 
price. It should be noted that finding a feasible initial solution in primal decomposition or obtaining a good feasible 23 
final solution in dual decomposition are also not straightforward in large-scale complicated problems, especially 24 
having different categories of side constraints. Also, how to address the non-unique dual prices or Lagrangian 25 
multipliers is important for the quality of solutions in the iterative process. In addition, from the perspective of primal-26 
dual algorithm, the alternating direction method of multipliers (ADMM) (Boyd, 2011) can be used to decompose the 27 
overall problem as a number of sequentially connected subproblems, which are controlled by Lagrangian multipliers. 28 
Therefore, ADMM is also viewed as an efficient way to break the symmetry issues compared with Lagrangian 29 
relaxation. Recently, to address the stochastic mixed-integer programming models, Boland et al. (2018) applied 30 
ADMM to this problem and use the Frank-Wolfe method based on simplicial decomposition to deal with the nonlinear 31 
objective functions of subproblems, and then showed that their approach is theoretically supported, computationally 32 
efficient, and parallelizable. 33 

To solve the traditional static traffic assignment problem (Wardrop, 1952; Beckmann et al., 1956), LeBlanc et al. 34 
(1975) offered a linearization algorithm to solve the classical model based on the Frank-Wolfe algorithm (Frank and 35 
Wolfe, 1956). An important improvement of Frank-Wolfe algorithm is simplicial decomposition, which is a special 36 
version of the Dantzig-Wolfe decomposition principle based on Carathéodory's theorem, where extreme points are 37 
usually generated by the solution of the linear Frank-Wolfe. Larsson and Pattrikson (1992) proposed a disaggregate 38 
simplicial decomposition (DSD) which treats each path of OD pairs as one extreme point rather than the network flow 39 
solution in simplicial decomposition (SD). Then Larsson et al. (2004) focused on the side constrained traffic 40 
equilibrium problem, which is solved by column generation based on their DSD approach. Moving forward to dynamic 41 
traffic assignment, a similar disaggregated simplicial decomposition is also used for gap-function-based user 42 
equilibrium (Lu et al., 2009) and eco-system optimum (Lu et al., 2016) with different traffic flow models. In addition, 43 
based on the cell transmission model, Dantzig-Wolfe decomposition was also used to solve system optimal (Li et al., 44 
2003) and user optimal (Lin et al., 2010). Focusing on vehicle routing problems with ride-sharing services, Lagrangain 45 
relaxation is also used decompose the problem as a number of shortest path finding problems (Mahmoudi and Zhou, 46 
2016; Liu et al., 2018). Recently, Yao et al. (2018) applied ADMM to solve the vehicle routing problem with drop-47 
off requests only in the context of urban logistics to show the solution performance from the primal and dual aspects.  48 

1.3 Potential contributions and structure of this paper 49 

As stated by Gendreau et al. (2016), spatial and temporal behavior of traffic variations should be analyzed, but still 50 
is an enormous challenge requiring consolidating knowledge from various disciplines (traffic flow theory, statistics, 51 
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etc.) for vehicle routing problems with stochastic travel time (VRPSTT). This kind of challenges mainly arises from 1 
the endogenous congestions among moving vehicles in capacitated transportation systems. Focusing on the specific 2 
scenario stated before, the contributions of our research are listed as follows. 3 

(1) Compared with the literature about vehicle routing problem and dynamic traffic assignment, this paper takes a 4 
further step to integrate travel demand, vehicle supply and infrastructure supply to explicitly capture the new traffic 5 
condition. Specifically, it aims to optimally assign vehicles from different depots to satisfy individuals’ temporally 6 
and spatially distributed mobility requests under constrained road capacity and queue spillbacks.  7 

(2) Due to the complexity of this problem, a primal decomposition approach, Dantzig-Wolfe decomposition, is 8 
used to decompose the proposed space-time-state (STS) arc-based vehicle-based integer linear programming model 9 
as a restricted master problem and a number of subproblems. The subproblems can be independently solved for each 10 
vehicle by time-dependent state-dependent shortest path algorithms. To our best knowledge, this is the first study that 11 
uses a three-dimensional STS path as an extreme point in Dantzig-Wolfe decomposition, compared with previous 12 
research using physical paths or space-time paths.  13 

(3) To solve the large-scale problems and to serve as an approximation from the perspective of dynamic traffic 14 
assignment, an STS path-based flow-based linear programming model is proposed by building a column pool in 15 
advance. ADMM is then applied to decompose this model as a number of sequential quadratic programming 16 
subproblems solved by projected gradient method for each column. Specifically, each column represents a space-time-17 
state path with the vehicle-to-passenger assignment and vehicle-to-arc assignment information through solving the 18 
primal arc-based vehicle-based model in a sampling dataset by ADMM, which can also decompose the primal problem 19 
as a number of sequential time-dependent state-dependent shortest path problems for each vehicle. 20 

The remainder of this paper is organized in the following manner. Section 2 formally state our focused problem 21 
and conceptually illustrates our modeling approach in a space-time-state network. Section 3 provides an arc-based 22 
vehicle-based integer linear programming model (Model 1) and an STS path-based flow-based linear programming 23 
model (Model 2), which are decomposed and solved by Dantzig-Wolfe decomposition and column-pool-based 24 
approximation approach, respectively, in Section 4. Numerical experiments are performed to demonstrate our 25 
proposed methodology and algorithms in Section 5. Finally, our future research is discussed in Section 6. 26 

 27 
2. Problem statement and illustrative example 28 

Consider a physical transportation network with a set of nodes 𝑁 and a set of links 𝐿. Each link can be denoted as 29 
a directed link (𝑖, 𝑗) from upstream node 𝑖 to downstream node 𝑗 with a given free-flow link travel time 𝑇𝑇𝑖,𝑗and link 30 

capacity 𝐶𝑎𝑝𝑖,𝑗 . Each vehicle 𝑎 has an origin depot 𝑜𝑎  and a destination depot 𝑑𝑎  with a specific departure time 31 
window [𝑙𝑎, 𝑚𝑎] and an arrival time window [𝑙𝑎

′ , 𝑚𝑎′]. The number of seats in vehicle 𝑎 is 𝐶𝑎𝑝𝑎 and is also named 32 
vehicle carrying capacity. In addition, each passenger will submit his/her trip requests with origin 𝑜𝑝, destination 𝑑𝑝, 33 

departure time window [𝑙𝑝, 𝑚𝑝] and arrival time window [𝑙𝑝
′ , 𝑚𝑝′]. Our problem aims to optimally assign each vehicle 34 

to meet those passengers’ requests while considering the road capacity constraint. 35 
As shown in Fig. 1(a), assume that 2 travelers plan to go to office (node 4) from home (node 2) and 1 traveler 36 

wants to go shopping (node 5) from home (node 3). They all have a specific departure time window and arrival time 37 
window. There is a number of available autonomous vehicles at different depots waiting to be dispatched to serve 38 
those time-dependent travel requests. Since the vehicle fleet size is probably large enough to incur traffic congestion, 39 
the physical traffic network with specific road capacities should not be neglected. For the modeling needs, a pick-up 40 
virtual node and a drop-off virtual node will be added at each passenger’s pick-up and drop-off locations, respectively, 41 
as shown in Fig. 1(b). As a result, the passengers’ served status and vehicle carrying state can have changes only if 42 
the vehicle visits those virtual nodes, which will be explained in detail later when constructing the space-time-state 43 
network. 44 
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Fig. 1 The physical and modified transportation networks 2 
In order to take into account the time dimension, a space-time network is employed to explain how to model the 3 

time window and road capacity at first, and then we will focus on a space-time-state network for modeling the whole 4 
process of our problem. Taking the physical path 1 → 2 → 4 → 6 in Fig.1 (b) as an example, its corresponding space-5 
time network is built in Fig. 2. Each node 𝑖 is extended as a set of vertices (𝑖, 𝑡) at each time interval and each link 6 
(𝑖, 𝑗) is extended as a set of arcs (𝑖, 𝑗, 𝑡, 𝑠) from vertex (𝑖, 𝑡) to vertex (𝑗, 𝑠). The arc capacity is derived based on the 7 
hourly link capacity and the number of intervals in one hour. In addition, the arc (𝑖, 𝑖, 𝑡, 𝑡 + 1) from vertex (𝑖, 𝑡) to 8 
vertex (𝑖, 𝑡 + 1) means that vehicles can wait at node 𝑖 at time 𝑡  for one time interval in case there is not enough 9 
capacity in the downstream arcs to accommodate them. The capacity of the waiting arcs is infinite, so the queuing 10 
process will be similar to the point queue traffic flow model. As shown in Fig. 2, passengers 1 and 2 request the same 11 
pickup and delivery time windows. Assume the carrying capacity of vehicles is always 1.  12 
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Fig. 2 The physical and modified transportation networks 14 
We consider the following two cases without/with road capacity. 15 
Case 1: the road capacity is not considered. Then it needs 2 vehicles departing at time 1 to satisfy those trip requests.  16 
Case 2: the road capacity is strictly constrained. Then one vehicle has to wait at the depot until time 2 to depart. 17 

Moreover, one passenger cannot be served, because the vehicle waiting at depot can pick up one passenger but cannot 18 
deliver him/her at the allowed time due to tight road capacity constraints.  19 

Therefore, it shows the difference and difficulty of finding the best vehicle assignment and routing solutions under 20 
tight physical facility limitations, compared with the traditional vehicle routing problems. This example in the space-21 
time network only illustrates the general process of vehicle routing under road capacity constraints, but it does not 22 
consider (i) how to guarantee that once one passenger is picked up, he/she must be dropped off by the same vehicle 23 
nor reckon (ii) that the vehicle carrying capacity (the number of seats) cannot be violated due to the ridesharing options. 24 

In order to model the process of passenger’s pickup and delivery, the cumulative passenger served status is 25 
introduced and defined as follows, 0: the passenger is not served, 1: the passenger is being served (picked up but not 26 
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delivered), 2: the passenger is served (delivered). In addition to the dimensions of space and time, we introduce one 1 
more dimension 𝑤 as vehicle carrying state to record which passenger is being served during the vehicle routing 2 
process. If passenger 𝑝 is picked up by vehicle 𝑣 with the carrying capacity of 1, the carrying state of vehicle 𝑣 is 𝑝[1], 3 
of which the first number is passenger number 𝑝 and the number in square bracket mean the cumulative passenger 4 
served status of passengers. Still, focusing on the case in Fig. 2, if the vehicle capacity is 1, the possible vehicle 5 
carrying states include be ( ), (1[1]), (1[2]), (2[1]) or (2[2]). Similarly, if the vehicle capacity is 2, one possible vehicle 6 
carrying state example could be (1[1] _2[1]), which represents that passengers 1 and 2 are currently picked up but not 7 
dropped off by the vehicle. This state-dependent approach (Mahmoudi and Zhou, 2016) can satisfy vehicle carrying 8 
capacity constraint and guarantee that one passenger can be picked up and dropped off by the same vehicle during the 9 
state transition process. In addition, if one vehicle cannot satisfy a passenger, it can still pass the passenger’s 10 
pickup/drop-off physical nodes (such as, node 2) to serve other passengers, but it cannot pass his or her virtual arc and 11 
virtual node (such as, nodes 7 or 8). This is different from the traditional models in vehicle routing problems, which 12 
just have a network composed by pickup and drop-off locations without explicitly modeling physical transportation 13 
networks. Therefore, most VRP models do not allow vehicles to pass the pickup/drop-off node if that corresponding 14 
client is not served, based on one assumption that the arc cost matrix always satisfies the triangle inequality (such as, 15 
cost 𝑐𝑖,𝑗 ≤ 𝑐𝑖,𝑘 + 𝑐𝑘,𝑗). Actually, if the triangle inequality doesn’t hold in the real-world transportation networks based 16 

on the real travel cost, it may not make sense to not allow vehicles to pass the node without serving the passenger.  17 
Finally, we can construct a three-dimension space-time-state network for vehicle routing, where each vertex is 18 

(𝑖, 𝑡, 𝑤) and each arc is (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) from vertex (𝑖, 𝑡, 𝑤) to vertex (𝑗, 𝑠, 𝑤′). The vehicle carrying state transition 19 
process (state 𝑤 to state 𝑤′) is highly connected with the space (location) and time. Specifically, the vehicle carrying 20 
state will change when the vehicle picks up or drop off one passenger while ensuring that the vehicle carrying capacity 21 
is not violated. Note that once one passenger is served with a cumulative served status as 2, the passenger is not 22 
allowed to be served again, so there is no circle being selected in the state transition graph. The connection among 23 
state, space and time is the foundation of our constructed space-time-state networks. Section 4 will illustrate how to 24 
dynamically build this three-dimension network to find the time-dependent state-dependent shortest path for each 25 
vehicle. Actually, it is also possible to build the whole three-dimension network in advance based on the relation of 26 
space, time, and state, but the complexity will be explored in large-scale networks. Fig. 3 shows one feasible STS 27 
vehicle trajectory along the physical path  1 → 2 → 4 → 6. This STS path contains the vehicle-to-passenger mapping 28 
information when vehicle carrying states are changed at the pickup and drop-off locations within the required time 29 
windows, and also has the vehicle-to-arc mapping information in the space-time dimension. This kind of mapping 30 
information among vehicle, passenger and arc will be used in sections 3.2 and 4.2 for flow-based models. 31 
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Fig. 3 A vehicle STS path with mapping information among vehicle, passenger and arc  33 
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As a remark, this modeling framework can be extended to the first/last mile problem where (i) passengers and 1 
vehicles have the same destination/origin and (ii) either pickup service or drop-off service is considered. The 2 
difference is only about the state definition. We just need 0 and 1 for passenger service status to indicate if he/she is 3 
served by the vehicle or not. 4 

3. Mathematical Models 5 

Table 1 lists the general indices, sets, parameters and variables used in our proposed arc-based vehicle-based model 6 
(Model 1) in Section 3.1, where each vehicle and each passenger are represented as vehicle 𝑎 and passenger 𝑝, 7 
respectively. The notation of STS path-based flow-based model (Model 2) is listed in Table 2 where each vehicle 8 
group 𝑣 has a number of vehicles with the same origin depot, departure time window, destination depot and arrival 9 
time window, and each passenger group 𝑞 has a number of passengers with same trip requests (pickup location and 10 
time window and/or drop-off location and time window). Some parameters in Table 1 can also be used for the flow-11 
based model. 12 

Table 1 Indices, sets, parameters and variables in Model 1 13 
Symbols Definition 

Indices  

𝑖, 𝑗 Index of nodes, 𝑖, 𝑗 ∈ 𝑁 

(𝑖, 𝑗) Index of physical link between two adjacent nodes, (𝑖, 𝑗) ∈ 𝐿 

𝑎 Index of vehicles 

𝑝 Index of passengers 

𝑡, 𝑠 Index of time intervals in the space-time network 

𝑤, 𝑤′ Index of vehicle carrying state  

Sets  

𝑁 Set of nodes in the physical traffic network  

𝐿 Set of links in the physical traffic network 

𝐿𝑖𝑛𝑓𝑙𝑜𝑤 Set of inflow links of single links in the physical traffic network 

𝐿𝑜𝑢𝑡𝑓𝑙𝑜𝑤  Set of outflow links of single links in the physical traffic network 

𝑃 Set of passengers 

𝐴 Set of vertices in the space-time-state network 

𝐴𝑝 Set of vertices of passenger 𝑝’s pickup location 

𝐴𝑚 Set of vertices at the merge point in the space-time-state network 

𝐸 Set of edges/arcs in the space-time-state network 

Parameters  

𝑜(𝑎) Index of origin depot of vehicle 𝑎 

𝑑(𝑎) Index of destination depot of vehicle 𝑎 

𝐷𝑇(𝑎) Earliest departure time of vehicle 𝑎, equal to 𝑙𝑎 

[𝑙𝑎 , 𝑚𝑎] Departure time window of vehicle 𝑎 at the origin depot 

[𝑙𝑎
′ , 𝑚𝑎

′ ] Arrival time window of vehicle 𝑎 at the destination depot 

[𝑙𝑝, 𝑚𝑝] Departure time window of passenger 𝑝 at the origin 

[𝑙𝑝
′ , 𝑚𝑝

′ ] Arrival time window of passenger 𝑝 at the destination 

𝑉𝐶𝑎𝑝𝑎 Carrying capacity of vehicle 𝑎 

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 Capacity of arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

ℎ𝑎  Vehicle flow of vehicle 𝑎, is always equal to 1 for each vehicle 

𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎  Travel cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) of vehicle 𝑎 

𝛿𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎,𝑘

 Incidence between passenger pickup arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) and path 𝑘 of vehicle  = 1, matched; 

otherwise, = 0. 

𝛿𝑘,𝑝
𝑎  Incidence between passenger 𝑝 and path 𝑘 of vehicle  = 1, matched; otherwise, = 0. 

𝛽𝑖,𝑗,𝑡,𝑠
𝑎,𝑘

 Incidence between arc (𝑖, 𝑗, 𝑡, 𝑠) and path 𝑘 of vehicle  = 1, matched; otherwise, = 0. 

𝐹𝐹𝑇𝑇𝑖,𝑗 Free-flow travel time of link (𝑖, 𝑗) 

𝑛𝑖,𝑗 The number of lanes on link (𝑖, 𝑗) 

𝐾𝐽𝑎𝑚𝑖,𝑗 Jam density of link (𝑖, 𝑗) 
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Variables  

𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎  Binary variable, vehicle 𝑎 will choose arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) or not in the space-time-state 

network 

𝜆𝑘
𝑎  Binary variable, vehicle 𝑎 will choose path 𝑘 or not in the space-time-state network 

𝑦𝑗′,𝑗,𝑡,𝑡+1 Positive integer variable, the outflow arc capacity on arc (𝑗′, 𝑗, 𝑡, 𝑡 + 1) 

𝜋𝑝 Lagrangian multiplier of passenger 𝑝’s trip request 

𝜋𝑖,𝑗,𝑡,𝑠 Lagrangian multiplier of capacity constraint of arc (𝑖, 𝑗, 𝑡, 𝑠) 

 1 

Table 2 Indices, sets, parameters and variables in Model 2 2 
Symbols Definition 

Indices  

𝑣 Index of vehicle groups 

𝑞 Index of passenger groups 

Parameters  

𝑑(𝑣) Total number of available vehicles of vehicle group 𝑣 

𝑔(𝑞) Total number of trip requests of passenger group 𝑞 

𝑐𝑣
𝑘 Cost of path 𝑘 of vehicle group 𝑣 

𝛿𝑞
𝑣,𝑘

 Incidence between passenger gourp 𝑞 and path 𝑘 of vehicle group  = 1, matched; otherwise, 

= 0. 

𝛿𝑖,𝑗,𝑡,𝑠
𝑣,𝑘

 Incidence between arc (𝑖, 𝑗, 𝑡, 𝑠) and path 𝑘 of vehicle group  = 1, matched; otherwise, = 0. 

Variables  

𝑦𝑣
𝑘 Positive continuous variable, the number of vehicles belonging to group 𝑣 choosing path 𝑘 in 

the space-time-state network, finally simplified as 𝑦𝑘  

𝑦𝑗′,𝑗,𝑡,𝑡+1 Positive continuous variable, the outflow arc capacity on arc (𝑗′, 𝑗, 𝑡, 𝑡 + 1) 

𝜆𝑞 Lagrangian multiplier of passenger group 𝑞’s trip requests 

𝜇𝑖,𝑗,𝑡,𝑠 Lagrangian multiplier of capacity constraints of arc (𝑖, 𝑗, 𝑡, 𝑠) 

 3 

3.1 Arc-based vehicle-based integer linear programming model (Model 1) 4 

Based on the space-time-state network constructed in Section 2, our mathematical programming model is proposed 5 
to minimize the total vehicle travel cost and satisfy passengers’ trip requests and road capacity constraints. 6 
Objective function:  7 
 𝑀𝑖𝑛 𝑍 = ∑ ∑ (𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 × 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎 )(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)𝑎  (1) 8 

Subject to, 9 
(i) Vehicle supply: Arc-based flow balance constraint for each vehicle 10 

∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎

𝑖,𝑡,𝑤:(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′) − ∑ 𝑥𝑗,𝑖,𝑠,𝑡,𝑤′ ,𝑤
𝑎

𝑖,𝑡,𝑤:(𝑗,𝑖,𝑠,𝑡,𝑤′ ,𝑤) = {
−1 
1 
0

𝑗 = 𝑂(𝑎), 𝑠 = 𝐷𝑇(𝑎), 𝑤 = [0,0, … ,0]

𝑗 = 𝐷(𝑎), 𝑠 = 𝑇, 𝑤 = [0,0, … ,0]
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀ 𝑎 (2) 11 

(ii) Travel demand: Passenger 𝑝’s pick-up request constraint  12 
 ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 = 1, ∀ 𝑝(𝑖,𝑡,𝑤)∈𝐴𝑝𝑎  (3) 13 

(iii) Infrastructure supply: Tight road capacity constraint (endogenous congestion) 14 
 ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 ≤ 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀ (𝑖, 𝑗, 𝑡, 𝑠)𝑤𝑎  (4) 15 

(iv) Binary definitional constraint 16 
 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 ∈ {0,1} (5) 17 

Constraint (2) ensures that each vehicle follows the flow balance. By constraint (3), each passenger will be picked 18 
up only once. For the problem with both pickup and drop-off requests, the state transit graph with cumulative 19 
passenger served status can guarantee that the passenger will be dropped off once he/she is picked up, so the drop-off 20 
constraint is always satisfied in our model. For the problem with pickup or drop-off requests only, we just need to 21 
ensure that the passenger pickup arc is only visited once by all vehicles.  To capture the endogenous congestions, 22 
Constraint (4) forces the number of vehicles entering arc (𝑖, 𝑗, 𝑡, 𝑠) to not exceed the arc capacity, which can be viewed 23 
as a point queue model where the vehicle has to choose the waiting arc if the capacity of the downstream link is not 24 
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available at the current time interval. The modeling on queue spillback is discussed in Appendix B. Variable 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎   1 

is a binary variable, which indicates whether or not vehicle 𝑎 will visit arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). This proposed model is an 2 
integer linear programming model, so it can be solved directly by standard solvers. However, for the large-scale 3 
network applications, we will apply different decomposition approaches to decompose the problem as a number of 4 
relatively easy sub-problems in next sections. In addition, as introduced in section 1.1, de Almeida Correia and van 5 
Arem (2016) first proposed a mathematical model to minimize the household-level generalized travel cost by 6 
combining the vehicle routing problem and dynamic traffic assignment in congestion networks, so a comparison 7 
between their system optimum model and our Model 1 is listed in Appendix A.  8 

As mentioned in the introduction, our depots can also be treated as virtual depots. By building the virtual links 9 
connected those destination depots with drop-off locations and making those virtual link cost as 0, all vehicles can 10 
park at the drop-off location of the last served passenger rather than forcing them to return to a physical depot. 11 
Therefore, our model approach is also applicable to address the real-time on-demand ridesharing problem when a real-12 
time update scheme is incorporated. Actually, by improving the offline household-level nonlinear system optimal 13 
model (de Almeida Correia and van Arem, 2016), Liang et al. (2018) proposed a mixed integer programming model 14 
and applied it under the framework of rolling horizon algorithm to solve the real-time ridesharing problem while 15 
considering the endogenous road congestion, and their optimization model was finally solved by the commercial 16 
solver, Xpress. 17 

 18 
3.2 Path-based flow-based linear programming model (Model 2) 19 

The arc-based vehicle-based integer programming model in section 3.1 finds the best route guidance and captures 20 
the traffic condition in capacitated transportation networks. Admittedly, it is greatly challenging to solve this vehicle-21 
based model in large-scale networks with a large number of vehicles and passenger requests. Looking into classical 22 
flow-based dynamic traffic assignment problems, all vehicles are assigned to the network based on each origin-23 
destination (OD) pair as continuous flows rather than each individual vehicle, which could greatly reduce the number 24 
of variables to improve the computational efficiency. Therefore, from this perspective, if (i) vehicles and passengers 25 
can be grouped by its origin, destination and required service time period, and (ii) if all possible space-time-state path 26 
information with (a) vehicle (group)-to-passenger (group) and (b) vehicle (group)-to-arc assignment can be 27 
enumerated in advance for our overall problems, the remaining task is just to assign vehicles from each vehicle group 28 
to the network to satisfy the passenger group trip requests and to not violate the road capacity limitations. The linear 29 
programming model is listed as follows. 30 
 min ∑ (𝑐𝑣

𝑘 × 𝑦𝑣
𝑘)(𝑣,𝑘)  (6) 31 

Subject to 32 
(i) Vehicle supply: Path-based vehicle group flow balance constraint: 33 
 ∑ 𝑦𝑣

𝑘 = 𝑑(𝑣), ∀𝑣𝑘  (7) 34 
(ii) Travel demand: Pickup requests on passenger group 𝑞: 35 
 ∑ (𝑦𝑣

𝑘 × 𝛿𝑣,𝑘
𝑞

) = 𝑔(𝑞), ∀𝑞(𝑣,𝑘)  (8) 36 

(iii) Infrastructure supply: Road capacity constraints (endogenous congestion): 37 

 ∑ (𝑦𝑣
𝑘 × 𝛿𝑣,𝑘

𝑖,𝑗,𝑡,𝑠
) ≤ 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠)(𝑣,𝑘)  (9) 38 

(iv) Positive continuous variable: 39 
 𝑦𝑣

𝑘 ≥ 0 (10) 40 
Since each STS path of each vehicle group is provided in advance, the cost of path 𝑘 of vehicle group 𝑣 for one 41 

specific OD pair is given. Constraint (7) ensures that the total number of vehicles in each vehicle group 𝑣 is assigned 42 
to the network, which is consistent with constraint (2) for all vehicles in the vehicle-based model. Eq.(8) makes the 43 
total demand of passenger group 𝑞 completely satisfied and also corresponds to Eq. (3) of passenger trip requests. 44 
Road capacity is considered in constraint (9), similar to constraint (4). Finally, we can generate a linear programming 45 
model, which is possible to be solved for large-scale transportation networks. Usually, it is difficult to enumerate all 46 
possible space-time-state paths, so a decomposition-based solution is helpful to generate a number of available paths, 47 
which can be viewed as the column pool construction used in Section 4.2.  48 

 49 
4. Problem decomposition approaches 50 
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4.1 Dantzig-Wolfe decomposition for arc-based vehicle-based formulation (Model 1) 1 

In our proposed mathematical models in section 3.1, the flow balance constraint for each vehicle is a special block 2 
and can be solved independently. Therefore, Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) is applied to 3 
solve our models and the flow balance constraints are used to develop the sub-problems. In addition, as mentioned by 4 
Larsson and Patriksson (1992), the generated paths (extreme points) from this decomposition approach are helpful for 5 
re-optimization if the demand or network has any updates in the future. Based on the point queue model to capture the 6 
road congestion, the primal model is decomposed as a master problem and different sub-problems for each vehicle as 7 
follows. 8 
The master problem: 9 
Objective function: 10 

 𝑀𝑖𝑛 ∑ ∑ [𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎 × ∑ (𝜆𝑎

𝑘 × ℎ𝑎 × 𝛿
𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎,𝑘 )]𝑘(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)𝑎  (11) 11 

Subject to, 12 
 ∑ ∑ ∑ (𝜆𝑎

𝑘 × ℎ𝑎 × 𝛿𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎,𝑘 )𝑘 = 1, ∀ 𝑝(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴(𝑝)𝑎  (12) 13 

 ∑ ∑ ∑ (𝜆𝑎
𝑘 × ℎ𝑎 × 𝛽𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎,𝑘 )𝑘 ≤ 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀ (𝑖, 𝑗, 𝑡, 𝑠)𝑤𝑎  (13) 14 

 ∑ 𝜆𝑘
𝑎

𝑘 = 1, ∀𝑎 (14) 15 
 𝜆𝑘

𝑎 = {0,1} (15) 16 
The sub-problem for each vehicle 𝑎: 17 
 𝑀𝑖𝑛 𝑍′ = ∑ (𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 × 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎 )(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′) − ∑ ∑ (𝜋𝑝 × 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎
(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴(𝑝)𝑝 ) − ∑ (𝜇𝑖,𝑗,𝑡,𝑠 ×(𝑖,𝑗,𝑡,𝑠)18 

∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎

𝑤 ) − 𝜔𝑎  (16) 19 

Subject to vehicle flow balance constraint. 𝜋𝑝, 𝜇𝑖,𝑗,𝑡,𝑠 and 𝜔𝑎 are the duals of side constraints (12), (13) and (14), 20 
respectively, and 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎  is a binary variable. It should be noted that the shortest path problem (our subproblem) is 21 

usually formulated by arc-based formulation, so we still use variable 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎  to write the model, but actually the 22 

output of the shortest path is still a path, which is composed of a number of passed arcs. 23 
In the master problem, ℎ𝑎 is the vehicle flow of vehicle 𝑎 and is always equal to 1 for each vehicle, so it can be 24 

removed. 𝜆𝑘
𝑎  determines whether vehicle 𝑎 will select path 𝑘 or not. The sub-problem generates paths for each vehicle 25 

at each iteration, so it is convenient to use a path-based formulation for our master problem.  26 
Objective function (11) can be reformulated as 27 
 𝑀𝑖𝑛 ∑ ∑ (𝑐𝑎

𝑘 × 𝜆𝑎
𝑘

𝑘𝑎 ) (17) 28 
Passenger pickup constraint (12) can be updated as 29 
 ∑ ∑ (𝜆𝑎

𝑘 × 𝛿𝑘,𝑝
𝑎 ) = 1, ∀ 𝑝𝑘𝑎  (18) 30 

Space-time arc capacity constraint (13) is renewed as 31 
 ∑ ∑ (𝜆𝑎

𝑘 × 𝛽(𝑖,𝑗,𝑡,𝑠)
𝑎,𝑘 )𝑘 ≤ 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠)𝑎  (19) 32 

The algorithm procedure is shown in Fig. 4.  33 
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Yes

Optimal solution

New extreme 

points

 1 
Fig. 4 The algorithm procedure of Dantzig-Wolfe decomposition 2 

At step 1, the purpose is to find an initial feasible solution. Kalvelagen (2003) provided a mathematical model by 3 
adding virtual variables to find the feasible solution. Another way is to sequentially load each vehicle by using the 4 
solution from Lagrangian relaxation (Zhou et al., 2018). Specifically, once one vehicle finds its best route, the 5 
passengers served by this vehicle will be given a flag so that the following vehicles cannot visit those passengers 6 
anymore. Meanwhile, the space-time trajectory of that vehicle is recorded, so the capacity of visited space-time arcs 7 
will be updated by reducing 1. Once there is no available capacity on that arc, its arc travel time will be infinity. The 8 
pseudo-code is shown in Fig. 5. 9 

At step 2, the restricted master problem is an integer linear programming model, which can be solved by a standard 10 
solver or a hybrid of solvers and branch-and bound, and then the model provides the dual prices of side constraints 11 
for the sub-problems. 12 

At step 3, the sub-problem is a time-dependent state-dependent shortest path problem and offers new extreme 13 
points (paths) for each vehicle for the master problem at step 2, if all reduced cost is not non-negative; otherwise, the 14 
optimal solution is found. Note that path cost of 𝑐𝑎

𝑘 , passenger-vehicle assignment incidence of 𝛿𝑘,𝑝
𝑎  and path-arc 15 

incidence of 𝛽𝑘,(𝑖,𝑗,𝑡,𝑠)
𝑎  are obtained once a new path (path 𝑘) is generated for vehicle 𝑎.  16 

1 //initialization: passenger status, relation between vehicle and passenger 

2 for passenger 𝑝=1 to total_number_of_passengers 

3      number_of_visits_of_passenger [𝑝] = 0 // passenger p is not served 

4 end// passenger 

5 for vehicle 𝑎=1 to total_number_of_vehicles 

6       for passenger 𝑝=1 to total_number_of_passengers 

7             vehicle_passenger_visit_allowed_flag[a][p] = 1 // a is allowed to serve p 

8       end //passenger 

9 end// vehicle 

10 // sequentially loading each vehicle to find its own least cost path 

11 for vehicle 𝑎=1 to total_number_of_vehicles 

12 
     run the beam search algorithm to find the best route for vehicle 𝑎 and number_of_visits_of_passenger [𝑝] = 1 if             

     passenger 𝑝 is served 

13      if (𝑎 < total_number_of_vehicles) 

14           for 𝑝 = 1 to total_number_of_passengers 

15                 if (number_of_visits_of_passenger [𝑝] = 1) 

16 
                    // the following vehicles cannot visit passenger p  

                    vehicle_passenger_visit_allowed_flag[𝑎 + 1][𝑝] = 0 

17                 end 

18            end // passenger 
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19       end 

20       // update current available road capacity after loading vehicle a to obtain the visited link and time sequence 

21       for link_no = 1 to total_number_of_visited_links_of_vehicle 𝑎 

22             visit_time = visit_time_sequence[link_no] of vehicle 𝑎 

23             link_capacity[link_no][visit_time]= max (0, link_capacity[link_no][visit_time]- 1)  

24             if (link_capacity[link_no][visit_time]=0) // no available capacity 

25                 link_time_dependent_travel_time[link_no][ visit_time] = infinity // arc cost is infinity 

26             end 

27        end// link 

28  end // vehicle  

Fig. 5 Pseudo-code of proposed feasible solution finding algorithm 1 

A beam search algorithm is proposed as an approximate dynamic programming approach to dynamically construct 2 
the space-time-state network and find the optimal routing with the least generalized route cost for each vehicle. As an 3 
improved version of the previous beam-search algorithm (Zhou et al., 2018), we add one more loop on each node so 4 
that more possible vehicle states will be considered during the beam search process shown in Fig. 6. The key part is 5 
to update vehicles’ states based on the state transition rule considering the sequence and time windows of passenger 6 
pickup and delivery and vehicles’ carrying capacity. In addition, this algorithm is also applicable to solve the problems 7 
with pickup or drop-off only when the vehicle’s state definition is correspondingly changed based on this new problem. 8 

 9 

1 
//definition: vehicle: 𝑣 , node: 𝑛 , time: 𝑡 , state: 𝑤 , vehicle location-dependent time-dependent states: 

𝑡𝑑_𝑠𝑡𝑎𝑡𝑒[𝑣][𝑛][𝑡][𝑤] 
2      for 𝑡 = departure time to ending time 𝑇 

3           for 𝑛 = 0 to total_number_of_nodes 𝑁 

4                //beam-search: find the best 𝑘 vehicle states with least travel costs from depot to current node and time 

5                state_size = min{𝑘, state size of vehicle 𝑣 at node 𝑛 and time 𝑡} 

6                for 𝑤 = 0 to state_size 

7                     Current_node = 𝑛 

8                     for to_node =1 to the outbound_node_size of current_node 

9                          if (to_node is passenger pickup or drop-off node) 

10 

                             Update the vehicle state 𝑡𝑑_𝑠𝑡𝑎𝑡𝑒[𝑣][𝑛][𝑡][𝑤] with passenger pickup or drop-               

                             off, current_node, current_time, travel cost from the depot to current node and   

                              time with benefits of serving passengers, based on previous node 𝑛, previous  

                              time 𝑡 and link travel time, previous state 𝑤, and the whole state transition logic. 

11                          if (to_node is physical network node) 

12 
                             Update the vehicle state 𝑡𝑑_𝑠𝑡𝑎𝑡𝑒[𝑣][𝑛][𝑡][𝑤] with current_node, current_time  

                             and current travel cost, and state 𝑤 doesn’t change. 

13                          if (to_node is destination node of vehicle 𝑣) 

14 

                             Update the vehicle state 𝑡𝑑_𝑠𝑡𝑎𝑡𝑒[𝑣][𝑛][𝑡][𝑤] and update the corresponding      

                             Vector vehicle_ending_state [𝑣], which will be used to find the least cost route  

                             for vehicle  𝑣 after all loops. 

15                      end // downstream node of one link 

16                 end // states 

17            end // nodes 

18      end// times 

Fig. 6 Pseudo-code of our proposed beam search algorithm for each vehicle 𝑣 10 

To improve the computation efficiency, we also consider a tree-based path representation embedded in the beam 11 
search algorithms, which can provide the one-to-all shortest path tree during the search process. Therefore, when one 12 
vehicle finds its three-dimensional shortest path, the shortest path tree from its origin vertex (with its depot node and 13 
departure time) to all vertex is also found. Then if another vehicle also departs from that origin vertex but to a different 14 
destination depot, it does not need to run the beam-search algorithm again. Instead, we can directly find its shortest 15 
path in the one-to-all shortest path tree, which will reduce the total computation time. 16 

 17 
4.2 Column-pool-based approximation for STS path-based flow-based formulation (Model 2)  18 
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In reality, it is impossible to enumerate all possible STS paths to obtain the connection of vehicle-to-passenger and 1 
vehicle-to-arc relationship in advance, as assumed in section 3.2 for Model 2. Therefore, we propose one 2 
approximation approach, which is similar to scale factors but with some key differences.  3 

To our knowledge, some traffic simulation tools have tried to use scale factors to consider city-wide applications 4 
in order to reduce the computer memory use and computation efficiency. In our approach, we aim to study a relatively 5 
small focused system (e.g. an AV test bed, a subarea such as city downtown) with more complex traffic conditions. 6 
By doing so, we hope to fully examine the relation between each vehicle group and all passenger groups, and clearly 7 
calculate the mutual impact between each vehicle group and space-time paths from a system with sampled passengers, 8 
vehicles and reduced link capacities.  9 

A space-time-state path of one vehicle with served passengers and visited space-time arcs is called one column in 10 
the column pool. The more columns we can build in advance, the more candidates we can choose to satisfy passengers’ 11 
requests and road capacity by vehicle flow assignment. Different vehicles from the same group could serve different 12 
passengers from different passenger groups and also visit different arcs, so we can have more relations among vehicle 13 
groups, passenger groups, and space-time arcs. Then, based on the real-world passenger requests and road capacity, 14 
we will determine how to assign available vehicles with vehicle group ID to serve those passengers with passenger 15 
group ID under arc capacity constraints to reach the minimal system travel cost. In other words, we need to do the 16 
vehicle assignment under the passenger request constraint (8) and road capacity (9) based on the obtained relations, 17 
rather than multiplying the unique scale factor. 18 

As shown in Fig. 7, the complex primal problem is divided into two stages. Stage A focuses on a sampled traffic 19 
system to build a column pool by generating a number of columns (space-time-state paths) for each vehicle group by 20 
solving the arc-based vehicle-based formulation using ADMM. The other advantage of column pool generation is for 21 
re-optimization in case the demand, vehicle or network has any changes in the future, so we can use those available 22 
columns as a starting point instead of performing the optimization model from the beginning. Stage B is to solve the 23 
STS path-based flow-based linear programming model by ADMM to assign vehicles from different vehicle groups to 24 
serve passengers from different passenger groups while satisfying the time-dependent road capacity constraints.  25 

Step A: A prior generation of 

column pool

1. Determine sample data set with 

passengers and vehicles from its group and 

network with reduced link capacity

2. Vehicle-based ADMM for Model 1

2.1 Initialize Lagrangian multiplers and 

penalty parameters 

2.2 Sequentially solving time-dependent 

state-dependent shortest path problem 

for each vehicle 

2.3 Update Lagrangian multiplers

3. Output space-time-state paths with 

vehicle-to-passenger and vehicle-to-arc 

mapping relation 

Step B: Vehicle flow assignment

1. Input column pool with sampled space-

time-state paths for each vehicle group and 

passenger group

2. Solve by Standard Solvers 

as linear programming model

3. Output optimal solution of 

path flow

4. Flow-based ADMM for Model 2

4.1 Initialize Lagrangian multiplers and 

penalty parameters 

4.2 Sequentially solving quadratic 

programming model for each path by 

Projected Gradient method 

4.3 Update Lagrangian multiplers

5. Output ADMM path flow solution and 

objective values 
Feasible

6. Generate feasible solution 

and upper bound

No

7. Gap calcuation

 26 

Fig. 7 The flow chart of column-pool-based approximation  27 

4.2.1 A priori generation of column pool based on Model 1 28 

As mentioned above for addressing large-scale networks, the possible relation between different vehicle groups, 29 
passenger groups and space-time arcs needs to be obtained, so we select a number of passengers and vehicles from 30 
their groups as a sample set. Also, the arc capacity is reduced correspondingly to produce the possible congestions. If 31 
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the generated column pool is too small, it is possible to have an infeasible solution or a sub-optimal solution. Therefore, 1 
the key is to find the balance among column number, computation time, and solution quality. How to determine this 2 
sample set and how to dynamically manage the column pool (Barnhart et al., 1998) will be studied in our future 3 
research.  4 

Then an arc-based vehicle-based model in section 3.1 is used to generate the column (space-time-state path) for 5 
each vehicle. ADMM is selected to decompose this problem as a number of sequential time-dependent state-dependent 6 
shortest path problem without using any standard solvers. In addition, it is also possible to try other heuristic methods 7 
to generate different columns, such as, changing the benefits of serving different passengers, local search algorithms, 8 
and so on. 9 

The objective function of ADMM: 10 
 𝑀𝑖𝑛 𝑍 = 𝐿(𝒙𝒂, 𝝅𝒑, 𝝅(𝒊,𝒋,𝒕,𝒔)) = ∑ ∑ (𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ × 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 )(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)𝑎 + ∑ [𝜋𝑝 ×𝑝 (∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎 ×(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴(𝑝)𝑎11 

𝛿𝑖,𝑗,𝑡,𝑠
𝑎 ) − 1)] +

𝜌1

2
∑ [∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 × 𝛿𝑖,𝑗,𝑡,𝑠
𝑎 )(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴(𝑝)𝑎 − 1]𝑝

2
 + ∑ [𝜋(𝑖,𝑗,𝑡,𝑠) ×(𝑖,𝑗,𝑡,𝑠) (∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎 − 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠)] +𝑤𝑎12 
𝜌2

2
∑ [∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎
𝑤𝑎 − 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠](𝑖,𝑗,𝑡,𝑠)

2
         (20) 13 

Subject to the flow-balance constraint for each vehicle at constraint (2). 𝑥2 = 𝑥 if 𝑥 = {0,1}, so the quadratic terms 14 
in objective function can be converted to being linear with binary variables, when the problem is solved for each 15 
vehicle sequentially based on the standard procedure of ADMM (Boyd, 2011). For the illustration purpose, we assume 16 
that there is a model with objective function (𝑥1 + 𝑥2 − 𝑎)2and two binary variables 𝑥1 and 𝑥2. When solving 𝑥1, we 17 
can have (𝑥1 + 𝑥2 − 𝑎)2 = [𝑥1 + (𝑥2 − 𝑎)]2 = 𝑥1

2 + 2𝑥1(𝑥2 − 𝑎) + (𝑥2 − 𝑎)2 = (2𝑥2 − 2𝑎 + 1)𝑥1 + (𝑥2 − 𝑎)2 18 
where 𝑥2 is fixed and 𝑎 is a parameter.  19 

 The penalty parameters of 𝜌1and 𝜌2 for passenger service constraint and arc capacity constraints are given in this 20 
paper, but they can also be updated based on some rules used in previous augmented Lagrangian relaxation models. 21 
The iterative scheme of ADMM is shown in Fig.8.  22 

// initialization 

Set up initial values for all Lagrangian multiplers and penalty parameters 

for 𝑛 = 1 to 𝑛𝑚𝑎𝑥 // total number of iterations 

      for 𝑎 = 1 to 𝑎𝑚𝑎𝑥 //total number of vehicles 

            Find the time-dependent state-dependent shortest path for vehicle 𝑎 with the fixed solution of other vehicles 

            Update the network-arc costs based on the new solution of vehicle 𝑎 for vehicle 𝑎 + 1 

      end // vehicle 

       Update Lagrangian multipliers of passenger pickup constraints and arc capacity constraints 

end // iterations 

Fig. 8 The iterative scheme of ADMM 23 
At iteration 𝑛 + 1 of ADMM: 24 
 𝑥𝑎

𝑛+1 = arg min {𝐿(𝑥1
𝑛+1, 𝑥2

𝑛+1, … , 𝑥𝑎 , 𝑥𝑎+1
𝑛 , … , 𝑥𝑎max

𝑛 , 𝝅𝒑
𝑛, 𝝅𝒊,𝒋,𝒕,𝒔

𝑛 )} (21) 25 

 𝜋𝑝
𝑛+1 = 𝜋𝑝

𝑛 − 𝜌1[∑ ∑ (𝑥
𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎,𝑛+1 × 𝛿𝑖,𝑗,𝑡,𝑠

𝑎 )(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴(𝑝)𝑎 − 1] (22) 26 

 𝜋𝑖,𝑗,𝑡,𝑠
𝑛+1 = max {0, 𝜋𝑖,𝑗,𝑡,𝑠

𝑛 − 𝜌2[∑ ∑ 𝑥
𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑎,𝑛+1

𝑤𝑎 − 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠] (23) 27 

The subproblem for each vehicle is a time-dependent state-dependent shortest path problem due to the linear 28 
relation in the objective function. Once one vehicle finds its best solution, the network arc cost will be updated for the 29 
next vehicle’s subproblem solving. All Lagrangian multipliers are updated at the end of each iteration. 30 

 31 
4.2.2 Dynamic vehicle flow assignment based on Model 2 32 

 Once the columns are generated for each vehicle group, the remaining task is to assign vehicles to satisfy 33 
passengers’ trip requests and network capacities. Assume that the total number of vehicles from each vehicle group is 34 
also unknown, then we can apply ADMM to convert the flow-based linear programming model as a quadratic 35 
programming model as follows.  36 
Objective function: 37 

  min ∑ (𝑐𝑘 × 𝑦𝑘
𝑘 ) + ∑ (𝜆𝑞 × [(∑ (𝑦𝑘 × 𝛿𝑞

𝑘
𝑘 ) − 𝑔(𝑞)𝑞 ]) +

𝜌1

2
∑ ((∑ (𝑦𝑘 × 𝛿𝑞

𝑘
𝑘 ) − 𝑔(𝑞))

2

+ ∑ (𝜇𝑖,𝑗,𝑡,𝑠 ×𝑖,𝑗,𝑡,𝑠𝑞38 

[∑ (𝑦𝑘 × 𝛿𝑖,𝑗,𝑡,𝑠
𝑘

𝑘 ) − 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠]) +
𝜌2

2
∑ (∑ (𝑦𝑘 × 𝛿𝑖,𝑗,𝑡,𝑠

𝑘
𝑘 ) − 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠)

2
𝑖,𝑗,𝑡,𝑠   (24) 39 
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where 𝑦𝑘 is the path flow of path 𝑘, and 𝜌1, 𝜌2 are parameters. For simplicity, 𝑦𝑣
𝑘 for each OD pair (𝑜, 𝑑, 𝜏) is replaced 1 

by 𝑦𝑘 by resorting all path numbers. 2 
Its Hessian Matrix in y can be derived as, 3 

𝐻 =

|

|

𝜌1 ∑ 𝛿𝑝
1

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

1

𝑖,𝑗,𝑡,𝑠
𝜌1 ∑ 𝛿𝑝

1𝛿𝑝
2

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

1 𝛿𝑖,𝑗,𝑡,𝑠
2

𝑖,𝑗,𝑡,𝑠
… 𝜌1 ∑ 𝛿𝑝

1𝛿𝑝
𝑘𝑚𝑎𝑥

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

1 𝛿𝑖,𝑗,𝑡,𝑠
𝑘𝑚𝑎𝑥

𝑖,𝑗,𝑡,𝑠

𝜌1 ∑ 𝛿𝑝
1𝛿𝑝

2

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

1 𝛿𝑖,𝑗,𝑡,𝑠
2

𝑖,𝑗,𝑡,𝑠
𝜌1 ∑ 𝛿𝑝

2

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

2

𝑖,𝑗,𝑡,𝑠
… 𝜌1 ∑ 𝛿𝑝

2𝛿𝑝
𝑘𝑚𝑎𝑥

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

2 𝛿𝑖,𝑗,𝑡,𝑠
𝑘𝑚𝑎𝑥

𝑖,𝑗,𝑡,𝑠

⋮ ⋮ … ⋮

𝜌1 ∑ 𝛿𝑝
1𝛿𝑝

𝑘𝑚𝑎𝑥

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

1 𝛿𝑖,𝑗,𝑡,𝑠
𝑘𝑚𝑎𝑥

𝑖,𝑗,𝑡,𝑠
𝜌1 ∑ 𝛿𝑝

2𝛿𝑝
𝑘𝑚𝑎𝑥

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

2 𝛿𝑖,𝑗,𝑡,𝑠
𝑘𝑚𝑎𝑥

𝑖,𝑗,𝑡,𝑠
… 𝜌1 ∑ 𝛿𝑝

𝑘𝑚𝑎𝑥 

𝑝
+ 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

𝑘𝑚𝑎𝑥

𝑖,𝑗,𝑡,𝑠

|

|

 4 

Since it is difficult to directly obtain its inverse matrix 𝐻−, especially in large-scale networks, we apply ADMM to 5 
decompose the primal problem to sequentially solve the subproblem for each column as  6 

𝑦𝑘
𝑛+1 = arg min{𝐿(𝑦1

𝑛+1, 𝑦2
𝑛+1, … , 𝑦𝑘 , 𝑦𝑘+1

𝑛 , … , 𝑦𝑘max

𝑛 , 𝝀𝒒
𝒏, 𝝁𝒊,𝒋,𝒕,𝒔

𝑛 )} 7 

The subproblem for 𝑦𝑘 is a quadratic programming model which could be solved by the projected gradient method 8 
(Rosen, 1960) as follows: 9 

 𝑦𝑘
𝑛+1 = max {0, 𝑦𝑘

𝑛 −
1

𝑠
× 𝐿(𝑦𝑘

𝑛)′ (25) 10 

where  𝐿(𝑦𝑘
𝑛)′ = 𝑐𝑘 + ∑ 𝜆𝑞 × 𝛿𝑞

𝑘 + 𝜌1 (∑ 𝛿𝑞
𝑘 ((∑ (𝑦𝑘

𝑛 × 𝛿𝑞
𝑘

𝑘 ) − 𝑔(𝑞))𝑞 ) + ∑ 𝜇𝑖,𝑗,𝑡,𝑠 × 𝛿𝑖,𝑗,𝑡,𝑠
𝑘

𝑖,𝑗,𝑡,𝑠 +𝑞11 

𝜌2(∑ 𝛿𝑖,𝑗,𝑡,𝑠
𝑘 (∑ (𝑦𝑘

𝑛 × 𝛿𝑖,𝑗,𝑡,𝑠
𝑘

𝑘 ) − 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠)𝑖,𝑗,𝑡,𝑠 ), and 𝑠 =
𝜕2𝐿(𝑦𝑘

𝑛)

𝜕𝑦𝑘
𝑛2 = 𝜌1 ∑ 𝛿𝑞

𝑘
𝑞 + 𝜌2 ∑ 𝛿𝑖,𝑗,𝑡,𝑠

𝑘
𝑖,𝑗,𝑡,𝑠 . In addition, projected 12 

gradient method also has been used in solving the path-based nonlinear programming models in equilibrium traffic 13 
assignment (Larsson and Patriksson, 1992; Jayakrishnan et al, 1994; Florian et al., 2009), and it is more efficient, 14 
compared with arc-based nonlinear programming models, but it needs more memory use. 15 

At each iteration of ADMM, the Lagrangian multipliers are updated as follows, 16 
Passenger group trip requests: 𝜆𝑞

𝑛+1 = 𝜆𝑞
𝑛 + 𝜌1((∑ (𝑦𝑘

𝑛 × 𝛿𝑞
𝑘

𝑘 ) − 𝑔(𝑞))  17 

Arc capacity constraints: 𝜇𝑖,𝑗,𝑡,𝑠
𝑛+1 = max {0, 𝜇𝑖,𝑗,𝑡,𝑠

𝑛 + 𝜌2(∑ (𝑦𝑘
𝑛 × 𝛿𝑖,𝑗,𝑡,𝑠

𝑘
𝑘 ) − 𝑐𝑎𝑝𝑖,𝑗,𝑡,𝑠)}  18 

As a discussion, it is possible to assign different vehicles within different blocks, and each block can be 19 
sequentially solved in ADMM and vehicles within a same block can find the best solution with parallel computing 20 
techniques. 21 

We need to note that the solution from ADMM cannot always guarantee its feasibility. In order to find a feasible 22 
solution and upper bound value, we can sequentially load each column flow from ADMM. Path flows that exceed the 23 
required passenger trip requests or arc capacity will be removed during the sequential loading process. Finally, if some 24 
passenger requests cannot be satisfied, virtual vehicles will be used to find a feasible solution as the upper bound.  25 
 26 
5. Numerical examples 27 

Section 5.1 shows how vehicles carrying passengers switch routes to reach the optimal solution in a capacitated 28 
network iteration by iteration using Dantzig-Wolfe decomposition. Section 5.2 focuses on both pickup and drop-off 29 
requests in the Sioux-Fall network. The restricted master problem is solved by CPLEX in GAMS, and the sub-30 
problems are solved by a beam search algorithm. In section 5.3, we consider the pickup only in the Chicago sketch 31 
network with a large number of autonomous vehicles and passengers belonging to different groups. A column-pool-32 
based approximation approach is used to solve this problem. All corresponding source codes are shared online at 33 
https://github.com/TonyLiu2015/AVRLite. 34 

 35 
5.1 A simple case in a capacitated network 36 

Fig. 9 shows a simple capacitated network with 4 nodes, 6 links and 4 possible paths. Assume that there are 2 37 
vehicles and each vehicle picks up one passenger from origin node 1 to destination node 4. Our goal is to minimize 38 
the total vehicle travel cost by Dantzig-Wolfe decomposition approach.  39 

https://github.com/TonyLiu2015/AVRLite
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 1 
Fig. 9 A simple capacitated network 2 

Table 3 lists the details of each iteration where 𝜆𝑘 is the weight of selecting path 𝑘 of from node 1 to node 4, 𝜇𝑖,𝑗 3 

is the dual price of tight capacity constraint of link (𝑖, 𝑗), and 𝜋 is the dual price of path weight constraint. Iterations 1 4 
and 2 are used to generate a feasible solution by adopting the approach (Kalvelagen, 2003) in Dantzig-Wolfe 5 
decomposition. After 4 iterations, one vehicle chooses path 1and the other selects route 2. The reduced cost is 6 
∑ (𝜆𝑘 × 𝑐𝑘 × 2𝑘 ) − ∑ 𝜇𝑖,𝑗 × 𝑓𝑖,𝑗(𝑖,𝑗)∈𝐿 − 𝜋𝑤 where 𝑐𝑘 is the cost of path 𝑘 and 𝑓𝑖,𝑗 is the flow on link (𝑖, 𝑗). Finally, the 7 

reduced cost is 4 + 5 − (−1) − (−2) − 12 = 0 and reaches the optimal solution. 8 
Table 3 The process of vehicle routing with endogenous congestions in Dantzig-Wolfe decomposition  9 

Iteration NO. Decomposed problem Solution of different subproblems 

Iteration 1 

Subproblem New column: path 4 

Restricted master 

problem 

𝜆4 = 1, 𝜇1,3 = −1, 𝜇1,2 = 0, 𝜇3,2 = 0, 𝜇2,4 = 0, 𝜇3,4 = 0, 

𝜇1,4 = 0, 𝜋 = 2 

Iteration 2 

Subproblem New column: path 3 

Restricted master 

problem 

𝜆4 = 0.5, 𝜆3 = 0.5, 𝜇2,4 = 0, 𝜇1,2 = 0, 𝜇3,2 = 0, 𝜇1,3 = −4, 

𝜇3,4 = 0, 𝜇1,4 = 0, 𝜋 = 15 

Iteration 3 

Subproblem New column: path 1 

Restricted master 

problem 

𝜆4 = 0.5, 𝜆3 = 0.5, 𝜇1,3 = −1, 𝜇2,4 = −3, 𝜇1,2 = 0, 𝜇3,2 =

0, 𝜇3,4 = 0, 𝜇1,4 = 0, 𝜋 = 14 

Iteration 4 

Subproblem New column: path 2 

Restricted master 

problem 

𝜆1 = 0.5, 𝜆2 = 0.5, 𝜇1,3 = −1, 𝜇2,4 = −2, 𝜇1,2 = 0, 𝜇3,2 =

0, 𝜇3,4 = 0, 𝜇1,4 = 0, 𝜋 = 12  

 10 

6.2 Trips with pickup and drop-off requests in the Sioux-Fall test network 11 

As shown in Fig. 10, the Sioux-Fall network has 24 nodes, 84 links with hourly capacity, and 5 vehicle depots. 12 
We assume that there are 30 trip requests with specific pickup and drop-off location and time windows, which are not 13 
listed due the space limit of this paper. In addition, 30 candidate vehicles depart from different origin depots at different 14 
departure time to its corresponding destination depots to serve those trip requests. The optimization time horizon is 15 
110 time units to cover those time windows and possible trip time. The generalized benefit of serving one trip request 16 
is -20 time units, and the waiting generalized cost of vehicles is half of its waiting time.  17 
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 1 
Fig. 10 Sioux-Fall network with five vehicle depots 2 

Four scenarios are examined to compare the total generalized transportation cost and vehicle uses. Scenarios 1 and 3 
2 have no endogenous road congestion due to the large road capacity. Then we change the road capacity with a very 4 
small value to incur congestions in Scenarios 3 and 4. In addition, in Scenarios 1 and 3, vehicle carrying capacity is 1, 5 
and in Scenarios 2 and 4, vehicle carrying capacity is increased to 2 to provide the ridesharing service. 6 

For Scenarios 1 and 2, based on the algorithm for the initial feasible solution generation in section 4.1, 30 vehicles 7 
can serve 30 passengers in the physical network. Further, Dantzig-Wolfe decomposition is used to improve the initial 8 
solution. Similarly, the process is also implemented to scenarios 3 and 4 with road congestions. Table 4 lists the 9 
comparison on served passengers in each vehicle under different scenarios. 10 

Table 4. Comparison on served passengers under different scenarios 11 

 no road congestion with road congestion 

veh_ID initial_s veh_cap=1 veh_cap=2 initial_s veh_cap=1 veh_cap=2 

1 [15] [15][25] [15][25] [15] [15][25] [15][25] 

2 [8] [8] [8] [8] [8] [8] 

3 [1] [1] [1] [1] [1] [1] 

4 [7] [7] [7][9] [7] [7] [7] 

5 [9] [9]  [9] [9] [9] 

6 [11] [11]  [11] [11] [11] 

7 [29]   [29]   

8 [28] [28] [28] [28] [28] [28] 

9 [17] [17][29] [17][29][30] [17] [17][29] [17][29][30] 

10 [21]  [21] [21] [21] [21] 

11 [20]   [20] [20] [20] 

12 [26] [26] [26] [26] [26] [26] 

13 [16] [16] [16] [16] [16] [16] 

14 [18] [18] [18] [18] [18] [18] 

15 [2] [2] [2] [2] [2] [2] 

16 [10] [10] [10] [10] [10] [10] 

17 [3] [3] [3] [12] [12] [12] 

18 [12] [12] [12] [22] [22] [22] 

19 [27] [27] [27] [27] [27] [27] 

20 [30] [30]  [30] [30]  

Depot



21 
 

21 [23] [23] [23] [23] [23] [23] 

22 [25] [20][21] [11][20] [25]   

23 [22] [22] [22] [19] [19] [19] 

24 [13] [13] [13] [13] [13] [13] 

25 [4] [4] [4] [3] [3] [3] 

26 [5] [5] [5] [5] [5] [5] 

27 [19] [19] [19] [24] [24] [24] 

28 [24] [24] [24] [14] [14] [14] 

29 [14] [14] [14] [4] [4] [4] 

30 [6] [6] [6] [6] [6] [6] 

Focusing on vehicle 9, in the scenarios 1 and 2 without road congestion, it picks up and then drops off passenger 1 
17 in the initial solution, but in the improved solution by Dantzig-Wolfe decomposition it serves passenger 17 and 2 
then continues to serve passenger 29. In addition, when the vehicle carrying capacity is 2, vehicle 9 serves passenger 3 
17, and then picks up passenger 30 and goes to picks up passenger 29, and finally drops off passenger 29 first and 4 
then drops off passenger 30. In addition, the number of vehicles used under different scenarios in Table 4 is displayed 5 
in Fig. 11. As expected, the number of vehicles used under congestion conditions would be increased in order to serve 6 
passengers with specific pickup and drop-off windows. We also compare the total transportation cost in different 7 
scenarios in Fig. 12. It can be observed that the total system costs decrease when vehicle carrying capacity is increased 8 
with high ridesharing chances, and the road congestion would increase the system cost compared to the scenario 9 
without road capacity but with the same vehicle carrying capacity.  10 

It should be emphasized that this paper focuses on an offline system optimal solution rather than the real-time 11 
vehicle scheduling problem, so the number of vehicles required in different scenarios could be different. In addition, 12 
pickup and drop-off windows can be a buffer time to mitigate traffic congestions and vehicles are allowed to wait at 13 
some points to further serve the next passengers. In other words, the required time windows from passengers are also 14 
important factors and inputs for system optimization. 15 

 16 
Fig. 11 Number of vehicles used in different scenarios 17 
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 1 
Fig. 12 Total generalized system travel cost in different scenarios 2 

 3 
6.3 Trip with pickup only request in the Chicago sketch test network 4 

Step A: A priori generation of column pool in Model 1 5 
The Chicago sketch network has 1320 nodes and 5431 links in Fig. 13. We assume that all passengers have the pick-6 
up only trip requests as the first mile problem, which indicates that each passenger group with a number of passengers 7 
will have the same destination with a vehicle group. We treat them as one pair of vehicle group and passenger group. 8 
To generate the column pool, two scenarios are designed: 9 

Scenario 1: 10 pairs of vehicle groups and passenger groups. In each pair, as a sample set, we assume that (i) 243 10 
vehicles departs from different origins to one destination with different working time windows and (ii) 387 passengers 11 
submit trip requests with different pickup locations and time windows. The time horizon is 60 min (time unit). Since 12 
this is a simple set, the space-time arc capacity in each minute is assumed to be 5 vehicles. Vehicle carrying capacity 13 
is given as 1, so each vehicle aims to pick up one passenger from the origin depot to their same destination. It has 14 
2430 binary variables and 332,160 constraints. 15 

Scenario 2: 20 pair of vehicle groups and passenger groups. For each pair, similar to scenario 1, we also assume 16 
the same number of vehicles and passenger trip request but with different vehicle inputs (origin, destination, working 17 
time windows) and passenger inputs (pickup locations and time windows). It has 4860 binary variables and 338,460 18 
constraints 19 
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 1 
Fig. 13 Chicago sketch network for passenger pickup only 2 

Then the vehicle-based ADMM in section 4.2.1 is used to find the vehicle-to-passenger and vehicle-to-arc 3 
assignment. Since the input data is randomly generated, some passengers may not be served and some vehicles may 4 
not serve any passengers. The final results are that (i) in scenario 1, 1789 vehicles find their paths/columns to serve 5 
1084 passengers, and 23357 space-time arcs are generated based on vehicles’ paths, and (ii) in scenario 2, 3686 6 
vehicles find their paths/columns to serve 2226 passengers, and 36454 space-time arcs are generated based on vehicles’ 7 
paths. The computation times for scenarios 1 and 2 are about 70 seconds and 140 seconds, respectively, from the 8 
laptop with 2.80GHz. 9 
Step B: customized algorithm for flow-based ADMM 10 

Note that each passenger has a specific pickup location, time window and destination, and vehicle can only pick 11 
up passengers within a group with the same destination location. Therefore, we can build a column pool where each 12 
path of vehicles represents one column and each passenger represents one passenger group from Model 1. The question 13 
that arises is how many vehicles from different vehicle groups are required to satisfy those trip request from different 14 
passenger groups under tight road capacity constraints. Based on the last two scenarios, we design two experiments:  15 

Experiment 1: there are 1084 passenger groups and each passenger group has 4 passenger trip requests. 16 
Experiment 2: there are 2226 passenger groups and each passenger group has 2 passenger trip requests. In this 17 
physical network, we assume that all space-time arc capacity in each minute is 35 vehicles, equal to 2100 vehicles per 18 
hour. To solve this problem, we try three approaches: (i) flow-based ADMM, (ii) upper bound generation by 19 
sequentially loading the column flow solution from ADMM, (iii) optimal solution from standard solver CPLEX in 20 
GAMS. 21 

In experiment 1: three cases with different penalty parameters of 𝜌1for passenger trip constraints and 𝜌2 for arc 22 
capacity constraints in ADMM are performed. Case 1: 𝜌1 = 3 and 𝜌2 = 1; Case 2: 𝜌1 = 3 and 𝜌2 = 3; Case 3: 𝜌1 =23 
3 and 𝜌2 = 5. The results from ADMM by running 250 iterations and the optimal solution from CPLEX are shown 24 
in Fig. 14. The ADMM can converge to different objective values in three cases with different penalty parameters. 25 
Since capacity values and the number of capacity constraints are much higher than that of passenger trip requests, it 26 
is better to assign a smaller penalty value for 𝜌2 in the objective function of ADMM. 27 
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 1 
Fig. 14 Solution of each iteration of ADMM in three cases and CPLEX in experiment 1 2 

Then the upper bound generation algorithm is also implemented to find a feasible solution based on the results of 3 
ADMM. Fig. 15 shows the objective values of upper bound in three cases and the optimal solution. The Gap values 4 
of three cases compared with the optimal solution are 4.3%, 3.4% and 3.1%, respectively. It is observed that the three 5 
cases can finally reach good solutions with very small gap values. Further, the ADMM result of case 3 has the biggest 6 
gap value, but its upper bound solution can still have a small gap value. The possible reason is that the total path flow 7 
is a variable, so the upper bound generation can reduce the total path flow from ADMM to have a better feasible 8 
solution to satisfy those passenger trip demands and not violate the arc capacity constraints.  9 
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Fig. 15 Upper bound in three cases and the optimal value in CPLEX in Experiment 1 11 

From the upper bound solution, 4737 space-time waiting arcs (𝑖, 𝑖, 𝑡, 𝑡 + 1) at 405 nodes have assigned vehicle 12 
flows, which indicates that the waiting happens at those nodes. By calculating the total waiting flow at those congested 13 
nodes during 60 mins, its heat map and the top10 of the most congested nodes are shown in Fig. 16(a) and (b), 14 
respectively. It can be observed that the destination areas of different passengers with pickup request only become 15 
congested, so it also raises one question about how to design the drop-off location in the future when a large number 16 
of passengers have the same destination with similar arrival time. 17 
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(b) Top 10 of congested nodes in experiment 1(a) The heat map on waiting flows in experiment 1  1 
Fig. 16 Visualization of congested nodes in experiment 1 2 

In order to compare the computation efficiency and memory use of the ADMM algorithm and CPLEX in GAMS 3 
(version 24.7.4), we also implement three other cases with different numbers of columns based on experiment 1. All 4 
tests are performed in the laptop with 8G memory and i5-4210U CPU @1.7GHz. The result is listed in Table 5. It can 5 
be observed that that CPLEX is much more efficient, but our customized algorithm can better utilize the memory. 6 
Specifically, our flow-based model is a linear programming (LP) model. How to efficiently solve LP model has been 7 
studied for almost 80 years, and most commercial solvers are powerful in solving LP models. Actually, most LP 8 
solvers apply some preconditioning techniques, such as, a simple geometric mean scaling in combination with 9 
equilibration, to reduce the condition number of the constraint matrix in order to decrease the computational efforts. 10 
As we know, CPLEX also has its “scaling routine” to preprocess LP models. In most of the literature in transportation 11 
domain, we haven’t found any papers which proposed an algorithm for LP and ultimately beat CPLEX in computation 12 
efficiency. Most comparisons happened when solving mixed integer programming, because CPLEX usually applied 13 
branch and cut to deal with those integer variables and the process is relatively time-consuming. In addition, it is still 14 
a research topic about how to improve the computation efficiency of ADMM, such as, by parallel computing (Boyd 15 
et al., 2010), which will be our future research. Also, we should emphasize that our ADMM is a general algorithm 16 
which can deal with nonlinear programming rather than just linear programming by CPLEX. Therefore, when the 17 
column cost is a nonlinear function of column flows, such as, for paths with reliability and variance (Xing and Zhou, 18 
2011), our model could still be appliable and CPLEX will not deal with it. Another advantage of our column pool-19 
based model is that a large number of columns has been stored in advance, so it will be beneficial for re-optimization 20 
and real-time optimization in the future and doesn’t need to read all the input data every time, which needs to be done 21 
in the case of CPLEX.  22 

Table 5. Computation efficiency comparison between ADMM and CPLEX in GAMS 23 

Num of columns 
Flow-based ADMM_C++ (250 iterations) GAMS (solver: CPLEX) 

computation_time memory_use computation_time memory_use 

1789 12s 20m 0.8s 16m 

17890 81.9s 43.4m 3.2s 77m 

89450 344s 134.7m 15.2s 345m 

178900 514s 264.1m 31.5s 686m 

 24 
Then the same procedure is also applied to experiment 2. The solution process and comparison among different 25 

cases are shown in Fig. 17 and Fig. 18, respectively. The Gap values of the three cases compared with the optimal 26 
solution are 3.9%, 2.9% and 2.5%, respectively. From the upper bound solution, 7173 space-time waiting arcs 27 
(𝑖, 𝑖, 𝑡, 𝑡 + 1) at 448 nodes have assigned vehicle flows. Its heat map and the top10 of the most congested nodes are 28 
shown in Fig. 19(a) and (b), respectively. 29 
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Fig. 17 Solution of each iteration of ADMM in three cases and CPLEX in experiment 2 2 
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Fig. 18 Upper bound in three cases and the optimal value in CPLEX in Experiment 2 4 
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(b) Top 10 of congested nodes in experiment 2(a) The heat map on waiting flows in experiment 2  1 
Fig. 19 Visualization of congested nodes in two experiments 2 

6. Conclusions and future research 3 

This paper focuses on one ideal future scenario in which all vehicles can be centrally guided to pick up and drop 4 
off passengers within their required windows while considering endogenous congestion in capacitated networks. A 5 
vehicle-based arc-based integer programming model is proposed in our space-time-state networks for each vehicle 6 
and each passenger, which is solved by Dantzig-Wolfe decomposition. Then, based on the relations between vehicles 7 
and passengers and between vehicles and links from the vehicle-based model above, we further propose a flow-based 8 
path-based linear programming model from the perspective of dynamic traffic assignment. We then apply Alternating 9 
Direction Method of Multipliers (ADMM) to solve this linear programming model. The transportation system 10 
performance is highly related to different component layers in this system, including passengers’ requests with pickup 11 
and drop-off location and time windows, vehicle carrying capacity and working rules, physical infrastructure 12 
capacities, etc. Therefore, any conclusions based on one specific input may not be universal.  13 

From our preliminary experiments in this paper, we have a few interesting observations: (i) without considering 14 
the road congestion, the network performance/efficiency could be overestimated; (ii) passengers’ required pickup and 15 
drop-off time windows could be a buffer to mitigate road congestion without impacting system performance; (iii) the 16 
ridesharing service could reduce the total transportation system cost under centralized control; (iv) the curb area design 17 
and management is important due to the possible high frequency of vehicle pickup/drop-off services. Therefore, in 18 
the future, with the increase of autonomous vehicle implementation, the resulting increased road capacity could 19 
enlarge the network capacity to better serve passengers, and the ridesharing travel modes should be encouraged to 20 
better utilize the carrying capacity of vehicles (car, bus, etc.)  21 

Focusing on the algorithm part, we will improve the beam search algorithm (approximate dynamic programming) 22 
to address larger cases for finding the shortest path for pickup and drop-off requests. In addition, it is better to apply 23 
branch and bound to solve the relaxed problem in the master problem to obtain the dual prices in the Dantzig-Wolfe 24 
decomposition algorithm. Also, (i) how to determine the sample size and what algorithms can be used to generate the 25 
column pool and (ii) how to dynamically manage column pool are also important for the future application in large-26 
scale networks. Since our proposed models are similar to dynamic system optimal traffic assignment models, it is also 27 
possible to calculate the path marginal cost to solve our model under the space-time-state framework. The 28 
implementation of ADMM with parallel computing should also be considered. 29 

In a boarder sense, we will consider different kinds of trip requests and travel behaviors in a unified model to 30 
capture more complicated traffic conditions. Liu and Zhou (2016) showed how the tight road/vehicle capacity 31 
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constraints could invoke travelers’ bounded rationality based on their day-to-day learning due to the inner system’s 1 
uncertainty, which is incurred when identical travelers are competing for the limited resources without an assignment 2 
rule. This bound on trip cost is similar to (i) the concept of travel time budget in travel activity analysis, (ii) the 3 
changeable departure time of dynamic traffic assignment, and (iii) the required time windows for pickup and drop-off 4 
in vehicle routing problem. Therefore, it could be a suitable way to use time windows to model travel behavior in 5 
future congested multi-modal transportation systems. However, it is also challenging to estimate and predict those 6 
time windows from travel demand generation. In addition, the participants from different parties, such as, traffic 7 
regulator, mobility service providers, human drivers, and passengers, could lead to a more complex leader-follower 8 
game in the future research. 9 
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 14 

Appendix A. Model Comparison 15 

Comparison Category Model A (System Optimum POAVAP, 

de Almeida Correia and van Arem, 

2016) 

Model B (This paper) 

(1). User behavior Household-level optimum Transportation system optimum 

(2) Modeling approach Time-discretized space-time network Time-discretized space-time-state network 

(3) Objective function Minimizing total generalized transport 

cost: including travel distance, public 

transit cost, parking cost, penalty for 

early and late arrival. Formula (5). 

Minimizing total generalized transport cost: travel 

time, waiting time, profit of serving passengers. 

Formula (1). 

(4) Vehicle ownership Private vehicles in each household. 

Vehicles don’t have the departure 

/arrive time window, or the working 

hours. 

Public vehicles managed by depots. Vehicles have 

departure/arrival time windows and its working 

hours. 

(5) Vehicle flow balance Constraint (23) Constraint (2)  

(6) Vehicle origin/destination Vehicle origin is home, and its 

destination is the arrival node of the last 

served trip. 

Vehicle origin is the origin depot, and its 

destination is the destination depot. The depot can 

be extended as home. 

(7) Passenger/household 

member pickup/drop-off 

request satisfaction  

Constraints (10), (12), (14)-(17). Constraint (3). The logic of passenger pickup and 

drop-off process is satisfied in the vehicle carrying 

state transit process (w → w′), implemented in the 

time-dependent state-dependent shortest path 

finding in the beam-searching algorithm.  

(8) Pickup/drop-off time 

windows 

Each household member has desired 

pickup/drop-off time, earliest pickup 

time, and latest drop-off time. 

Each passenger has a specific pickup/drop-off 

time windows embedded in the space-time-state 

networks. 

(9) Vehicle carrying capacity Constraints (19) and (20). Satisfied in vehicle carrying state transit process. 

(10) Road congestion and 

dynamic link travel time 

calculation 

BPR travel time function, but needs to 

calibrate 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 and makes the 

model nonlinear. Constraints (24)-(27). 

Point queue model by building waiting arc at each 

node in the space-time-state networks and having 

tight arc capacity constraint (4). 

(11) Vehicles can pass 

passenger pickup/drop-off 

nodes without serving them. 

Yes. If passengers/household members 

are not served, they will be assumed to 

be served by public transit. Constraint 

(8) (9), (11), (13), (18). 

Yes. Though adding virtual pickup/drop-off nodes 

and links, vehicles can pass the real passenger 

pickup/drop-off physical nodes without serving 

them, but cannot pass those virtual service 

nodes/links without serving them. 

(12) Empty vehicle 

elimination 

Cannot eliminate an empty vehicle. 

Constraint (22). 

Cannot eliminate an empty vehicle. However, 

when based on the solutions from Lagrangian 

Relaxation (Mahmoudi and zhou, 2016) or 

ADMM, a sequential vehicle loading for upper 

bound generation can eliminate the remaining 

vehicles if all passengers have been served. 
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(13) Route with empty 

vehicles 

Route with empty vehicle is not 

generated. Constraint (38).  

Route with empty vehicle is generated to satisfy 

the flow balance constraint, but can be eliminated 

after obtaining the solution. 

(14) Vehicles stop at any 

nodes 

not allowed to stop idle when the 

vehicle is transporting a person. 

Constraint (21). 

We have tight pickup/drop-off windows, so if 

vehicles arrive early, they need to wait to pick up/ 

drop off the passenger until within the time 

windows. That is different with the desired 

pickup/drop-off time with early and late arrival 

penalty. 

(15) First-in-First-out (FIFO) Considered, but adding constraint (28) 

could force link travel time not follow 

volume-delay travel time calculation. 

Not considered in the model. However, the 

sequential vehicle loading in the upper bound 

solution from Lagrangian Relaxation (Mahmoudi 

and zhou, 2016) or ADMM can satisfy FIFO. 

 1 

Appendix B. Discussions on modeling queue spillback 2 

In order to capture the queue spillback, we proposed a spatial queue model by improving the approach proposed 3 
by Drissi-Kaı̈touni and Hameda-Benchekroun (1992) where the link storage capacity with jam density and backward 4 
wave speed are not considered in space-time networks. Take the simple network in Fig.B1 (a) as an example. A virtual 5 
node as the waiting node is added for each link in the modified network in Fig.B1 (b). The travel time of link (2′, 2) 6 
is assumed to be 1 time unit and its length is a small value as an approximation, so this link is used for discharging 7 
flows, and its capacity as the outflow capacity of link (1,2) as a variable will be determined by its downstream links. 8 
The inflow capacity of link (1,2) is the capacity of link (1,2′), equal to 𝐶𝑎𝑝1,2. The link storage capacity of link (1,2) 9 
is 𝐿𝑒𝑛1,2 × 𝑛1,2 × 𝐽𝑎𝑚1,2 and will be represented on link (1,2′). The corresponding space-time network is constructed 10 
in Fig.B3 (c). Specifically, at time 𝑡  on link (1,2) , (i) the inflow capacity constraint is 𝑥1,2′,𝑡−𝐹𝐹𝑇𝑇1,2′,𝑡 ≤11 

𝐶𝑎𝑝1,2′,𝑡−𝐹𝐹𝑇𝑇1,2,𝑡 for arc (1,2′, 𝑡 − 𝐹𝐹𝑇𝑇1,2′, 𝑡) shown in purple; (ii) the outflow capacity constraint is 𝑥2′,2,𝑡,𝑡+1 ≤12 

𝐶𝑎𝑝2′,2,𝑡,𝑡+1 for arc (2′, 2, 𝑡, 𝑡 + 1) shown in orange; (iii) the link storage capacity constraint is 𝐶𝐴1,2,𝑡 − 𝐶𝐷1,2,𝑡 =13 

𝑥2′,2′,𝑡−1,𝑡 + ∑ 𝑥1,2′,𝑠,𝑡 ≤ 𝐿𝑒𝑛1,2′ × 𝑛1,2′ × 𝐾𝐽𝑎𝑚1,2′ 
𝑡−1
𝑠=𝑡−𝐹𝐹𝑇𝑇1,2′+1 . 𝐶𝐴1,2,𝑡  and 𝐶𝐷1,2,𝑡  are the cumulative arrival 14 

count and the cumulative departure count of link (1,2) at time 𝑡. The link outflow capacity is calculated and given by 15 
the capacities of its downstream links.  16 
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 17 
Fig. B1 Illustration for the spatial queue model in a space-time network 18 

Focusing on the vehicle routing in our proposed space-time-state networks, the spatial queue model can be 19 
formulated as follows where 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ = ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑎
𝑎  in Model 1, 20 

Inflow arc capacity constraint: 21 
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 ∑ 𝑥𝑖,𝑗′,𝑡−𝐹𝐹𝑇𝑇𝑖,𝑗+1,𝑡,𝑤,𝑤′𝑤 ≤ 𝐶𝑎𝑝𝑖,𝑗′,𝑡−𝐹𝐹𝑇𝑇𝑖,𝑗+1,𝑡 , ∀(𝑖, 𝑗′) ∈ 𝐿𝑖𝑛𝑓𝑙𝑜𝑤 , ∀𝑡 (B.1) 1 

Outflow arc capacity constraint: 2 
 ∑ 𝑥𝑗′ ,𝑗,𝑡,𝑡+1,𝑤,𝑤′𝑤 ≤ 𝑦𝑗′,𝑗,𝑡,𝑡+1, ∀(𝑗′, 𝑗) ∈ 𝐿𝑜𝑢𝑡𝑓𝑙𝑜𝑤 , ∀𝑡 (B.2) 3 

Outflow arc capacity balance constraint at points without merge and diverge: 4 
 𝑦𝑗′,𝑗,𝑡,𝑡+1 ≤ 𝐶𝑎𝑝𝑗,𝑖,𝑡+1,𝑠 (B.3) 5 

Outflow arc capacity balance constraint at merger points: 6 
 ∑ 𝑦𝑗′ ,𝑗,𝑡,𝑡+1 ≤ 𝐶𝑎𝑝𝑗,𝑖,𝑡+1,𝑠,(𝑗′,𝑡) ∀(𝑗, 𝑡 + 1) ∈ 𝐴𝑚 (B.4) 7 

Outflow arc capacity balance constraint at diverge points: 8 
 𝑦𝑗′,𝑗,𝑡,𝑡+1 ≤ ∑ 𝐶𝑎𝑝𝑗,𝑖,𝑡+1,𝑠(𝑖,𝑠) ∀(𝑗, 𝑡 + 1) ∈ 𝐴𝑑 (B.5) 9 

Link storage capacity constraint: 10 
 ∑ 𝑥𝑗′ ,𝑗′,𝑡−1,𝑡,𝑤,𝑤′ + ∑ ∑ 𝑥𝑖,𝑗′,𝑠,𝑡,𝑤,𝑤′ ≤𝑡−1

𝑠=𝑡−𝐹𝐹𝑇𝑇𝑖,𝑗′𝑤𝑤 𝐿𝑒𝑛𝑖,𝑗′ × 𝑛𝑖,𝑗′ × 𝐾𝐽𝑎𝑚𝑖,𝑗′, ∀(𝑖, 𝑗′) ∈ 𝐿𝑖𝑛𝑓𝑙𝑜𝑤 , ∀𝑡 (B.6) 11 

Furthermore, to consider the backward wave speed under congested conditions, Newell’s simplified kinematic 12 
wave model (Newell, 1993) considers the link storage capacity by 𝐶𝐴(𝑖,𝑗,𝑡) − 𝐶𝐷𝑖,𝑗,𝑡−𝐵𝑊𝑇𝑇(𝑖,𝑗) ≤ 𝐿𝑒𝑛𝑖,𝑗 × 𝑛𝑖,𝑗 ×13 

𝐽𝑎𝑚𝑖,𝑗. Similar to the derivation of the spatial queue model above, Newell’s simplified kinematic wave model can 14 
have the following constrain for link storage capacity.  15 

∑ ∑ 𝑥𝑗′,𝑗′,𝑠−1,𝑠,𝑤,𝑤′
𝑡
𝑠=𝑡−𝐵𝑊𝑇𝑇(𝑖,𝑗′) + ∑ ∑ 𝑥𝑖,𝑗′,𝑠,𝑠+𝐹𝐹𝑇𝑇

𝑖,𝑗′ ,𝑤,𝑤′ ≤𝑡−1
𝑠=𝑡−𝐹𝐹𝑇𝑇𝑖,𝑗′−𝐵𝑊𝑇𝑇𝑖,𝑗′𝑤𝑤 𝐿𝑒𝑛𝑖,𝑗′ × 𝑛𝑖,𝑗′ ×16 

𝐾𝐽𝑎𝑚𝑖,𝑗′, ∀(𝑖, 𝑗′) ∈ 𝐿𝑖𝑛𝑓𝑙𝑜𝑤 , ∀𝑡  (B.7) 17 
As a note, from the perspective of car-following models, the backward wave speed depends on drivers’ average 18 

reaction time and minimal following safety distance, and Newell’s simplified microscopic car-following model 19 
(Newell, 2002) is consistent with his macroscopic kinematic wave model. Wei et al. (2017) proposed a binary integer 20 
programming model to optimally control vehicle trajectory based on Newell’s simplified car-following model in time-21 
extended space-time networks, which can be incorporated in our modeling framework in state-space-time networks 22 
but will cause a huge number of variables and constraints. 23 
 24 
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