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Abstract

®

CrossMark

There have been recent efforts towards the development of biologically-inspired neuromorphic
devices and architecture. Here, we show a synapse circuit that is designed to perform spike-
timing-dependent plasticity which works with the leaky, integrate, and fire neuron in a
neuromorphic computing architecture. The circuit consists of a three-terminal magnetic tunnel
junction with a mobile domain wall between two low-pass filters and has been modeled in
SPICE. The results show that the current flowing through the synapse is highly correlated to
the timing delay between the pre-synaptic and post-synaptic neurons. Using micromagnetic
simulations, we show that introducing notches along the length of the domain wall track

pins the domain wall at each successive notch to properly respond to the timing between the
input and output current pulses of the circuit, producing a multi-state resistance representing
synaptic weights. We show in SPICE that a notch-free ideal magnetic device also shows
spike-timing dependent plasticity in response to the circuit current. This work is key progress
towards making more bio-realistic artificial synapses with multiple weights, which can be
trained online with a promise of CMOS compatibility and energy efficiency.

Keywords: synapse, neuromorphic, magnetic tunnel junction, plasticity, domain wall

(Some figures may appear in colour only in the online journal)

1. Introduction

Dedicated architecture for artificial intelligence (AI) applica-
tions can overcome the limitations of the von Neumann archi-
tecture in accomplishing data-intensive tasks. Transistors are
traditionally used as binary logic devices, whereas applica-
tions like perception, prediction, and decision making are
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1361-6463/19/49LT01+11$33.00

inherently non-binary tasks. The von Neumann architecture
also faces a memory access bottleneck, as separation between
the memory unit and the computing unit necessitates the fre-
quent transfer of data between these two units, which results in
significant delay and energy consumption [1, 2]. Due to these
reasons, there has been a paradigm shift towards biologically-
inspired neuromorphic computing which requires developing
devices and circuits that approximate physical components of
the nervous system, e.g. the neuron and synapse, and embody

© 2019 IOP Publishing Ltd  Printed in the UK
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dynamical operations such as learning and real-time adapta-
tion (plasticity) [3].

Neurons are cells within the nervous system that receive
signals from other neurons through their dendrites, perform
non-linear processing on the signals in their soma, and trans-
mit the output to the next set of neurons through their axon
[4]. A synapse is a structure in the nervous system that allows
a neuron to pass an electrical signal (electrical current) or a
chemical signal (neurotransmitters) to another neuron or to
a target effector cell [5]. Synaptic plasticity is believed to
be a major contributor to memory and learning. In response
to increases or decreases in specific patterns of a synapse’s
activity, the synapse strengthens or weakens over time. While
plasticity is an ongoing topic of research in neuroscience,
well-established hallmarks of plasticity operations include
changes in the quantity of neurotransmitters, changes in the
strength and number of receptors on the post-synaptic neuron,
and changes in how rapidly the post-synaptic neuron responds
to stimulation from the pre-synaptic neuron.

Spike-timing-dependent plasticity (STDP) has been identi-
fied as a key operation for learning and memory in the brain,
as well as the basis for development and refinement of neural
circuits during brain development. It is a biological process
in which the strength of the synapse (synaptic weight) is cor-
related with the time differences between pre-synaptic neural
signals and post-synaptic neural signals [6, 7]. This is com-
monly refered to as ‘cells that fire together, wire together’,
[8] in which the synaptic connection between the neurons
gets reinforced in the form of long-term potentiation (LTP) or
weakened in the form of long-term depression (LTD).

Numerous types of emerging non-volatile memory devices
are being studied as artifical neurons for low-power comput-
ing elements and synapses as adaptive memory elements [9].
So far, most research in this area has focused on technologies
such as resistive random access memory (RRAM) [10, 11],
phase change memory [9, 12], and conductive-bridge RAM
(CBRAM) [13]. For example, complex plasticity effects
have been physically demonstrated in CBRAM devices [14,
15] and used for nanodevice-powered learning architectures
[16, 17]. Recently, there has been significant interest in fully
implementing plasticity operations in magnetic random access
memory (MRAM) systems based on magnetic tunnel junc-
tion (MTJ) devices. Magnetic devices have many properties
similar to the neurons and synapses of the brain, such as low-
energy [18] and stochastic switching [19], nonvolatility, and
co-localized memory and logic [20]. Additionally, magnetic
devices have been proposed to act as both synapses and neu-
rons [21-24], providing a potential platform for monolithic
neuromorphic circuits. MRAM cycle-to-cycle endurance is
the highest among emerging resistive memories with over
103 cycles [25]; it is a particularly attractive device for build-
ing synapses, because the devices can handle the high activity
factor necessary for online learning.

The three-terminal magnetic tunnel junction (3T-MTJ),
shown in figure 1(a), is an MTJ device where the ferromagn-
etic free layer is separated from the ferromagnetic pinned layer
by a tunneling oxide barrier and there are three terminals: two
terminals on either side of the free layer (/N and CLK) and
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Figure 1. (a) Side-view cartoon of the 3T-MTJ synapse device.
The up/down arrows and blue/red color represent the magnetization
vector of the ferromagnetic thin films; the orange represents the
tunnel barrier. (b) Side-view cartoon of the corresponding 3T-MTJ
neuron device we developed in [24]. (¢) Cartoon showing the
3T-MT]J synapse integrated with the pre-synaptic neuron and post-
synaptic neuron. The capacitors (green discs) are integral in timing
coordination in order to move the DW. (d) The balanced synapse
circuit schematic with the MTJ free layer modeled as a resistor.
Isynapse 1s the current that flows through the free layer of the MTJ
and moves the DW, thereby adjusting the device weight in the form
of tunneling resistance.

one terminal connecting to the top pinned layer (OUT). The
free layer can be set up to have two oppositely magnetized
regions separated by a domain wall (DW), as shown. In the
synapse implementation, the pinned layer is kept long enough
in X such that the the free layer magnetization can be manipu-
lated via the DW to orient either fully parallel, antiparallel, or
inbetween, relative to the magnetization of the pinned layer,
which will result in multiple conductances through the center
tunnel junction that can represent synaptic weights. The extra
third terminal is to provide separate read/write control chan-
nels and separate control of the DW, compared to the two-
terminal MTJs (2T-MTJs) in MRAM where the same channel
is used as both read and write [26, 27]. Since MTJ breakdown
most often happens at the tunnel barrier, separating the read
and write can extend the device endurance even further for
synapse applications, because during training minimal current
flows through the tunnel barrier. The DW of the free layer can
be displaced by spin transfer torque (STT) exerted on it by
spin polarized current flowing through the free layer [28] or
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by spin orbit torque (SOT) exerted by a charge current flowing
through an underlying heavy metal (HM) [29-31].

The majority of the work on spintronic neuromorphic com-
puting has focused on the implementation of neurons using
2T-MTIs [19, 22, 23, 32-34] while doing most of the synaptic
weight training offline. Others have attempted to use 2T-MT]Js
as synapses which are limited to binary weights [35]. Some
work has been done on using 3T-MTJs as neurons [26],
including our recent work developing a leaky, integrate, and
fire (LIF) neuron with inherent lateral inhibition [24, 36]. The
3T-MTJ LIF neuron, to contrast from the synapse, is shown in
figure 1(b). A shorter (in X) pinned layer that is offset from the
center of the free layer enables the DW motion to represent
integration, and firing occurs once the DW passes the pinned
layer.

Only a few efforts have used 3T-MTIJs as synapses. One
example is the use of a transistor circuit and a 3T-MTJ to show
stochastic STDP in a binary synapse [37]. This, however, does
not show a multi-state resistance or conductance weight-
ing system that is similar to the biological synapse [38—40].
Another example is an all-spin neural network in which binary
3T-MTJ neurons are connected to binary 3T-MTJ synapses
through transistor axons [26]. Although this still uses binary
synapses and does not show LTP or LTD, it sought to use less
CMOS-based devices, which can be beneficial for energy effi-
ciency. However, that implementation does not allow for fine
adjustments of the synaptic weights, which may be critical to
implementing plasticity-based learning algorithms.

Here, we have designed and modeled a synapse circuit using
3T-MT]Js that captures STDP and allows online learning. We
show that there is a correlation between the current amplitude
to switch the DW and the timing between the pre-synaptic sig-
nal and the post-synaptic signal, and that the response of the
circuit mimics the biological neural model of potentiation and
inhibition. We also show that lithographically-defined notches
along the length of the DW track create controlled pinning of
the DW location. This well-studied method for DW control
[41-44] shows a semi-analog multiple weight state depending
on the pre- and post-synaptic signals.

We first present the 3T-MTJ circuit that has been devel-
oped for STDP and provide details about its functionality.
Then, we show results from the SPICE simulation of the cir-
cuit, followed by micromagnetic simulation results for current
pulse timing from the circuit applied to a 3T-MTJ to achieve
multiple weight states. Finally, we use a SPICE model of the
3T-MTJ that we have benchmarked against micromagnetics
[45] to study the behavior of the full circuit including the cur-
rent waveform and DW dynamics.

2. Methods

The model for the artificial synapse is shown in figure 1. To
have the 3T-MTJ synapse, figure 1(a), show STDP behavior,
we need the position of the DW, and therefore the resistance
weight, to respond to the timing between spiking signals at
both the /N and CLK terminals. What the DW position does

respond to is the sign of the current Igy, 4,5 between the IN and
CLK terminals, which if above the DW depinning current will
move the DW right or left. Thus, to achieve STDP we design
a circuit that converts the timing of the pre- and post- synaptic
signals to a sign and magnitude change in Igyqpe. We keep
the circuit small and as simple as possible so that it could be
integrated into a dense array of the 3T-MTJ synapses with a
small area overhead.

Figure 1(c) depicts the circuit, consisting of a 3T-MTJ
sandwiched between two capacitor-resistor—diode networks
(green disks) through which it is connected to the pre- and
post-synaptic 3T-MT]J neurons. The pre-synaptic signal comes
from the output of the pre-synaptic neuron; the post-synaptic
signal comes from the output of the post-synaptic neuron; and
the output of the synapse goes into the input of the post-synaptic
neuron. Here, we focus on the synapse behavior; the details of
how the neurons and synapses connect are not specified.

The details of the circuit are shown in figure 1(d). It includes
minimal additional resistors and capacitors to enable STDP
that could be integrated into a crossbar array. We have mod-
eled the free layer in case of an STT device (or HM in case
of an SOT device) as a patterned thin film resistance Rgy,qpse
in the balanced RC circuit. The center MTJ resistance of the
device is not included. Diodes are placed on both ends of the
circuit to prevent back current flow. The capacitor to the left
of the 3T-MT1J (C»,.) and the capacitor to the right (C, ) have
equal capacitances. The left resistor (Rr) and right resistor
(Rar) are equal resistances. (R3 1) and (R3 ) are the sum of a
resistor and the contact resistance to the left and the right of
the 3T-MTJ, respectively. The dynamics of the circuit depend
on the arrival times of the pre-synaptic neuron signal (volt-
age amplitude v; (#)) and the post-synaptic neuron signal
(voltage amplitude v; g(¢)), the states of the the diodes Dy, and
Dg, and the time constants of the RC networks R, ;C» and
R, rCo r. These states affect the direction of flow of Igy,qpse
which will increase or decrease the conductance of the MTJ
through STT or SOT switching of a DW in the free layer. The
current i is labeled throughout the circuit.

For either of the diodes to be on, the input signals from the
pre-synaptic or post-synaptic neurons must be such that

Vir (1) = Vor — iprR3R = VpoN (1)

vir (t) = vor — ipLRsL = Vpon. (2)

When both diodes Dy and Dy turn on at the same time, the
pre-synaptic and post-synaptic signals arrive at the same time,
and assuming the voltages at the capacitors C,; and C, g are
at the same value, no current flows through the free layer, i.e.

Isypapse = 05 ipr = ipr =0, vip (1) = vig(1).  (3)

For other conditions (when both diodes are on), the com-
plete set of parametric equations for the circuit can be written
from nodal analysis as

viL () =vor — ipLR3L = Vpon )

Vir (1) —Vor — ipgrR3g = VDON 5)
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Using Laplace transforms, we write the input voltages as
1 —exp (=5 * ) )
vip(s) = Vip *
i (5) * (s*(l —exp (—t, x5)) (10)

vin (5) = Vig (exp (—sxty) — exp(—s*(tg + tpw)))
s* (1 —exp(—t,*5))

(1)
where s is the Laplace frequency variable, V;; and Vi are the
pre- and post-synaptic signal amplitudes, respectively, 2, is
the pulse width, #, is the delay between the pre-synaptic signal
and the post-synaptic signal, and #, is the period of both the
pre-synaptic and post-synaptic signals. The current through
the MTJ synapse can then be derived as:

Vo,L - Vo,R

ISynapse = (12)

Rsynapse ’
When both diodes Dy, and Dy are off and assuming they turn
off after a cycle of the circuit at about the same time at ¢ > 0,
the current flowing through the free layer will be a function
of the difference of the voltages of C,; and C,x. And given
that C2,L = C2,R = (C, and R2’L = R2’R = Ry, ISynapse can
be written as:

1% (2% Ry + Rsynapse)
C2 * RZ * Rsynapse

) (st = veaa)

(13)
where v (2) and veo g(7) are the voltages of capacitors Cy
and C, g, respectively, at time 7 > 0 when both diodes are off.

ISynapA'e = €xp (_

3. Results and discussion

3.1. Circuit simulation results

The 3T-MTJ synapse circuit is simulated in HSpice with
varying delay conditions from 0.1 ns to 5 ns between onset
of the pre-synaptic neuron signal v; (¢) and post-synap-
tic neuron signal v;g (¢). The signal pulse widths are 1 ns
with a 10 ns period, and we use Ry, = Ryg = Ry = 10 k€2,
Rsynapse (resistance of the free layer) = 100 Q, Ry, = R3g =
Ry =50, and Co; = Cog = C, =1 x 1072 F. Figure 2
shows the results of the HSpice simulation, where we plot both
the transient voltage pulses and current through the free layer,
Igynapse. It can be seen from figures 2(a) and (b) that when
vir (t) arrives before v;g (¢), a positive current flows through
the 3T-MTJ synapse, which will increase the conductance of
the MTJ stack. The dynamics of the circuit depend on which
signal arrives first. The circuit acts as a two-port peak detector,

with RC networks on both sides of the free layer. If ViL (t)
arrives before v;g (¢), then the voltage vc,, of the capacitor
C, g on the post-synaptic end, which has been stored up from
the previous period, is almost fully discharged. This results
in a larger voltage difference across the free layer and higher
current amplitude. Conversely, if within the same period there
is a greater delay between the two signals, the capacitor on the
post-synaptic side will still be holding some voltage stored
from the previous period, resulting in a reduced voltage differ-
ence and less current. Hence, the magnitude of the current is
inversely proportional to the delay between vy, (¢) and v;g (2).

Figures 2(d) and (e) show that if the post-synaptic neu-
ron fires before the pre-synaptic neuron, there is a negative
(depressing) current through the synapse, and its magnitude
is also dependent on the delay between the signals. Then there
are the cases shown in figures 2(c) and (f) in which the pre-syn-
aptic neuron fires midway between the span of the post-synap-
tic neuron firing twice in the first case; and the post-synaptic
neuron fires midway between the span of the pre-synaptic
neuron firing twice in the second case. In both cases there are
equal magnitudes of both positive and negative current spikes
flowing through the synapse. This can lead to oscillation of the
output MT]J resistance. It should be noted that in all the simula-
tions there is an initial larger current spike, which is an artifact
of the circuit starting at time ¢ = 0.

To compare with the behavior of biological synapses,
the current that passes through a chemical synaptic channel,
Loy pio (1), can be represented by [4, 46]

Isyn,bio (t) = &syn (t) (I/t (t) - Esyn) (14)
which depends on the difference between its reversal poten-
tial Ejy, and the actual value of the membrane potential,
u(t). gsn (t)is a superpostion of synaptic conductances ggyn
with exponential decay of time constant 7 and given by

1—tf .
s (1) = z:gsyne_T O (- tf) (15)
f

where ¢/ is the arrival time of a pre-synaptic action potential
and © (1 — /) is a Heaviside step function. g, () can be sim-
plified for a single neuron-to-neuron synaptic connection by
the alpha-function [46]

t '

g (1) = ;Se K

(16)

where 7 is the time constant of the response which specifies
slow or fast transmission.

In figure 3(a), we plot Isyuapse (f) from the HSpice simu-
lation for the figure 2(a) condition (‘SPICE’), compared to
the analytical solution equation (12), using parameters from
equations (4)-(11) (‘Analytical’), with ,,, = 1 ns, t; = 0.2 ns,
t, =10 ns, R, = 10 kQ, Rgynapse = 100 2, R3 = 50 €2, and
C> =1 x 10712 F. We also compare to the biological synapse
transient current behavior using 7, = 0.1 ns (‘Biological’).
The plots are normalized to their maximum values. It can be
seen that we closely capture the biological transient behavior
with the circuit, which agrees well with simulations, mathe-
matical modeling, and analysis of biological neurons [46-54].
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Figure 2. Spice simulation results for different delay scenarios between the pre-synaptic neuron signal and post-synaptic neuron signal.
(a)—(c) The currents (lower plots) that flow through the free layer when the pre-synaptic neuron fires 0.5 ns, 1 ns, and 5 ns, respectively,
before the post-synaptic neuron fires. (d)—(f) The currents (lower plots) that flow through the free layer when the pre-synaptic neuron fires
0.5 ns, 1 ns, and 5 ns, respectively, after the post-synaptic neuron fires. Both the pre- and post-synaptic firing are represented by voltage

pulses of 10 ns period and 10% duty cycle as shown in the upper plots.

It can also be seen that the RC networks on both sides of the
free layer also act as a low pass filter modeled in glutamate
channels with N-methyl-D-aspartate receptors [4].

Figure 3(b) shows the Igyuapse (f) dependence on Rgyugpse-
As the resistance increases, the current decreases exponen-
tially. This provides a design requirement for the 3T-MTJ
device to keep the resistance of the bottom layers under 1-2
k€2 to have enough current to drive a DW in the free layer.
This resistance value is a reasonable requirement for 3T-MTJ
devices (e.g. in [20] Rgynapse = 1.2 k€2), and it can be tuned by
choosing the material and geometry of the bottom layers. The
resistance needed depends on the required current for depin-
ning the DW for a given device size and materials.

To calculate how much the circuit can tolerate imperfec-
tions between the matched capacitors, in figure 3(c) we plot
Igynapse While increasing the difference between the capaci-
tance of Cp; and Cog up to a factor of three mismatch. The
figure shows the circuit is more tolerant of Cog > Cyp with
a 3 x mismatch producing a 25% change in Igy,gps. For
Cor < Cyr, the 3 x mismatch reduces the synapse current

by a larger factor up to 64%. This analysis assumes the
pre-synaptic signal v;; leads the post-synaptic signal v; g by
0.1 ns. It is expected that the graph will be similar but flipped
along the y-axis if the pre-synaptic signal lags the post-synap-
tic signal by the same amount of time (0.1 ns).

To investigate how the response time of the current through
the 3T-MTJ free layer to the pre- and post-synaptic signals
varies with the capacitance mismatch on either side of the
MT]J, we took the the onset time for signal Iy, 0n the sec-
ond period, using a period of 10 ns and plotted it against the
capacitance mismatch. The second period was used rather
than the first period because of the artifact that comes with
starting the simulation at t = 0. Figure 3(d) shows the timing
of the current through the synapse is tolerant to capacitance
mismatches with little or no difference in the current timing as
the capacitance mismatch gets larger. The current pulse comes
quicker on the average if Cyg is increased with respect to Cyy,
and saturates as the difference approaches —2 pF. The reason
for the small 0.3% dip in timing shown in figure 3(d) is not yet
fully understood.
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Figure 3. (a) Comparison of the transient synaptic current from the SPICE circuit to the analytical expression of the circuit from
equation (12) and the biological synapse alpha-function from equation (16). The plots have been normalized to their maximum values.
(b) Plot of current at the synapse versus resistance of the 3T-MTJ free layer. (c) Plot of current at the synapse and (d) current pulse timing
versus difference in capacitance of the two capacitors in the circuit; orange traces correspond to Cy;, < Cag and blue traces correspond to

Cyp, > Cor.
3.2. Spike-timing-dependent plasticity (STDP)

Taking the different current magnitudes flowing through the
synapse at different timing conditions, we graph the current
magnitude against time delay between the pre-synaptic neuron
signal and the post-synaptic neuron signal. The plot is shown
in figure 4. It is seen that the smaller the delay, the higher
the current magnitude that flows through the synapse. Thus,
the circuit captures both potentiation and depression, and also
captures that the amplitude of the strengthening or weakening
of the synapse is based on the timing between the pre- and
post- signals. This has a high resemblance to the work of Bi
and Poo’s clinical experiment on STDP which shows LTP and
LTD induced in synapses between hippocampal glutamatergic
neurons [55]. Additionally, when the circuit has no correlation
between the two signals, we get oscillation in time back and
forth between two resistance states, maintaining the state of
the synapse conductance.

3.3. Micromagnetic simulations

To observe how the circuit will affect the magnetic behavior
of the 3T-MTJ synapse, we run the HSpice model and input
the vector direction of the resulting Igy,qps into a micro-
magnetic simulation using MuMax3 [56] and rendered in
OOMMF [57]. While 3T-MTJs have been modeled as a syn-
apse in perfect wires [19, 26, 35, 58-61], it is a challenge in

Current (mA)
0.6-
0.4 Potentiation
0.2
4 3 2 4 1 2 3 4
-0.2 Delay (ns)
Depression g4

Figure 4. Potentiation and depression currents from the SPICE
simulation as a function of spiking delay between pre-synaptic and
post-synaptic neurons.

a real device to repeatably control the distance of the DW
along the free layer racetrack under the MTJ. One solution,
implemented here, is to use lithographically defined notches,
which are anisotropy barriers that pin the DW. We model a
1 pmlong x 32nmwide x 4 nm thick CoFeB free layer with a
discretization cell size of 1nm x Inm X 1nm, perpendicular
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Figure 5. (a) Micromagnetic simulation snapshots for the current pulse train shown in (b) through a 1 ym long x 32nm wide x 4nm thick
CoFeB free layer. The notches introduce anisotropies which pin the DW. (c¢) Plot of the resulting conductance weights versus pulse number,
assuming that the green-colored (right) domain is parallel to the pinned layer and the orange-colored (left) domain is anti-parallel to the

pinned layer. (d) Calculated conductance of the MTJ versus DW position at each notch in the free layer (blue curve) compared to a linear fit

to the conductance change assuming no DW pinning (orange).

magnetic anisotropy of 1.5 x 10% J m~3, exchange stiffness
of 13 x 107'2 J m~!, damping constant of 0.02, saturation
magnetization of 1.44 x 10° A m~!, and non-adiabatic con-
stant of 0.02. The notches are 16nm in diameter with a pitch
of 64nm. Using STT, we use 1 ns pulses of current density
2 x 10'> A m~2, where the direction of the current depends on
the relative timing of the pre- and post-synaptic neurons from
the circuit model. The current density was chosen such that
the current across the synapse is the same order of magnitude
as the peak transient current in the circuit model. The pulses
have a period of 10 ns.

The results of the micromagnetic simulation are shown in
figure 5(a) as snapshots of the wire magnetization after the
DW motion has stopped after each current pulse (view is —2
compared to figure 1(a)). At the initial state O the DW is in the
center of the free layer. Figure 5(b) depicts the polarity of the
ten current pulses applied sequentially across the free layer.

We see that each current pulse moves the DW left or right
depending on the timing delay between the pre- and post- sig-
nals. Thus, with a long MTJ placed on top of the free layer
(not shown), this will controllably increase or decrease the

MT]J conductance, setting the synaptic weight. It can be seen
that each positive current pulse moves the DW to the left, get-
ting pinned at subsequent notches, while each negative current
pulse moves the DW to the right, also getting pinned at sub-
sequent notches. Positive current pulses reduce the tunneling
resistance of the device and hence increase the weight of the
synapse while negative current pulses do the contrary.

In figures 5(c) and(d) we use measured numbers for CoFeB
MT]Js fabricated in our group of 166% tunnel magnetoresist-
ance and 20  pum? resistance-area (RA) product to convert
the DW position to expected conductance weight. Figure 5(c)
shows the expected conductance for each corresonding DW
position in figure 5(a). Figure 5(d) shows the expected MTJ
resistance when the DW sits at each notch (blue curve), com-
pared to a linear fit if no notches are present (orange curve).
Because the DW can be pinned at a particular notch for a long
time if there is no current flowing, this gives the synapse a
long-term memory effect. Also because the position of the
DW along the free layer is a resultant effect of potentiation
and depression over time, we can safely say that the synapse
undergoes LTP and LTD.
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Figure 6. (a) Six modeled delay conditions between the pre- and post-synaptic signals, each simulated for ten cycles of 10 ns. (b) DW
position output over time from the full SPICE model for the conditions in (a). Here the DW was initiated at the leftmost end of the free
layer. (c) Modeled random train of delay conditions between the pre- and post-synaptic signals, with lead and lag times of 1 ns. (d) DW
position output over time from the full SPICE model for the conditions in (c), showing the DW position, and therefore synaptic weight, is

controlled by the timing between the signals.

The length of the MTJ compared to the length of the DW
in x determines the number of notches and hence the number
of DW positions that can represent different resistance or con-
ductance weights. In a free layer with perpendicular magnetic
anisotropy, the length of the DW Lpy is approximately deter-
mined by the width in y of the free layer, which is equal to the
width of the MTJ, wymry, as Lpw =~ Lfl [62]. This means that
with a MTJ of length Lyry, the maximum number of weights
(nwe,-ghls) achievable will be given by the relation

Nyeights < (Lvty/Low) =~ 4 X Lty /wwry. (17)

Depending on the number of weights needed, the length of
the free layer could be shortened to create more compact cir-
cuits. The notch depth and period was chosen empirically for
given materials parameters to catch the DW after each pulse
[63, 64].

It should be noted that the short pulse width of 1 ns used
here mitigates heating effects from the higher current density
[65] and hence ensures uniform predictable behavior of the

synapse circuit. For short current pulses between 1-10 ns, the
thermal diffusion length is 0.1-1 pm, larger than the free layer
thickness of 4 nm; thus, we predict Joule heating will have lit-
tle effect on the DW motion [65, 66].

3.4. Full SPICE simulation including domain wall dynamics

In sections 3.1-3.2, for the SPICE circuit model we used a
resistor to represent the 3T-MT]J free layer. In section 3.3, to
observe the effect of the circuit on the micromagnetic behavior
of the 3T-MTJ synapse, we input the resulting current polarity
from the circuit as a 1 ns current pulse of a fixed amplitude.
Here, to capture the full dynamics of the circuit signal wave-
form (e.g. figure 3(a)) on the 3T-MTJ magnetic response, we
implement a SPICE-only model of the full circuit that includes
DW dynamics. We use a model of the 3T-MT1J for a notch-free
free layer that we have previously developed with Verilog A
and is benchmarked against micromagnetic simulations [45].
The 3T-MTJ model is connected via the IN and CLK terminals
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Table 1. Head-to-head comparison of critical parameters for nanodevice and CMOS co-integrated unit cells for providing analog STDP
learning (we do not consider here the comparison to probabilistic or binary schemes).

Metal oxide
(A1,03/TiO,_,) Metal oxide

Polymer 3T-MTIJ

CBRAM [67] [68] (BiFeO3) [69] (PEDOT:PSS)/Ta [70]  2T-MTIJ [37] (our approach)
Rsynapse 5-50 k2 1040 k2 ~1 MQ 1-2.5kQ 400 © 100 2-10 k2
Switching time 24 us 20 ms 125 ps 50 ms <5ns <5ns
Vpostipre +13V +0.6-1.0V 3.0V+ 20V LoV 1OV
Analog STDP Intermediate High (>20 Intermediate High (>30 states) Low (2 Intermediate (~10
resolution (~5-10 states) states) (~10 states) states) states)

to the circuit, replacing the free layer resistor in the figure 1(d)
circuit schematic.

With the same capacitance and resistance values
(RzyL = R2,R = Rz = 10 k€2 and C2,L = CZ,R = C2 =1
x 107!2 F) used for the simulation in figure 2, we simulate ten
cycles of six constant delay conditions between onset of the
pre-synaptic signal and onset of post-synaptic signal. The six
delay conditions are shown in figure 6(a). The transient DW
position is shown in figure 6(b). With 0 ns delay, the DW does
not move. The DW responds to each spiking of the circuit by
moving an incremental distance across the free layer, and it
is evident that the shorter the non-zero delay, the farther the
DW moves after each firing and over the ten cycles, showing
STDP behavior.

In figure 6(c), we randomly vary the timing of the pre-
and post-synaptic signals with 1 ns lead or lag between the
signals. Figure 6(d) shows that in response to this pulse train
the DW moves left or right depending on the polarity of the
resulting current spikes across the 3T-MTJ free layer. These
results show that including the precise waveform of the cir-
cuit corroborates the micromagnetic results. We do see some
irregularities in how far and how smoothly the DW moves in
response to multiple similarly-timed pulses, which shows that
external pinning may be important for controlling the con-
ductance weights.

3.5. Benchmarking against competing STDP
implementations

The results of our micromagnetic and SPICE simulations
allow us to make a comparison to other state-of-the-art pro-
posals for nanodevice plaforms for implementing online
STDP learning. Specifically, we consider how our analog
STDP implementation using 3T-MTJ devices compares to
phyically realized or proposed analog STDP building block
cells using 2T-MTJs [37], CBRAM [67], metal oxide [68, 69],
or polymeric [70] active switching layers. As visible in table 1,
the signature advantage of our system is its extreme (nano-
second range) STDP time window; the second fastest device,
a CBRAM option, is over two orders of magnitude slower,
and the other listed nanodevice options are slower still. Since
this window serves as a speed limit for overall STDP learning,
this could finally allow for online STDP learning functions in
an integrated circuit co-integrated with NVM devices in an
industrially-relevant context. Our proposal compares favor-
ably in terms of required voltage, and is comparable though

not superior in terms of analog resolution provided by other
nanodevices. Our proposal’s major weak point relative to
competing options is the relatively low resistance and on/off
ratio provided by MTJ devices. However, this issue may be
ameliorated by further device engineering.

4. Conclusions

We have successfully designed a 3T-MTJ synapse circuit that
achieves STDP, LTP, and LTD, essential characteristics of
biologically-inspired artificial synapses. We observe that the
transient form of the current generated across the synapse cor-
responds to what is seen in biology, and that shorter delay
between the pre- and post- neuron firing results in higher cur-
rent for potentiation or depression, which shows high similar-
ity to biological neuron behavior. We show that the circuit can
acheive a semi-analog pinning of the DW along the length of
the ferromagnetic free layer of a 3T-MTJ using notches, and
that the DW position can be set using the concept of STDP
when integrated with the circuit. Including a SPICE model
for the 3T-MTJ, we see the DW responds to the transient cur-
rent with LTP and LTD behavior. This is key progress towards
making more bio-realistic artificial synapses with multiple
weights, which can also be trained online with a promise of
CMOS compatibility and energy efficiency. Future work is
needed to understand the impact of the additional circuitry for
STDP on scaling and circuit density. The results shown can be
in the future integrated with the LIF neuron in a crossbar array
fashion and used for online machine learning applications in
tasks like pattern or speech recognition.
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