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1.  Introduction

Dedicated architecture for artificial intelligence (AI) applica-
tions can overcome the limitations of the von Neumann archi-
tecture in accomplishing data-intensive tasks. Transistors are 
traditionally used as binary logic devices, whereas applica-
tions like perception, prediction, and decision making are 

inherently non-binary tasks. The von Neumann architecture 
also faces a memory access bottleneck, as separation between 
the memory unit and the computing unit necessitates the fre-
quent transfer of data between these two units, which results in 
significant delay and energy consumption [1, 2]. Due to these 
reasons, there has been a paradigm shift towards biologically-
inspired neuromorphic computing which requires developing 
devices and circuits that approximate physical components of 
the nervous system, e.g. the neuron and synapse, and embody 
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dynamical operations such as learning and real-time adapta-
tion (plasticity) [3].

Neurons are cells within the nervous system that receive 
signals from other neurons through their dendrites, perform 
non-linear processing on the signals in their soma, and trans-
mit the output to the next set of neurons through their axon 
[4]. A synapse is a structure in the nervous system that allows 
a neuron to pass an electrical signal (electrical current) or a 
chemical signal (neurotransmitters) to another neuron or to 
a target effector cell [5]. Synaptic plasticity is believed to 
be a major contributor to memory and learning. In response 
to increases or decreases in specific patterns of a synapse’s 
activity, the synapse strengthens or weakens over time. While 
plasticity is an ongoing topic of research in neuroscience, 
well-established hallmarks of plasticity operations include 
changes in the quantity of neurotransmitters, changes in the 
strength and number of receptors on the post-synaptic neuron, 
and changes in how rapidly the post-synaptic neuron responds 
to stimulation from the pre-synaptic neuron.

Spike-timing-dependent plasticity (STDP) has been identi-
fied as a key operation for learning and memory in the brain, 
as well as the basis for development and refinement of neural 
circuits during brain development. It is a biological process 
in which the strength of the synapse (synaptic weight) is cor-
related with the time differences between pre-synaptic neural 
signals and post-synaptic neural signals [6, 7]. This is com-
monly refered to as ‘cells that fire together, wire together’, 
[8] in which the synaptic connection between the neurons 
gets reinforced in the form of long-term potentiation (LTP) or 
weakened in the form of long-term depression (LTD).

Numerous types of emerging non-volatile memory devices 
are being studied as artifical neurons for low-power comput-
ing elements and synapses as adaptive memory elements [9]. 
So far, most research in this area has focused on technologies 
such as resistive random access memory (RRAM) [10, 11], 
phase change memory [9, 12], and conductive-bridge RAM 
(CBRAM) [13]. For example, complex plasticity effects 
have been physically demonstrated in CBRAM devices [14, 
15] and used for nanodevice-powered learning architectures 
[16, 17]. Recently, there has been significant interest in fully 
implementing plasticity operations in magnetic random access 
memory (MRAM) systems based on magnetic tunnel junc-
tion (MTJ) devices. Magnetic devices have many properties 
similar to the neurons and synapses of the brain, such as low-
energy [18] and stochastic switching [19], nonvolatility, and 
co-localized memory and logic [20]. Additionally, magnetic 
devices have been proposed to act as both synapses and neu-
rons [21–24], providing a potential platform for monolithic 
neuromorphic circuits. MRAM cycle-to-cycle endurance is 
the highest among emerging resistive memories with over 
1015 cycles [25]; it is a particularly attractive device for build-
ing synapses, because the devices can handle the high activity 
factor necessary for online learning.

The three-terminal magnetic tunnel junction (3T-MTJ), 
shown in figure 1(a), is an MTJ device where the ferromagn
etic free layer is separated from the ferromagnetic pinned layer 
by a tunneling oxide barrier and there are three terminals: two 
terminals on either side of the free layer (IN and CLK) and 

one terminal connecting to the top pinned layer (OUT). The 
free layer can be set up to have two oppositely magnetized 
regions separated by a domain wall (DW), as shown. In the 
synapse implementation, the pinned layer is kept long enough 
in x̂ such that the the free layer magnetization can be manipu-
lated via the DW to orient either fully parallel, antiparallel, or 
inbetween, relative to the magnetization of the pinned layer, 
which will result in multiple conductances through the center 
tunnel junction that can represent synaptic weights. The extra 
third terminal is to provide separate read/write control chan-
nels and separate control of the DW, compared to the two-
terminal MTJs (2T-MTJs) in MRAM where the same channel 
is used as both read and write [26, 27]. Since MTJ breakdown 
most often happens at the tunnel barrier, separating the read 
and write can extend the device endurance even further for 
synapse applications, because during training minimal current 
flows through the tunnel barrier. The DW of the free layer can 
be displaced by spin transfer torque (STT) exerted on it by 
spin polarized current flowing through the free layer [28] or 

Figure 1.  (a) Side-view cartoon of the 3T-MTJ synapse device. 
The up/down arrows and blue/red color represent the magnetization 
vector of the ferromagnetic thin films; the orange represents the 
tunnel barrier. (b) Side-view cartoon of the corresponding 3T-MTJ 
neuron device we developed in [24]. (c) Cartoon showing the 
3T-MTJ synapse integrated with the pre-synaptic neuron and post-
synaptic neuron. The capacitors (green discs) are integral in timing 
coordination in order to move the DW. (d) The balanced synapse 
circuit schematic with the MTJ free layer modeled as a resistor. 
ISynapse is the current that flows through the free layer of the MTJ 
and moves the DW, thereby adjusting the device weight in the form 
of tunneling resistance.
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by spin orbit torque (SOT) exerted by a charge current flowing 
through an underlying heavy metal (HM) [29–31].

The majority of the work on spintronic neuromorphic com-
puting has focused on the implementation of neurons using 
2T-MTJs [19, 22, 23, 32–34] while doing most of the synaptic 
weight training offline. Others have attempted to use 2T-MTJs 
as synapses which are limited to binary weights [35]. Some 
work has been done on using 3T-MTJs as neurons [26], 
including our recent work developing a leaky, integrate, and 
fire (LIF) neuron with inherent lateral inhibition [24, 36]. The 
3T-MTJ LIF neuron, to contrast from the synapse, is shown in 
figure 1(b). A shorter (in x̂) pinned layer that is offset from the 
center of the free layer enables the DW motion to represent 
integration, and firing occurs once the DW passes the pinned 
layer.

Only a few efforts have used 3T-MTJs as synapses. One 
example is the use of a transistor circuit and a 3T-MTJ to show 
stochastic STDP in a binary synapse [37]. This, however, does 
not show a multi-state resistance or conductance weight-
ing system that is similar to the biological synapse [38–40]. 
Another example is an all-spin neural network in which binary 
3T-MTJ neurons are connected to binary 3T-MTJ synapses 
through transistor axons [26]. Although this still uses binary 
synapses and does not show LTP or LTD, it sought to use less 
CMOS-based devices, which can be beneficial for energy effi-
ciency. However, that implementation does not allow for fine 
adjustments of the synaptic weights, which may be critical to 
implementing plasticity-based learning algorithms.

Here, we have designed and modeled a synapse circuit using 
3T-MTJs that captures STDP and allows online learning. We 
show that there is a correlation between the current amplitude 
to switch the DW and the timing between the pre-synaptic sig-
nal and the post-synaptic signal, and that the response of the 
circuit mimics the biological neural model of potentiation and 
inhibition. We also show that lithographically-defined notches 
along the length of the DW track create controlled pinning of 
the DW location. This well-studied method for DW control 
[41–44] shows a semi-analog multiple weight state depending 
on the pre- and post-synaptic signals.

We first present the 3T-MTJ circuit that has been devel-
oped for STDP and provide details about its functionality. 
Then, we show results from the SPICE simulation of the cir-
cuit, followed by micromagnetic simulation results for current 
pulse timing from the circuit applied to a 3T-MTJ to achieve 
multiple weight states. Finally, we use a SPICE model of the 
3T-MTJ that we have benchmarked against micromagnetics 
[45] to study the behavior of the full circuit including the cur
rent waveform and DW dynamics.

2.  Methods

The model for the artificial synapse is shown in figure 1. To 
have the 3T-MTJ synapse, figure 1(a), show STDP behavior, 
we need the position of the DW, and therefore the resistance 
weight, to respond to the timing between spiking signals at 
both the IN and CLK terminals. What the DW position does 

respond to is the sign of the current ISynapse between the IN and 
CLK terminals, which if above the DW depinning current will 
move the DW right or left. Thus, to achieve STDP we design 
a circuit that converts the timing of the pre- and post- synaptic 
signals to a sign and magnitude change in ISynapse. We keep 
the circuit small and as simple as possible so that it could be 
integrated into a dense array of the 3T-MTJ synapses with a 
small area overhead.

Figure 1(c) depicts the circuit, consisting of a 3T-MTJ 
sandwiched between two capacitor–resistor–diode networks 
(green disks) through which it is connected to the pre- and 
post-synaptic 3T-MTJ neurons. The pre-synaptic signal comes 
from the output of the pre-synaptic neuron; the post-synaptic 
signal comes from the output of the post-synaptic neuron; and 
the output of the synapse goes into the input of the post-synaptic 
neuron. Here, we focus on the synapse behavior; the details of 
how the neurons and synapses connect are not specified.

The details of the circuit are shown in figure 1(d). It includes 
minimal additional resistors and capacitors to enable STDP 
that could be integrated into a crossbar array. We have mod-
eled the free layer in case of an STT device (or HM in case 
of an SOT device) as a patterned thin film resistance RSynapse 
in the balanced RC circuit. The center MTJ resistance of the 
device is not included. Diodes are placed on both ends of the 
circuit to prevent back current flow. The capacitor to the left 
of the 3T-MTJ (C2,L) and the capacitor to the right (C2,R) have 
equal capacitances. The left resistor (R2,L) and right resistor 
(R2,R) are equal resistances. (R3,L) and (R3,R) are the sum of a 
resistor and the contact resistance to the left and the right of 
the 3T-MTJ, respectively. The dynamics of the circuit depend 
on the arrival times of the pre-synaptic neuron signal (volt
age amplitude vi, L(t)) and the post-synaptic neuron signal 
(voltage amplitude vi,R(t)), the states of the the diodes DL and 
DR, and the time constants of the RC networks R2,LC2,L and 
R2,RC2,R . These states affect the direction of flow of ISynapse 
which will increase or decrease the conductance of the MTJ 
through STT or SOT switching of a DW in the free layer. The 
current i is labeled throughout the circuit.

For either of the diodes to be on, the input signals from the 
pre-synaptic or post-synaptic neurons must be such that

vi,R (t)− vo,R − iD,RR3,R � VD,ON� (1)

vi,L (t)− vo,L − iD,LR3,L � VD,ON.� (2)

When both diodes DL and DR turn on at the same time, the 
pre-synaptic and post-synaptic signals arrive at the same time, 
and assuming the voltages at the capacitors C2,L and C2,R are 
at the same value, no current flows through the free layer, i.e.

ISynapse = 0; iD,L = iD,R � 0, vi,L (t) = vi,R (t) .� (3)

For other conditions (when both diodes are on), the com-
plete set of parametric equations for the circuit can be written 
from nodal analysis as

vi,L (t)− vo,L − iD,LR3,L = VD,ON� (4)

vi,R (t)− vo,R − iD,RR3,R = VD,ON� (5)
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iD,L = iC2,L +
vo,L − vo,R
Rsynapse

+
vo,L
R2,L

� (6)

iD,R = iC2,R −
vo,L − vo,R
Rsynapse

+
vo,R
R2,R

� (7)

iC2,L = C2,L
dvo,L
dt

� (8)

iC2,R = C2,R
dvo,R
dt

.� (9)

Using Laplace transforms, we write the input voltages as

vi,L (s) = ViL ∗
Å

1− exp (−s ∗ tpw)
s ∗ (1− exp (−tp ∗ s))

ã
� (10)

vi,R (s) = ViR ∗
Å
exp (−s ∗ td)− exp (−s ∗ (td + tpw))

s ∗ (1− exp (−tp ∗ s))

ã

� (11)
where s is the Laplace frequency variable, ViL and ViR are the 
pre- and post-synaptic signal amplitudes, respectively, tpw is 
the pulse width, td is the delay between the pre-synaptic signal 
and the post-synaptic signal, and tp is the period of both the 
pre-synaptic and post-synaptic signals. The current through 
the MTJ synapse can then be derived as:

ISynapse =
vo,L − vo,R
Rsynapse

.� (12)

When both diodes DL and DR are off and assuming they turn 
off after a cycle of the circuit at about the same time at t  >  0, 
the current flowing through the free layer will be a function 
of the difference of the voltages of C2,L and C2,R. And given 
that C2,L = C2,R = C2 and R2,L = R2,R = R2, ISynapse can 
be written as:

ISynapse = exp

Å
−
t ∗ (2 ∗ R2 + Rsynapse)

C2 ∗ R2 ∗ Rsynapse

ã
∗ ( vC2,L(t)− vC2,R(t))

� (13)
where vC2,L(t) and vC2,R(t) are the voltages of capacitors C2,L 
and C2,R, respectively, at time t  >  0 when both diodes are off.

3.  Results and discussion

3.1.  Circuit simulation results

The 3T-MTJ synapse circuit is simulated in HSpice with 
varying delay conditions from 0.1 ns to 5 ns between onset 
of the pre-synaptic neuron signal vi,L (t) and post-synap-
tic neuron signal vi,R (t). The signal pulse widths are 1 ns 
with a 10 ns period, and we use R2,L = R2,R = R2  =  10 kΩ, 
RSynapse (resistance of the free layer)  =  100 Ω, R3,L = R3,R = 
R3 = 50 Ω, and C2,L = C2,R = C2  =  1 × 10−12 F. Figure 2 
shows the results of the HSpice simulation, where we plot both 
the transient voltage pulses and current through the free layer, 
ISynapse. It can be seen from figures  2(a) and (b) that when 
vi,L (t) arrives before vi,R (t), a positive current flows through 
the 3T-MTJ synapse, which will increase the conductance of 
the MTJ stack. The dynamics of the circuit depend on which 
signal arrives first. The circuit acts as a two-port peak detector, 

with RC networks on both sides of the free layer. If vi,L (t) 
arrives before vi,R (t), then the voltage vC2,R of the capacitor 
C2,R on the post-synaptic end, which has been stored up from 
the previous period, is almost fully discharged. This results 
in a larger voltage difference across the free layer and higher 
current amplitude. Conversely, if within the same period there 
is a greater delay between the two signals, the capacitor on the 
post-synaptic side will still be holding some voltage stored 
from the previous period, resulting in a reduced voltage differ-
ence and less current. Hence, the magnitude of the current is 
inversely proportional to the delay between vi,L (t) and vi,R (t).

Figures 2(d) and (e) show that if the post-synaptic neu-
ron fires before the pre-synaptic neuron, there is a negative 
(depressing) current through the synapse, and its magnitude 
is also dependent on the delay between the signals. Then there 
are the cases shown in figures 2(c) and (f) in which the pre-syn-
aptic neuron fires midway between the span of the post-synap-
tic neuron firing twice in the first case; and the post-synaptic 
neuron fires midway between the span of the pre-synaptic 
neuron firing twice in the second case. In both cases there are 
equal magnitudes of both positive and negative current spikes 
flowing through the synapse. This can lead to oscillation of the 
output MTJ resistance. It should be noted that in all the simula-
tions there is an initial larger current spike, which is an artifact 
of the circuit starting at time t  =  0.

To compare with the behavior of biological synapses, 
the current that passes through a chemical synaptic channel, 
Isyn,bio (t), can be represented by [4, 46]

Isyn,bio (t) = gsyn (t) (u (t)− Esyn)� (14)

which depends on the difference between its reversal poten-
tial Esyn and the actual value of the membrane potential, 
u (t) . gsyn (t) is a superpostion of synaptic conductances ḡsyn 
with exponential decay of time constant τ and given by

gsyn (t) =
∑
f

ḡsyne−
t−t f

τ Θ
(
t − t f

)
� (15)

where t f  is the arrival time of a pre-synaptic action potential 
and Θ

(
t − t f

)
 is a Heaviside step function. gsyn (t) can be sim-

plified for a single neuron-to-neuron synaptic connection by 
the alpha-function [46]

gsyn (t) =
t
τs
e−

t
τs� (16)

where τs is the time constant of the response which specifies 
slow or fast transmission.

In figure 3(a), we plot ISynapse (t) from the HSpice simu-
lation for the figure  2(a) condition (‘SPICE’), compared to 
the analytical solution equation (12), using parameters from 
equations (4)–(11) (‘Analytical’), with tpw  =  1 ns, td  =  0.2 ns, 
tp  =  10 ns, R2  =  10 kΩ, RSynapse = 100 Ω, R3 = 50 Ω, and 
C2  =  1 × 10−12 F. We also compare to the biological synapse 
transient current behavior using τs  =  0.1 ns (‘Biological’). 
The plots are normalized to their maximum values. It can be 
seen that we closely capture the biological transient behavior 
with the circuit, which agrees well with simulations, mathe-
matical modeling, and analysis of biological neurons [46–54]. 
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It can also be seen that the RC networks on both sides of the 
free layer also act as a low pass filter modeled in glutamate 
channels with N-methyl-D-aspartate receptors [4].

Figure 3(b) shows the ISynapse (t) dependence on RSynapse. 
As the resistance increases, the current decreases exponen-
tially. This provides a design requirement for the 3T-MTJ 
device to keep the resistance of the bottom layers under 1–2 
kΩ to have enough current to drive a DW in the free layer. 
This resistance value is a reasonable requirement for 3T-MTJ 
devices (e.g. in [20] RSynapse  =  1.2 kΩ), and it can be tuned by 
choosing the material and geometry of the bottom layers. The 
resistance needed depends on the required current for depin-
ning the DW for a given device size and materials.

To calculate how much the circuit can tolerate imperfec-
tions between the matched capacitors, in figure 3(c) we plot 
ISynapse while increasing the difference between the capaci-
tance of C2L  and C2R up to a factor of three mismatch. The 
figure  shows the circuit is more tolerant of C2R  >  C2L  with 
a 3  ×  mismatch producing a 25% change in ISynapse. For 
C2R  <  C2L , the 3  ×  mismatch reduces the synapse current 

by a larger factor up to 64%. This analysis assumes the 
pre-synaptic signal vi,L   leads the post-synaptic signal vi,R by 
0.1 ns. It is expected that the graph will be similar but flipped 
along the y -axis if the pre-synaptic signal lags the post-synap-
tic signal by the same amount of time (0.1 ns).

To investigate how the response time of the current through 
the 3T-MTJ free layer to the pre- and post-synaptic signals 
varies with the capacitance mismatch on either side of the 
MTJ, we took the the onset time for signal ISynapse on the sec-
ond period, using a period of 10 ns and plotted it against the 
capacitance mismatch. The second period was used rather 
than the first period because of the artifact that comes with 
starting the simulation at t  =  0. Figure 3(d) shows the timing 
of the current through the synapse is tolerant to capacitance 
mismatches with little or no difference in the current timing as 
the capacitance mismatch gets larger. The current pulse comes 
quicker on the average if C2R is increased with respect to C2L  
and saturates as the difference approaches  −2 pF. The reason 
for the small 0.3% dip in timing shown in figure 3(d) is not yet 
fully understood.

Figure 2.  Spice simulation results for different delay scenarios between the pre-synaptic neuron signal and post-synaptic neuron signal. 
(a)–(c) The currents (lower plots) that flow through the free layer when the pre-synaptic neuron fires 0.5 ns, 1 ns, and 5 ns, respectively, 
before the post-synaptic neuron fires. (d)–(f) The currents (lower plots) that flow through the free layer when the pre-synaptic neuron fires 
0.5 ns, 1 ns, and 5 ns, respectively, after the post-synaptic neuron fires. Both the pre- and post-synaptic firing are represented by voltage 
pulses of 10 ns period and 10% duty cycle as shown in the upper plots.

J. Phys. D: Appl. Phys. 52 (2019) 49LT01
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3.2.  Spike-timing-dependent plasticity (STDP)

Taking the different current magnitudes flowing through the 
synapse at different timing conditions, we graph the current 
magnitude against time delay between the pre-synaptic neuron 
signal and the post-synaptic neuron signal. The plot is shown 
in figure  4. It is seen that the smaller the delay, the higher 
the current magnitude that flows through the synapse. Thus, 
the circuit captures both potentiation and depression, and also 
captures that the amplitude of the strengthening or weakening 
of the synapse is based on the timing between the pre- and 
post- signals. This has a high resemblance to the work of Bi 
and Poo’s clinical experiment on STDP which shows LTP and 
LTD induced in synapses between hippocampal glutamatergic 
neurons [55]. Additionally, when the circuit has no correlation 
between the two signals, we get oscillation in time back and 
forth between two resistance states, maintaining the state of 
the synapse conductance.

3.3.  Micromagnetic simulations

To observe how the circuit will affect the magnetic behavior 
of the 3T-MTJ synapse, we run the HSpice model and input 
the vector direction of the resulting ISynapse into a micro-
magnetic simulation using MuMax3 [56] and rendered in 
OOMMF [57]. While 3T-MTJs have been modeled as a syn-
apse in perfect wires [19, 26, 35, 58–61], it is a challenge in 

a real device to repeatably control the distance of the DW 
along the free layer racetrack under the MTJ. One solution, 
implemented here, is to use lithographically defined notches, 
which are anisotropy barriers that pin the DW. We model a  
1 µm long  ×  32 nm wide  ×  4 nm thick CoFeB free layer with a 
discretization cell size of 1 nm  ×  1 nm  ×  1 nm, perpendicular 

Figure 3.  (a) Comparison of the transient synaptic current from the SPICE circuit to the analytical expression of the circuit from 
equation (12) and the biological synapse alpha-function from equation (16). The plots have been normalized to their maximum values. 
(b) Plot of current at the synapse versus resistance of the 3T-MTJ free layer. (c) Plot of current at the synapse and (d) current pulse timing 
versus difference in capacitance of the two capacitors in the circuit; orange traces correspond to C2L < C2R  and blue traces correspond to 
C2L > C2R .

Figure 4.  Potentiation and depression currents from the SPICE 
simulation as a function of spiking delay between pre-synaptic and 
post-synaptic neurons.

J. Phys. D: Appl. Phys. 52 (2019) 49LT01
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magnetic anisotropy of 1.5 × 106 J m−3, exchange stiffness 
of 13 × 10−12 J m−1, damping constant of 0.02, saturation 
magnetization of 1.44 × 106 A m−1, and non-adiabatic con-
stant of 0.02. The notches are 16 nm in diameter with a pitch 
of 64 nm. Using STT, we use 1 ns pulses of current density  
2 × 1012 A m−2, where the direction of the current depends on 
the relative timing of the pre- and post-synaptic neurons from 
the circuit model. The current density was chosen such that 
the current across the synapse is the same order of magnitude 
as the peak transient current in the circuit model. The pulses 
have a period of 10 ns.

The results of the micromagnetic simulation are shown in 
figure  5(a) as snapshots of the wire magnetization after the 
DW motion has stopped after each current pulse (view is −ẑ 
compared to figure 1(a)). At the initial state 0 the DW is in the 
center of the free layer. Figure 5(b) depicts the polarity of the 
ten current pulses applied sequentially across the free layer.

We see that each current pulse moves the DW left or right 
depending on the timing delay between the pre- and post- sig-
nals. Thus, with a long MTJ placed on top of the free layer 
(not shown), this will controllably increase or decrease the 

MTJ conductance, setting the synaptic weight. It can be seen 
that each positive current pulse moves the DW to the left, get-
ting pinned at subsequent notches, while each negative current 
pulse moves the DW to the right, also getting pinned at sub-
sequent notches. Positive current pulses reduce the tunneling 
resistance of the device and hence increase the weight of the 
synapse while negative current pulses do the contrary.

In figures 5(c) and(d) we use measured numbers for CoFeB 
MTJs fabricated in our group of 166% tunnel magnetoresist
ance and 20 Ω µm2 resistance-area (RA) product to convert 
the DW position to expected conductance weight. Figure 5(c) 
shows the expected conductance for each corresonding DW 
position in figure 5(a). Figure 5(d) shows the expected MTJ 
resistance when the DW sits at each notch (blue curve), com-
pared to a linear fit if no notches are present (orange curve). 
Because the DW can be pinned at a particular notch for a long 
time if there is no current flowing, this gives the synapse a 
long-term memory effect. Also because the position of the 
DW along the free layer is a resultant effect of potentiation 
and depression over time, we can safely say that the synapse 
undergoes LTP and LTD.

Figure 5.  (a) Micromagnetic simulation snapshots for the current pulse train shown in (b) through a 1 µm long  ×  32 nm wide  ×  4 nm thick 
CoFeB free layer. The notches introduce anisotropies which pin the DW. (c) Plot of the resulting conductance weights versus pulse number, 
assuming that the green-colored (right) domain is parallel to the pinned layer and the orange-colored (left) domain is anti-parallel to the 
pinned layer. (d) Calculated conductance of the MTJ versus DW position at each notch in the free layer (blue curve) compared to a linear fit 
to the conductance change assuming no DW pinning (orange).
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The length of the MTJ compared to the length of the DW 
in x determines the number of notches and hence the number 
of DW positions that can represent different resistance or con-
ductance weights. In a free layer with perpendicular magnetic 
anisotropy, the length of the DW LDW is approximately deter-
mined by the width in ŷ of the free layer, which is equal to the 
width of the MTJ, wMTJ, as LDW ≈ WMTJ

4  [62]. This means that 
with a MTJ of length LMTJ, the maximum number of weights 
(nweights) achievable will be given by the relation

nweights � (LMTJ/LDW) ≈ 4× LMTJ/wMTJ.� (17)

Depending on the number of weights needed, the length of 
the free layer could be shortened to create more compact cir-
cuits. The notch depth and period was chosen empirically for 
given materials parameters to catch the DW after each pulse 
[63, 64].

It should be noted that the short pulse width of 1 ns used 
here mitigates heating effects from the higher current density 
[65] and hence ensures uniform predictable behavior of the 

synapse circuit. For short current pulses between 1–10 ns, the 
thermal diffusion length is 0.1–1 µm, larger than the free layer 
thickness of 4 nm; thus, we predict Joule heating will have lit-
tle effect on the DW motion [65, 66].

3.4.  Full SPICE simulation including domain wall dynamics

In sections 3.1–3.2, for the SPICE circuit model we used a 
resistor to represent the 3T-MTJ free layer. In section 3.3, to 
observe the effect of the circuit on the micromagnetic behavior 
of the 3T-MTJ synapse, we input the resulting current polarity 
from the circuit as a 1 ns current pulse of a fixed amplitude. 
Here, to capture the full dynamics of the circuit signal wave-
form (e.g. figure 3(a)) on the 3T-MTJ magnetic response, we 
implement a SPICE-only model of the full circuit that includes 
DW dynamics. We use a model of the 3T-MTJ for a notch-free 
free layer that we have previously developed with Verilog A 
and is benchmarked against micromagnetic simulations [45]. 
The 3T-MTJ model is connected via the IN and CLK terminals 

Figure 6.  (a) Six modeled delay conditions between the pre- and post-synaptic signals, each simulated for ten cycles of 10 ns. (b) DW 
position output over time from the full SPICE model for the conditions in (a). Here the DW was initiated at the leftmost end of the free 
layer. (c) Modeled random train of delay conditions between the pre- and post-synaptic signals, with lead and lag times of 1 ns. (d) DW 
position output over time from the full SPICE model for the conditions in (c), showing the DW position, and therefore synaptic weight, is 
controlled by the timing between the signals.
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to the circuit, replacing the free layer resistor in the figure 1(d) 
circuit schematic.

With the same capacitance and resistance values 
(R2,L = R2,R = R2   =   10 kΩ and C2,L = C2,R = C2   =   1 
× 10−12 F) used for the simulation in figure 2, we simulate ten 
cycles of six constant delay conditions between onset of the 
pre-synaptic signal and onset of post-synaptic signal. The six 
delay conditions are shown in figure 6(a). The transient DW 
position is shown in figure 6(b). With 0 ns delay, the DW does 
not move. The DW responds to each spiking of the circuit by 
moving an incremental distance across the free layer, and it 
is evident that the shorter the non-zero delay, the farther the 
DW moves after each firing and over the ten cycles, showing 
STDP behavior.

In figure  6(c), we randomly vary the timing of the pre- 
and post-synaptic signals with 1 ns lead or lag between the 
signals. Figure 6(d) shows that in response to this pulse train 
the DW moves left or right depending on the polarity of the 
resulting current spikes across the 3T-MTJ free layer. These 
results show that including the precise waveform of the cir-
cuit corroborates the micromagnetic results. We do see some 
irregularities in how far and how smoothly the DW moves in 
response to multiple similarly-timed pulses, which shows that 
external pinning may be important for controlling the con-
ductance weights.

3.5.  Benchmarking against competing STDP  
implementations

The results of our micromagnetic and SPICE simulations 
allow us to make a comparison to other state-of-the-art pro-
posals for nanodevice plaforms for implementing online 
STDP learning. Specifically, we consider how our analog 
STDP implementation using 3T-MTJ devices compares to 
phyically realized or proposed analog STDP building block 
cells using 2T-MTJs [37], CBRAM [67], metal oxide [68, 69], 
or polymeric [70] active switching layers. As visible in table 1, 
the signature advantage of our system is its extreme (nano
second range) STDP time window; the second fastest device, 
a CBRAM option, is over two orders of magnitude slower, 
and the other listed nanodevice options are slower still. Since 
this window serves as a speed limit for overall STDP learning, 
this could finally allow for online STDP learning functions in 
an integrated circuit co-integrated with NVM devices in an 
industrially-relevant context. Our proposal compares favor-
ably in terms of required voltage, and is comparable though 

not superior in terms of analog resolution provided by other 
nanodevices. Our proposal’s major weak point relative to 
competing options is the relatively low resistance and on/off 
ratio provided by MTJ devices. However, this issue may be 
ameliorated by further device engineering.

4.  Conclusions

We have successfully designed a 3T-MTJ synapse circuit that 
achieves STDP, LTP, and LTD, essential characteristics of 
biologically-inspired artificial synapses. We observe that the 
transient form of the current generated across the synapse cor-
responds to what is seen in biology, and that shorter delay 
between the pre- and post- neuron firing results in higher cur
rent for potentiation or depression, which shows high similar-
ity to biological neuron behavior. We show that the circuit can 
acheive a semi-analog pinning of the DW along the length of 
the ferromagnetic free layer of a 3T-MTJ using notches, and 
that the DW position can be set using the concept of STDP 
when integrated with the circuit. Including a SPICE model 
for the 3T-MTJ, we see the DW responds to the transient cur
rent with LTP and LTD behavior. This is key progress towards 
making more bio-realistic artificial synapses with multiple 
weights, which can also be trained online with a promise of 
CMOS compatibility and energy efficiency. Future work is 
needed to understand the impact of the additional circuitry for 
STDP on scaling and circuit density. The results shown can be 
in the future integrated with the LIF neuron in a crossbar array 
fashion and used for online machine learning applications in 
tasks like pattern or speech recognition.
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