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Abstract

As app-based ride-hailing services have been widely adopted within existing traditional taxi markets, researchers have
been devoted to understand the important factors that influence the demand of the new mobility. Econometric models
(EMs) are mainly utilized to interpret the significant factors of the demand, and deep neural networks (DNNs) have
been recently used to improve the forecasting performance by capturing complex patterns in the large datasets.
However, to mitigate possible (induced) traffic congestion and balance utilization rates for the current taxi drivers, an
effective strategy of proactively managing a quota system for both emerging services and regular taxis is still critically
needed. This paper aims to systematically design an explainable deep learning model capable of assessing the quota
system balancing the demand volumes between two modes. A two-stage interpretable machine learning modeling
framework was developed by a linear regression (LR) model, coupled with a neural network layered by long short-
term memory (LSTM). The first stage investigates the correlation between the existing taxis and on-demand ride-
hailing services while controlling for other explanatory variables. The second stage fulfills the long short-term memory
(LSTM) network structure, capturing the residuals from the first estimation stage in order to enhance the forecasting
performance. The proposed stepwise modeling approach (LR-LSTM) forecasts the demand of taxi rides, and it is
implemented in the application of pick-up demand prediction using New York City (NYC) taxi data. The experiment
result indicates that the integrated model can capture the inter-relationships between existing taxis and ride-hailing
services as well as identify the influence of additional factors, namely, the day of the week, weather, and holidays.
Overall, this modeling approach can be applied to construct an effective active demand management (ADM) for the
short-term period as well as a quota control strategy between on-demand ride-hailing services and traditional taxis.

Keywords: On-demand ride hailing; taxi market; short-term demand forecasting; long short-term memory (LSTM);
deep neural network (DNN); active demand management (ADM)
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1. Introduction

The emergence of on-demand ride hailing services, such as Uber and Lyft, requires transportation planners to
better design comprehensive transportation mobility solutions for informed transportation management and policy
making. Uber reported a growth in nationwide market share from 9% to 29% whereas existing taxi services observed
a decline in their market from 52% to 35% nationwide (Fischer, 2015). In response to the influx of on-demand services,
for instance, New York City Rules announced a protective policy for yellow taxi and green taxi drivers in 2018, and
the NYC Department of Transportation (DOT) imposed a congestion pricing, “a new electronic toll in place for drivers
entering the busiest stretches of Manhattan” (Mckinley and Hu, 2019). In addition, Sanders and Guse (2019) reported
that NYC imposed the new regulations to app-based companies and to protect hardworking drivers in Manhattan: at
least 69% of the operating cars in Manhattan below 96th St. must serve a passenger, and each company needs to set
up a fare rate based on the frequency of carrying passengers.

As a result, the exponential growth of this mobility service and its impact on the transportation network lead to
intensive research initiatives. In order to interpret the significant factors affecting the ride-hailing demand, diverse
statistical modeling approaches were developed and introduced (Lavieri et al., 2017; Lam and Liu, 2018; Gerte et al.,
2018). Forecasting approaches were also conducted to optimize the traffic network, dispersing the fleet of the ride-
hailing service or yellow taxis within the network (Laptev et al., 2017; Chen et al., 2017; Zhao et al., 2019).
Nevertheless, there are still challenges that need further exploration:

(1) Since the numbers of FHV and yellow taxi drivers are closely correlated, if a cap is imposed for a transportation
network company (TNC), what is the expected additional demand to be served by, or more precisely, to be shifted
to, yellow taxi drivers?

(2) Does the city traffic management agency need to apply a quota regulation during a rainy day or a snowy day?

A concept of the active demand management (ADM) strategy (FHWA, 2012) with respect to on-demand transit
has been incorporated to address similar challenges: proactively optimizing the usage of both taxies and on-demand
mobility city-wide (e.g., imposing a day-dependent cap for one type of vehicle (Kamga et al., 2015)). In other words,
we aim to understand the dynamics of the competing ride hailing services to mitigate the traffic congestion and
maintain the balance of the coexisting system for drivers by analyzing the correlation of both emerging and existing
mobility services as well as identifying their own explanatory variables under different situations such as day of the
week, holiday, and weather.

The mobility data obtained from NYC is employed as a demonstration use case. A hybrid model developed
integrates both multivariate linear regression (LR) and long-short term memory (LSTM), a type of recurrent neural
network (RNN). The analytical model in the first layer represents available time series data through a number of
interpretable parameters. In the second layer LSTM focuses on designing a data-driven approach to account for the
hidden pattern from the first layer’s residuals. Combining the two-step process, LR-LSTM predicts taxi demand.

The remainder of this paper is organized as follows. Section 2 presents the literature review examining prior
research that explores statistical models and neural network structures. Section 3 describes a real-world data set,
namely, New York City (NYC) Taxi Records. In section 4, a stepwise framework is proposed to tackle modeling
challenges. The application of the integrated (or coupled) model is demonstrated using the real-world dataset, in
section 5. Lastly, section 6 provides conclusion and discusses the estimation results and future work.

2. Literature review and motivation

This review section covers two aspects: (1) statistical approaches to understand demand for ride-hailing services
and (2) recent modeling means using statistical modeling techniques as well as data-driven approaches. This is
followed by a discussion of the motivations behind our proposed integrated approach.

2.1. Statistical models for demand analysis of ride-hailing services

Researchers used statistical models to calibrate unknown parameters and further interpret the factors influencing
the taxi demand within the service area. In particular, Yang and Gonzales (2014) applied multivariate linear regression
to estimate taxi trips by identifying significant explanatory variables, to name a few, population, age, education,
income, transit accessibility time, and employment. Safikhani et al. (2017) designed the generalized spatial-temporal
autoregressive (STAR) to understand spatial and temporal variations in taxi demand in New York City. Lavieri et al.
(2017) utilized a multivariate count approach to study the number of trips generated in a specific zone and observed
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that different income groups preferred to use the services for different activity purposes. Recently, Lam and Liu (2018)
used the discrete choice model to analyze the correlation between dynamic pricing and waiting time in densely
populated areas of New York. Gerte et al. (2018) examined the demand for the ride hailing service using a panel based
random effects model in order to capture both heteroscedasticity and autocorrelation effects. This study denoted that
the highly educated young male group tended to use the ride hailing service frequently.

Overall, the above-mentioned statistical modeling approaches have demonstrated their strength in explaining and
predicting the ride-hailing service demand which allows planners to identify significant parameters for informed
decision making. Regarding the use of other big data sources, social media data sets have been utilized in a variety of
applications to capture individual activity patterns (Gu et al., 2018; Zhang et al., 2017; Hasnat and Hasan, 2018) and
detect traffic incidents (Wang et al.,2016; Kuflik et al., 2017). On the other hand, using app-based data (i.e., multi-
sourced data with high variances in both location accuracy and time of travel), He and Shen (2015) and Wang et al.
(2019) have proposed conceptual frameworks to estimate the impact of the disruptive mobility services on taxi markets.

Nevertheless, the major challenge of statistical approaches is a lack of predictive accuracy, particularly under a
complex data environment with different data sources (Altman et al., 1994; Sarle 1994; Paliwal and Kumar, 2009;
Karlaftis and Vlahogianni, 2011). A number of case studies (Kumar et al., 2015; Al-Magqaleh et al., 2016; Golshani et
al., 2018; Cui et al., 2018) demonstrated improved prediction accuracy by utilizing the neural network structures
compared to statistical models.

2.2. Hybrid approaches combining statistical models with deep neural networks (DNNs)

We first focus on papers in the area of causal inference and prediction, as well as two popular DNN modeling
tools using convolutional neural network (CNN) and long short-term memory (LSTM). CNN has demonstrated
excellent capabilities in the visual data processing where its structure extracts the image features and classifies the
images according to the extracted features (LeCun and Bengio, 1995). On the other hand, LSTM specializes in
sequential data processing, and its structure stores significant information and forecasts the sequential data (Hochreiter
and Schmidhuber, 1997).

Recently, many studies started to integrate more statistically-oriented modeling features in a deep learning
framework. For example, Park et al. (2016) applied Bayesian neural network (BNN) to examine the uncertainty of
dependent variables and further interpreted the unknown coefficients in traffic demand prediction models. They used
an extracted decision tree approach to provide significant explanatory variables based on a pedagogical rule extraction
algorithm. A study by Ke et al. (2017) applied the random forest framework to select the exogenous variables, ranking
these variables’ significance. Additionally, they examined the image intensity from map sequences of travel time rates
using CNN and LSTM tools. Along this line, Laptev et al. (2017) utilized Bootstrap and Bayesian techniques with
LSTM structure to detect abnormality of data and capture irregular patterns.

In the traffic demand estimation area, a recent study by Chen et al. (2017) employed the ensemble learning
approach with the RelifF algorithm to identify the important factors. As a result, they were able to explore ride-splitting
behavior of on-demand ride services in real-world data sourced from DiDi. More recently, Zhao et al. (2019) examined
heterogeneity in mode-switching behavior by proposing a more systematically defined interpretable machine learning
approach. To classify the mode-switching behavior, the model-agnostic interpretation tools were used to study the
insights on the switching behaviors.

Overall, we observe two emerging research directions in the field of traffic demand modeling. First, researchers
have devoted major efforts to develop hybrid modeling frameworks based on statistical and DNN approaches in order
to improve the predictive performance. Second, many research teams have focused on developing interpretable models
implemented by feature importance and data extraction algorithms to systematically explore the underlying traffic
demand behavior and improve the lack of transparency observed in a nested non-linear structure (Samek et al., 2017,
Gunning, 2017). Readers interested in the interpretable machine learning techniques can find more details in prior
work (Ribeiro et al., 2016; Lipton, 2018; Molnar, 2020). However, the following challenges still need to be addressed:
how to analyze the correlation of both emerging and existing mobility services as well as identify each mode pattern
with demand-side factors (i.e., weather, holidays, and day of the week). In order to tackle the challenges, we propose
a conceptual interpretable structural decomposition approach as follows:

True demand = Linear explanatory components + Nonlinear pattern + Random fluctuations

To calibrate the different components in this framework, a two-step process is adopted. In the first step the
multivariate linear regression (LR) captures the primary linear components, and the estimated coefficients offer
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additional insights on each mobility pattern. The second step utilizes the forecasting capabilities of LSTM network to
account for the residuals from the first step.
3. Data description

Multiple data sources are utilized in this study: New York City Taxi & Limousine Commission (NYC-TLC)
dataset containing daily mobility demand patterns for the two modes (i.e., For-Hire Vehicles (FHVs) and yellow taxi),
weekday/weekend, holidays, and weather information available from National Climate Data Center (NCDC).

3.1. New York City (NYC) taxi trip records

The input dataset, NYC-TLC, covers both FHV and yellow taxi trip records collected from 2015 to 2017. In the
yellow taxi records the available information includes the pick-up/drop-off events on weekday/weekend, the trip fare,
payment type, location ID, and the number of passengers. In the FHV records only the pick-up/drop-off events and
location ID are collected. To set up a fair comparison, we explored the data with an overlapping time period for pick-
up/drop-off events. The number of pick-up events is used to investigate the dynamic trip demand with respect to FHV
and yellow taxi. The study was done in Murray Hill, Manhattan located in Manhattan below 96th Street, and it is one
of the highest taxi pick-up locations: the annual average pick-up demand is approximately 5.7 million, and the total
trips made are 17 million over the period of three years.

Fig. 1 illustrates the volume of pick-ups and trends between yellow taxi and FHV over three years in Murray
Hill, Manhattan. The land use of the study area shows a combination of residential and commercial districts. To be
specific, Fig. 1(a) explains the proportion of the annual pick-up volume between the two modes from 2015 to 2017.
In addition, Fig. 1(b) displays the weekly distribution of the pick-up volume between yellow taxi and FHV, where the
overall demand gradually increases at the beginning of the week and tapers off as the weekend approaches. To further
ensure the length of the data between two modes, we aggregate the event time series data in terms of the daily volume,
with the day of the week as a binary indicator.
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Fig. 1. Illustrations of yellow taxi and FHV pick-ups for Murray Hill, Manhattan

Fig. 2 clearly denotes a mode shifting trend between the yellow taxi and FHV where the transition has stabilized
over the years. The percentage of the total trips and the level of usage of yellow taxis have gradually declined as the
riders have significantly shifted their demand from yellow taxi to FHV as observed from Fig. 2(a). The total demand
of both modes is in fact, very stable, indicating the ride-hailing service has not further induced new demand for the
study area as shown in Fig. 2(b).
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Fig. 2. Shifts in pick-up demands between yellow taxi and FHV over three years
3.2. Weather and holidays

The prior study by Schneider (2015) and Guo et al. (2018) reported that the weather condition and holidays affect
the usage level of yellow taxi and FHV. Accordingly, information collected by the National Climate Data Center
(NCDC) is used in this study, which covers the daily average records of both precipitation (i.e., rain or melted snow)
and snow in Central Park, Manhattan. Overall, there are 347 rainy days and 22 snowy days within the investigated
years.

In addition, holidays observed by the Federal Holiday calendar are identified in the input data such as New
Year’s Day, Martin Luther King, Jr. Day, George Washington’s Birthday, Memorial Day, Independence Day, Labor
Day, Columbus Day, Veterans Day, Thanksgiving Day, and Christmas Day.

4. Conceptual modeling framework and the stepwise procedure

This section describes the system control architecture and the process of the stepwise modeling framework. The
architecture is explained in terms of its structural equation formula, and the stepwise process is addressed through
multivariate linear regression (LR) and Long Short-term Memory (LSTM) neural network.

4.1. System architecture for predicting yellow taxi demand from FHV quota to be controlled

The problem aims to predict the potential trip demand of yellow taxis during the day, with FHV volume as the
exogenous input variable, as a function of the other factors such as weather, holidays, day of the week. Fig. 3 displays
the architecture composed of the control variables, prediction, and a stepwise approach using two steps (i.e., LR-
LSTM). More specifically, we can consider the following use case of the proposed model: the transportation authority
plans possible quota for FHV demand, in an effort to create a fair and equitable environment for yellow taxi drivers
with reasonable drivers’ earning levels.

On day t — 1, one can use the stepwise model to first estimate yellow taxi demand, briefly denoted as y;_,, using
the determined conditions, via LR and then integrate the estimation results with the predicted residuals 7; from LSTM,
finally forecasting the total pick-up volumes served by yellow taxi, J,, at different conditions. On the next day t, we
compare the ground truth values with predicted values from our model and then update parameters of LSTM for
further use. By setting up a different FHV quota on different days, we hope to meet both system-wide goals of reducing
congestion as well as ensuring sufficient taxi utilization rates.

Table 1.
Comparison of characteristics of LR-LSTM with that of different time series models and regression
Model Predictor | Prediction = Quota control Level of Interpretability Prediction Accuracy
ARIMA Vi1 Ve No Medium Medium to High
LSTM Vi1 Ve No Low High
Regression X Ve Yes High Low to Middle

LR-LSTM Xes i1 Ve, Tt Yes High, presented in 5.1 High, presented in 5.2
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Fig. 3. Illustration of system control architecture to estimate and predict yellow taxi pick-ups

One can further extend this methodology to design personalized incentive schemes in future research, while this

study still focuses on controlling the total of FHV or yellow taxi as individual parties. On the other hand, unlike time-

series models (e.g., Autoregressive integrated moving average (ARIMA) or long short-term memory (LSTM)) using

the historical (correlated) records of yellow taxi as only input data to predict the (unknown) yellow taxi demand, our

proposed model seamlessly adds external variables for quota control. Table 1 compares the characteristics of the above

models. The stepwise framework starting from Step I, the multivariate linear regression to Step II, the recurrent neural
network (RNN) — LSTM is written as follows:

Step I: y: = PBX]
Step II: = G(O;y,_1 — BX]_1) M

Prediction: §, = BX] + 7

The linearity between trip records of demand y and explanatory coefficients 8 is captured by (8X"), and the
residuals r,_,=(y,_; — BX}_,) are fed forward in the residual LSTM function G(+) to model the nonlinearity effect
using the neural network parameters @. By utilizing both linear and neural network components of 5 and @, we can
predict the demand of yellow taxi.

Fig. 4 describes the sequential process of Eq. (1) with more details in the following subsection.

Step 1: Linear components Step 2: Non-linear components

Interest: L . . T [ - A
Forecasting the vellow taxi pick-up Multivariate Linear Regression: y, = (¢X}) = » Residual LSTM structure: 7, = G(0,7:—;)
demand b

| 3
Data: Interpreting the sign of coefficients: ¢ | = ‘ Training the neural network parameters: @ |
2414, |
Yellow taxi, For-Hire Vehicle (FHV), -
Ke;lgday/ weekend,  weather,  and ‘ Predicting the trip records’ linearity ‘ > ‘ Predicting the trip records’ non-linearity |

olidays

Fig. 4. Stepwise calibration process using LR-LSTM modeling
4.2 Multivariate linear regression for capturing correlations: LR

To determine the linear correlation between the two modes and the demand-side factors, we now address the
pursuit with the regression model, as shown in Eq. (2):

1 X1 X X1p-11 [Po

. 5 1 Xp1 Xp2  Xopo| |8
Ynx1 = anpﬁpxl = 2':1 22 . 2‘? iE ﬂ.l (2)

1 Xn,l Xn,2 Xn,p—l Bp
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Ynx1 18 the computed trip demand of the yellow taxi and n is the total number of measurements. The matrix
X, xp indicates the explanatory variables: constant, the actual pick-up volumes of FHV, weekday/weekend, weather,
and holidays. p denotes the number of explanatory variables, and ﬁpxl is the calibrated coefficients corresponding to
the independent variables.

The ordinary least squares (OLS) method is utilized to calibrate the coefficients: Bpxl = (Xpr . anp)_lxnxp .
Vnx1- The residuals 13, between the estimated demand from OLS and the actual demand are calculated as follows,

and LSTM extracts possible nonlinear trends of the residuals to improve the predictive accuracy (Goel and Banerjee,
2017).

Tax1i = Ynx1 — Ynx1 3)
4.3 Residual LSTM for capturing non-linear patterns
This subsection describes LSTM-NN approach (Hochreiter and Schmidhuber, 1997) as an extension version of
RNN (Rumelhart et al., 1988), after introducing the principle of RNN and its limitation. Then, the residual LSTM is
introduced within a computational graph (CG) framework (Olah, 2015; Baydin et al., 2018; Wu et al., 2018; Sun et
al., 2019).
4.3.1 Recurrent neural network (RNN)

RNN can be essentially viewed as a non-linear optimization model to minimize the loss function in Eq. (4),
where the residual term defined in Eq. (3) follows time dependent variables.

T

min L, = min Z(Tt —7,)? “4)
t=1

hy = tanh(Wypre—q + Wyphe_y + by) (5)

7y = Whehe + by, (6)

The defined function tanh(:) in Eq. (5) is key to capture non-linear patterns, and Eq. (6) can be refined by
different structural forms based on specific tasks (e.g., classification or regression). The parameters, W,.,,, Wy, and
W)+ are applied at every time step and are shared in the entire structure of RNN. Table 2 lists the required components
with definitions at time step t. The above optimization model is numerically solved by using the gradient descent
algorithm. As discussed in the machine learning community, long data sequences in RNN architecture could lead to
the issue of vanishing gradients for the information of updated parameters. That is, if the updated parameters are
fractional values, the carried gradients from the long sequence become insignificant. In order to address this issue, the
long short-term memory (LSTM) is implemented in this study (Hochreiter and Schmidhuber, 1997).

Table 2.
Definitions of parameters and variables for RNN components
RNN at time step ¢ Parameters Definition
Win Weight from input layer to hidden state
Whn Weight from previous hidden to current hidden state
Nepral Network (NN) parameters to be Wi Weight from hidden state to output
estimated . .
by, Bias at hidden state
b; Bias at output
Te_q Input variable (Residuals from LR)
Variables hi_4 H?dden Var%able from the previgus time step, -1
h¢ Hidden variable at the current time step, ¢
7 Output variable (Prediction)
Composite function 7y = Wyphy + by
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4.3.2 Long short-term memory (LSTM)

A typical LSTM model consists of four gates (i.e., input, forget, output, and external input gates). The chained
structure across the gates transmits not only a hidden state h, but also previous cell s;. The shared information of the
hidden state and cell state can overcome the vanishing gradient descent effects; the detailed features of LSTM are
explained in Olah (2015) and Goodfellow et al. (2016), and the definition of each parameter used is shown in Table
3.

In brief, the first step starts from the forget gate f; helping to remove the unnecessary information by the sigmoid
function o (+), ranging from O to 1.

fe = O'(bf + Wirteq + Wffht—l) (7

where by is the forget gate bias term. W,.; and W, are weights, h,_; is the previous hidden state, and r;_; is the time
series data at current step t — 1, defined in Eq. (3) from the LR model. The second step updates and decides the new
information to be stored in the cell state through the input gate i, and the external input gate g;.

ip = o(by + Wyreq + Wiihe 1) )
gr = tanh(by + Wy gty + Wygh_y) )

The input gate i; determines a gating value ranging from 0 to 1, and a value of 1 means the input information
will be fully stored. tanh(-) generates a vector of new candidate values between -1 and 1 guiding the extent of
updating the weights in Eq. (7) and Eq. (8). The multiplication of the input gate i, and the external gate g, identifies
new significant information, storing it in the cell state, and the third step in Eq. (10) updates the old cell state.

S =t Oseo1 +ir O ge (10)

Both s; and s;_; denote new and old cell states produced, and © is the Hadamard product, the element-wise
products of vectors, matrices, or tensors. The final step is proceeded by the output gate o;.

0 = 0(by + WyoTiy + Wyohe_y) (11)
hy = o, © tanh (s;) (12)

o; and h, are the result of the output gate and a hidden state. Finally, a regression formula defined as the product
of the parameter W},; and the hidden state h; with bias term b; measures the residual :

Ty = Whehe + by (13)

In order to compute the approximate residuals, the nonlinear optimization function applied in LSTM is utilized
as follows:

((Wys (0 © tanh(f; @ se_y +ie © g0) + b;) —1)° (14)

1

T
min L, =

t

Eq. (14) is the objective function subject to Egs. (7) to (13) and LSTM neural network parameters are adjusted
to minimize the loss L;. The adjustment process is proceeded by the Adam optimizer, the gradient-based stochastic
optimization algorithm proposed by Kingma and Ba (2014) with improved computational efficiency for handling a
large data set and parameters. The estimating procedure of the neural network parameters conducts the feedforward
and backward propagation process. A computational graph (CG) is shown in Fig. 5 to illustrate the process in LSTM
in which a feedforward step measures the residuals using the defined functions composed of weights and bias, and a
backward propagation step minimizes the loss between the computed residuals and the actual residuals by adjusting
the parameters.
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Table 3.

Definitions of parameters and variables for LSTM components

LSTM at time step ¢ Terms | Definition
Wis Weight from input layer to forget gate
W Weight from previous forget gate to current forget gate
W, Weight from input to input layer gate
W Weight from previous input gate to current input gate
W4 Weight from input to external input gate
Wyg Weight from previous external gate to current external gate
Neural Network (NN) parameters @ to Wy Weight from input to output gate
be estimated W,, Weight from previous output gate to current output gate
Wy Weight from hidden state to output
bs Bias at forget gate
b; Bias at input gate
bg Bias at external input gate
b, Bias at output gate
b; Bias at output
Teeq Input variable (Residuals from LR)
he_q Hidden variable from the previous time step, ¢-1
. h¢ Hidden variable at the current time step, ¢
Variables . . .
St_1 Cell variable from the previous time step, #-1
St Cell variable at the current time step, ¢
7y Output variable (Prediction)

Composite functions

y = Wyp(op O tanh(f, © sp_q + i © gp)) + by

4.4 Integrated model on trip demand forecasting: LR-LSTM

Now we start examining the proposed integrated model LR-LSTM. The linear regression results explain the
linearity pattern from variables (i.e., day of the week, holiday, weather, and FHV) so that the pattern learned from the
model can help capture the proportional trend on two modes. The residual LSTM generates the unparameterized
function to handle the left-over residuals. The mathematical form of the coupled architecture of forecasting the demand

1s written as:
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9 = BXL + Wy (op O tanh(f, O se_1 + i O g1)) + by (15)

That is, the yellow taxi demand is now estimated by FHV, and the other explanatory variables, together with the
predicted residuals. This integrated model can use the regression model to control the pick-up volume of FHV to
balance the demand for yellow taxis. Also, the low prediction results caused by traditional extrapolation method can
be improved by the residual-oriented model.

Please note that, the input data used for estimating the trip demand is composed of binary variables such as
weekday, weekend, and holiday, and the rest of the variables (i.e., FHV, yellow taxi, precipitation, and snow) are
continuous, with FHV and yellow taxi values being normalized. In addition, to test the integrated model, the entire
dataset is split into the training data, the validation data, and test data as shown in Fig. 6. Using 800 days (85%) out
of 931 days, the hyperparameters used in LSTM are tuned. Then, the underlying hyperparameters are determined
based on the validation experiments shown in Eq. (14); the number of hidden units used was 10 to 12, the selected
batch size was 10, the number of iteration times, training epoch, was up to 500, the learning rate of the Adam
optimization was 0.001, and the input dimension was 8 (i.e., weekday/weekend and the prior pickup volume residual).
It should be noted that if another set of explainable data is available for the model every day, then we re-execute the
tuning process and updating the hyperparameters with the corresponding data-receiving frequency.

- 800 days (86%) | 131 days (14%)

Training Set Validation Set H Test Set
I—- 31 days (85%) -} | 165 days (15%) LSTM: Residual Long short-term memory
18000 learning laver
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16001
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_:5 [y
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g ¥ output layer
2 o ‘
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-] A A
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vl ¥
LSTM LSTM
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I 1 |
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LSTM — LSTM
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r A
i input laver

Residuals | | ry ry - rrog rr

Estimate and Interpret Unknown Parameters ff: FHV: Weekday/weekend: Weather: Holidays

Fig. 6. Hybrid model architecture: two-step system using NYC taxi records

The right end side of Fig. 6 visualizes the two-step process of the coupled LR and LSTM. The input layer takes
the residual data and transmits the data into the Aidden layer at the feedforward step denoted as the straight-line arrows
in LSTM. Then, a two-layered LSTM expressed in the hidden layer combines the data with the weighted parameters
and bias values based on a basic arithmetic operation (e.g., multiplication and addition) and sends the driven values
to the output layer. In this layer, the fully connected (FC) layer is added to arrange the output results as a one-
dimensional structure, extracting the last output value. Lastly, using the mean squared error (MSE) function between
the output and target data given by the learning layer, LSTM is trained and updated iteratively through
backpropagation expressed as the dotted line arrows. The proposed structure is coded by TensorFlow developed by
Abadi et al. (2016). To compare the performance to different time-series models, the results of RMSE (Root Mean
Squared Error) and MAPE (Mean Absolute Percentage Error) are detailed in the following section.

1 T
RMSE = ?Z (r, — )2 (16)

t=1
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where 73 is the residuals at time ¢ sent from LR model, and #; is the predicted value by LSTM. T is the total length of
the test dataset (i.e., 165 days for the test set).

5. Model estimation results

This section examines the estimation and forecasting results for the pick-up demand. Specifically, the first section
discusses individual and collective effects of different factors through the parameters estimated by LR. The second
section then focuses on LSTM model validation, a sensitivity analysis of LR-LSTM, and the prediction results
conducted by the coupled model. Lastly, we examine the forecasting capability of our proposed integrated model,
compared to standard alone models such as regression, ARIMA, and LSTM.

5.1 Trip demand estimation: LR as Local Interpretable Model

The LR model estimates the regular patterns of the yellow taxi and FHV demand, and the results of LR are
presented in Table 4. When estimating the yellow taxi demand, the parameter estimates, associated with calendar
week, snowy day, holidays, and FHV trips are statistically significant. On the other hand, the estimated FHV demand
shows the statistical significance on the aforementioned coefficients as well as rainy day. In addition, the tested
variance inflation factor (VIF), a way of measuring multicollinearity, shows a low correlation between independent
variables. As shown in Sheather (2009), the generally acceptable range of VIF is less than 5.

According to Table 4, the coefficients corresponding to weekday display the positive sign, indicating that
customers are more likely to ride yellow taxis or FHV during the day. On the other hand, as the weekend approaches,
the pick-up demand volume of two modes decreases. The estimated day-specific coefficients with respect to Tuesday
and Saturday are eliminated due to the statical insignificance and the multicollinearity effect. The model-based
calibration findings reflect the expected characteristics of the current data set in Fig. 1(b). The weather conditions
affect the level of the taxi and ride-hailing service usage patterns, particularly under a snow event. The negative sign
associated with this parameter indicates that the utilization rate of the rides is lower than the regular day. Under the
rainy condition, this explanatory factor does not influence the pick-up volume of the taxi statistically. On the one hand,
this factor increases the pick-up volume of the ride-hailing services. This noticeable pattern illustrates that travellers
prefer to choose the convenient mobility (i.e., app-based ride services) and wait for the service in buildings without
being drenched in rain. The coefficients of FHV and yellow taxi can be determined by switching dependent variables
in LR. Both coefficients have the expected negative sign, indicating the inverse relationship with the dependent
variables used. This interesting finding explains the gradual decline of the yellow taxi demand, whereas FHV demand
follows the opposite pattern, and the numerical difference of the coefficients indicates how much the demand of two
modes would be changed when increasing the value of either FHV or yellow taxis.

In Table 4, the number of observations is 931 days ranging from 1/1/2015 to 7/21/2017. The goodness of fit
measure R? denotes that the regression model can explain the variation for the response variable, in terms of an
approximate rate at about 57% and 37%. In order to validate if the added predictors truly enhance the interpretability
of the model, the adjusted R? is measured at 0.565 and 0.366. As the LR model can explain the yellow taxi demand
better, we employ the estimated coefficients with respect to the taxi, forecasting the linear pattern. Overall, LR derives
the extrapolation results of the yellow taxi volume and then obtains the residuals between the observed data and the
estimated results. The statistics and the shape of the residuals derived are plotted in Fig. 7 with the distributed residuals
quantified by py as the mean of residuals and the variance as oy. As noticed in the figure, the distribution of the
residuals generally follows a bell-shaped curve similar to the normal distribution.

Table 4.
Multivariate linear regression (LR) estimation results for yellow taxi and FHV demand
Dependent Variable: yellow taxi Dependent Variable: FHV
. Coefficients . Coefficients
Predictors (t-statistics) VIF Predictors (t-statistics) VIF
Constant 0.7640 (64.337) - Constant 0.9094 (30.625) -
Monday -0.0362 (-2.885) 1.786 Monday -0.0949 (-5.720) 1.343
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Tuesday 0.0518 (4.204) 1.720 Tuesday - -
Wednesday 0.0951 (7.708) 1.725 Wednesday 0.0663 (4.011) 1.331
Thursday 0.1515 (7.708) 1.729 Thursday 0.1415 (8.375) 1.392
Friday 0.1445 (11.643) 1.744 Friday 0.1535 (9.169) 1.367
Saturday - - Saturday - -
Sunday -0.1754 (-13.970) 1.783 Sunday -0.2367 (-13.347) 1.534
Snow -0.8224 (-10.047) 1.021 Snow -1.2091 (-9.089) 1.161
Rainy day - - Rainy day 0.2334 (-10.113) 1.158
Holiday -0.3401 (-14.217) 1.058 Holiday -0.3857 (4.804) 1.119
FHV -0.3289 (-17.853) 1.155 Yellow Taxi -0.7628 (-17.763) 1.713
Goodness of fit (number of observations: 931 days) Goodness of fit (number of observations: 931 days)
R?(Adj. R®) 0.573 (0.569) R? (Adj. R?) 0.372 (0.366)
256 0.4
Yellow Taxi ) Residual
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Fig. 7. Yellow taxi residual distribution and measured residuals at each training day
5.2 Validation and prediction: LR-LSTM

Fig. 8(a) displays the learning process of the residual patterns and its evolution of the loss function employing
the validation dataset with different prediction time steps (e.g., “step 1” indicates the one-step ahead prediction that
forecasts the next one day). As noticed, the lowest error, RMSE, appears in the one-step short-term prediction (“step
17). In addition, the evolutionary error falls rapidly after 10 training epochs, showing a high convergence speed of the
model. Fig. 8(b) further performs the sensitivity analysis for the proposed LSTM model. The test set error measured
by RMSE gradually increases when the model predicts longer than the one-step forecasting period. The baseline of
RMSE observed in “step1” is 0.1129, and the seven-step “medium term” prediction denotes that the error increases
approximately 48% from the baseline.

Using the multivariate linear regression estimators and the residuals measured by LSTM, the number of trips
served by yellow taxis at Murray Hill in Manhattan is forecasted in Fig. 8(c). The test dataset covers the time period
from 7/22/2017 to 12/31/2017 (i.e., 165 days), predicting the following day. The predicted demand is plotted along
the y-axis as the normalized values with the look-ahead window of prediction on the x-axis. Specifically, Fig. 8(c)
describes the forecasts of the yellow taxi’s daily demand that follow the test pattern (i.e., true records) properly across
the entire time horizon. This proposed process can be applicable in predicting the demand of the FHV volume by
switching the identification of independent and dependent variables.

5.3 Model performance comparison

In this section we provide a comparison of the proposed model with the different time-series modeling
approaches under three different experiments predicting morning peak-hour volumes collected from 6AM to 9AM,
evening peak-hour volumes recorded from 4PM to 8PM, and daily volumes of yellow taxis. Evaluating the
performance errors (i.e., RMSE and MAPE), we examine the accuracy of LR-LSTM. Autoregressive integrated
moving average (ARIMA) and LSTM models are representative of the performance benchmark. The measured RMSE
and MAPE presented in Table 6 demonstrates the prediction capability of LR-LSTM. This experiment is prepared by



OO0~ WKW —

the hold-out strategy (Refacilzadeh et al., 2009). Using the training and validation dataset, hyperparameters of each
model were tuned in decreasing the error between the observed data and the estimated results.

We examine the performance of forecasting the daily volume of yellow taxis at first. According to the validation
result (i.e., 931 days), LR-LSTM displays the lowest RMSE and MAPE values compared to other candidates such
that the proposed model shows a better performance on the test dataset (i.e., 165 days); an improvement of 34.2%
w.r.t MLR, 19.5% w.r.t ARIMA, and 27.4% w.r.t univariate LSTM. On the other hand, the prediction results of
multivariate LSTM are built on the basis of not only the historical yellow taxi data but also the explanatory variables
such as weekday/weekend, holidays, and weather. It should be remarked that, although multivariate LSTM (M-LSTM)
has an RMSE 4% lower than the LR-LSTM result, M-LSTM does not carry a clear interpretable model structure
which prevents it from being used effectively in the active demand management application. In addition, the prediction
error of the proposed LR-LSTM model is 15.04% in terms of MAPE, which is consistently lower than the the other
models including ARIMA, univariate LSTM and within a similar range as multivariate LSTM.

In order to test whether the developed model is able to forecast well under possible oversaturated conditions (that
is passenger demand larger than supply), we also examine the predicted results of the morning and evening peak-hour
volumes in Table 6. For the morning peak-hour prediction, LR-LSTM presents the second-best performance on the
validation dataset (931 days) as well as on the test dataset (165 days). Interestingly, the multivariate LSTM structure
shows the best performance for the validation dataset, but the univariate LSTM model derives the lowest RMSE in
the test dataset. In other words, LR-LSTM can maintain the robustness in forecasting validation and test datasets of
the morning peak-hour volumes. However, due to the fact that the datasets still include a high variance and other
unobserved factors, LR-LSTM and benchmark models display high MAPE errors. For instance, multivariate linear
regression (MLR) indicates MAPE of 50%. For the evening peak-hour prediction, LR-LSTM on the other hand
demonstrates the robustness of predicting the evening peak-hour volumes and the measured RMSE and MAPE present
the second-best result on both datasets. The parameter configuration of studied models is listed as follows:

(a) MLR (Multivariate linear regression): The measured performance is only based on the extrapolation. The
prediction on the yellow taxi trips is implemented using the defined coefficients in Table 4 and datasets consisting
of the FHV trips, day of the week, weather, and holidays. Similarly, using coefficients estimated by the datasets
of the morning and evening peak-hour volumes of the medallion taxi, MLR forecasts the taxis demand and
proposes RMSE and MAPE shown in Table 6.

(b) ARIMA: To determine ARIMA model parameters for the morning and evening peak-hour, and the daily demand,
the autocorrelation function (ACF) and the partial autocorrelation function (PACF) proposed by Box et al. (2015)
are used to construct our ARIMA (2, 1, 1) model for the prediction of the daily volume. That is, two number of
lag observations (AR), one number of times called the degree of difference (I), and the one size of moving average
window (MA) are used in our experiment. The constructed ARIMA (2, 1, 1) model is represented as follows:

Ve = Vo1 + @1 (Ve-1 — Ye-2) + @u(Ve—z — ¥e—3) + B1(&¢—1) + constant (17)

where the predicted yellow taxi demand is calculated by three observed data, namely, y;_;, ¥;_,, and y;_3 with
the estimated parameters and constant; both a; and a, are the AR coefficients, and f5; is the MA coefficient. Also,
the term, €,_4, indicates the residuals between the observed data and the predicted result, y,_; — y;_1. Also, in
the same manner, the order of the ARIMA model is defined by the proposed method such that the order of ARIMA
to forecast the morning peak-hour demand follows ARIMA (2, 1, 3), and the defined configuration of ARIMA
for predicting the evening peak-hour is ARIMA (3, 1, 4). The detailed description of calibrated coefficients and
the goodness of fit are shown in Table 5. The model information-related criteria, AIC and BIC, informs that the
lowest values of AIC/BIC are found in the daily volume prediction of yellow taxis, showing the lowest values of
RMSE and MAPE in Table 6.

(c) LSTM: Two different input features are considered for LSTM. Univariate LSTM is trained by the previous time
steps of the yellow taxi only. For instance, the taxi demand for 7/20/2017 was only predicted by 7/19/2017 data.
Multivariate LSTM employs weekday/weekend, holiday, weather, and the historical time steps of the taxi to train
the model. Both LSTM model structures for predicting the daily taxi demand are configured as: 10-12 hidden
units are used, the learning rate is set to 0.001, the training epoch covers 500 steps, and the network structure is
one input layer, two hidden layers (LSTM), fully connected layer, and output layer. On the one hand, as the time
series data (i.e., morning and evening peak-hour volumes of yellow taxis) has the high variance, input data
structures of training univariate and multivariate LSTM are adjusted. In other words, instead of predicting the
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demand for 7/20/2017 by the previous day data, it is predicted by the seven days of the yellow taxi demand
(7/13/2017 to 7/19/2017). With the adjusted input data structure, we determine different configurations for both
LSTM models: 15-17 hidden units are employed, the training epoch is between 500 to 1000 steps, and the network
structure is similar to the previous network structure except for the number of stacked LSTM layers; 3-4 stacked
layers are examined.

Table S.
ARIMA estimation results for yellow taxi demand
ARIMA (2,1,1) ARIMA (2,1, 3) ARIMA (3,1, 4)
Predictors Estimated coefficients (t-statistics)
Constant -0.0003 (-1.841) -0.0002 (-9.416) -0.0001 (-2.222)
a4 (Auto Regressive) 0.8095 (26.452) 1.2386 (174.764) 0.8053 (5.058)
a, (Auto Regressive) -0.4119 (-13.521) -0.9895 (-108.529) -0.4519 (-2.274)
a5 (Auto Regressive) - - -0.4358 (-2.713)
L1 (Moving Average) -0.9706 (-87.491) -2.2235 (-142.36) -1.9283 (-11.299)
B, (Moving Average) - 2.1683 (54.43) 1.5394 (4.037)
B3 (Moving Average) - -0.9448 (-38.402) -0.3166 (-0.823)
B, (Moving Average) - - -0.2832 (-1.656)
Goodness of fit (number of observations: 931 days)
Fit Criteria Daily Morning Peak-hour Evening Peak-hour
AIC -1724.612 -869.926 -1189.187
BIC -1700.436 -836.079 -1145.670
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Table 6.
Comparisons of one-step ahead validation and prediction performance with respect to yellow taxi demand
Daily Validation Dataset (931 days) Test Dataset (165 days)
RMSE MAPE (%) RMSE MAPE (%)
MLR 0.0998 14.54 0.1715 24.03
ARIMA 0.1114 15.47 0.1404 19.52
Univariate LSTM 0.1110 17.52 0.1556 22.85
Multivariate LSTM 0.0738 9.77 0.1081 14.26
LR-LSTM 0.0620 8.69 0.1129 15.04
. Validation Dataset (931 days) Test Dataset (165 days)
Morning (6-94M) RMSE MAPE (%) RMSE MAPE (%)
MLR 0.1886 37.58 0.2058 50.63
ARIMA 0.1608 32.74 0.1791 46.67
Univariate LSTM 0.1480 29.25 0.1499 37.42
Multivariate LSTM 0.1304 22.82 0.1766 41.97
LR-LSTM 0.1478 29.57 0.1655 39.98
. Validation Dataset (931 days) Test Dataset (165 days)
Evening (4-8PM) RMSE MAPE (%) RMSE MAPE (%)
MLR 0.1240 22.21 0.1237 27.25
ARIMA 0.1272 22.73 0.1714 38.83
Univariate LSTM 0.1300 23.84 0.1233 27.14
Multivariate LSTM 0.1135 20.78 0.1217 27.10
LR-LSTM 0.1189 20.99 0.1228 27.31

6. Conclusions

There are many studies using machine learning models for estimating ridership trends. However, the lack of
ability, commonly observed in those data-fitting oriented models, of sensing and understanding the significantly
influential factors for transportation service demand could cause difficulties in constructing proper ADM policies and
decision tools. This paper proposes a hybrid modeling framework, LR-LSTM, to facilitate the planning effort for
balancing the utilization rates of the emerging FHV service and regular taxis. Our developed model formulation
integrates the multivariate linear regression (LR) and LSTM to forecast the daily and peak-hour taxi demand. With
different data sources being used as explanatory variables such as FHV, weekday/weekend, snow/rain, weather
conditions, and holidays, LR is employed to select the statistically important variables and interpret the correlation
between the variables. LSTM helps improve the prediction accuracy by capturing the variance that the extrapolation
model cannot measure.

Essentially, the proposed methodology shows the capability of maintaining the interpretability as well as
predictability, indicating the positive potential of achieving the effective active demand management (ADM) system
within a city-wide network. To our limited knowledge, this study represents the first integrated modeling effort of the
quota control applications between on-demand ride-hailing services and regular taxis, through a combination of the
econometric formulation with the deep learning structure. This methodology is validated based on the real-world
experiment obtained from New York City Taxi & Limousine Commission (NYC-TLC), particularly forecasting the
pick-up demand of the yellow taxi in Murray Hill, Manhattan. The results of RMSE and MAPE outperform the
multivariate linear regression, ARIMA, and univariate LSTM fed exclusively with historical records. With the well
calibrated LR-LSTM tool, we can examine different scenarios for policy analysis. For instance, if a policy starts
regulating the FHV pick-up demand in New York City, this approach can estimate the impact of the regulation within
the network. Overall, by setting up different FHV quota on different days, we can accomplish both system-wide goals
of reducing congestion as well as ensuring sufficient taxi utilization rates. More detailed future research along this
study can be built on the following premises in the current paper.

(1) A stepwise modeling framework could further refine coupled modeling systems to balance the usage level of the
yellow taxi demand and for-hire vehicle (FHV) in the coexisting environment with public transportation systems,
so that a proper utilization rate of multiple modes can be achieved.
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(2) This structure can further quantify the expected additional demand to be shifted to yellow taxi rides when a cap
is imposed for TNC in the real-world environment, and the city traffic management agency can eventually adapt
this approach to achieve fair and dynamic quota regulation during a special holiday or weather conditions, thus
distributing traffic volumes within the taxi service zones and reducing the likelihood of traffic accidents.

(3) This methodology could examine potential impact on introducing shared micro-mobility technologies (e.g., e-
scooters or e-bikes) within pedestrian infrastructure (Harwood, 2020), proposing a process to integrate other app-
based mobility services (i.e., FHV) or medallion taxis with the new mobility, particularly in a local community
in order to ensure users’ safety and accessibility for the mobility service (Pineda, 2019).

Other medium-term future research tasks include exploring additional factors associated with the demand of
yellow taxis or ride-hailing services. Particularly, taxi usage patterns recognized by many other explanatory variables
such as socio-demographic or the spatial characteristics should be examined by employing either survey-based or
social media-based travel behaviour data sets. Then, fusing multi-sourced data (Wang et al., 2019) to mitigate the
variance of the time series data is required. Furthermore, constructing different types of neural networks to interpret
the prediction results is interesting and beneficial. We can also better quantify the contribution of aforementioned
features to the forecasting, selecting critical variables (Ribeiro et al., 2016; Lundberg and Lee, 2017). As an example,
we could introduce logistic regression or discrete choice models to handle probabilities of utilizing yellow taxis or
ride-hailing services by individuals. This interpretable machine learning techniques could lead to an enhanced
conceptual modelling structure:

True demand = Interpretable trend pattern + Structure deviation + Seasonal factors + Random noise

Therefore, in terms of broader application of the proposed method, we also see other possibilities of quantifying
the impact related to new urban mobility policies, e.g., the regulation of fleet sizes dynamically using the frequency
of rides per day in a given time and space and the sustainability of deploying a specific number of vehicles within a
service area, as well as ensuring the accessibility of emerging technologies (e.g., shared micro-mobility or ride-hailing
services) through income-based payment plans (NACTO, 2019). This data driven analytics approach could shed some
light on understanding, modeling and systematically managing the relationship between emerging mobility and
existing services, and potentially lead to a more optimized vehicle routing and supply system through pre-trip
scheduling and on-line dispatching for autonomous vehicles (Shen et al., 2019; Mao et al., 2020).
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