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Abstract 1 
 2 
As app-based ride-hailing services have been widely adopted within existing traditional taxi markets, researchers have 3 
been devoted to understand the important factors that influence the demand of the new mobility. Econometric models 4 
(EMs) are mainly utilized to interpret the significant factors of the demand, and deep neural networks (DNNs) have 5 
been recently used to improve the forecasting performance by capturing complex patterns in the large datasets. 6 
However, to mitigate possible (induced) traffic congestion and balance utilization rates for the current taxi drivers, an 7 
effective strategy of proactively managing a quota system for both emerging services and regular taxis is still critically 8 
needed. This paper aims to systematically design an explainable deep learning model capable of assessing the quota 9 
system balancing the demand volumes between two modes. A two-stage interpretable machine learning modeling 10 
framework was developed by a linear regression (LR) model, coupled with a neural network layered by long short-11 
term memory (LSTM). The first stage investigates the correlation between the existing taxis and on-demand ride-12 
hailing services while controlling for other explanatory variables. The second stage fulfills the long short-term memory 13 
(LSTM) network structure, capturing the residuals from the first estimation stage in order to enhance the forecasting 14 
performance. The proposed stepwise modeling approach (LR-LSTM) forecasts the demand of taxi rides, and it is 15 
implemented in the application of pick-up demand prediction using New York City (NYC) taxi data. The experiment 16 
result indicates that the integrated model can capture the inter-relationships between existing taxis and ride-hailing 17 
services as well as identify the influence of additional factors, namely, the day of the week, weather, and holidays. 18 
Overall, this modeling approach can be applied to construct an effective active demand management (ADM) for the 19 
short-term period as well as a quota control strategy between on-demand ride-hailing services and traditional taxis. 20 
 21 
Keywords: On-demand ride hailing; taxi market; short-term demand forecasting; long short-term memory (LSTM); 22 
deep neural network (DNN); active demand management (ADM)  23 



1. Introduction 1 
 2 

The emergence of on-demand ride hailing services, such as Uber and Lyft, requires transportation planners to 3 
better design comprehensive transportation mobility solutions for informed transportation management and policy 4 
making. Uber reported a growth in nationwide market share from 9% to 29% whereas existing taxi services observed 5 
a decline in their market from 52% to 35% nationwide (Fischer, 2015). In response to the influx of on-demand services, 6 
for instance, New York City Rules announced a protective policy for yellow taxi and green taxi drivers in 2018, and 7 
the NYC Department of Transportation (DOT) imposed a congestion pricing, “a new electronic toll in place for drivers 8 
entering the busiest stretches of Manhattan” (Mckinley and Hu, 2019). In addition, Sanders and Guse (2019) reported 9 
that NYC imposed the new regulations to app-based companies and to protect hardworking drivers in Manhattan: at 10 
least 69% of the operating cars in Manhattan below 96th St. must serve a passenger, and each company needs to set 11 
up a fare rate based on the frequency of carrying passengers.  12 

As a result, the exponential growth of this mobility service and its impact on the transportation network lead to 13 
intensive research initiatives. In order to interpret the significant factors affecting the ride-hailing demand, diverse 14 
statistical modeling approaches were developed and introduced (Lavieri et al., 2017; Lam and Liu, 2018; Gerte et al., 15 
2018). Forecasting approaches were also conducted to optimize the traffic network, dispersing the fleet of the ride-16 
hailing service or yellow taxis within the network (Laptev et al., 2017; Chen et al., 2017; Zhao et al., 2019). 17 
Nevertheless, there are still challenges that need further exploration: 18 

 19 
(1) Since the numbers of FHV and yellow taxi drivers are closely correlated, if a cap is imposed for a transportation 20 

network company (TNC), what is the expected additional demand to be served by, or more precisely, to be shifted 21 
to, yellow taxi drivers?  22 

(2) Does the city traffic management agency need to apply a quota regulation during a rainy day or a snowy day?  23 
 24 
A concept of the active demand management (ADM) strategy (FHWA, 2012) with respect to on-demand transit 25 

has been incorporated to address similar challenges: proactively optimizing the usage of both taxies and on-demand 26 
mobility city-wide (e.g., imposing a day-dependent cap for one type of vehicle (Kamga et al., 2015)). In other words, 27 
we aim to understand the dynamics of the competing ride hailing services to mitigate the traffic congestion and 28 
maintain the balance of the coexisting system for drivers by analyzing the correlation of both emerging and existing 29 
mobility services as well as identifying their own explanatory variables under different situations such as day of the 30 
week, holiday, and weather.  31 

The mobility data obtained from NYC is employed as a demonstration use case. A hybrid model developed 32 
integrates both multivariate linear regression (LR) and long-short term memory (LSTM), a type of recurrent neural 33 
network (RNN). The analytical model in the first layer represents available time series data through a number of 34 
interpretable parameters.  In the second layer LSTM focuses on designing a data-driven approach to account for the 35 
hidden pattern from the first layer’s residuals. Combining the two-step process, LR-LSTM predicts taxi demand.   36 

The remainder of this paper is organized as follows. Section 2 presents the literature review examining prior 37 
research that explores statistical models and neural network structures. Section 3 describes a real-world data set, 38 
namely, New York City (NYC) Taxi Records. In section 4, a stepwise framework is proposed to tackle modeling 39 
challenges. The application of the integrated (or coupled) model is demonstrated using the real-world dataset, in 40 
section 5. Lastly, section 6 provides conclusion and discusses the estimation results and future work.  41 
 42 
2. Literature review and motivation  43 

 44 
This review section covers two aspects: (1) statistical approaches to understand demand for ride-hailing services 45 

and (2) recent modeling means using statistical modeling techniques as well as data-driven approaches. This is 46 
followed by a discussion of the motivations behind our proposed integrated approach.  47 
 48 
2.1. Statistical models for demand analysis of ride-hailing services  49 

 50 
Researchers used statistical models to calibrate unknown parameters and further interpret the factors influencing 51 

the taxi demand within the service area. In particular, Yang and Gonzales (2014) applied multivariate linear regression 52 
to estimate taxi trips by identifying significant explanatory variables, to name a few, population, age, education, 53 
income, transit accessibility time, and employment. Safikhani et al. (2017) designed the generalized spatial-temporal 54 
autoregressive (STAR) to understand spatial and temporal variations in taxi demand in New York City. Lavieri et al. 55 
(2017) utilized a multivariate count approach to study the number of trips generated in a specific zone and observed 56 



that different income groups preferred to use the services for different activity purposes. Recently, Lam and Liu (2018) 1 
used the discrete choice model to analyze the correlation between dynamic pricing and waiting time in densely 2 
populated areas of New York. Gerte et al. (2018) examined the demand for the ride hailing service using a panel based 3 
random effects model in order to capture both heteroscedasticity and autocorrelation effects. This study denoted that 4 
the highly educated young male group tended to use the ride hailing service frequently.  5 

Overall, the above-mentioned statistical modeling approaches have demonstrated their strength in explaining and 6 
predicting the ride-hailing service demand which allows planners to identify significant parameters for informed 7 
decision making. Regarding the use of other big data sources, social media data sets have been utilized in a variety of 8 
applications to capture individual activity patterns (Gu et al., 2018; Zhang et al., 2017; Hasnat and Hasan, 2018) and 9 
detect traffic incidents (Wang et al.,2016; Kuflik et al., 2017). On the other hand, using app-based data (i.e., multi-10 
sourced data with high variances in both location accuracy and time of travel), He and Shen (2015) and Wang et al. 11 
(2019) have proposed conceptual frameworks to estimate the impact of the disruptive mobility services on taxi markets.   12 

Nevertheless, the major challenge of statistical approaches is a lack of predictive accuracy, particularly under a 13 
complex data environment with different data sources (Altman et al., 1994; Sarle 1994; Paliwal and Kumar, 2009; 14 
Karlaftis and Vlahogianni, 2011). A number of case studies (Kumar et al., 2015; Al-Maqaleh et al., 2016; Golshani et 15 
al., 2018; Cui et al., 2018) demonstrated improved prediction accuracy by utilizing the neural network structures 16 
compared to statistical models.  17 

 18 
2.2. Hybrid approaches combining statistical models with deep neural networks (DNNs) 19 
 20 

We first focus on papers in the area of causal inference and prediction, as well as two popular DNN modeling 21 
tools using convolutional neural network (CNN) and long short-term memory (LSTM). CNN has demonstrated 22 
excellent capabilities in the visual data processing where its structure extracts the image features and classifies the 23 
images according to the extracted features (LeCun and Bengio, 1995). On the other hand, LSTM specializes in 24 
sequential data processing, and its structure stores significant information and forecasts the sequential data (Hochreiter 25 
and Schmidhuber, 1997).   26 

Recently, many studies started to integrate more statistically-oriented modeling features in a deep learning 27 
framework. For example, Park et al. (2016) applied Bayesian neural network (BNN) to examine the uncertainty of 28 
dependent variables and further interpreted the unknown coefficients in traffic demand prediction models. They used 29 
an extracted decision tree approach to provide significant explanatory variables based on a pedagogical rule extraction 30 
algorithm. A study by Ke et al. (2017) applied the random forest framework to select the exogenous variables, ranking 31 
these variables’ significance. Additionally, they examined the image intensity from map sequences of travel time rates 32 
using CNN and LSTM tools. Along this line, Laptev et al. (2017) utilized Bootstrap and Bayesian techniques with 33 
LSTM structure to detect abnormality of data and capture irregular patterns.  34 

In the traffic demand estimation area, a recent study by Chen et al. (2017) employed the ensemble learning 35 
approach with the RelifF algorithm to identify the important factors. As a result, they were able to explore ride-splitting 36 
behavior of on-demand ride services in real-world data sourced from DiDi. More recently, Zhao et al. (2019) examined 37 
heterogeneity in mode-switching behavior by proposing a more systematically defined interpretable machine learning 38 
approach. To classify the mode-switching behavior, the model-agnostic interpretation tools were used to study the 39 
insights on the switching behaviors.  40 

Overall, we observe two emerging research directions in the field of traffic demand modeling. First, researchers 41 
have devoted major efforts to develop hybrid modeling frameworks based on statistical and DNN approaches in order 42 
to improve the predictive performance. Second, many research teams have focused on developing interpretable models 43 
implemented by feature importance and data extraction algorithms to systematically explore the underlying traffic 44 
demand behavior and improve the lack of transparency observed in a nested non-linear structure (Samek et al., 2017; 45 
Gunning, 2017). Readers interested in the interpretable machine learning techniques can find more details in prior 46 
work (Ribeiro et al., 2016; Lipton, 2018; Molnar, 2020). However, the following challenges still need to be addressed: 47 
how to analyze the correlation of both emerging and existing mobility services as well as identify each mode pattern 48 
with demand-side factors (i.e., weather, holidays, and day of the week). In order to tackle the challenges, we propose 49 
a conceptual interpretable structural decomposition approach as follows: 50 
  51 

True demand = Linear explanatory components + Nonlinear pattern + Random fluctuations 52 
 53 

To calibrate the different components in this framework, a two-step process is adopted. In the first step the 54 
multivariate linear regression (LR) captures the primary linear components, and the estimated coefficients offer 55 



additional insights on each mobility pattern. The second step utilizes the forecasting capabilities of LSTM network to 1 
account for the residuals from the first step.  2 
3. Data description 3 
 4 

Multiple data sources are utilized in this study: New York City Taxi & Limousine Commission (NYC-TLC) 5 
dataset containing daily mobility demand patterns for the two modes (i.e., For-Hire Vehicles (FHVs) and yellow taxi), 6 
 weekday/weekend, holidays, and weather information available from National Climate Data Center (NCDC).  7 
 8 
3.1. New York City (NYC) taxi trip records 9 

 10 
The input dataset, NYC-TLC, covers both FHV and yellow taxi trip records collected from 2015 to 2017. In the 11 

yellow taxi records the available information includes the pick-up/drop-off events on weekday/weekend, the trip fare, 12 
payment type, location ID, and the number of passengers. In the FHV records only the pick-up/drop-off events and 13 
location ID are collected. To set up a fair comparison, we explored the data with an overlapping time period for pick-14 
up/drop-off events. The number of pick-up events is used to investigate the dynamic trip demand with respect to FHV 15 
and yellow taxi. The study was done in Murray Hill, Manhattan located in Manhattan below 96th Street, and it is one 16 
of the highest taxi pick-up locations: the annual average pick-up demand is approximately 5.7 million, and the total 17 
trips made are 17 million over the period of three years. 18 

Fig. 1 illustrates the volume of pick-ups and trends between yellow taxi and FHV over three years in Murray 19 
Hill, Manhattan. The land use of the study area shows a combination of residential and commercial districts. To be 20 
specific, Fig. 1(a) explains the proportion of the annual pick-up volume between the two modes from 2015 to 2017. 21 
In addition, Fig. 1(b) displays the weekly distribution of the pick-up volume between yellow taxi and FHV, where the 22 
overall demand gradually increases at the beginning of the week and tapers off as the weekend approaches. To further 23 
ensure the length of the data between two modes, we aggregate the event time series data in terms of the daily volume, 24 
with the day of the week as a binary indicator.  25 
 26 

 27 
Fig. 1. Illustrations of yellow taxi and FHV pick-ups for Murray Hill, Manhattan 28 

 29 
Fig. 2 clearly denotes a mode shifting trend between the yellow taxi and FHV where the transition has stabilized 30 

over the years. The percentage of the total trips and the level of usage of yellow taxis have gradually declined as the 31 
riders have significantly shifted their demand from yellow taxi to FHV as observed from Fig. 2(a). The total demand 32 
of both modes is in fact, very stable, indicating the ride-hailing service has not further induced new demand for the 33 
study area as shown in Fig. 2(b).  34 



 1 
Fig. 2. Shifts in pick-up demands between yellow taxi and FHV over three years 2 

 3 
3.2. Weather and holidays 4 
 5 

The prior study by Schneider (2015) and Guo et al. (2018) reported that the weather condition and holidays affect 6 
the usage level of yellow taxi and FHV. Accordingly, information collected by the National Climate Data Center 7 
(NCDC) is used in this study, which covers the daily average records of both precipitation (i.e., rain or melted snow) 8 
and snow in Central Park, Manhattan. Overall, there are 347 rainy days and 22 snowy days within the investigated 9 
years.  10 

In addition, holidays observed by the Federal Holiday calendar are identified in the input data such as New 11 
Year’s Day, Martin Luther King, Jr. Day, George Washington’s Birthday, Memorial Day, Independence Day, Labor 12 
Day, Columbus Day, Veterans Day, Thanksgiving Day, and Christmas Day.   13 
 14 
4. Conceptual modeling framework and the stepwise procedure 15 
 16 

This section describes the system control architecture and the process of the stepwise modeling framework. The 17 
architecture is explained in terms of its structural equation formula, and the stepwise process is addressed through 18 
multivariate linear regression (LR) and Long Short-term Memory (LSTM) neural network.   19 
 20 
4.1. System architecture for predicting yellow taxi demand from FHV quota to be controlled 21 
 22 

The problem aims to predict the potential trip demand of yellow taxis during the day, with FHV volume as the 23 
exogenous input variable, as a function of the other factors such as weather, holidays, day of the week. Fig. 3 displays 24 
the architecture composed of the control variables, prediction, and a stepwise approach using two steps (i.e., LR-25 
LSTM). More specifically, we can consider the following use case of the proposed model: the transportation authority 26 
plans possible quota for FHV demand, in an effort to create a fair and equitable environment for yellow taxi drivers 27 
with reasonable drivers’ earning levels. 28 

On day 𝑡 − 1, one can use the stepwise model to first estimate yellow taxi demand, briefly denoted as 𝑦𝑡−1, using 29 
the determined conditions, via LR and then integrate the estimation results with the predicted residuals 𝑟̂𝑡 from LSTM, 30 
finally forecasting the total pick-up volumes served by yellow taxi, 𝑦̂𝑡, at different conditions. On the next day 𝑡, we 31 
compare the ground truth values with predicted values from our model and then update parameters of LSTM for 32 
further use. By setting up a different FHV quota on different days, we hope to meet both system-wide goals of reducing 33 
congestion as well as ensuring sufficient taxi utilization rates.  34 
 35 
Table 1. 36 
Comparison of characteristics of LR-LSTM with that of different time series models and regression 37 

Model Predictor Prediction Quota control Level of Interpretability Prediction Accuracy 

ARIMA y𝑡−1 ŷ𝑡 No Medium Medium to High 

LSTM y𝑡−1 ŷ𝑡 No Low High 

Regression X𝑡  ŷ𝑡 Yes High Low to Middle 

LR-LSTM X𝑡 , 𝑟𝑡−1 ŷ𝑡, 𝑟̂𝑡  Yes High, presented in 5.1 High, presented in 5.2 



 1 
Fig. 3. Illustration of system control architecture to estimate and predict yellow taxi pick-ups 2 

  3 
One can further extend this methodology to design personalized incentive schemes in future research, while this 4 

study still focuses on controlling the total of FHV or yellow taxi as individual parties. On the other hand, unlike time- 5 
series models (e.g., Autoregressive integrated moving average (ARIMA) or long short-term memory (LSTM)) using 6 
the historical (correlated) records of yellow taxi as only input data to predict the (unknown) yellow taxi demand, our 7 
proposed model seamlessly adds external variables for quota control. Table 1 compares the characteristics of the above 8 
models. The stepwise framework starting from Step I, the multivariate linear regression to Step II, the recurrent neural 9 
network (RNN) – LSTM is written as follows:  10 
 11 

 Step I: 𝑦𝑡 =   𝛽𝐗𝑡
⊺   

 Step II: 𝑟̂𝑡 =   G(𝜣; 𝑦𝑡−1 − 𝛽𝐗𝑡−1
⊺ ) 

(1) 

 

 Prediction: 𝑦̂𝑡 =  𝛽𝐗𝑡
⊺ + 𝑟̂𝑡  

 12 
The linearity between trip records of demand 𝑦 and explanatory coefficients 𝛽  is captured by (𝛽𝐗⊺), and the 13 

residuals 𝑟𝑡−1=(𝑦𝑡−1 − 𝛽𝐗𝑡−1
⊺ ) are fed forward in the residual LSTM function G(∙) to model the nonlinearity effect 14 

using the neural network parameters 𝜣. By utilizing both linear and neural network components of 𝛽 and 𝜣, we can 15 
predict the demand of yellow taxi. 16 

Fig. 4 describes the sequential process of Eq. (1) with more details in the following subsection. 17 
 18 

 19 
Fig. 4. Stepwise calibration process using LR-LSTM modeling 20 

 21 
4.2 Multivariate linear regression for capturing correlations: LR  22 

 23 
To determine the linear correlation between the two modes and the demand-side factors, we now address the 24 

pursuit with the regression model, as shown in Eq. (2): 25 
 26 

 𝑦̂𝑛×1 =  𝐗𝑛×𝑝𝛽̂𝑝×1 = [

1 X1,1 X1,2

1 X2,1 X2,2
⋯

X1,𝑝−1

X2,𝑝−1

⋮ ⋱ ⋮
1 X𝑛,1 X𝑛,2 ⋯ X𝑛,𝑝−1

] ∙

[
 
 
 
 
𝛽̂0

𝛽̂1

⋮
𝛽̂𝑝]

 
 
 
 

  (2) 



𝑦̂𝑛×1 is the computed trip demand of the yellow taxi and 𝑛 is the total number of measurements. The matrix 1 
𝐗𝑛×𝑝 indicates the explanatory variables: constant, the actual pick-up volumes of FHV, weekday/weekend, weather, 2 

and holidays. 𝑝 denotes the number of explanatory variables, and 𝛽̂𝑝×1 is the calibrated coefficients corresponding to 3 
the independent variables.  4 

The ordinary least squares (OLS) method is utilized to calibrate the coefficients: 𝛽̂𝑝×1 = (𝐗𝑛×𝑝
⊺ ⋅ 𝐗𝑛×𝑝)

−1
𝐗𝑛×𝑝 ⋅5 

𝑦𝑛×1. The residuals 𝑟𝑛×1 between the estimated demand from OLS and the actual demand are calculated as follows, 6 
and LSTM extracts possible nonlinear trends of the residuals to improve the predictive accuracy (Goel and Banerjee, 7 
2017).  8 

 𝑟𝑛×1 = 𝑦𝑛×1 −  𝑦̂𝑛×1 (3) 

 9 
4.3 Residual LSTM for capturing non-linear patterns  10 
  11 

This subsection describes LSTM-NN approach (Hochreiter and Schmidhuber, 1997) as an extension version of 12 
RNN (Rumelhart et al., 1988), after introducing the principle of RNN and its limitation. Then, the residual LSTM is 13 
introduced within a computational graph (CG) framework (Olah, 2015; Baydin et al., 2018; Wu et al., 2018; Sun et 14 
al., 2019).   15 
 16 
4.3.1 Recurrent neural network (RNN)  17 
  18 

RNN can be essentially viewed as a non-linear optimization model to minimize the loss function in Eq. (4), 19 
where the residual term defined in Eq. (3) follows time dependent variables.  20 

 21 

 min 𝐿𝑡 = min ∑(𝑟𝑡 − 𝑟̂𝑡)
2

𝑇

𝑡=1

   (4) 

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑟ℎ𝑟𝑡−1 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)   (5) 

   

 𝑟̂𝑡 = 𝑊ℎ𝑟̂ℎ𝑡 + 𝑏ℎ   (6) 

 22 
The defined function 𝑡𝑎𝑛ℎ(∙) in Eq. (5) is key to capture non-linear patterns, and Eq. (6) can be refined by 23 

different structural forms based on specific tasks (e.g., classification or regression). The parameters, 𝑊𝑟ℎ, 𝑊ℎℎ, and 24 
𝑊ℎ𝑟̂ are applied at every time step and are shared in the entire structure of RNN. Table 2 lists the required components 25 
with definitions at time step 𝑡. The above optimization model is numerically solved by using the gradient descent 26 
algorithm. As discussed in the machine learning community, long data sequences in RNN architecture could lead to 27 
the issue of vanishing gradients for the information of updated parameters. That is, if the updated parameters are 28 
fractional values, the carried gradients from the long sequence become insignificant. In order to address this issue, the 29 
long short-term memory (LSTM) is implemented in this study (Hochreiter and Schmidhuber, 1997). 30 
 31 
Table 2.  32 
Definitions of parameters and variables for RNN components 33 

RNN at time step t Parameters Definition 

Neural Network (NN) parameters to be 

estimated 

𝑊𝑟ℎ Weight from input layer to hidden state 

𝑊ℎℎ Weight from previous hidden to current hidden state 

𝑊ℎ𝑟̂ Weight from hidden state to output 

𝑏ℎ Bias at hidden state 

𝑏𝑟̂ Bias at output 

Variables 

𝑟𝑡−1 Input variable (Residuals from LR) 

ℎ𝑡−1 Hidden variable from the previous time step, t-1 

ℎ𝑡 Hidden variable at the current time step, t 

𝑟̂𝑡 Output variable (Prediction) 

Composite function 𝑟̂𝑡 = 𝑊ℎ𝑟̂ℎ𝑡 + 𝑏𝑟̂  

 34 
 35 
 36 



4.3.2 Long short-term memory (LSTM)  1 
  2 

A typical LSTM model consists of four gates (i.e., input, forget, output, and external input gates). The chained 3 
structure across the gates transmits not only a hidden state ℎ𝑡 but also previous cell 𝑠𝑡. The shared information of the 4 
hidden state and cell state can overcome the vanishing gradient descent effects; the detailed features of LSTM are 5 
explained in Olah (2015) and Goodfellow et al. (2016), and the definition of each parameter used is shown in Table 6 
3.  7 

In brief, the first step starts from the forget gate 𝑓𝑡 helping to remove the unnecessary information by the sigmoid 8 
function 𝜎(∙), ranging from 0 to 1.  9 
 10 

 𝑓𝑡 =  𝜎(𝑏𝑓 + 𝑊𝑟𝑓𝑟𝑡−1 + 𝑊𝑓𝑓ℎ𝑡−1) (7)  

 11 
where 𝑏𝑓 is the forget gate bias term. 𝑊𝑟𝑓 and 𝑊𝑓𝑓 are weights, ℎ𝑡−1 is the previous hidden state, and 𝑟𝑡−1 is the time 12 
series data at current step 𝑡 − 1, defined in Eq. (3) from the LR model. The second step updates and decides the new 13 
information to be stored in the cell state through the input gate 𝑖𝑡 and the external input gate 𝑔𝑡.  14 
 15 

 𝑖𝑡 = 𝜎(𝑏𝑖 + 𝑊𝑟𝑖𝑟𝑡−1 + 𝑊𝑖𝑖ℎ𝑡−1) (8) 

 
 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑏𝑔 + 𝑊𝑟𝑔𝑟𝑡−1 + 𝑊𝑔𝑔ℎ𝑡−1) 

 

(9) 

  16 
The input gate 𝑖𝑡 determines a gating value ranging from 0 to 1, and a value of 1 means the input information 17 

will be fully stored. 𝑡𝑎𝑛ℎ(∙) generates a vector of  new candidate  values between -1 and 1 guiding the extent of 18 
updating the weights in Eq. (7) and Eq. (8). The multiplication of the input gate 𝑖𝑡 and the external gate 𝑔𝑡 identifies 19 
new significant information, storing it in the cell state, and the third step in Eq. (10) updates the old cell state. 20 
 21 

 𝑠𝑡 = 𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡  (10)  

 22 
Both 𝑠𝑡 and 𝑠𝑡−1 denote new and old cell states produced, and ⊙ is the Hadamard product, the element-wise 23 

products of vectors, matrices, or tensors. The final step is proceeded by the output gate 𝑜𝑡. 24 
 25 

 𝑜𝑡 =  𝜎(𝑏𝑜 + 𝑊𝑟𝑜𝑟𝑡−1 + 𝑊𝑜𝑜ℎ𝑡−1)  (11) 

 26 
 ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑠𝑡)  (12) 

  27 
𝑜𝑡 and ℎ𝑡 are the result of the output gate and a hidden state. Finally, a regression formula defined as the product 28 

of the parameter 𝑊ℎ𝑟̂ and the hidden state ℎ𝑡 with bias term 𝑏𝑟̂ measures the residual 𝑟̂𝑡: 29 
 30 

 𝑟̂𝑡 = 𝑊ℎ𝑟̂ℎ𝑡 + 𝑏𝑟̂  (13) 

 31 
In order to compute the approximate residuals, the nonlinear optimization function applied in LSTM is utilized 32 

as follows: 33 

 min 𝐿𝑡  = ∑((𝑊ℎ𝑟̂(𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡)) + 𝑏𝑟̂) − 𝑟𝑡)
2

𝑇

𝑡=1

 (14) 

     34 
Eq. (14) is the objective function subject to Eqs. (7) to (13) and LSTM neural network parameters are adjusted 35 

to minimize the loss 𝐿𝑡. The adjustment process is proceeded by the Adam optimizer, the gradient-based stochastic 36 
optimization algorithm proposed by Kingma and Ba (2014) with improved computational efficiency for handling a 37 
large data set and parameters. The estimating procedure of the neural network parameters conducts the feedforward 38 
and backward propagation process. A computational graph (CG) is shown in Fig. 5 to illustrate the process in LSTM 39 
in which a feedforward step measures the residuals using the defined functions composed of weights and bias, and a 40 
backward propagation step minimizes the loss between the computed residuals and the actual residuals by adjusting 41 
the parameters.  42 

 43 



 1 
Fig. 5. Illustration of inner LSTM structure: feedforward and backward propagation 2 

 3 
Table 3.  4 
Definitions of parameters and variables for LSTM components 5 

LSTM at time step t Terms Definition 

Neural Network (NN) parameters 𝜣 to 

be estimated 

𝑊𝑟𝑓 Weight from input layer to forget gate 

𝑊𝑓𝑓 Weight from previous forget gate to current forget gate 

𝑊𝑟𝑖 Weight from input to input layer gate 

𝑊𝑖𝑖 Weight from previous input gate to current input gate 

𝑊𝑟𝑔 Weight from input to external input gate 

𝑊𝑔𝑔 Weight from previous external gate to current external gate 

𝑊𝑟𝑜 Weight from input to output gate 

𝑊𝑜𝑜 Weight from previous output gate to current output gate 

𝑊ℎ𝑟̂ Weight from hidden state to output 

𝑏𝑓 Bias at forget gate 

𝑏𝑖 Bias at input gate 

𝑏𝑔 Bias at external input gate 

𝑏𝑜 Bias at output gate 

𝑏𝑟̂ Bias at output 

Variables 

𝑟𝑡−1 Input variable (Residuals from LR) 

ℎ𝑡−1 Hidden variable from the previous time step, t-1 

ℎ𝑡 Hidden variable at the current time step, t 

𝑠𝑡−1 Cell variable from the previous time step, t-1 

𝑠𝑡 Cell variable at the current time step, t 

𝑟̂𝑡 Output variable (Prediction) 

Composite functions 𝑟̂𝑡 = 𝑊ℎ𝑟̂(𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡)) + 𝑏𝑟̂  

 6 
4.4 Integrated model on trip demand forecasting: LR-LSTM 7 
  8 

Now we start examining the proposed integrated model LR-LSTM. The linear regression results explain the 9 
linearity pattern from variables (i.e., day of the week, holiday, weather, and FHV) so that the pattern learned from the 10 
model can help capture the proportional trend on two modes. The residual LSTM generates the unparameterized 11 
function to handle the left-over residuals. The mathematical form of the coupled architecture of forecasting the demand 12 
is written as: 13 



 1 
 𝑦̂𝑡 = 𝛽̂𝐗𝑡

⊺ + 𝑊ℎ𝑟̂(𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡)) + 𝑏𝑟̂ (15) 

 2 
That is, the yellow taxi demand is now estimated by FHV, and the other explanatory variables, together with the 3 

predicted residuals. This integrated model can use the regression model to control the pick-up volume of FHV to 4 
balance the demand for yellow taxis. Also, the low prediction results caused by traditional extrapolation method can 5 
be improved by the residual-oriented model.  6 

Please note that, the input data used for estimating the trip demand is composed of binary variables such as 7 
weekday, weekend, and holiday, and the rest of the variables (i.e., FHV, yellow taxi, precipitation, and snow) are 8 
continuous, with FHV and yellow taxi values being normalized. In addition, to test the integrated model, the entire 9 
dataset is split into the training data, the validation data, and test data as shown in Fig. 6. Using 800 days (85%) out 10 
of 931 days, the hyperparameters used in LSTM are tuned. Then, the underlying hyperparameters are determined 11 
based on the validation experiments shown in Eq. (14); the number of hidden units used was 10 to 12, the selected 12 
batch size was 10, the number of iteration times, training epoch, was up to 500, the learning rate of the Adam 13 
optimization was 0.001, and the input dimension was 8 (i.e., weekday/weekend and the prior pickup volume residual). 14 
It should be noted that if another set of explainable data is available for the model every day, then we re-execute the 15 
tuning process and updating the hyperparameters with the corresponding data-receiving frequency.    16 
 17 

 18 
Fig. 6. Hybrid model architecture: two-step system using NYC taxi records  19 

 20 
The right end side of Fig. 6 visualizes the two-step process of the coupled LR and LSTM. The input layer takes 21 

the residual data and transmits the data into the hidden layer at the feedforward step denoted as the straight-line arrows 22 
in LSTM. Then, a two-layered LSTM expressed in the hidden layer combines the data with the weighted parameters 23 
and bias values based on a basic arithmetic operation (e.g., multiplication and addition) and sends the driven values 24 
to the output layer. In this layer, the fully connected (FC) layer is added to arrange the output results as a one-25 
dimensional structure, extracting the last output value. Lastly, using the mean squared error (MSE) function between 26 
the output and target data given by the learning layer, LSTM is trained and updated iteratively through 27 
backpropagation expressed as the dotted line arrows. The proposed structure is coded by TensorFlow developed by 28 
Abadi et al. (2016). To compare the performance to different time-series models, the results of RMSE (Root Mean 29 
Squared Error) and MAPE (Mean Absolute Percentage Error) are detailed in the following section. 30 

 31 

 RMSE =  √
1

𝑇
∑ (𝑟𝑡 − 𝑟̂𝑡)

2
𝑇

𝑡=1
 (16) 



 MAPE =
1

𝑇
∑

|𝑟𝑡 − 𝑟̂𝑡|

𝑟𝑡

𝑇

𝑡=1

× 100 

 1 
where 𝑟𝑡 is the residuals at time 𝑡 sent from LR model, and 𝑟̂𝑡 is the predicted value by LSTM. 𝑇 is the total length of 2 
the test dataset (i.e., 165 days for the test set).  3 
 4 
5. Model estimation results 5 
 6 

This section examines the estimation and forecasting results for the pick-up demand. Specifically, the first section 7 
discusses individual and collective effects of different factors through the parameters estimated by LR. The second 8 
section then focuses on LSTM model validation, a sensitivity analysis of LR-LSTM, and the prediction results 9 
conducted by the coupled model. Lastly, we examine the forecasting capability of our proposed integrated model, 10 
compared to standard alone models such as regression, ARIMA, and LSTM.       11 
 12 
5.1 Trip demand estimation: LR as Local Interpretable Model 13 
 14 

The LR model estimates the regular patterns of the yellow taxi and FHV demand, and the results of LR are 15 
presented in Table 4. When estimating the yellow taxi demand, the parameter estimates, associated with calendar 16 
week, snowy day, holidays, and FHV trips are statistically significant. On the other hand, the estimated FHV demand 17 
shows the statistical significance on the aforementioned coefficients as well as rainy day. In addition, the tested 18 
variance inflation factor (VIF), a way of measuring multicollinearity, shows a low correlation between independent 19 
variables. As shown in Sheather (2009), the generally acceptable range of VIF is less than 5.  20 

According to Table 4, the coefficients corresponding to weekday display the positive sign, indicating that 21 
customers are more likely to ride yellow taxis or FHV during the day. On the other hand, as the weekend approaches, 22 
the pick-up demand volume of two modes decreases. The estimated day-specific coefficients with respect to Tuesday 23 
and Saturday are eliminated due to the statical insignificance and the multicollinearity effect. The model-based 24 
calibration findings reflect the expected characteristics of the current data set in Fig. 1(b). The weather conditions 25 
affect the level of the taxi and ride-hailing service usage patterns, particularly under a snow event. The negative sign 26 
associated with this parameter indicates that the utilization rate of the rides is lower than the regular day. Under the 27 
rainy condition, this explanatory factor does not influence the pick-up volume of the taxi statistically. On the one hand, 28 
this factor increases the pick-up volume of the ride-hailing services. This noticeable pattern illustrates that travellers 29 
prefer to choose the convenient mobility (i.e., app-based ride services) and wait for the service in buildings without 30 
being drenched in rain. The coefficients of FHV and yellow taxi can be determined by switching dependent variables 31 
in LR. Both coefficients have the expected negative sign, indicating the inverse relationship with the dependent 32 
variables used. This interesting finding explains the gradual decline of the yellow taxi demand, whereas FHV demand 33 
follows the opposite pattern, and the numerical difference of the coefficients indicates how much the demand of two 34 
modes would be changed when increasing the value of either FHV or yellow taxis. 35 

In Table 4, the number of observations is 931 days ranging from 1/1/2015 to 7/21/2017. The goodness of fit 36 
measure 𝑅2  denotes that the regression model can explain the variation for the response variable, in terms of an 37 
approximate rate at about 57% and 37%. In order to validate if the added predictors truly enhance the interpretability 38 
of the model, the adjusted 𝑅2 is measured at 0.565 and 0.366. As the LR model can explain the yellow taxi demand 39 
better, we employ the estimated coefficients with respect to the taxi, forecasting the linear pattern. Overall, LR derives 40 
the extrapolation results of the yellow taxi volume and then obtains the residuals between the observed data and the 41 
estimated results. The statistics and the shape of the residuals derived are plotted in Fig. 7 with the distributed residuals 42 
quantified by 𝜇𝑌 as the mean of residuals and the variance as 𝜎𝑌. As noticed in the figure, the distribution of the 43 
residuals generally follows a bell-shaped curve similar to the normal distribution. 44 
 45 
Table 4.  46 
Multivariate linear regression (LR) estimation results for yellow taxi and FHV demand 47 

Dependent Variable: yellow taxi Dependent Variable: FHV 

Predictors 
Coefficients 

(t-statistics) 
VIF Predictors 

Coefficients 

(t-statistics) 
VIF 

Constant 0.7640 (64.337) - Constant 0.9094 (30.625) - 

Monday -0.0362 (-2.885) 1.786 Monday -0.0949 (-5.720) 1.343 



 1 

 2 
Fig. 7. Yellow taxi residual distribution and measured residuals at each training day 3 

 4 
5.2 Validation and prediction: LR-LSTM 5 
  6 

Fig. 8(a) displays the learning process of the residual patterns and its evolution of the loss function employing 7 
the validation dataset with different prediction time steps (e.g., “step 1” indicates the one-step ahead prediction that 8 
forecasts the next one day). As noticed, the lowest error, RMSE, appears in the one-step short-term prediction (“step 9 
1”). In addition, the evolutionary error falls rapidly after 10 training epochs, showing a high convergence speed of the 10 
model. Fig. 8(b) further performs the sensitivity analysis for the proposed LSTM model. The test set error measured 11 
by RMSE gradually increases when the model predicts longer than the one-step forecasting period. The baseline of 12 
RMSE observed in “step1” is 0.1129, and the seven-step “medium term” prediction denotes that the error increases 13 
approximately 48% from the baseline. 14 

Using the multivariate linear regression estimators and the residuals measured by LSTM, the number of trips 15 
served by yellow taxis at Murray Hill in Manhattan is forecasted in Fig. 8(c). The test dataset covers the time period 16 
from 7/22/2017 to 12/31/2017 (i.e., 165 days), predicting the following day. The predicted demand is plotted along 17 
the y-axis as the normalized values with the look-ahead window of prediction on the x-axis. Specifically, Fig. 8(c) 18 
describes the forecasts of the yellow taxi’s daily demand that follow the test pattern (i.e., true records) properly across 19 
the entire time horizon. This proposed process can be applicable in predicting the demand of the FHV volume by 20 
switching the identification of independent and dependent variables. 21 
 22 
5.3 Model performance comparison 23 
 24 

In this section we provide a comparison of the proposed model with the different time-series modeling 25 
approaches under three different experiments predicting morning peak-hour volumes collected from 6AM to 9AM, 26 
evening peak-hour volumes recorded from 4PM to 8PM, and daily volumes of yellow taxis. Evaluating the 27 
performance errors (i.e., RMSE and MAPE), we examine the accuracy of LR-LSTM. Autoregressive integrated 28 
moving average (ARIMA) and LSTM models are representative of the performance benchmark. The measured RMSE 29 
and MAPE presented in Table 6 demonstrates the prediction capability of LR-LSTM. This experiment is prepared by 30 

Tuesday 0.0518 (4.204) 1.720 Tuesday - - 

Wednesday 0.0951 (7.708) 1.725 Wednesday 0.0663 (4.011) 1.331 

Thursday 0.1515 (7.708) 1.729 Thursday 0.1415 (8.375) 1.392 

Friday 0.1445 (11.643) 1.744 Friday 0.1535 (9.169) 1.367 

Saturday - - Saturday - - 

Sunday -0.1754 (-13.970) 1.783 Sunday -0.2367 (-13.347) 1.534 

Snow -0.8224 (-10.047) 1.021 Snow -1.2091 (-9.089) 1.161 

Rainy day - - Rainy day 0.2334 (-10.113) 1.158 

Holiday -0.3401 (-14.217) 1.058 Holiday -0.3857 (4.804) 1.119 

FHV  -0.3289 (-17.853) 1.155 Yellow Taxi -0.7628 (-17.763) 1.713 

Goodness of fit (number of observations: 931 days) Goodness of fit (number of observations: 931 days) 

𝑅2(Adj. 𝑅2) 0.573 (0.569) 𝑅2 (Adj. 𝑅2) 0.372 (0.366) 



the hold-out strategy (Refaeilzadeh et al., 2009). Using the training and validation dataset, hyperparameters of each 1 
model were tuned in decreasing the error between the observed data and the estimated results.  2 

We examine the performance of forecasting the daily volume of yellow taxis at first. According to the validation 3 
result (i.e., 931 days), LR-LSTM displays the lowest RMSE and MAPE values compared to other candidates such 4 
that the proposed model shows a better performance on the test dataset (i.e., 165 days); an improvement of 34.2% 5 
w.r.t MLR, 19.5% w.r.t ARIMA, and 27.4% w.r.t univariate LSTM. On the other hand, the prediction results of 6 
multivariate LSTM are built on the basis of not only the historical yellow taxi data but also the explanatory variables 7 
such as weekday/weekend, holidays, and weather. It should be remarked that, although multivariate LSTM (M-LSTM) 8 
has an RMSE 4% lower than the LR-LSTM result, M-LSTM does not carry a clear interpretable model structure 9 
which prevents it from being used effectively in the active demand management application. In addition, the prediction 10 
error of the proposed LR-LSTM model is 15.04% in terms of MAPE, which is consistently lower than the the other 11 
models including ARIMA, univariate LSTM and within a similar range as multivariate LSTM.   12 

In order to test whether the developed model is able to forecast well under possible oversaturated conditions (that 13 
is passenger demand larger than supply), we also examine the predicted results of the morning and evening peak-hour 14 
volumes in Table 6. For the morning peak-hour prediction, LR-LSTM presents the second-best performance on the 15 
validation dataset (931 days) as well as on the test dataset (165 days). Interestingly, the multivariate LSTM structure 16 
shows the best performance for the validation dataset, but the univariate LSTM model derives the lowest RMSE in 17 
the test dataset. In other words, LR-LSTM can maintain the robustness in forecasting validation and test datasets of 18 
the morning peak-hour volumes. However, due to the fact that the datasets still include a high variance and other 19 
unobserved factors, LR-LSTM and benchmark models display high MAPE errors. For instance, multivariate linear 20 
regression (MLR) indicates MAPE of 50%. For the evening peak-hour prediction, LR-LSTM on the other hand 21 
demonstrates the robustness of predicting the evening peak-hour volumes and the measured RMSE and MAPE present 22 
the second-best result on both datasets. The parameter configuration of studied models is listed as follows:  23 

    24 
(a) MLR (Multivariate linear regression): The measured performance is only based on the extrapolation. The 25 

prediction on the yellow taxi trips is implemented using the defined coefficients in Table 4 and datasets consisting 26 
of the FHV trips, day of the week, weather, and holidays. Similarly, using coefficients estimated by the datasets 27 
of the morning and evening peak-hour volumes of the medallion taxi, MLR forecasts the taxis demand and 28 
proposes RMSE and MAPE shown in Table 6.  29 
 30 

(b) ARIMA: To determine ARIMA model parameters for the morning and evening peak-hour, and the daily demand, 31 
the autocorrelation function (ACF) and the partial autocorrelation function (PACF) proposed by Box et al. (2015) 32 
are used to construct our ARIMA (2, 1, 1) model for the prediction of the daily volume. That is, two number of 33 
lag observations (AR), one number of times called the degree of difference (I), and the one size of moving average 34 
window (MA) are used in our experiment. The constructed ARIMA (2, 1, 1) model is represented as follows: 35 
 36 

 ŷ𝑡 = 𝑦𝑡−1 + 𝛼1(𝑦𝑡−1 − 𝑦𝑡−2) + 𝛼2(𝑦𝑡−2 − 𝑦𝑡−3) + 𝛽1(𝜀𝑡−1) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (17) 

 37 
where the predicted yellow taxi demand is calculated by three observed data, namely, 𝑦𝑡−1, 𝑦𝑡−2, and 𝑦𝑡−3 with 38 
the estimated parameters and constant; both 𝛼1 and 𝛼2 are the AR coefficients, and 𝛽1 is the MA coefficient. Also, 39 
the term, 𝜀𝑡−1, indicates the residuals between the observed data and the predicted result, 𝑦𝑡−1 − 𝑦̂𝑡−1. Also, in 40 
the same manner, the order of the ARIMA model is defined by the proposed method such that the order of ARIMA 41 
to forecast the morning peak-hour demand follows ARIMA (2, 1, 3), and the defined configuration of ARIMA 42 
for predicting the evening peak-hour is ARIMA (3, 1, 4). The detailed description of calibrated coefficients and 43 
the goodness of fit are shown in Table 5. The model information-related criteria, AIC and BIC, informs that the 44 
lowest values of AIC/BIC are found in the daily volume prediction of yellow taxis, showing the lowest values of 45 
RMSE and MAPE in  Table 6.  46 

 47 
(c) LSTM: Two different input features are considered for LSTM. Univariate LSTM is trained by the previous time 48 

steps of the yellow taxi only. For instance, the taxi demand for 7/20/2017 was only predicted by 7/19/2017 data. 49 
Multivariate LSTM employs weekday/weekend, holiday, weather, and the historical time steps of the taxi to train 50 
the model. Both LSTM model structures for predicting the daily taxi demand are configured as: 10-12 hidden 51 
units are used, the learning rate is set to 0.001, the training epoch covers 500 steps, and the network structure is 52 
one input layer, two hidden layers (LSTM), fully connected layer, and output layer. On the one hand, as the time 53 
series data (i.e., morning and evening peak-hour volumes of yellow taxis) has the high variance, input data 54 
structures of training univariate and multivariate LSTM are adjusted. In other words, instead of predicting the 55 



demand for 7/20/2017 by the previous day data, it is predicted by the seven days of the yellow taxi demand 1 
(7/13/2017 to 7/19/2017). With the adjusted input data structure, we determine different configurations for both 2 
LSTM models: 15-17 hidden units are employed, the training epoch is between 500 to 1000 steps, and the network 3 
structure is similar to the previous network structure except for the number of stacked LSTM layers; 3-4 stacked 4 
layers are examined.  5 

 6 
Table 5.  7 
ARIMA estimation results for yellow taxi demand 8 

 9 

 10 
Fig. 8. Training validation, sensitivity analysis, and estimated prediction of yellow taxi pick-up demand 11 

 ARIMA (2, 1, 1) ARIMA (2, 1, 3)  ARIMA (3, 1, 4) 

Predictors Estimated coefficients (t-statistics) 

Constant -0.0003 (-1.841) -0.0002 (-9.416) -0.0001 (-2.222) 

𝛼1 (Auto Regressive) 0.8095 (26.452) 1.2386 (174.764) 0.8053 (5.058) 

𝛼2 (Auto Regressive) -0.4119 (-13.521) -0.9895 (-108.529) -0.4519 (-2.274) 

𝛼3 (Auto Regressive) - - -0.4358 (-2.713) 

𝛽1 (Moving Average) -0.9706 (-87.491) -2.2235 (-142.36) -1.9283 (-11.299) 

𝛽2 (Moving Average) - 2.1683 (54.43) 1.5394 (4.037) 

𝛽3 (Moving Average) - -0.9448 (-38.402) -0.3166 (-0.823) 

𝛽4 (Moving Average) - - -0.2832 (-1.656) 

 Goodness of fit (number of observations: 931 days) 

Fit Criteria Daily Morning Peak-hour Evening Peak-hour 

AIC -1724.612 -869.926 -1189.187 

BIC -1700.436 -836.079 -1145.670 



Table 6. 1 
Comparisons of one-step ahead validation and prediction performance with respect to yellow taxi demand 2 

Daily  
Validation Dataset (931 days) Test Dataset (165 days) 

RMSE MAPE (%) RMSE MAPE (%) 

MLR 0.0998 14.54 0.1715 24.03 

ARIMA 0.1114 15.47 0.1404 19.52 

Univariate LSTM 0.1110 17.52 0.1556 22.85 

Multivariate LSTM 0.0738 9.77 0.1081 14.26 

LR-LSTM 0.0620 8.69 0.1129 15.04 

Morning (6-9AM) 
Validation Dataset (931 days) Test Dataset (165 days) 

RMSE MAPE (%) RMSE MAPE (%) 

MLR 0.1886 37.58 0.2058 50.63 

ARIMA 0.1608 32.74 0.1791 46.67 

Univariate LSTM 0.1480 29.25 0.1499 37.42 

Multivariate LSTM 0.1304 22.82 0.1766 41.97 

LR-LSTM 0.1478 29.57 0.1655 39.98 

Evening (4-8PM) 
Validation Dataset (931 days) Test Dataset (165 days) 

RMSE MAPE (%) RMSE MAPE (%) 

MLR 0.1240 22.21 0.1237 27.25 

ARIMA 0.1272 22.73 0.1714 38.83 

Univariate LSTM 0.1300 23.84 0.1233 27.14 

Multivariate LSTM 0.1135 20.78 0.1217 27.10 

LR-LSTM 0.1189 20.99 0.1228 27.31 

 3 
6. Conclusions 4 

 5 
There are many studies using machine learning models for estimating ridership trends. However, the lack of 6 

ability, commonly observed in those data-fitting oriented models, of sensing and understanding the significantly 7 
influential factors for transportation service demand could cause difficulties in constructing proper ADM policies and 8 
decision tools. This paper proposes a hybrid modeling framework, LR-LSTM, to facilitate the planning effort for 9 
balancing the utilization rates of the emerging FHV service and regular taxis. Our developed model formulation 10 
integrates the multivariate linear regression (LR) and LSTM to forecast the daily and peak-hour taxi demand. With 11 
different data sources being used as explanatory variables such as FHV, weekday/weekend, snow/rain, weather 12 
conditions, and holidays, LR is employed to select the statistically important variables and interpret the correlation 13 
between the variables. LSTM helps improve the prediction accuracy by capturing the variance that the extrapolation 14 
model cannot measure.  15 

Essentially, the proposed methodology shows the capability of maintaining the interpretability as well as 16 
predictability, indicating the positive potential of achieving the effective active demand management (ADM) system 17 
within a city-wide network.  To our limited knowledge, this study represents the first integrated modeling effort of the 18 
quota control applications between on-demand ride-hailing services and regular taxis, through a combination of the 19 
econometric formulation with the deep learning structure. This methodology is validated based on the real-world 20 
experiment obtained from New York City Taxi & Limousine Commission (NYC-TLC), particularly forecasting the 21 
pick-up demand of the yellow taxi in Murray Hill, Manhattan. The results of RMSE and MAPE outperform the 22 
multivariate linear regression, ARIMA, and univariate LSTM fed exclusively with historical records. With the well 23 
calibrated LR-LSTM tool, we can examine different scenarios for policy analysis. For instance, if a policy starts 24 
regulating the FHV pick-up demand in New York City, this approach can estimate the impact of the regulation within 25 
the network.  Overall, by setting up different FHV quota on different days, we can accomplish both system-wide goals 26 
of reducing congestion as well as ensuring sufficient taxi utilization rates. More detailed future research along this 27 
study can be built on the following premises in the current paper. 28 

 29 
(1) A stepwise modeling framework could further refine coupled modeling systems to balance the usage level of the 30 

yellow taxi demand and for-hire vehicle (FHV) in the coexisting environment with public transportation systems, 31 
so that a proper utilization rate of multiple modes can be achieved.   32 



(2) This structure can further quantify the expected additional demand to be shifted to yellow taxi rides when a cap 1 
is imposed for TNC in the real-world environment, and the city traffic management agency can eventually adapt 2 
this approach to achieve fair and dynamic quota regulation during a special holiday or weather conditions, thus 3 
distributing traffic volumes within the taxi service zones and reducing the likelihood of traffic accidents. 4 

(3) This methodology could examine potential impact on introducing shared micro-mobility technologies (e.g., e-5 
scooters or e-bikes) within pedestrian infrastructure (Harwood, 2020), proposing a process to integrate other app-6 
based mobility services (i.e., FHV) or medallion taxis with the new mobility, particularly in a local community 7 
in order to ensure users’ safety and accessibility for the mobility service (Pineda, 2019).    8 
 9 
Other medium-term future research tasks include exploring additional factors associated with the demand of 10 

yellow taxis or ride-hailing services. Particularly, taxi usage patterns recognized by many other explanatory variables 11 
such as socio-demographic or the spatial characteristics should be examined by employing either survey-based or 12 
social media-based travel behaviour data sets. Then, fusing multi-sourced data (Wang et al., 2019) to mitigate the 13 
variance of the time series data is required. Furthermore, constructing different types of neural networks to interpret 14 
the prediction results is interesting and beneficial. We can also better quantify the contribution of aforementioned 15 
features to the forecasting, selecting critical variables (Ribeiro et al., 2016; Lundberg and Lee, 2017). As an example, 16 
we could introduce logistic regression or discrete choice models to handle probabilities of utilizing yellow taxis or 17 
ride-hailing services by individuals. This interpretable machine learning techniques could lead to an enhanced 18 
conceptual modelling structure:  19 
 20 

True demand = Interpretable trend pattern + Structure deviation + Seasonal factors + Random noise 21 
 22 
Therefore, in terms of broader application of the proposed method,  we also see other possibilities of quantifying 23 

the impact related to new urban mobility policies, e.g., the regulation of fleet sizes dynamically using the frequency 24 
of rides per day in a given time and space and the sustainability of deploying a specific number of vehicles within a 25 
service area, as well as ensuring the accessibility of emerging technologies (e.g., shared micro-mobility or ride-hailing 26 
services) through income-based payment plans (NACTO, 2019). This data driven analytics approach could shed some 27 
light on understanding, modeling and systematically managing the relationship between emerging mobility and 28 
existing services, and potentially lead to a more optimized vehicle routing and supply system through pre-trip 29 
scheduling and on-line dispatching for autonomous vehicles (Shen et al., 2019; Mao et al., 2020). 30 
 31 
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