

1 **Title: The nuclear piston activates mechanosensitive ion channels to generate**
2 **cell migration paths in confining microenvironments**

3 **Authors:** Hong-pyo Lee¹, Farid Alisafaei², Kolade Adebawale³, Julie Chang⁴, Vivek B. Shenoy²,
4 Ovijit Chaudhuri^{1*}

5 **Affiliations:**

6 ¹Department of Mechanical Engineering, Stanford University, CA, USA.

7 ²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

8 ³Department of Chemical Engineering, Stanford University, CA, USA

9 ⁴Department of Bioengineering, Stanford University, CA, USA

10 *Correspondence to: chaudhuri@stanford.edu.

11 **Abstract :**

12 Cell migration in confining microenvironments is limited by the ability of the stiff nucleus to
13 deform through pores when migration paths are pre-existing and elastic, but how cells generate
14 such paths remains unclear. Here, we reveal a mechanism by which the nucleus mechanically
15 generates migration paths for mesenchymal stem cells (MSCs) in confining microenvironments.
16 MSCs migrate robustly in nanoporous, confining hydrogels that are viscoelastic and plastic, but not
17 in hydrogels that are more elastic. In order to migrate, MSCs first extend thin protrusions that widen
18 over time due to a nuclear piston, thus opening up a migration path in the confining matrix.
19 Theoretical modeling and experiments indicate that the nucleus pushing into the protrusion
20 activates mechanosensitive ion channels, leading to an influx of ions that increases osmotic
21 pressure, which outcompetes hydrostatic pressure to drive protrusion expansion. Thus, instead of
22 limiting migration, the nucleus powers migration by generating migration paths.

23 **One Sentence Summary :**

24 The nuclear piston activates mechanosensitive ion channels to expand protrusions and generate
25 migration paths in confining matrices.

26 **MAIN TEXT**

27 **Introduction**

28 Cell migration in 3D microenvironments plays a critical role in development, immune cell trafficking, tissue
29 regeneration, and metastasis. During healing of bone fractures, MSC migration to the fracture sites through
30 3D microenvironments is critical for bone regeneration (Fig. 1A) (1, 2). MSC migration is also essential for
31 stem cell therapies involving the delivery of MSCs in biomaterial carriers (3, 4). Interestingly, the 3D
32 microenvironments in which MSCs migrate *in vivo*, including bone marrow and fracture hematomas, are

19 confining and are viscoelastic, exhibiting time dependent mechanical responses such as stress relaxation in
20 response to deformation (5, 6). Although many studies have examined the impact of matrix viscoelasticity
21 on MSC spreading and differentiation(5, 7–11), little is known about the physical process of how MSCs
22 generate migration paths and migrate in confining and viscoelastic matrices.

23

24 The nucleus plays a complex role in 3D cell migration in confining matrices. The widely-held view is that
25 the stiff nucleus limits the ability of cells to squeeze through nanometer-scale pores in confining extracellular
26 matrix (ECM)(12, 13). However, a set of studies showed that the nucleus can act as piston to generate
27 increased hydrostatic pressure in lobopodial protrusions in fibroblasts and protease-inhibited tumor cells in
28 reconstituted collagen gels (14, 15). The piston was found to mediate lobopodial 3D migration, though the
29 mechanism remains unclear, as the increase in hydrostatic pressure in the protrusion would be expected to
30 drive water out of the protrusion. Further, a recent study revealed that the nucleus acts as a mechanical gauge
31 in identifying the microchannel of least resistance in immune cells (16). Importantly, most studies of
32 confined cell migration involve contexts in which migration paths or holes are pre-existing and elastic, or in
33 which cells use proteases to degrade a migration path (17–25). While mechanisms by which cells utilize
34 proteases to generate migration paths for nuclear translocation in ECM are now well understood(20, 26, 27),
35 the use of protease-independent mechanisms in generating migration paths are largely unclear, and the
36 functional role of the nuclear piston in cell migration is unknown. Only recently was it found that cancer
37 cells can use mechanical force to open up a migration path in confining ECM only when the ECM exhibited
38 sufficient mechanical plasticity, but the role of the nucleus was not described (28). Here, we reveal a
39 previously undescribed role of the nucleus in migration, in which MSCs use a nuclear piston to open up a
40 migration path through confining viscoelastic microenvironments.

51 Results

52 **53 MSCs migrate in viscoelastic and plastic matrices by mechanically generating a migration path**

54 Here we examine MSC migration in 3D in engineered alginate hydrogels, used as models of a fracture
55 hematoma and biomaterial-based stem cell delivery carriers. Alginate hydrogels are nanoporous and cannot
56 be degraded by mammalian enzymes, serving as a model confining microenvironment and facilitating
57 discovery of protease-independent mechanisms of migration(5, 29). While alginate itself is inert to cell
58 adhesion, RGD was coupled to the alginate to promote integrin-mediated cell adhesion to the gels. Alginate
59 hydrogel viscoelasticity and mechanical plasticity, as respectively assessed by stress relaxation tests and
60 creep-recovery tests, can be modulated independent of degradability, pore size, and initial modulus by
61 varying alginate molecular weight and crosslinking density(5, 28, 30). Alginate hydrogels formed low
62 molecular weight alginate showed fast stress relaxation ($\tau_{1/2}$, or the time for stress to be relaxed to half its
63 original value in shear, was ~80s), similar to that of a fracture hematoma, and were mechanically plastic
64 (Permanent deformation of ~30 % in a 1h creep/1.7h recovery test, also in shear), while those formed from
65 high molecular weight alginate were more elastic, exhibiting slow stress relaxation ($\tau_{1/2}$ was ~19,000s) and
66 lower mechanical plasticity (Permanent deformation, ~25%) (5, 31) (Fig. 1B-C, fig. S1A-D). Crosslinking
67 density was tuned so that both exhibited similar initial elastic moduli of ~19kPa, previously reported as the
68 optimal modulus to promote osteogenesis (5, 32) (fig. S1E). Thus, the alginate hydrogels provide a confining
69 microenvironment with independently tunable viscoelasticity/plasticity and ligand density for 3D culture.
70

71 Next, 3D migration of MSCs in the hydrogels was studied. To visualize MSC migration in the hydrogels,
72 MSCs were stained with a membrane dye prior to encapsulation in the hydrogels, and then time-lapse
73 confocal fluorescence microscopy was performed. Strikingly, MSCs were able to migrate in fast relaxing
74 and plastic hydrogels, while MSCs maintained rounded cell morphology and did not migrate in the more
75 elastic hydrogels (Fig. 1E, Movie S1 and 2). Cell tracking analysis indicates that cells in fast relaxing and
76 plastic hydrogels migrate with greater speed and persistence than those in the more elastic hydrogels (Fig.

37 1F-H). Together these data establish that matrix viscoelasticity and plasticity are critical for migration of
38 MSCs in 3D matrices that are confining and not susceptible to degradation by proteases.

39
40 We next investigated the mechanism by which the MSCs build the migration paths to migrate in the
41 confining gels that were fast relaxing and exhibited mechanical plasticity. MSCs initially extend long
42 shallow protrusions into the fast relaxing and plastic hydrogels, which then widened over time, eventually
43 allowing migration to occur (Fig. 2A, B). This widening process was accompanied by volume expansion in
44 the protrusion (fig. S2A, B). More protrusive cells, as indicated by a lower sphericity, exhibited larger
45 volumes than rounded cells (fig. S2C). When body and protrusion volume were separately analyzed, the
46 body volume was found to be similar before and after protrusion expansion, while the protrusion volume
47 increased significantly (Fig. 2C, D). These data indicate that total volume of single cell increases due to
48 volume expansion in the protrusion and not the body. The 3D volume measurements were conducted by
49 reconstructing 3D cell volume from a 2D stack of confocal microscope images; we previously confirmed
50 that the volumes measured using this method matches that measured using super-resolution microscopy (10).

51 Since alginate hydrogels are not susceptible to degradation by proteases(33) and are nanoporous, it is
52 expected that the expanding protrusion must physically open a channel in the hydrogels. To confirm this
53 expectation and visualize the associated matrix deformation, matrix displacements were assessed using
54 fluorescent microbeads embedding in the hydrogels. During protrusion expansion, microbeads adjacent to
55 the protrusion moved away from the protrusion, indicating outward force generation by the protrusion (Fig.
56 2E, F, Movie S3). Further, when MSCs were cultured in fluorescently labelled alginate hydrogels, alginate
57 accumulated around the length of the protrusion, confirming that protrusion expansion opened a hole in
58 hydrogels (Fig. 2G, H). These observations indicate that MSCs expand protrusions mechanically in
59 viscoelastic matrices in order to create channels to subsequently migrate through.

60
61 **A nuclear piston drives protrusion expansion**

62 After finding that expansion of the protrusion generates force to open a migration path in the viscoelastic
63 and plastic hydrogels, we sought to identify the mechanisms driving protrusion volume expansion.
64 Interestingly, prior to the expansion of the protrusion, it was consistently observed that the nucleus moves

5 towards and into the narrow entrance of the thin protrusions (Fig. 3A, Movie S4). A previous study found
6 that during lobopodial-based migration, the nucleus physically compartmentalizes the cytoplasm and can be
7 pulled towards the front compartment of the cell, functioning as a piston to cause an increase the hydrostatic
8 pressure in that compartment(14, 15). These observations implicate a potential mechanism driving
9 protrusion expansion: entry of the nucleus into the narrow protrusion increases hydrostatic pressure in the
10 protrusion and causes expansion of the protrusion. This potential mechanism was investigated. Blebs, which
11 occur when increased intracellular pressure drives delamination of the membrane from the actin
12 cytoskeleton(34), were often observed at the cell membrane in protrusions following entry of the nucleus
13 into the protrusion indicating enhanced pressure in the protrusion (Fig. 3A, Movie S5). Actomyosin
14 contractility along with the intermediate filament protein vimentin and the nucleoskeleton-intermediate
15 filament linker protein nesprin-3 were previously found to be involved in pulling the nucleus forward and
16 pressurizing the front of the cell(15). Thus, the roles of vimentin and nesprin3 in protrusion expansion and
17 migration were first tested using small interfering RNA (siRNA) to reduce expression (fig. S3A). Nuclear
18 location in the cell body was polarized toward the entrance of the protrusion in control cells and cells with
19 reduced expression of nesprin-3, but not in cells with reduced expression of vimentin (Fig. 3B, C, fig. S3B,
20 C). In addition, the loss of nuclear movements toward the protrusion with reduction of vimentin was
21 accompanied by diminished protrusion expansion **and consequently inhibited the migration of the cells**,
22 establishing the role of vimentin in the nuclear piston (Fig. 3D, E, H-J, fig. S3D, E). **Vimentin is connected**
23 **to lamin A/C of the nucleus(35)** and lamin A/C is also a key element regulating nuclear shape and rigidity
24 during 3D migration(13, 36). The role of lamin A/C in protrusion expansion and migration via the nuclear
25 piston was examined using siRNA. Decreased lamin A/C expression in cells diminished protrusion
26 expansion and migratory behaviors of cells (Fig. 3F-J, fig. S3A). Since nuclear movements are facilitated by
27 both actomyosin contractility(14) and microtubules(15, 34), we also examined whether these actively
28 participate in the nuclear piston behavior observed here. Inhibition of microtubule polymerization, with
29 nocodazole, and actomyosin contractility, with myosin inhibitor ML-7, induced the loss of nuclear
30 polarization (Fig. 4A-C). **Further, each inhibition significantly reduced the migration of cells in 3D**
31 **microenvironments (Fig. 4E-F)**. Real-time inhibition of microtubule formation or actomyosin contractility
32 in protruding cells resulted in an immediate relaxation of nucleus position from the entrance of the protrusion

13 towards the center of the cell and simultaneously decreased the width of protrusion (Fig. 4G-J). Together,
14 these results establish that a nuclear piston, mediated by actomyosin contractility, microtubules, vimentin
15 and lamin A/C, drives increased pressure in protrusions and subsequent protrusion expansion for migration
16 in confining and plastic microenvironments.

17

18 **Nuclear piston activates ion channels to induce ion influx into protrusions**

19 We next sought to elucidate the molecular mechanisms connecting the nuclear piston to volume expansion
20 of the protrusion. A simple nuclear piston mechanism could be expected to lead to water efflux from the
21 protrusion due to the increased hydrostatic pressure. This is the opposite of what is observed, suggesting a
22 more complex picture. It is known that cell volume can be altered by osmotic pressure, which is driven by
23 the difference of ions concentrations between the inside and outside of the cell membrane(37). Therefore,
24 ion concentrations were analyzed in expanding protrusions. Sodium and calcium imaging revealed that both
25 sodium and calcium ion concentrations increased along the length of the protrusion, with the highest
26 concentrations found at the tip of protrusion (Fig. 5A-D). Live-cell calcium imaging revealed that
27 intracellular calcium ion concentration at the tip of the protrusion increased over time (Fig. 5E, F). These
28 implicate that influx of calcium and sodium ions at the protrusion tip increases the concentration of ions
29 within the protrusion over time. To determine the underlying mediators of differences in ions along the
30 protrusion, we looked at the distribution of sodium and calcium channels. Since previous studies have shown
31 that the polarized distribution of intracellular sodium ions can be driven by polarized distribution of the
32 sodium hydrogen exchanger-1(NHE)(18), the distribution of NHE-1 ion channels along a protrusion was
33 examined. The NHE-1 ion channels are more densely distributed at the tip of protrusion, similar to the
34 distribution of intracellular sodium ion along the protrusion (fig. S4A, B). Next, the distribution of transient
35 receptor potential vanilloid-4 (TRPV4) calcium ion channels was investigated, since we previously found
36 that mechanosensitive TRPV4 ion channels regulate MSCs volume and work as a molecular sensor of matrix
37 viscoelasticity in MSCs(10). TRPV4 calcium ion channels were evenly distributed along the protrusions,
38 even though intracellular calcium ions showed a concentration gradient (fig. 4C, D). However, $\beta 1$ integrin
39 membrane receptors, which can interact with and activate TRPV4 ion channels(38), exhibited a polarized
40 distribution along the protrusion similarly to that of intracellular calcium ions (fig. S4C, D). To directly

1 assess the role of NHE-1 and TRPV4 ion channels in mediating an ion concentration gradient along the
2 protrusion, small molecule inhibitors EIPA and GSK205 were applied to inhibit the function of NHE-1 and
3 TRPV4, respectively. When the function of NHE-1 ion channels was inhibited, the polarized distribution of
4 NHE-1 ion channels along the protrusion disappeared and the distribution profile of sodium ions was
5 reversed (Fig. 5G, H, fig. S5A-C). Sodium ions were relatively high at the beginning and low at the end of
6 the protrusion. Similarly, TRPV4 inhibitors also inverted the concentration profile of calcium ions,
7 decreasing the calcium ion concentration at the leading edge of protrusion (Fig. 5I, J). These reversed
8 concentration profiles of calcium ions and sodium ions by each inhibition might be due to the diffusion of
9 ions from the cell body, which have relatively higher concentrations of ions adjacent to the nucleus. Further,
10 the impact of the function of NHE-1 and TRPV4 ion channels on migration in 3D microenvironments was
11 analyzed with siRNA knockdowns. Cell tracking analysis indicates that both cells in fast relaxing and plastic
12 hydrogels migrate with slower speed and less persistence when NHE-1 or TRPV4 are knocked down, relative
13 to control cells (Fig. 5K-N). Together, these results indicate that calcium and sodium ions flow in through
14 NHE-1 and TRPV4 ion channels to drive protrusion expansion for migration in 3D confining environments.

15

36 We next hypothesized that the nuclear piston, or movement of the nucleus into the protrusion, serves as the
37 key driver of ion flow into the protrusion. It is known that TRPV4 ion channels are mechanosensitive and
38 the movement of the nucleus into the protrusion is expected to push cytoplasmic fluid into the protrusion,
39 which pressurizes the protrusion, as indicated by the blebs, and potentially stretches the membrane. Further,
40 it was consistently observed that movement of the nucleus into the protrusion was highly correlated with
41 both protrusion expansion and calcium ion accumulation at the tip of the protrusion (Fig. 6A, fig. S6A, B,
42 C). To assess our hypothesis, the distribution of intracellular calcium ion along the protrusion was analyzed
43 in the vimentin and nesprin-3 knockdown cells. In vimentin knockdown cells, which exhibited loss of
44 nuclear piston and diminished protrusion expansion, the distribution profile of calcium ions was reversed
45 compared to control cells, with the calcium ion concentration at the leading edge of protrusion in cells
46 decreasing (Fig. 6B, C). No change in calcium ion concentration in nesprin-3 knockdown cells, which
47 exhibited normal nuclear piston and protrusion expansion, relative to control cells was observed (fig. S7A,
48 B). Taken together, these results suggest that the nuclear piston movement increases intracellular pressure

9 in the protrusion, which activates mechanosensitive ion channels to flow ions in the end of protrusion,
10 driving the protrusion expansion.

1
2 **Theoretical modeling and experiments show that increased osmotic pressure outcompetes hydrostatic
3 pressure to drive protrusion expansion**

4 To better understand the underlying physics of the nucleus-driven expansion of protrusion, and the
5 competition between increased hydrostatic pressure in the protrusion, which would promote water efflux,
6 and increased osmotic pressure in the protrusion, which would promote water influx, we developed a
7 theoretical model (Fig. 6D). With the nuclear movement, the fluid in front of the nucleus is pushed into the
8 protrusion in a piston-like manner. Subsequently, the hydrostatic pressure in the protrusion, P_{in} increases
9 and the protrusion membrane is stretched which in turn activates stretch-mediated ion channels on the
10 protrusion membrane (Fig. 6D, E). With the opening of the mechanosensitive channels, ions can flow in and
11 out of the protrusion in the direction of the ion concentration gradient across the membrane (Fig. 6D, E).

12 The ion flux rate (dn/dt) is determined by the difference between the osmotic pressures outside (Π_{out}) and
13 inside (Π_{in}) of the protrusion (Fig. 6D, E). On the other hand, the protrusion expansion rate (14
15 $dr/dt = J_1 + J_2 + J_3$) is determined by the influx and efflux of fluid where J_1 , J_2 , and J_3 are respectively
16 governed by (i) the rate of fluid transport to the protrusion by the nuclear movement, (ii) the hydrostatic
17 pressure difference across the membrane, and (iii) the osmotic pressure difference across the membrane (Fig.
18 6D, E). Note that the ion flux rate and the protrusion expansion rate are mutually dependent (see Methods).

19 With this model of the nuclear piston that incorporates fluid transport due to the piston, hydrostatic pressure,
20 and osmotic pressure, we ran the model and validated the model with experiments (Fig. 7A). The model
21 predicts that the activation of mechanosensitive ion channels, upon pressurizing the protrusion by the nuclear
22 piston, allows an influx of ions into the protrusion which in turn increases osmotic pressure in the protrusion
23 to oppose the efflux of fluid (fig. S8B-F, H-L). This leads to a positive net amount of fluid flow into the
24 protrusion (fig. S8G, M) and subsequently an expansion of the protrusion which is in excellent agreement
25 with our experimental observation (Fig. 7B, C). Further, the model predicted that in the absence of protrusion
26 ion channels, cell protrusions cannot expand as the fluid influx J_1 is almost equal to the fluid efflux $J_2 + J_3$

1 This prediction is consistent with experimental observations where inhibition of the ion channels or
2 chelating of intracellular calcium ions prevents the expansion of protrusion (Fig. 7B-D, fig. S8B-F, H-L). It
3 should be noted that while protrusion expansion, as well as cell migration speed and track length, were
4 decreased by inhibiting ion channels or chelating intracellular ions (Fig. 7E, fig. S9), protrusion lengthening
5 was not impeded, indicating that other mechanisms regulate the initial extension of the thin protrusion (Fig.
6 7F).

13
14 Next, the model predicted the anticipated results of real-time inhibitions of mechanosensitive ion channels
15 and actomyosin contractility (Fig. 7G, fig. S10A-G). After the initial expansion of the protrusion due to the
16 forward movement of the nucleus, the model predicts that the inhibition of mechanosensitive ion channels
17 reduces the osmotic pressure in the protrusion (fig. S10F), so that the radius of the protrusion mildly
18 decreases (Fig. 7H). Also, the model predicts that the nucleus continues its forward movement (Fig. 7I) as
19 the posterior hydrostatic pressure remains higher than the hydrostatic pressure in the protrusion (fig. S10E).
20 Likewise, the experimental observations exhibited that TRPV4 inhibition in real-time did not impact nuclear
21 movements but did prevent the influx of ions. As a result, the radius of the protrusion decreased over time,
22 indicating the nuclear piston to be upstream of ion channel activation (Fig. 7H-J). On the other hand, the
23 model predicted that real-time inhibition of the contractility led to a significant drop in the posterior
24 hydrostatic pressure (fig. S10E), thus the nucleus moved backward (Fig. 7I) and the protrusion width
25 decreased (Fig. 7K). These predictions were both in agreement with the experimental observations (Fig. 7H,
26 I, K). Thus, the model and the experimental results elucidate how the nuclear movement, the influx/efflux
27 of ions, and intracellular fluid work in concert to control the protrusion volume through balancing the
28 hydrostatic and osmotic differences across the membrane.

19
20 **Discussion**
21

22 Together, our data from experiments and simulations reveal the physical mechanisms of how stem cells
23 generate paths to migrate in confining viscoelastic and plastic matrices, which have no pre-existing migration
24 path (Fig. 8). MSCs initially generate shallow protrusions into the matrices. Then, the nucleus is pushed into
25 the protrusion like a piston, increasing intracellular pressure in the protrusion. Actomyosin contractility,

vimentin, and microtubules are involved in the nuclear piston, which activates mechanosensitive ion channels to flow ions in the end of protrusion, balancing the osmotic pressure between inside and outside of protrusion. Finally, the increased osmotic pressure in the protrusion reduces water efflux, promoting the expansion of the protrusion, which physically opens up a migration path in the confining viscoelastic and plastic microenvironments.

Here we found that cells migrate in viscoelastic and plastic matrices that are nanoporous, but not in matrices that were more elastic. Most natural ECMs are viscoelastic, exhibiting some degree of fluid-like behaviors and stress relaxation in response to a deformation, and viscoplastic, exhibiting irreversible deformations in response to mechanical stress or strain (5, 39, 40). In the type-1 rich collagen networks that provide mechanical support to many soft tissues, unbinding of weak bonds between fibers or between fibrils within a fiber, followed by matrix flow or sliding of fibrils and then rebinding of weak bonds, represent two sources of viscoelasticity and viscoplasticity, though many other mechanisms likely contribute (41–43). Covalent crosslinks act to diminish viscoelasticity and plasticity. We have previously shown that matrix viscoelasticity and plasticity in 3D regulates processes that involve shape or volume change such as mediate cell volume expansion, matrix deposition, cell-cycle progression and mitosis, matrix remodeling, and migration of cancer cells (5, 10, 28, 30, 40, 44, 45). Particularly relevant to this study, we previously showed that matrix mechanical plasticity regulated the probability of protrusion formation and extension, and cell migration, with a sufficient level of matrix mechanical plasticity enabling protrusion formation, protrusion extension, and migration (28). Consistent with this idea, here we show that matrix viscoelasticity and viscoplasticity regulate the migration of stem cells.

Our finding that MSCs use the nuclear piston to generate a migration path in confining matrices adds a fresh new insight into our current understanding of migration path generation. For rigid pore sizes with a diameter below $\sim 3 \mu\text{m}$, it is known that cancer cells and fibroblasts are unable to squeeze their stiff nucleus through the pore (12, 13). For immune cells, the minimum pore size for migration is lower, but the same principle applies. Thus, extracellular matrices with smaller pore sizes are considered to be confining with cells having to generate a micron-size path in order to migrate. Smaller pore sizes are likely to be relevant to many, if not most, extracellular matrices. However, the topic of migration path generation has been largely avoided in previous studies of confined cell migration, which often utilize microfabricated

34 channels where migration paths are pre-defined (16–18, 21–25, 46–48). In matrices that are degradable, cells
35 can secrete MMPs or other proteases to biochemically degrade the matrix and help form migration paths,
36 and much is known about these mechanisms (12, 19, 20, 26, 27). We previously found that cancer cells can
37 migrate through nanoporous matrices that exhibit sufficient mechanical plasticity (28). Here we show that
38 the nuclear piston is used to expand protrusions and generate migration paths in viscoelastic and viscoplastic
39 matrices, independent of protease activity. From the mechanism of nuclear translocation, we found that
40 nuclear piston movements generate a migration path by increasing pressure in the shallow protrusion.
41 Membrane blebs, and an increase in calcium concentration in the protrusion through mechanically activated
42 ion channels, are associated with the forward movement of the nucleus and indirectly indicate the increase
43 of pressure in the protrusion due to the nuclear piston. Further, the alginate accumulation and the dislocations
44 of embedded microbeads around the expanding protrusion directly show that protrusion expansion generates
45 a migration path. As biological matrices are both susceptible to degradation and are viscoelastic/viscoplastic,
46 it is possible that the nuclear piston mechanism acts synergistically with known protease-dependent modes
47 of migration path generation.

48 Mechanistically, we find some distinctions between the nuclear piston used by MSCs in confining

49 hydrogels, and the nuclear piston mechanism described previously. Previous studies demonstrated that
50 vimentin and nesprin-3, one of LINC proteins, are important components that mediate nuclear piston
51 movement during lobopodial-based migration by cancer cells and fibroblasts in microporous collagen gels
52 (14, 15). Surprisingly, we found that nesprin-3 is not directly involved in the nuclear piston movements for
53 MSCs in nanoporous alginate hydrogels. The nesprin family is composed of four nesprins, so it is possible
54 that another nesprin might be involved in the nuclear piston in MSCs. We do find that lamin A/C proteins
55 are necessary for protrusion expansion and the nuclear piston mechanism. Since the lamin A/C proteins
56 serve as a key link between the LINC complex and the nucleus, these findings are suggestive of force
57 transmission through the nucleus during this process. In addition, while previous studies implicated
58 actomyosin contraction at the anterior part of the cell (i.e. protrusion) as the main mechanism pulling the
59 nucleus into the protrusion (14, 15), our results indicate that actomyosin in the posterior part of the cell may
60 be more activated than actomyosin in the anterior part. Similar to our observation, a recent study showed
61 that elevated contractility at the cell posterior for cancer cells in confining channels locally increases

2 cytoplasmic pressure and promotes nuclear translocation and bleb formation(49). Collectively, these results
3 indicate that the nuclear piston mechanism for generating the migration paths may have various different
4 flavors, which might be dependent on cell type and whether the microenvironment is fully confining,
5 microporous, or channel-like.

6 In addition, the identification of mechanosensitive ion channels in cell migration adds the known
7 list of key molecular players driving the nuclear piston and involved in cell migration generally. It was
8 known that the nuclear piston mechanism involved actomyosin contractility, vimentin, and nesprin-3 to pull
9 the nucleus forward and pressurize the front of the cell (14, 15). We show that mechanosensitive ions
10 subsequently play a critical role in driving the osmotic pressure changes that overcome the increase in
11 hydrostatic pressure in the protrusion to drive protrusion expansion. While we focused on TRPV4 and NHE-
12 1, a recent study found that the mechanosensitive ion channel TRPM7 plays a central role in how cancer
13 cells sense hydraulic pressure and cross sectional area in microfabricated microchannels (24). This suggests
14 that other mechanosensitive ion channels could also be involved in regulating the nuclear piston. Together,
15 these findings highlight the important, and previously underappreciated, role of mechanosensitive ion
16 channels in cell migration.

17 Finally, our finding that matrix viscoelasticity and plasticity facilitate the migration of stem cells
18 has broad implications for the design of biomaterials in clinical applications. Various applications in
19 regenerative medicine involve the delivery of stem cells, or recruitment of local host cells (50). Further, the
20 emerging field of biomaterials-based immunoengineering often involves the use of biomaterials to recruit,
21 infiltrate, and program immune cells (51). Thus, our findings point towards hydrogel viscoelasticity and
22 viscoplasticity as a critical design parameter that can be modulated to optimize performance in such
23 applications.

15 **Materials and Methods**

16 Alginate preparation

17 Sodium alginate (average molecular weight; 280 kDa, high-MW, Protanal LF 20/40, FMC Biopolymer) was
18 used directly for the high-MW alginate gels. This alginate was also modified by irradiation with a 8 Mrad
19 cobalt source to produce low molecular weight (low-MW) alginates (average molecular weight; 35 kDa)(52).
20 RGD oligopeptides coupled to the alginates using standard carbodiimide chemistry(52). The alginates were
21 reconstituted at 1% wt/vol in 0.1M MES buffer. Sulfo-NHS (ThermoFisher Scientific), N-(3
22 dimethylaminopropyl)-N'-ethylcarbodiimide (EDC, Sigma-Aldrich) and RGD oligopeptide (GGGGRGDSP,
23 peptide 2.0) were sequentially added in the alginate solution, and then the reaction continued for 20 hours
24 until adding hydroxylamine hydrochloride (Sigma) to quench. The alginate was dialyzed in deionized water
25 for 2~3 days, purified with activated charcoal, sterile-filtered, lyophilized, and stored in a -20C freezer until
26 it was used. For cell encapsulation, alginate was reconstituted at 3% wt/vol in serum-free Dulbecco's
27 modified Eagle's medium (DMEM, Life Technologies). The final concentration of RGD peptide in the 2%
28 w/v alginate hydrogels was 1500 μ M. For preparation of fluorescent alginates, fluorescein amine isomer
29 (Acros Organics) was coupled to RGD coupled alginate using carbodiimide chemistry at a concentration of
30 37.74 μ M as described above.

31

32 Mechanical characterization

33 Unconfined compression tests were made with an Instron 5848 mechanical tester (Instron)(30). Alginate
34 hydrogels and PEG hydrogels for compression characterization were prepared with disk shaped hydrogels
35 (6-mm in diameter and 2-mm thick). The disks of hydrogels were incubated overnight in Dulbecco's
36 Modified Eagles Medium (DMEM, Invitrogen). The samples were compressed with a rate of 1 mm/min
37 until 15% strain and held constant. Stress and strain of the hydrogels was recorded over time. The initial
38 modulus of the hydrogel was calculated with the slope of stress-strain curve between 5 and 10% strain. The
39 time of stress relaxation of each alginate ($\tau_{1/2}$) was measured as the time for which the initial stress at 15%
40 strain decreased to half of its original value. The stress relaxation profile of a human fracture hematoma in
41 Fig. 1C was obtained from previously published work(5). Since volume of the gels or fluid flow out of the
42 gel does not occur in shear, shear relaxation tests were conducted with an AR-G2 rheometer to show

3 differences in stress relaxation only due to ionic crosslinker unbinding and polymer flow, and not the fluid
4 flow out of the samples(30). For sample preparation, the mixtures of alginate hydrogels were directly
5 deposited between two plates of the rheometer as soon as mixing. After fully gelling the alginate mixtures
6 indicated by reaching an equilibrium of both loss and storage modulus, a constant shear strain of 15% strain
7 were then applied for 10,000s and measure stress relaxation property of hydrogels.

8 Mechanical plasticity of the hydrogels was characterized using creep-recovery tests in a rheometer(40).
9 Hydrogel samples for plasticity tests were prepared by directly depositing alginate solutions between two
10 plate of the rheometer immediately after mixing, prior to gelation. To prevent the dehydration of hydrogel,
11 mineral oil (Sigma) was applied to the surface of the gel disk at the edge of plates. Gelation was tracked by
12 periodically recording the storage and loss modulus. After the storage modulus reached an equilibrium value,
13 this time sweep was followed by a creep-recovery test. First, a constant shear stress (150 Pa) was applied
14 for 3600s and then unloaded (0 Pa) for 6400 s (1.7 h) to recover the samples from the absence of stress. The
15 strain derived from loading and unloading stress was recorded as a function of time. The plasticity of each
16 hydrogel was measured with the ratio of strain after recovery test to the maximum strain at the end of loading.
17

18 Encapsulation cells in hydrogels

19 D1 MSCs (CRL-12424, ATCC) were cultured to 70% confluence and encapsulated in alginate hydrogels.
20 Cells were trypsinized with 0.05% trypsin/EDTA, washed with DPBS, centrifuged, and resuspended in
21 growth medium containing 10% fetal bovine serum (FBS, GE Healthcare). The number of cells was counted
22 using a Vi-Cell Coulter counter (Beckman Coulter). Cells were homogeneously mixed with the alginate
23 solution prior to adding calcium crosslinkers (CaSO₄). The final cell concentration was 10 million cells/mL
24 in the cell-laden mixture. The mixture was then deposited between two glass plates spaced a 1mm apart. The
25 hydrogels were allowed to gel for 45mins, and then disks of hydrogel were punched our using a biopsy
26 punch. The hydrogel disks containing cells were then cultured in gels for 1 to 2 days in induction medium
27 containing 50 µg/ml L-ascorbic acid (MilliporeSigma), 10 mM β-glycerophosphate (MilliporeSigma), and
28 0.1 µM dexamethasone (MilliporeSigma). After one day, bright field microscopy was used to capture cell
29 morphologies. For visualizing displacement of hydrogels, fluorescent alginates were used, instead of normal
30 alginate or fluorescent microbeads (Thermofisher, Cat# F8811) were added into the cell-alginate mixture.

1

2 Live cell imaging

3 For live-cell studies using D1 MSCs in alginate, samples were prepared with a procedure similar to above.

4 For migration studies, the membranes of MSCs were labelled with octadecyl rhodamine B chloride (1:1000

5 dilution, R18, ThermoFisher Scientific) prior to encapsulating cells in alginate. The stained cell-laden

6 alginate hydrogels were punched out, transferred into the wells of a chambered coverglass (LabTek), and

7 covered with low-melting-temperature agarose (Cat# 50302, Lonza, Swiss) to prevent the hydrogel from

8 floating. Induction medium was added in wells with vehicle alone or inhibitor. After hydrogels were fully

9 swelled for 6 hours in an incubator, MSCs were imaged in an incubated chamber (37 °C and 5% CO2) at 15

0 min or 30 min intervals with a confocal microscope (Leica CM1950 20/0.40 NA objective) overnight. For

1 imaging nucleus, a similar procedure was followed and cells in hydrogels were incubated for 1 hour with

2 nucleus dye (Hoechst 33342, Invitrogen), washed three times with DMEM, and the hydrogels were covered

3 with agarose for live cell imaging.

4 For live inhibition studies, the chambers were covered with plastic wrap to prevent dehydration of medium.

5 Individual cells with nuclei positioned at the entrance of protrusion were marked using the mark-and-find

6 feature of the Leica software. Small molecule inhibitors were then delivered to each wells and image multiple

7 cells at every time point. Specific drug concentrations were described at the section of inhibition tests.

8

9 Intracellular ions imaging

10 For imaging intracellular ions in MSCs, both Fura-red AM (33 μ M, ThermoFisher Scientific) and Fluo-3

11 AM (20 μ M, ThermoFisher Scientific) were applied for imaging intracellular calcium(53, 54) and cytosolic

12 Na⁺ indicator (25 μ M, ION NaTRIUM GreenTM-2 AM, ab142802, Abcam) were used for imaging

13 intracellular sodium ions(55). Cells encapsulated in alginates hydrogels were incubated with each indicator

14 for 1 h and washed three times with DPBS and incubated in the induction medium before live cell imaging.

15 Intracellular ions were live imaged at 15 min or 30 min intervals with a confocal microscope (Leica CM1950

16 20/0.8 NA objective) overnight. Sodium ion concentration in cells were measured with the intensity of

17 sodium indicator and calcium ion concentration was measured using the ratio of the Fluo-3 intensity to the

18 Fura-red intensity(53–55).

19

20 Immunohistochemistry

21 For immunohistochemical staining, the cell-laden hydrogel samples were taken out of media, washed in PBS
22 containing calcium (cPBS, GE), and fixed with 4% paraformaldehyde (Alfa Aesar) in DMEM at room
23 temperature for 45-60 min. Then, the samples were washed three times in PBS containing calcium, incubated
24 in 30% sucrose (Fisher Scientific) in cPBS overnight, and then placed in OCT-sucrose mixture, containing
25 50% OCT (Tissue-Tek, Sakura) and the other 50% of a 30% sucrose solution, for 4 h. The samples were
26 then embedded in OCT and frozen. The gels were then sectioned with a thickness of 30-60 μ m using a
27 cryostat (Leica CM1950), and the staining processed using standard immunohistochemistry protocols.

28 The following antibodies and reagents were applied for immunohistochemistry: anti-NHE-1 (1:200;
29 ab67314, Abcam), anti-TRPV4 (1:200; ab39260, Abcam), anti- β 1 integrin (1:300; ab24693, Abcam), anti-
30 Vimentin (1:200; ab92547, Abcam), anti-Nesprin3 (1:200; ab74261, Abcam), anti-Alpha tubulin (1:200;
31 DM1A, Cell signaling), and Phospho Myosin Light Chain (1:200; ab3381, Millipore Sigma). DAPI(1:1000,
32 Invitrogen) and AF-488 Phalloidin (1:80, Invitrogen) were used to stain the nucleus and the actin
33 cytoskeleton, respectively. The following secondary antibodies were used: Goat anti-Rabbit IgG AF 647
34 (Invitrogen), Goat anti-Mouse IgG AF 647 (Invitrogen), Goat anti-Rabbit IgG AF 555(Invitrogen) and Goat
35 anti-Mouse IgG AF 555(Invitrogen). Prolong Gold antifade reagent (Life Technologies) was applied to
36 prevent photobleaching.

37

38 Inhibition/siRNA knockdown tests

39 For inhibition the function of TRPV4 and NHE ion-channels, GSK205 (10 μ M(10, 56), Calbiochem) and
40 EIPA (20 μ M(18), R&D system) were applied, respectively. Bapta-AM (10 μ M(24, 57), ThermoFisher) was
41 used to chelate intracellular calcium ions in MSCs. For inhibition microtubule polymerization and myosin
42 activity, Nocodazole (10 μ M(15, 16), Tocris Bioscience) and ML-7 (25 μ M(5, 10), Tocris Bioscience) were
43 applied to the induction media, respectively. Inhibitor concentrations were based on those used in previous
44 studies.

45 For knocking down the expression of vimentin and nesprin3, MSCs were transfected with 50 nM vimentin
46 siRNA SMARTpool (L-061596-01-0010, Dharmacon), 50 nM Syne3 siRNA SMARTpool (L-052180-01-

17 0010, Dharmacon), 50nM NHE-1 siRNA SMARTpool (L-048336-01-0020, Dharmacon), 50nM TRPV4
18 siRNA SMARTpool (L-040742-00-0020, Dharmacon), and 50nM Lamin A/C siRNA SMARTpool (L-
19 040758-00-0020, Dharmacon), respectively. Control cells was transfected with ON-TARGETplus Non-
20 Targeting Control Pool (D-001810-10-20, Dharmacon). All cells were transfected for 3 days using
21 DharmaFECT Transfection Reagent (T-2001-01, Dharmacon) and knockdown efficiency was analyzed by
22 Western blotting.

23

24 Western blot

25 siRNA transfected cells were extracted and centrifuged. Cell pellets were lysed in Pierce RIPA buffer (89900,
26 ThermoFisher) with Protease Inhibitor Cocktail Tablets (11836170001, Roche) and PhosSTOP Phosphatase
27 Inhibitor Cocktail Tablets (04906845001, Roche). The protein concentration in each sample was measured
28 using the Pierce BCA Protein Assay Kit (23227, Thermo Fisher). Laemmli Sample Buffer (1610747, Bio-
29 Rad) was used to dilute samples to 3.5 µg/µl. 35 µg of total protein was added in each lane of a 4-15%, 15-
30 well gradient gels (4561086, Bio-Rad). The gels were run for 35 min and the proteins were transferred to
31 nitrocellulose (Bio- Rad) at 100V for 45 mins. The membrane was blocked in 5% milk for 1 h, incubated
32 overnight in primary antibodies against Vimentin (ab92547, Abcam, 1:1000), Nesprin3 (ab74261, Abcam,
33 1:500), Lamin A/C (2032S, Cell Signaling, 1:1000), NHE-1 (SC-136239, Santa Cruz Biotechnology,
34 1:1000), TRPV4(ab39260, Abcam, 1:1000), P38 (SC-535, Santa Cruz Biotechnology, 1:1000) and GAPDH
35 (ab181602, Abcam, 1:1000). Blots were incubated with secondary antibodies against the primary for 1hour
36 and imaged using a Licor Odyssey imaging system (LI-COR Biotechnology).

37

38 3D image analysis

39 To measure cell volume and sphericity, cells in hydrogels were fixed with 4% paraformaldehyde and stained
40 with R18 and DAPI. 3D image stacks were taken using a confocal microscope (Leica SP8, PL APO 63X/1.4
41 NA oil immersion objective) with a 0.5µm z-axis interval(10). The image stacks were visualized using a
42 constant threshold for each experiment. Cell volumes and sphericity were automatically calculated using
43 Imaris software(10).

74 Cell body and protrusion were distinguished by following procedure: first, we found the maximum width of
75 the entire cell and drew the largest ellipsoid which is located inside the cell and has the center at the middle
76 of the maximum width. The ellipsoid was regarded as cell body and the rest of the cells was considered to
77 be a protrusion.

78 Body volume was calculated with 3D image stack at which the body area was marked by hand-tracing in
79 each slice. Protrusion volume was measured by subtracting the body volume from entire volume.

80 To compare protrusion volume to width, the identical image stacks were used to measure the protrusion
81 volume and width. The 3D image stacks were converted into a 2D image by accumulating all images. The
82 protrusion width was then measured at the middle of the protrusion with the accumulated 2D images and the
83 protrusion length was measured with a line following the protrusion from leading edge of protrusion to the
84 edge of body part.

85 For live cell images to take 3D stacks, labeled cells in hydrogels were imaged using confocal microscope
86 (Leica SP8, A 20X/0.8 NA dry objective). The 3D stacks for live cell imaging were taken with 1 μ m z-axis
87 interval by considering pixel distance of x-y plane.

88 To measure track length and speed of migration in 3D hydrogels, 3D stack images were recorded with 5-
89 10 μ m z-axis interval for 20 hours and the cell centroids in the 3D stack images were tracked using Imaris
90 software. Track length and speed of migration were automatically calculated by Imaris software. Migration
91 trajectories were reconstructed with a custom MATLAB code.

92

93 2D image analysis

94 For measuring the distribution of intracellular ion and proteins, ImageJ was used with the 2D image
95 accumulating all slices of 3D stack images. The distribution profiles were obtained by measuring signal
96 intensity profile of each targets. Along the protrusion, the intensity profiles were measured 3 times with a
97 line following the protrusion from leading edge of protrusion to the edge of body part.

98 Nuclear location in the cell body was measured using ImageJ with DAPI and phalloidin signals. As described
99 above, body area in entire single cell was found with the ellipsoid and the center of the ellipsoid was regarded
100 as the center of the body. The centroid of nucleus was found with DAPI signal. A vector was then obtained
101 from the center of cell body to the center of nucleus. Another vector was obtained from the center of cell

12 body to the middle of protrusion entrance. Polarization of nuclear location in cell body was calculated as the
13 angle between these two vectors.
14 For mapping the displacement of matrix, drift of fluorescent microbeads image was corrected using ImageJ
15 and microbeads embedded in hydrogels in images were tracked with a particle image velocimetry (PIV)
16 plugin in ImageJ (PIVlab; MATLAB) using three cross-correlation windows (128×128 , 64×64 and 32×32
17 pixel-size interrogation window). The mesh sizes of the windows were manually chosen accordingly for the
18 local bead concentration. The results from this PIV analysis provided a vector field of matrix displacements
19 and a heat map. The control was quantified by measuring the dislocation of beads located at the $30 \mu\text{m}$ away
20 from each cell.

1 The accumulation of matrix was measured as the ratio intensity of fluorescent alginate within $2 \mu\text{m}$ of the
2 border of protrusion to the intensity of the background hydrogel at $30 \mu\text{m}$ away from each cell. The control
3 was quantified as the ratio intensity of fluorescent alginate within $10 \mu\text{m}$ of the cell border to the background
4 intensity of the hydrogel.

5

6 Statistical analysis

7 GraphPad prism was used for all statistical analyses. Specific method of statistics, P values, and sample
8 numbers of each comparisons are reported in figure legends. All quantifications for statistical analysis were
9 from at least three independent experiments with two biological replicates per experiment.

10

11

12

13 **References and Notes**

14 1. W. Lin, L. Xu, S. Zwingenberger, E. Gibon, S. B. Goodman, G. Li, Mesenchymal stem
15 cells homing to improve bone healing. *J. Orthop. Transl.* **9**, 19–27 (2017).

16 2. N. Huebsch, E. Lippens, K. Lee, M. Mehta, S. T. Koshy, M. C. Darnell, R. M. Desai, C. M.
17 Madl, M. Xu, X. Zhao, O. Chaudhuri, C. Verbeke, W. S. Kim, K. Alim, A. Mammoto, D.
18 E. Ingber, G. N. Duda, D. J. Mooney, Matrix elasticity of void-forming hydrogels controls
19 transplanted-stem-cell-mediated bone formation. *Nat. Mater.* **14**, 1269–1277 (2015).

20 3. P. Su, Y. Tian, C. Yang, X. Ma, X. Wang, J. Pei, A. Qian, Mesenchymal stem cell
21 migration during bone formation and bone diseases therapy. *Int. J. Mol. Sci.* **19** (2018),
22 doi:10.3390/ijms19082343.

23 4. C. Loebel, J. A. Burdick, Engineering Stem and Stromal Cell Therapies for
24 Musculoskeletal Tissue Repair. *Cell Stem Cell.* **22**, 325–339 (2018).

25 5. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch,
26 H. P. Lee, E. Lippens, G. N. Duda, D. J. Mooney, Hydrogels with tunable stress relaxation
27 regulate stem cell fate and activity. *Nat. Mater.* **15**, 326–334 (2016).

28 6. O. Chaudhuri, J. Cooper-White, P. A. Janmey, D. J. Mooney, V. B. Shenoy, Effects of
29 extracellular matrix viscoelasticity on cellular behaviour. *Nature.* **584**, 535–546 (2020).

30 7. Z. Gong, S. E. Szczesny, S. R. Caliari, E. E. Charrier, O. Chaudhuri, X. Cao, Y. Lin, R. L.
31 Mauck, P. A. Janmey, J. A. Burdick, V. B. Shenoy, Matching material and cellular
32 timescales maximizes cell spreading on viscoelastic substrates. *Proc. Natl. Acad. Sci. U. S.*
33 *A.* **115**, E2686–E2695 (2018).

34 8. J. Lou, R. Stowers, S. Nam, Y. Xia, O. Chaudhuri, Stress relaxing hyaluronic acid-collagen
35 hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D
36 cell culture. *Biomaterials.* **154**, 213–222 (2018).

37 9. A. R. Cameron, J. E. Frith, G. A. Gomez, A. S. Yap, J. J. Cooper-White, The effect of
38 time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1
39 activity in mesenchymal stem cells. *Biomaterials.* **35**, 1857–1868 (2014).

40 10. H. pyo Lee, R. Stowers, O. Chaudhuri, Volume expansion and TRPV4 activation regulate
41 stem cell fate in three-dimensional microenvironments. *Nat. Commun.* **10** (2019),
42 doi:10.1038/s41467-019-08465-x.

43 11. C. Loebel, R. L. Mauck, J. A. Burdick, Local nascent protein deposition and remodelling
44 guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels.
45 *Nat. Mater.* **18**, 883–891 (2019).

46 12. K. Wolf, M. te Lindert, M. Krause, S. Alexander, J. te Riet, A. L. Willis, R. M. Hoffman,
47 C. G. Figdor, S. J. Weiss, P. Friedl, Physical limits of cell migration: Control by ECM
48 space and nuclear deformation and tuning by proteolysis and traction force. *J. Cell Biol.*
49 **201**, 1069–1084 (2013).

50 13. T. Harada, J. Swift, J. Irianto, J. W. Shin, K. R. Spinler, A. Athirasala, R. Diegmiller, P. C.
51 D. P. Dingal, I. L. Ivanovska, D. E. Discher, Nuclear lamin stiffness is a barrier to 3D
52 migration, but softness can limit survival. *J. Cell Biol.* **204**, 669–682 (2014).

53 14. R. J. Petrie, H. M. Harlin, L. I. T. Korsak, K. M. Yamada, Activating the nuclear piston
54 mechanism of 3D migration in tumor cells. *J. Cell Biol.* **216**, 93–100 (2017).

55 15. R. J. Petrie, H. Koo, K. M. Yamada, Generation of compartmentalized pressure by a
56 nuclear piston governs cell motility in a 3D matrix. *Science (80-).* **345**, 1062–1065 (2014).

57 16. J. Renkawitz, A. Kopf, J. Stopp, I. de Vries, M. K. Driscoll, J. Merrin, R. Hauschild, E. S.
58 Welf, G. Danuser, R. Fiolka, M. Sixt, Nuclear positioning facilitates amoeboid migration
59 along the path of least resistance. *Nature.* **568**, 546–550 (2019).

60 17. Y. J. Liu, M. Le Berre, F. Lautenschlaeger, P. Maiuri, A. Callan-Jones, M. Heuzé, T.
61 Takaki, R. Voituriez, M. Piel, Confinement and low adhesion induce fast amoeboid
62 migration of slow mesenchymal cells. *Cell.* **160**, 659–672 (2015).

18. K. M. Stroka, H. Jiang, S. H. Chen, Z. Tong, D. Wirtz, S. X. Sun, K. Konstantopoulos, Water permeation drives tumor cell migration in confined microenvironments. *Cell.* **157**, 611–623 (2014).

19. K. M. Schultz, K. A. Kyburz, K. S. Anseth, Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. *Proc. Natl. Acad. Sci. U. S. A.* **112**, E3757–E3764 (2015).

20. E. Infante, A. Castagnino, R. Ferrari, P. Monteiro, S. Agüera-González, P. Paul-Gilloteaux, M. J. Domingues, P. Maiuri, M. Raab, C. M. Shanahan, A. Baffet, M. Piel, E. R. Gomes, P. Chavrier, LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. *Nat. Commun.* **9** (2018), doi:10.1038/s41467-018-04865-7.

21. A. Reversat, F. Gaertner, J. Merrin, J. Stopp, S. Tasciyan, J. Aguilera, I. De Vries, R. Hauschild, M. Hons, M. Piel, A. Callan-jones, R. Voituriez, M. Sixt, Cellular locomotion using environmental topography. *Nature* (2020), doi:10.1038/s41586-020-2283-z.

22. M. Raab, M. Gentili, H. De Belly, H. R. Thiam, P. Vargas, A. J. Jimenez, F. Lautenschlaeger, R. Voituriez, A. M. Lennon-Duménil, N. Manel, M. Piel, ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. *Science (80-)* **352**, 359–362 (2016).

23. V. Ruprecht, S. Wieser, A. Callan-Jones, M. Smutny, H. Morita, K. Sako, V. Barone, M. Ritsch-Marte, M. Sixt, R. Voituriez, C. P. Heisenberg, Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. *Cell.* **160**, 673–685 (2015).

24. R. Zhao, A. Afthinos, T. Zhu, P. Mistriotis, Y. Li, S. A. Serra, Y. Zhang, C. L. Yankaskas, S. He, M. A. Valverde, S. X. Sun, K. Konstantopoulos, Cell sensing and decision-making in confinement: The role of TRPM7 in a tug of war between hydraulic pressure and cross-sectional area. *Sci. Adv.* **5**, eaaw7243 (2019).

25. C. M. Denais, R. M. Gilbert, P. Isermann, A. L. McGregor, M. Te Lindert, B. Weigelin, P. M. Davidson, P. Friedl, K. Wolf, J. Lammerding, Nuclear envelope rupture and repair during cancer cell migration. *Science (80-)* **352**, 353–358 (2016).

26. F. Sabeh, R. Shimizu-Hirota, S. J. Weiss, Protease-dependent versus-independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited. *J. Cell Biol.* **185**, 11–19 (2009).

27. P. Friedl, Prespecification and plasticity: Shifting mechanisms of cell migration. *Curr. Opin. Cell Biol.* **16**, 14–23 (2004).

28. K. M. Wisdom, K. Adebawale, J. Chang, J. Y. Lee, S. Nam, R. Desai, N. S. Rossen, M. Rafat, R. B. West, L. Hodgson, O. Chaudhuri, Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. *Nat. Commun.* **9** (2018), doi:10.1038/s41467-018-06641-z.

29. K. H. Vining, D. J. Mooney, Mechanical forces direct stem cell behaviour in development and regeneration. *Nat. Rev. Mol. Cell Biol.* **18**, 728–742 (2017).

30. H. P. Lee, L. Gu, D. J. Mooney, M. E. Levenston, O. Chaudhuri, Mechanical confinement regulates cartilage matrix formation by chondrocytes. *Nat. Mater.* **16**, 1243–1251 (2017).

31. M. Darnell, S. Young, L. Gu, N. Shah, E. Lippens, J. Weaver, G. Duda, D. Mooney, Substrate Stress-Relaxation Regulates Scaffold Remodeling and Bone Formation In Vivo. *Adv. Healthc. Mater.* **6**, 1–8 (2017).

32. N. Huebsch, P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, D. J. Mooney, Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. *Nat. Mater.* **9**, 518–26 (2010).

33. K. Y. Lee, D. J. Mooney, Hydrogels for tissue engineering. *Chem. Rev.* **101**, 1869–1879 (2001).

34. G. T. Charras, J. C. Yarrow, M. A. Horton, L. Mahadevan, T. J. Mitchison, Non-

equilibration of hydrostatic pressure in blebbing cells. *Nature*. **435**, 365–369 (2005).

35. M. Crisp, Q. Liu, K. Roux, J. B. Rattner, C. Shanahan, B. Burke, P. D. Stahl, D. Hodzic, Coupling of the nucleus and cytoplasm: Role of the LINC complex. *J. Cell Biol.* **172**, 41–53 (2006).

36. R. de Leeuw, Y. Gruenbaum, O. Medalia, Nuclear Lamins: Thin Filaments with Major Functions. *Trends Cell Biol.* **28**, 34–45 (2018).

37. F. Lang, G. L. Busch, M. Ritter, H. Völkl, S. Waldegger, E. Gulbins, D. Häussinger, Functional significance of cell volume regulatory mechanisms. *Physiol. Rev.* **78**, 247–306 (1998).

38. B. D. Matthews, C. K. Thodeti, J. D. Tytell, A. Mammoto, D. R. Overby, D. E. Ingber, Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface $\beta 1$ integrins. *Integr. Biol.* **2**, 435–442 (2010).

39. I. Levental, P. C. Georges, P. A. Janmey, Soft biological materials and their impact on cell function. *Soft Matter*. **3**, 299–306 (2007).

40. S. Nam, J. Lee, D. G. Brownfield, O. Chaudhuri, Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells. *Biophys. J.* **111**, 2296–2308 (2016).

41. E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, V. B. Shenoy, Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. *Biophys. J.* **114**, 450–461 (2018).

42. S. Münster, L. M. Jawerth, B. A. Leslie, J. I. Weitz, B. Fabry, D. A. Weitz, Strain history dependence of the nonlinear stress response of fibrin and collagen networks. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 12197–12202 (2013).

43. S. Nam, K. H. Hu, M. J. Butte, O. Chaudhuri, Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 5492–5497 (2016).

44. S. Nam, V. K. Gupta, H. pyo Lee, J. Y. Lee, K. M. Wisdom, S. Varma, E. M. Flbaum, C. Davis, R. B. West, O. Chaudhuri, Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27Kip1 signaling axis. *Sci. Adv.* **5** (2019), doi:10.1126/sciadv.aaw6171.

45. S. Nam, O. Chaudhuri, Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. *Nat. Phys.* **14**, 621–628 (2018).

46. A. Pathak, S. Kumar, Independent regulation of tumor cell migration by matrix stiffness and confinement. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 10334–10339 (2012).

47. M. R. Zanotelli, A. Rahman-Zaman, J. A. Vanderburgh, P. V. Taufalele, A. Jain, D. Erickson, F. Bordeleau, C. A. Reinhart-King, Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. *Nat. Commun.* **10**, 1–12 (2019).

48. S. P. Carey, A. Rahman, C. M. Kraning-Rush, B. Romero, S. Somasegar, O. M. Torre, R. M. Williams, C. A. Reinhart-King, Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. *Am. J. Physiol. - Cell Physiol.* **308**, C436–C447 (2015).

49. P. Mistriotis, E. O. Wisniewski, K. Bera, J. Keys, Y. Li, S. Tuntithavornwat, R. A. Law, N. A. Perez-Gonzalez, E. Erdoganmus, Y. Zhang, R. Zhao, S. X. Sun, P. Kalab, J. Lammerding, K. Konstantopoulos, Confinement hinders motility by inducing RhoA-mediated nuclear influx, volume expansion, and blebbing. *J. Cell Biol.* **218**, 4093–4111 (2019).

50. J. Li, D. J. Mooney, Designing hydrogels for controlled drug delivery. *Nat. Rev. Mater.* **1** (2016), doi:10.1038/natrevmats.2016.71.

51. L. Gu, D. J. Mooney, Biomaterials and emerging anticancer therapeutics: Engineering the microenvironment. *Nat. Rev. Cancer*. **16**, 56–66 (2016).

52. J. a. Rowley, G. Madlambayan, D. J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials. *Biomaterials*. **20**, 45–53 (1999).

73 53. D. Schild, A. Jung, H. A. Schultens, Localization of calcium entry through calcium
74 channels in olfactory receptor neurones using a laser scanning microscope and the calcium
75 indicator dyes Fluo-3 and Fura-Red. *Cell Calcium*. **15**, 341–348 (1994).

76 54. P. Walczysko, E. Wagner, J. T. P. Albrechtová, Use of co-loaded Fluo-3 and Fura Red
77 fluorescent indicators for studying the cytosolic Ca²⁺ concentrations distribution in living
78 plant tissue. *Cell Calcium*. **28**, 23–32 (2000).

79 55. O. Iamshanova, P. Mariot, V. Lehen'kyi, N. Prevarskaya, Comparison of fluorescence
80 probes for intracellular sodium imaging in prostate cancer cell lines. *Eur. Biophys. J.* **45**,
81 765–777 (2016).

82 56. C. L. Gilchrist, H. A. Leddy, L. Kaye, N. D. Case, K. E. Rothenberg, D. Little, W. Liedtke,
83 B. D. Hoffman, F. Guilak, TRPV4-mediated calcium signaling in mesenchymal stem cells
84 regulates aligned collagen matrix formation and vinculin tension. *Proc. Natl. Acad. Sci. U.*
85 *S. A.* **116**, 1992–1997 (2019).

86 57. M. K. Kim, D. S. Min, Y. J. Park, J. H. Kim, S. H. Ryu, Y. S. Bae, Expression and
87 functional role of formyl peptide receptor in human bone marrow-derived mesenchymal
88 stem cells. *FEBS Lett.* **581**, 1917–1922 (2007).

89 58. M. B. Jones, G. R. Fulford, C. P. Please, D. L. S. McElwain, M. J. Collins,
90 Elastohydrodynamics of the eyelid wiper. *Bull. Math. Biol.* **70**, 323–343 (2008).

91 59. G. Salbreux, J. F. Joanny, J. Prost, P. Pullarkat, Shape oscillations of non-adhering
92 fibroblast cells. *Phys. Biol.* **4**, 268–284 (2007).

93 60. H. Jiang, S. X. Sun, Cellular pressure and volume regulation and implications for cell
94 mechanics. *Biophys. J.* **105**, 609–619 (2013).

17 Acknowledgments

18 We would like to thank all members of the Chaudhuri lab for helpful discussion and Marc
19 Levenston (Stanford University) for use of equipment. We also thank the Stanford Cell Sciences
20 Imaging Facility for Imaris software access. H.L. acknowledges financial support from the Stanford
21 Bio-X fellowship.

22 Funding

23 This work was supported by funding from the National Science Foundation for O.C. (CMMI
24 1846367). Computational work was supported by NCI Awards (U01CA202177, U54CA193417,
25 and R01CA232256), NIBIB Award (R01EB017753) and the NSF Center for Engineering
26 Mechanobiology (CMMI-154857).

27 Author contributions

28 H. Lee and O. Chaudhuri designed the experiments. H. Lee performed experiments, data analysis,
29 and statistical tests. K. Adebawale generated representative 3D cell track reconstructions for cells.
30 **J. Chang performed western blots to confirm the knocking down proteins by siRNA treatments.** F.
31 Alisafaei, and V. B. Shenoy. performed computer simulations and analysis. H. Lee, F. Alisafaei, V.
32 B. Shenoy, and O. Chaudhuri wrote the manuscript.

33 Competing interests

34 All authors declare no competing interests.

35 Data and materials availability

36 Data, materials, and custom-made scripts of code for the main text or the supplementary materials
37 are available from the corresponding author upon reasonable request.

18 **Supplementary Materials:**

19 Supplementary Text

20 Figures S1-S11

21 Movies S1-S5

22

23

Figures

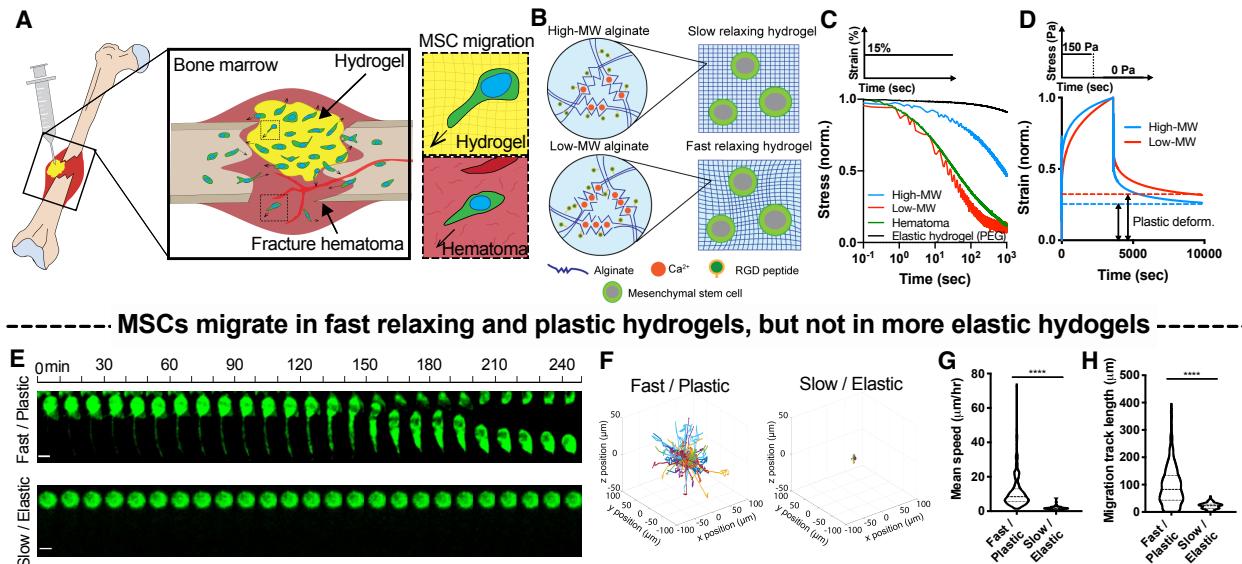
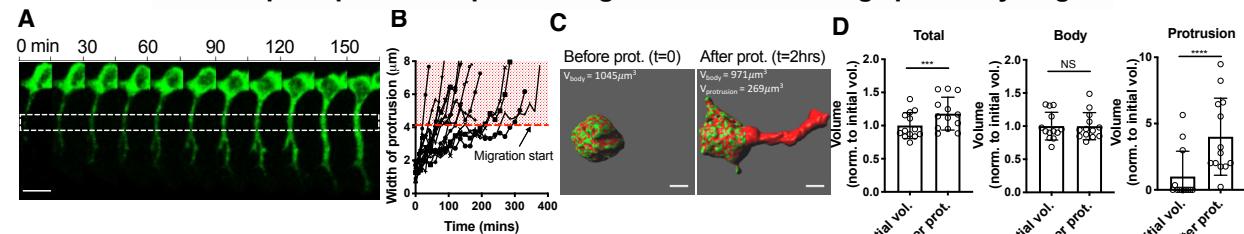
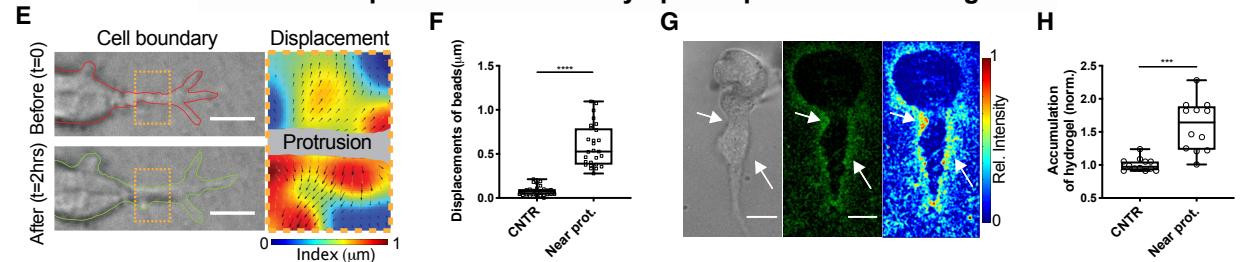
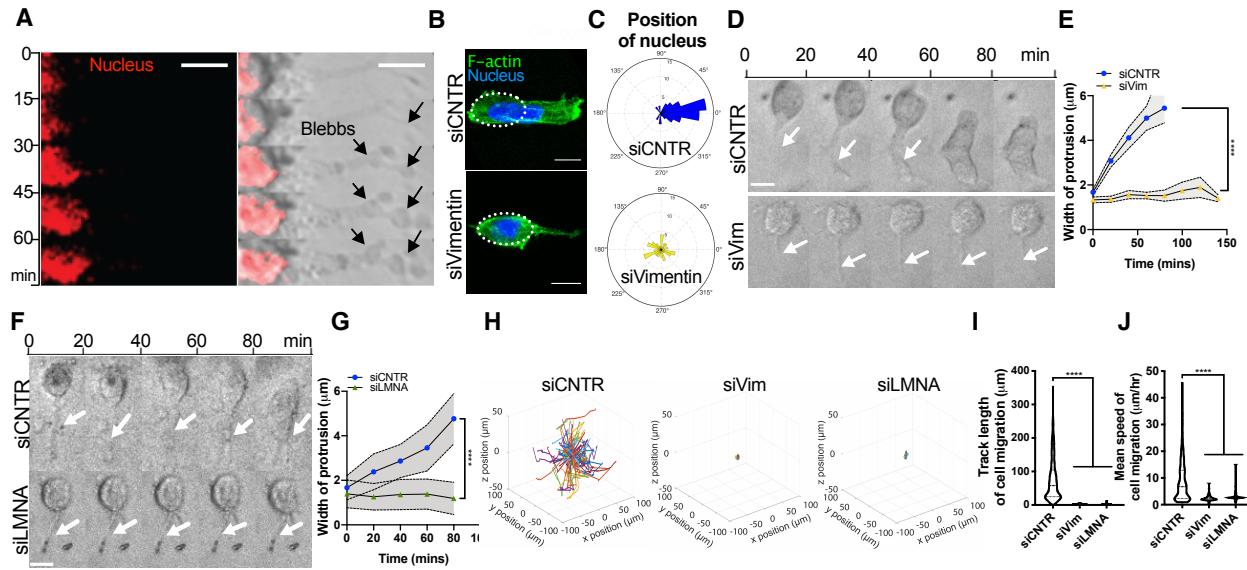




Fig. 1. Mesenchymal stem cells (MSCs) migrate in confining viscoelastic matrices, but not in more elastic matrices. (A) Schematics of MSC migration in a fracture hematoma and in transplanted hydrogels applied for MSCs delivery for bone regeneration. (B) Schematics of alginate hydrogels composed of different molecular weights of alginate. (C) Representative stress relaxation profiles of hydrogels with fast and slow stress relaxation. The relaxation profiles of a covalently crosslinked PEG hydrogel and a human fracture hematoma(5) are shown for comparison. (D) Representative plasticity test profiles of hydrogels with fast and slow stress relaxation. (E) Representative time-lapse image of MSC migration over time in fast relaxing hydrogel (Fast) and in slow relaxing hydrogel (Slow), respectively. Maximum intensity projections of R18 cell membrane dye signal are shown. (F) Representative 3D track reconstructions for cell migration in fast relaxing hydrogels and slow relaxing hydrogels. Grid size = 10 μ m. (G) Mean speeds for migrating cells in fast and slow relaxing hydrogels. (n > 200 single cells) (H) Track length of migrating cells in each hydrogels. (n > 200 single cells) **** p<0.0001 by Student's t-test. All scale bars = 10 μ m. All data are shown as mean \pm s.e.m.


----- MSCs expand protrusion prior to migration in fast relaxing / plastic hydrogels -----

----- Protrusion expansion mechanically opens up a channel for migration -----

Fig. 2. MSCs physically open up a migration path through expansion of protrusions. **(A)** Representative time lapse images of cells migrating. Widening protrusions are shown in white dotted box. **(B)** Tracings of protrusion widths for migrating cells. ($n > 20$). Red dotted line indicates the average width of protrusion when cells start to migrate in the direction of the protrusion. **(C)** Representative 3D renderings of a single cell before and after protruding. **(D)** Quantification of altered total volume, altered volume of body part and altered volume of protrusion part before ($t = 0$) and after cell protrusion ($n > 10$ single cells). **(E)** Bead displacements obtained from a single z-plane before and after widening protrusion were used to model the matrix displacement field illustrating a heat map with displacement magnitudes and directions. **(F)** Maximum bead displacements via cell protrusion around cells. ($n > 30$ beads) **(G)** Densification of fluorescein-conjugated alginate around protrusions. **(H)** Densified matrix were quantified as intensity and compared with control. ($n = 15$ images) *** $p < 0.001$ and **** $p < 0.0001$ by Student's t-test. All experiments in figure are from fast relaxing hydrogels. All scale bars = 10 μm . All data are shown as mean \pm s.e.m.

Fig. 3. A nuclear piston mediated by vimentin and lamins induces protrusion expansion. (A) Representative time lapse images of the nucleus in a cell as protrusion expands. Blebs indicated by black arrows. (B) Representative images of a protruding MSC transfected with control (siCNTR) or vimentin (siVimentin) siRNA. Area of cell body is indicated by white dotted line. (C) Polar distribution of relative location of nucleus in cell body ($n > 50$ single cells) (D) Representative time lapse images of protruding MSCs. The protrusions are indicated by white arrows. (E) Tracings of protrusion width for a protruding MSC. ($n > 15$ single cells) (F) Representative time lapse images (bright field images) of a protruding MSC transfected with control or lamin (siLMNA) siRNA. The protrusion of cell is indicated by white arrows. (G) Tracings of protrusion widths for a protruding MSC. ($n > 15$ single cells) **** $p < 0.0001$ by student t-test. (H-J) Representative 3D track reconstructions (H), track lengths (I), and mean speeds (J) for migration of MSCs. ($n > 200$ single cells). All Scale bars, 10 μ m. *** $p < 0.001$ and **** $p < 0.0001$ by student t-test and by one-way ANOVA test for I and J. All data are shown as mean \pm s.e.m.

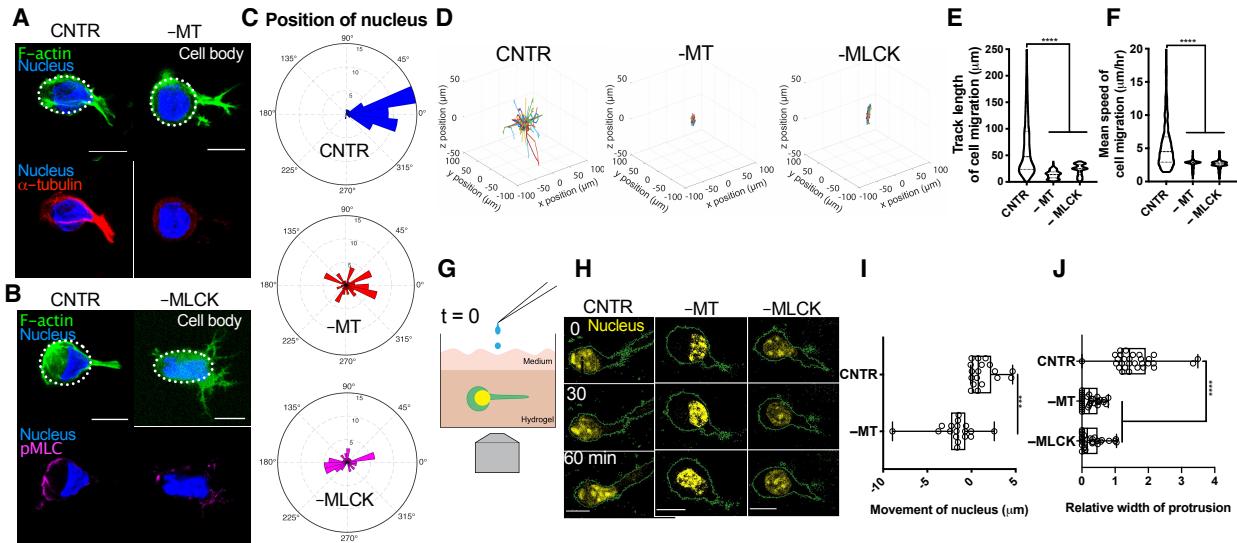
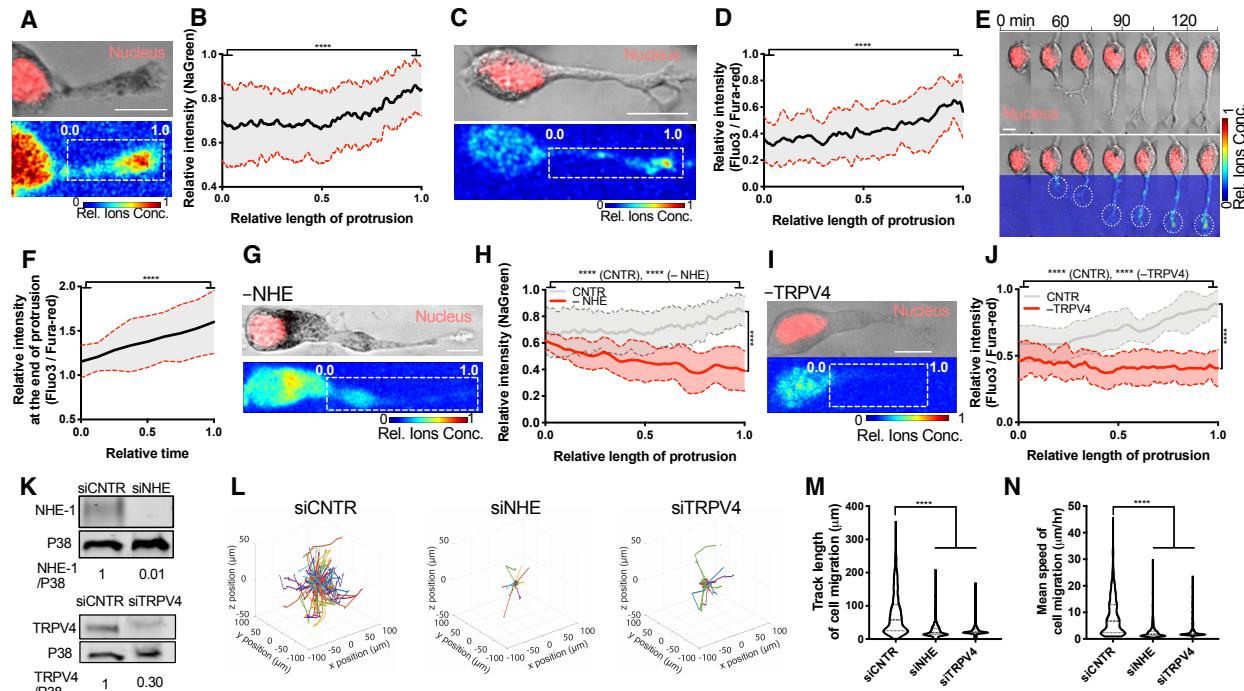
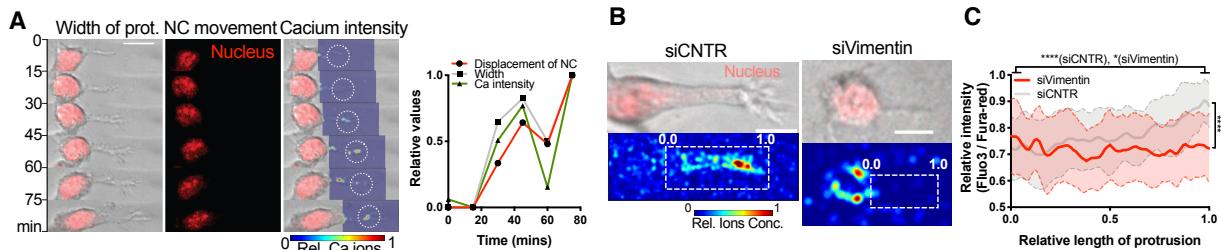



Fig. 4. Nuclear piston movements are mediated by microtubules and myosin contractions.


(A-B) Representative immunofluorescence images for F-actin, α -tubulin, phospho-myosin light chain (pMLC), and nucleus of a protruding MSC with treatment of Nocodazole (-MT), ML-7 (-MLCK) or vehicle-alone control (CNTR). (C) Polar distribution of relative location of cell nucleus in cell body of MSCs. (n > 50 single cells) (D) Representative 3D track reconstructions for migration of MSC. (E) Track length of migrating cells treated with each inhibitors or vehicle-alone control. (n > 200 single cells) (F) Mean speeds for migrating cells treated with each inhibitors or vehicle-alone control. (n > 200 single cells) (G) Schematic of inhibition test. After finding a protruding cell with the nucleus located at the base of protrusion, inhibitors are delivered and the movement of cell nucleus is monitored. (H) Representative time lapse images showing nuclear movements over time in cell body. (I-J) Quantification of nuclear movements (I) and of relative width of protrusion (J) after 1 hour of treatment (n > 15 single cells). All Scale bars, 10 μ m. ***p<0.001 and ****p<0.0001 by student t-test and by one-way ANOVA test respectively. All data are shown as mean \pm s.e.m.

38

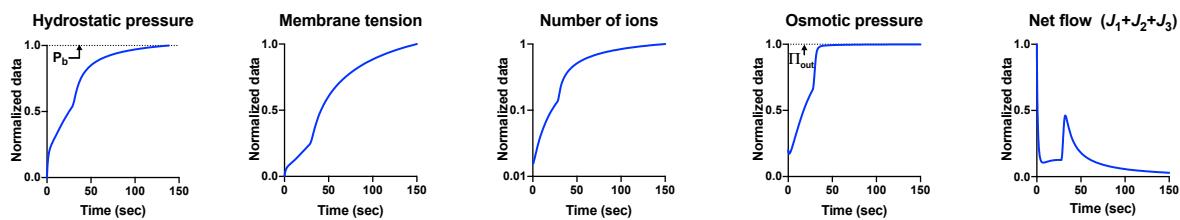
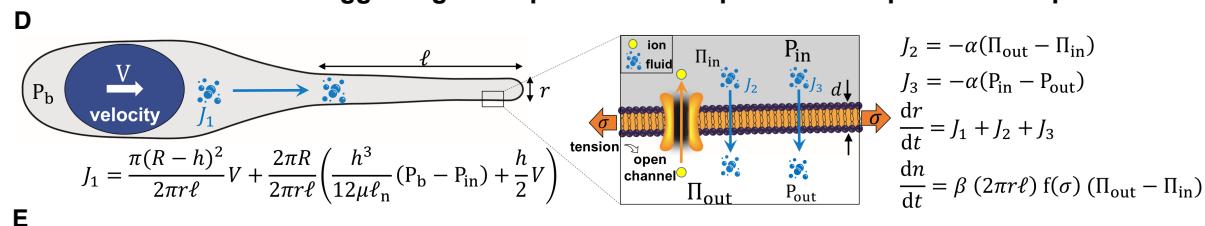
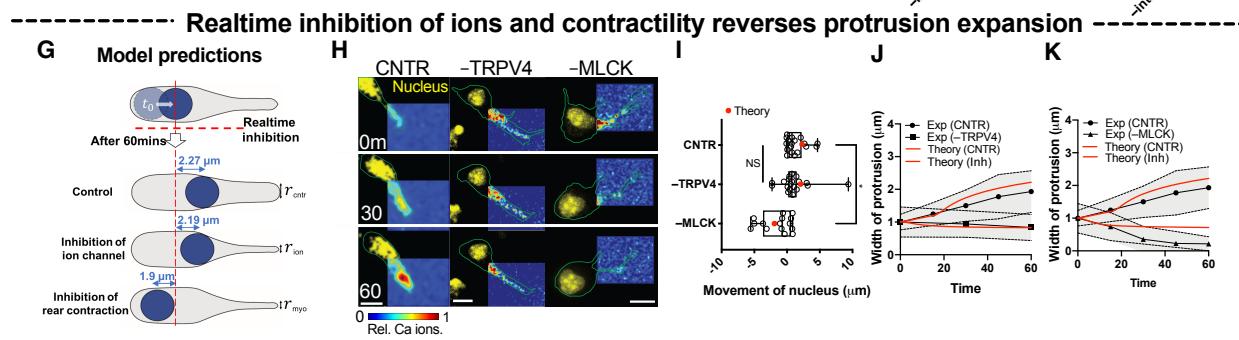
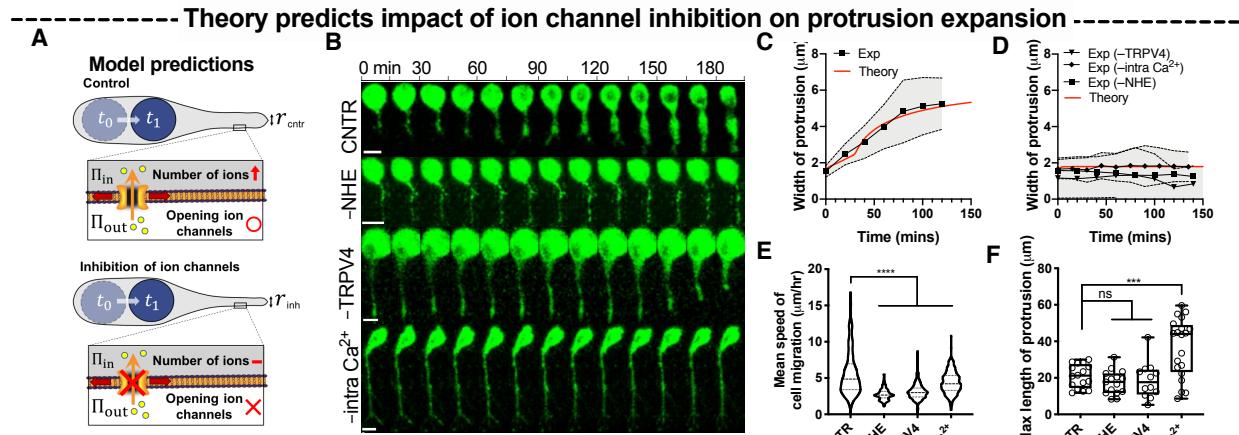



Fig. 5. Ion influx at protrusion mediated by NHE and TRPV4 ion channels. (A) Intracellular sodium ion imaging in cell protrusion (white dotted box). (B) Distribution profile of intracellular sodium ions along protrusion. (n>45 single cells) (C) Intracellular calcium ion imaging in cell protrusion (white dotted box). (D) Distribution profile of intracellular calcium ions along protrusion. (n>45 single cells) (E) Time-lapse images of a cell merged with heatmaps of calcium ion concentration. Scale bar, 5 μ m. (F) Evolution intracellular calcium ion concentration at end of protrusion. (n>45 single cells) (G-H) Representative images and profiles of intracellular sodium ions with NHE inhibition. (n>45 single cells). (I-J) Representative images and profiles of intracellular calcium ions with TRPV4 inhibition. (n>45 single cells). (K) Western blot analysis of NHE-1 and TRPV4 protein expression in MSCs with siRNA of NHE-1 (siNHE), TRPV4 (siTRPV4), or control (siCNTR) . (L-N) Representative 3D track reconstructions (L), track lengths(M), and mean speeds (N) for migration of MSCs. (n>200 single cells) Scale bars are 10 μ m unless otherwise indicated. *** p<0.001 and **** p<0.0001 by one-way ANOVA test. All data are shown as mean \pm s.e.m, including profile graphs.



Nuclear piston induces ion influx at the protrusion

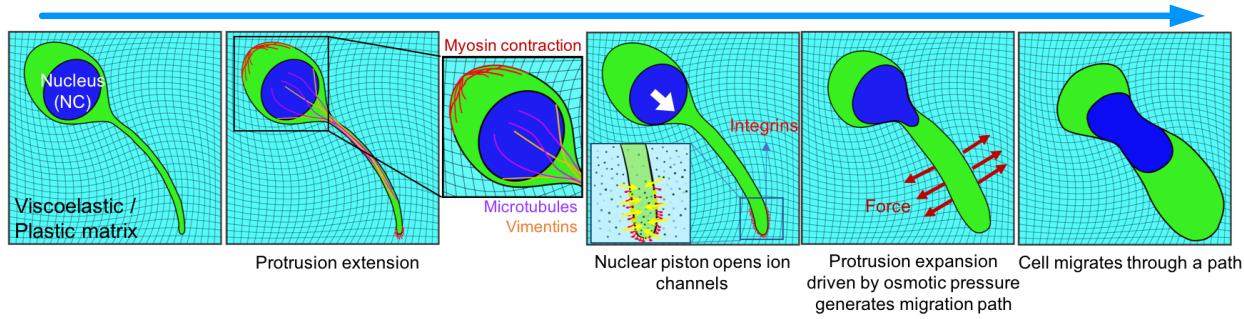

----- Theoretical model suggesting the impact of nuclear piston on the protrusion expansion -----

Fig. 6. Theoretical model and experiments suggest that nuclear piston activates ion channels, which allow an influx of ions into the protrusion. **(A)** Representative time lapse images of nuclear movements and calcium ions at the tip of the protrusion in one cell over a 80 min timeframe. Heat maps for relative calcium ion concentration at the protrusion are shown merged with bright field images. Scale bar, 10 μ m. Graph on the right shows the change in protrusion width, nuclear displacement, and the concentration of intracellular calcium ions of the cell shown on the left. **(B-C)** Representative images and profiles of intracellular calcium ions in the protrusion of MSCs transfected with vimentin siRNA or control siRNA. $n > 45$ single cells **(D)** Schematics and equations for the theoretical model of the nuclear piston and protrusion expansion. **(E)** Theoretical model predictions of hydrostatic pressure, membrane tension, the number of intracellular ion, osmotic pressure, and net flow of fluid in the protrusion over time when nucleus move toward protrusion. Scale bar, 10 μ m. Heat maps indicates relative calcium ion concentration. *** $p < 0.001$ and **** $p < 0.0001$ by one-way ANOVA test. All data are shown as mean \pm s.e.m. In profile graphs, mean and s.e.m are indicated by solid lines and dotted lines, respectively.

Fig. 7. Theoretical model and experiments show that influx of ions into protrusion increases osmotic pressure sufficiently to outcompete hydrostatic pressure and expand protrusions. (A) Schematic of ion channel inhibition in model. **(B)** Representative time lapse images of protruding cells in the presence of the indicated inhibitor. **(C-D)** Comparison of theoretical results to experimental measurements of protrusion widths in the presence of vehicle-alone control (C) or each inhibitor (D). **(E)** Mean speeds of migrating cells in the presence of each inhibitors or vehicle-alone control. ($n > 230$) **(F)** Maximum length of protrusions with each inhibitor or the vehicle-alone control. **(G)** Schematic of real-time inhibition of ion channels or actomyosin contractility in model. **(H)** Representative time-lapse images of nucleus and calcium ion concentrations in MSC with treatment of each inhibitor or vehicle-alone control. Scale bar, 10 μ m. **(I)** Comparison of theoretical results to experimental measurements after 1 hour of treatment. ($n > 15$) **(J-K)** Theoretical and experimental tracings of protrusion widths for a protruding MSC with treatment of TRPV4 inhibitor (J), MLCK inhibitor (K), or vehicle-alone control. ($n > 25$) * $p < 0.05$, *** $p < 0.001$, and **** $p < 0.0001$ by one-way ANOVA test. All data are shown as mean \pm s.e.m, including in tracing graphs.

18
19 **Fig. 8. The nuclear piston generates migration paths in viscoelastic and plastic matrices.**
20 Schematic of proposed mechanism explaining how MSCs generate a migration path in viscoelastic
21 matrix using the nuclear piston.
22

13 **Title: The nuclear piston activates mechanosensitive ion channels to generate**
14 **cell migration paths in confining microenvironments**

15 **Authors:** Hong-pyo Lee¹, Farid Alisafaei², Kolade Adebawale³, Julie Chang⁴, Vivek B. Shenoy²,
16 Ovijit Chaudhuri^{1*}

17
18 *Correspondence to: chaudhuri@stanford.edu.

19 **This PDF file includes:**

20 Supplementary Text
21 Figure. S1 to S11
22 Captions for Movies S1 to S5

23 **Other Supplementary Materials for this manuscript include the following:**

24 Movies S1 to S5

50 **Supplementary Text**

51 Theoretical model description

52 Here, we propose a theoretical model to explain the mechanism through which the actomyosin-based
53 movement of the nucleus regulates the protrusion expansion and the transport of fluid and ions. To describe
54 this mechanism, consider the movement of the nucleus in fig. S11A. With the forward movement of the
55 nucleus, the fluid in front of the nucleus is pushed into the protrusion and expands the protrusion where the
56 rate of expansion can be determined as follows

$$\frac{dr}{dt} = \frac{\pi R^2}{2\pi r \ell} V \quad (1)$$

57 where r is the protrusion radius, R is the radius of the cell body, ℓ is the length of the protrusion, and V is
58 the velocity of the nucleus which can be estimated from our experiments or can be calculated as an unknown
59 variable in equation (11). Note that the radius of the nucleus in equation (1) is assumed to be equal to the
60 radius of the cell body. However, we can extend the model by assuming a small gap h between the nucleus
61 and the cell body (fig. S11A). Using the lubrication theory(15), we then relate the fluid pressure P to the
62 fluid velocity u in the gap
63

$$\frac{\partial P}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2} \quad (2)$$

64 where μ is the fluid viscosity. Applying no-slip boundary conditions ($u = V$ at $y = 0$, and $u = 0$ at $y = h$),
65 we have

$$u = \frac{1}{2\mu} \frac{\partial P}{\partial x} y(y - h) - V \left(\frac{y}{h} - 1 \right) \quad (3)$$

66 Using equation (3), we can determine the volume flux through the gap

$$Q = 2\pi R \int_0^h u \, dy = 2\pi R \left(-\frac{h^3}{12\mu} \frac{\partial P}{\partial x} + \frac{h}{2} V \right) = 2\pi R \left(\frac{h^3}{12\mu\ell_n} (P_b - P_{in}) + \frac{h}{2} V \right) \quad (4)$$

67 where ℓ_n is the length of the nucleus, P_b is the hydrostatic pressure in the cell posterior generated by the
68 actomyosin contractility, and P_{in} is the hydrostatic pressure in the protrusion. With Q at hand, we can revise
69 equation (1) as follows

$$\frac{dr}{dt} = \frac{\pi(R - h)^2}{2\pi r \ell} V + \frac{2\pi R}{2\pi r \ell} \left(\frac{h^3}{12\mu\ell_n} (P_b - P_{in}) + \frac{h}{2} V \right) \quad (5)$$

34 where the sum of the two terms on the right-hand side of the equation is represented by $\boxed{I_1}$ in Fig. 4A. In
 35 addition to $\boxed{I_1}$, the efflux and influx of the fluid through the membrane can also change the protrusion radius
 36 \boxed{r} . Therefore, we revise equation (5) to account for the fluid transport due to the osmotic and hydrostatic
 37 pressure gradients across the membrane as the fluid flows (i) from lower to higher osmotic pressure, and (ii)
 38 from higher to lower hydrostatic pressure(16, 17)

$$\boxed{\frac{dr}{dt} = \frac{\pi(R-h)^2}{2\pi r \ell} V + \frac{2\pi R}{2\pi r \ell} \left(\frac{h^3}{12\mu\ell_n} (P_b - P_{in}) + \frac{h}{2} V \right) - \alpha(\Pi_{out} - \Pi_{in}) - \alpha(P_{in} - P_{out}) \quad (6)}$$

39 where α represents the rate constant of fluid transport. The third term in equation (6) is represented by $\boxed{I_2}$ in
 40 Fig. 4A and denotes the fluid transport due to the difference between the osmotic pressures outside ($\boxed{\Pi_{out}}$)
 41 and inside ($\boxed{\Pi_{in}}$) of the protrusion. Similarly, the fourth term denotes the fluid transport due to the difference
 42 between the hydrostatic pressures inside ($\boxed{P_{in}}$) and outside ($\boxed{P_{out}}$) of the protrusion and is represented by $\boxed{I_3}$ in
 43 Fig. 4A. In addition to the fluid flux, ions can also flow in and out of the protrusion. As observed in our
 44 experiments, the flux of ions is regulated by mechanosensitive ion channels which are activated with
 45 stretching the membrane. With the opening of the mechanosensitive channels, ions can flow in and out of
 46 the protrusion in the direction of the ion concentration gradient across the membrane (Fig. 4A). Thus, the
 47 ion flux rate $\boxed{dn/dt}$ can be calculated as a function of the difference between the osmotic pressures outside
 48 ($\boxed{\Pi_{out}}$) and inside ($\boxed{\Pi_{in}}$) of the protrusion(17)

$$\boxed{\frac{dn}{dt} = \beta (2\pi r \ell) f(\sigma) (\Pi_{out} - \Pi_{in}) \quad (7)}$$

50 where β is the rate constant of ion transport, $2\pi r \ell$ is the surface area of the protrusion and $f(\sigma)$ represents the
 51 opening of the channel as a function of the membrane tension σ (fig. S11b). The membrane tension can be
 52 related to the protrusion radius r using the following constitutive equation

$$\boxed{\sigma = \frac{E(r - r_0)}{r_0} \quad (8)}$$

54 where r_0 is the initial radius of the protrusion, and E is the elastic modulus of the membrane/cortex. With σ
 55 at hand as a function of r , the hydrostatic pressures inside the protrusion ($\boxed{P_{in}}$) can be also determined from
 56 the following equation using the force balance in the circumferential direction of the cylindrical protrusion

$$\boxed{P_{in} = P_{out} + \frac{d}{r} \sigma \quad (9)}$$

9 where d is the thickness of the membrane/cortex (Fig. 4a). The osmotic pressure inside the protrusion can
10 be expressed in terms of the protrusion radius r and the number of ions n

$$\Pi_{in} = \frac{nRT}{\pi r^2 \ell} \quad (10)$$

12 where $\pi r^2 \ell$ is the protrusion volume, T is the absolute temperature, and R is the gas constant. Finally, the
13 velocity of the nucleus V can be obtained from the force balance on the nucleus

$$\pi(R - h)^2 P_b - \pi(R - h)^2 P_{in} - 2\pi(R - h)\ell_n \mu_n V = 0 \quad (11)$$

15 where the first, second, and third terms are the force on the back of the nucleus, the force on the front of the
16 nucleus, and the shear force on the lateral surface of the nucleus, respectively. In equation (11), μ_n is the
17 friction coefficient which can be assumed to be inversely proportional to the protrusion radius r as smaller
18 protrusions generate higher resistance forces against nuclear movement. The two unknown variables r and
19 n can be obtained by solving the two coupled equations (6) and (7) where σ , P_{in} , Π_{in} , and V can be expressed
20 in terms of r and n from equations (8-11). Equations (6) and (7) need two initial conditions; r_0 and n_0 which
21 are the initial radius of the protrusion and the initial number of ions, respectively. The initial radius of the
22 protrusion is 0.75 μm ($r = r_0$ at $t = 0$) which is estimated from our experiments. fig. S8 shows the model
23 prediction for two different n_0 : (i) low initial number of ions ($\Pi_{in} < \Pi_{out}$ at $t = 0$), and (ii) high initial number
24 of ions ($\Pi_{in} > \Pi_{out}$ at $t = 0$). The model shows similar behavior for both cases which indicates that,
25 independent of the initial number of ions n_0 , cell protrusions cannot expand in the absence of protrusion ion
26 channels.

27

Supplementary Figures

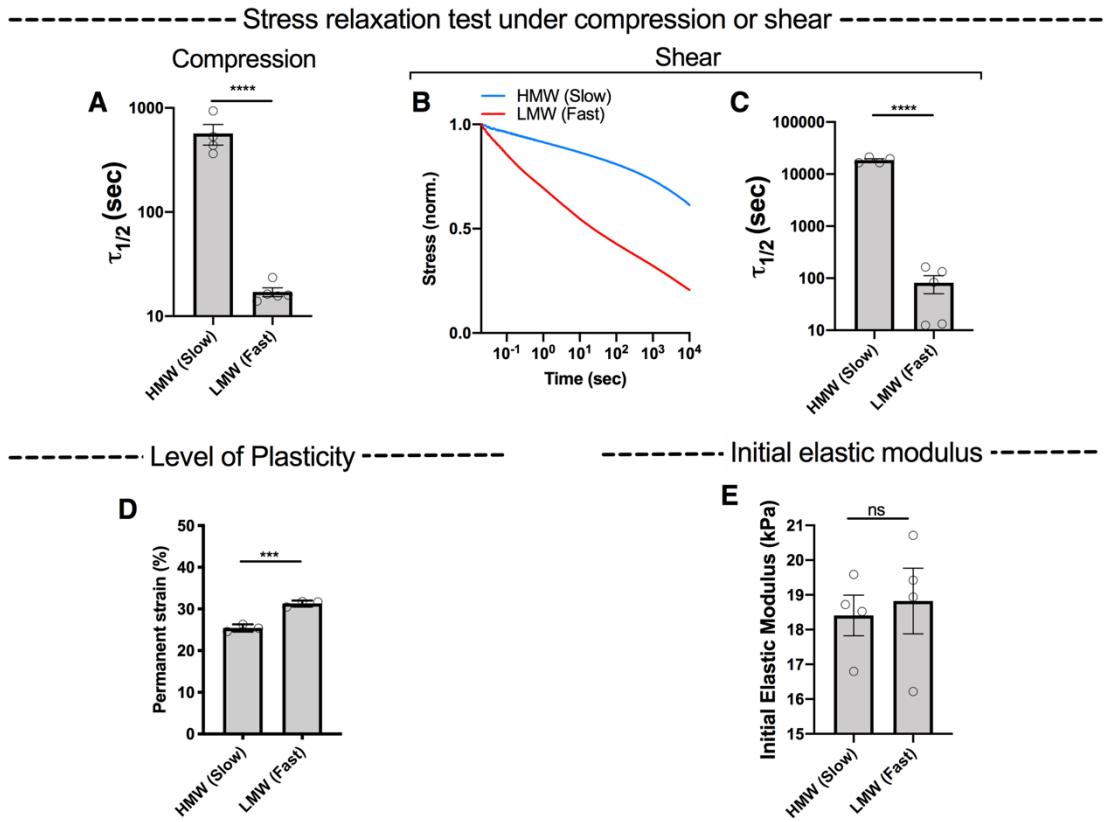
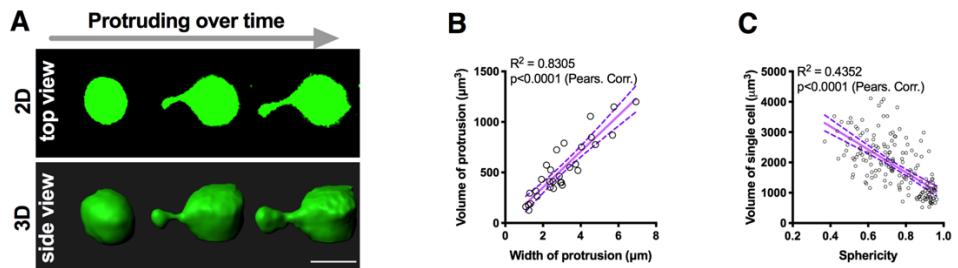
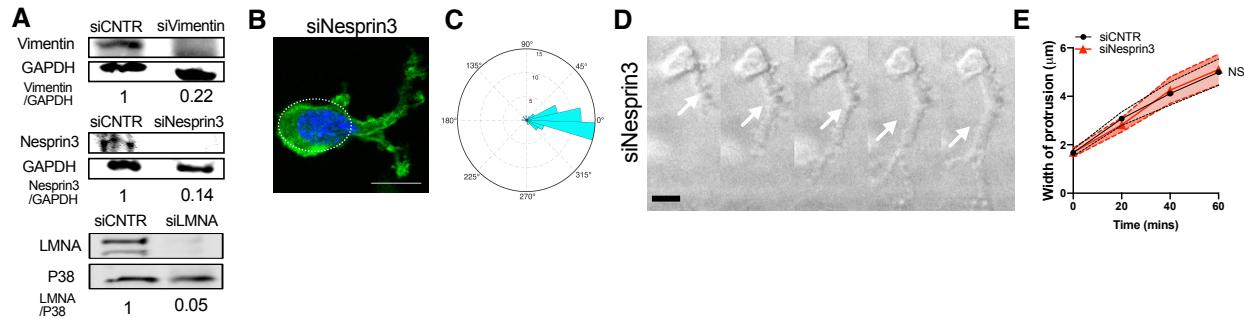
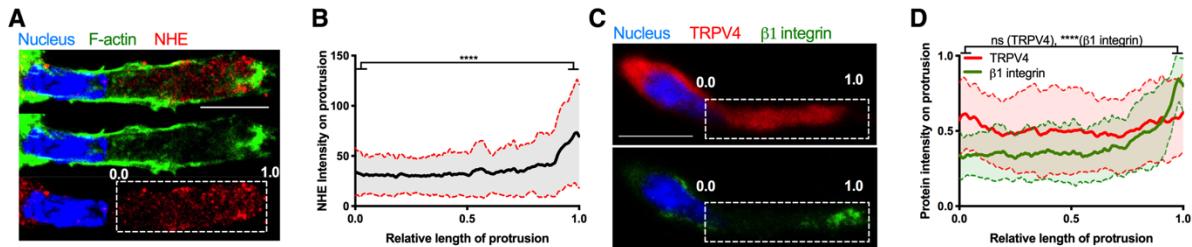
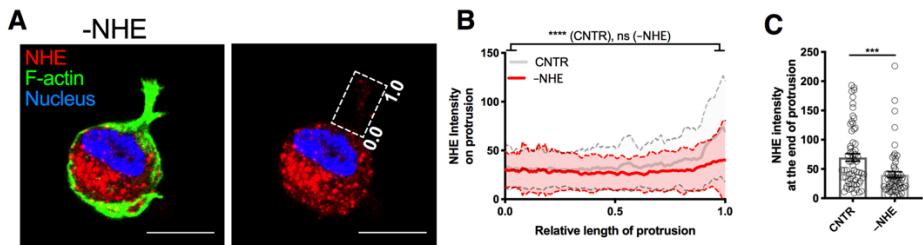
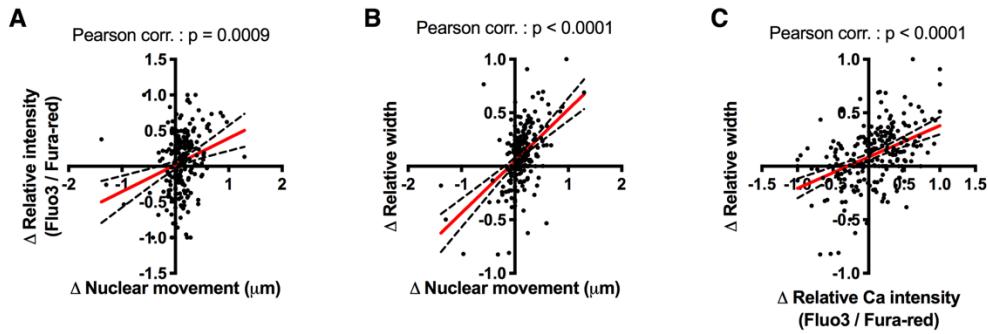


Fig. S1. Mechanical properties of alginate hydrogels. (A) Quantification of the time scale of stress relaxation, $\tau_{1/2}$, for the different alginate hydrogels under compression. (B) Normalized stress relaxation profiles of alginate gels under shear. (C) Quantification of the time scale of stress relaxation, $\tau_{1/2}$ under shear. (D) Quantification of percentage of permanent strain (plasticity) of different alginate hydrogels from creep and recovery tests. (E) Initial elastic modulus of the different alginate hydrogels. *** $p < 0.001$ and **** $p < 0.0001$ indicate a statistically significant difference when compared to high MW alginate (HMW) condition by Student t-test. All data are shown as mean \pm s.e.m, $n \geq 4$ replicates per conditions.

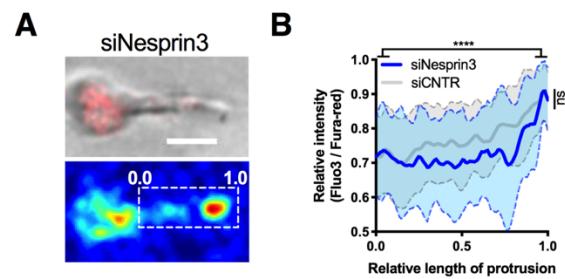




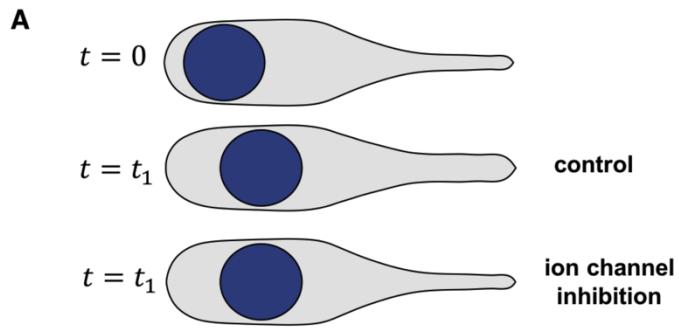

Fig. S2. Protrusion extension and widening are accompanied by volume expansion of protrusion. (A) Top 2D view and side 3D reconstructing view of representative images of a protruding cell over time. (B) Scatter plots of the volume versus the width of cell protrusions. ($n = 30$ single cells) Linear regression analysis indicated a linear correlation between cell volume of protrusion and width of protrusion. (C) Scatter plot of cell volume versus sphericity of cells cultured in fast relaxing hydrogels. ($n = 175$ single cells)


57
58 **Fig. S4. Sodium-hydrogen exchange 1 (NHE), β 1 integrins but not TRPV4 calcium ion
59 channels exhibit higher densities at tip of protrusion. (A-B) Representative images (A) and
60 profiles (B) of NHE along the protrusion of MSCs (white dotted box). (C-D) Representative images
61 (C) and profiles (D) of TRPV4 calcium ion channels and β 1 integrins along the protrusion of MSCs
62 (white dotted box). Scale bar is 10 μ m. n > 40 single cells. ns, p = 0.3402 and **** p < 0.0001 by
63 student t-test. In profile graphs, mean and s.e.m are indicated by solid lines and dotted lines,
64 respectively.**

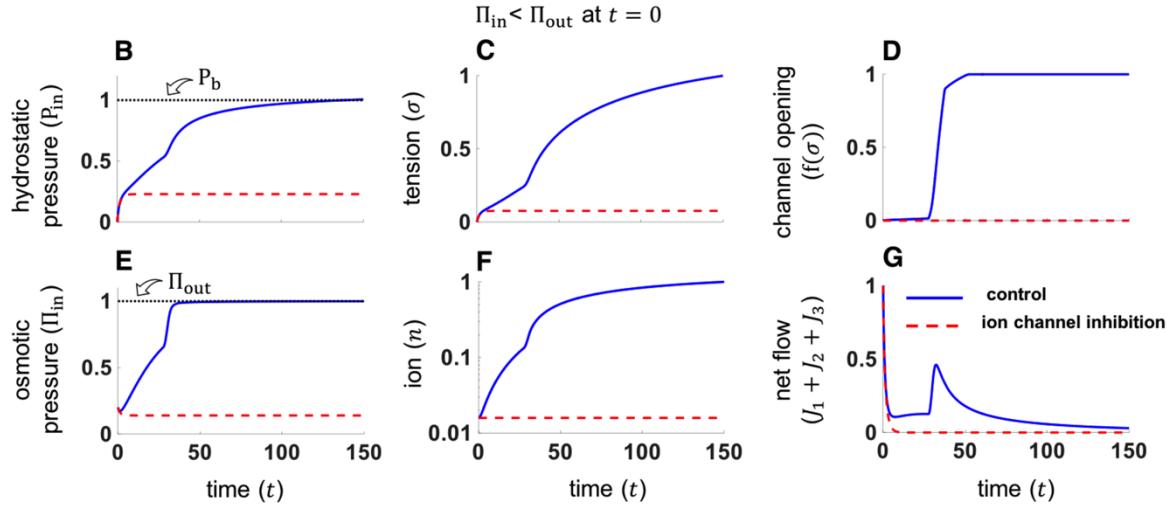
55

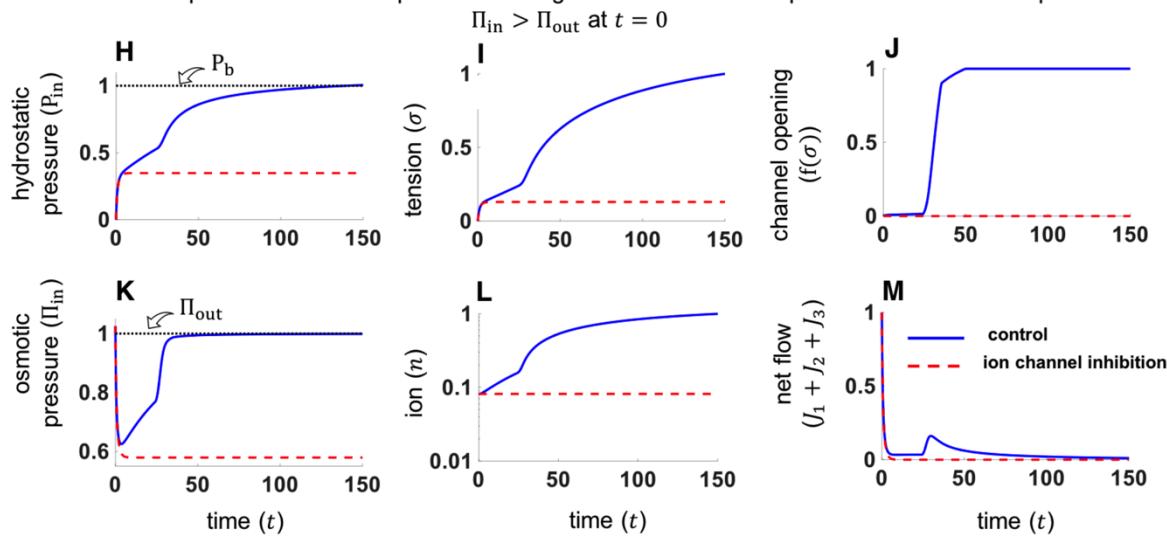
56
57 **Fig. S5. Distribution of NHE ion channels along the protrusion of cells in the presence of NHE**
58 **inhibitor (EIPA).** (A-B) Representative images (A) and profiles (B) of distribution for NHE
59 sodium ion channels along the protrusion of MSCs in the presence of NHE inhibitor (EIPA) or
60 vehicle-alone control. Scale bar, 10 μ m. (C) Quantification of intensity of NHE proteins at the end
61 of protrusion with the treatment of NHE inhibitor (EIPA) or vehicle-alone control. ns, ***, and
62 **** respectively indicate $p = 0.8647$, $p < 0.001$, and $p < 0.0001$ by student t-test. Data are shown
63 as mean \pm s.e.m. In profile graphs, mean and s.e.m are indicated by solid lines and dotted lines,
64 respectively.


65

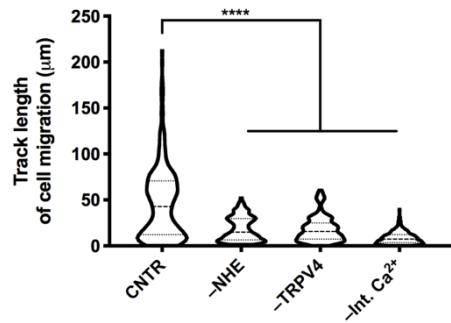

76

77 **Fig. S6. Correlation between nucleus movements, altered width of protrusion, and**
 78 **accumulated calcium ion at the end of protrusion. (A-C)** Based on image analysis with time
 79 lapse images, nucleus movements, altered width of protrusion, and accumulated calcium ions are
 80 shown as correlation plots. Red lines, regression lines. Dotted bands, 95% confidence intervals.
 81 Pearson corr indicates Pearson correlation coefficients.


82


Fig. S7. Knockdown of nesprin3 does not impact higher concentrations of calcium ions at the tip of protrusion. (A-B) Representative images (A) and profiles (B) of intracellular calcium ions in the protrusion of MSCs transfected with Nesprin3 siRNA. Scale bar, 10 μ m. n > 20 single cells. Heat map exhibits relative calcium ion concentration in the protrusion (white dotted box). ns indicates $p > 0.05$.

The initial osmotic pressure inside the protrusion is lower than the osmotic pressure outside of the protrusion



The initial osmotic pressure inside the protrusion is higher than the osmotic pressure outside of the protrusion

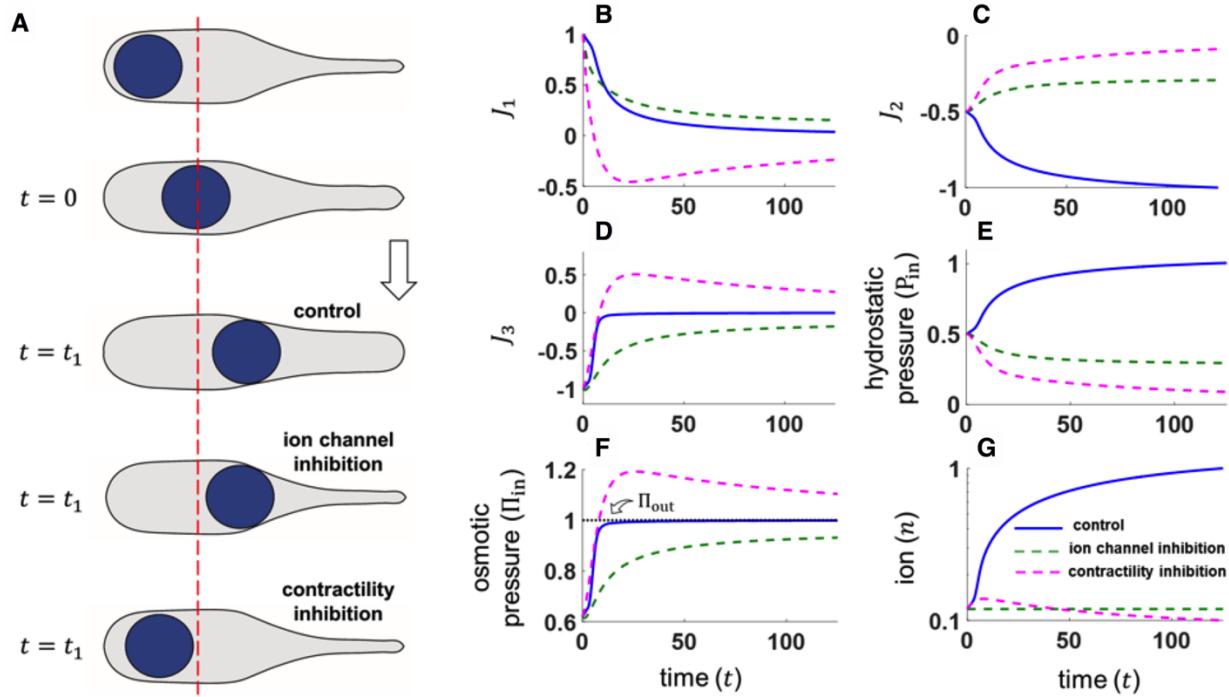


Fig. S8. Theoretical model shows the function of ion channels during protrusion expansion.

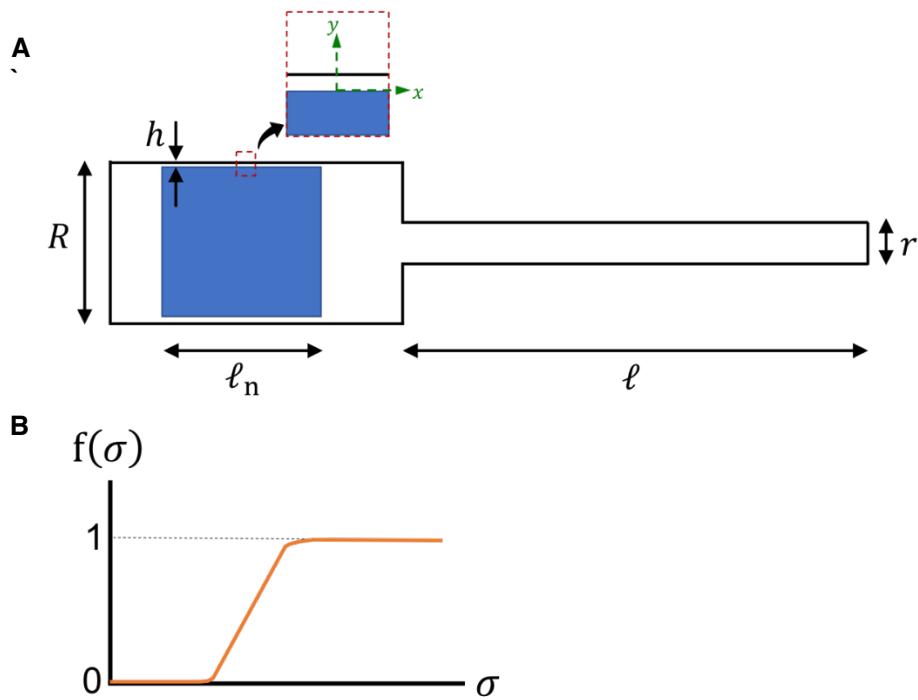

(A) Schematics of simulating ion channels inhibition with theoretical model. (B–M) Theoretical model predictions of hydrostatic pressure (B, H), surface tension at the cell membrane (C, I), activated ion channels (D, J), osmotic pressure (E, K), the number of intracellular ions (F, L), and net flow of fluid (G, M) in the protrusion over time when ion channels are inhibited (red dotted line).

Fig. S9. The impact of NHE function, TRPV4 function, and intra cellular calcium ions on cell migration in hydrogels. Track length of migrating cells in the presence of each inhibitors or vehicle-alone control. *** $p<0.0001$ by one-way ANOVA test. $n > 230$ single cells. All data are shown as mean \pm s.e.m

Fig. S10. Theoretical model predictions of altered nuclear location and protrusion expansion via real-time inhibitions of mechanosensitive ion channels or actomyosin contractility. (A) Schematics of model predictions. **(B-D)** Normalized fluid flux due to the nuclear movement (b), the hydrostatic pressure difference across the membrane (B), and the osmotic pressure difference across the membrane (D) where positive and negative values indicate influx and efflux of fluid, respectively. **(E-G)** Analytical model predictions of the normalized hydrostatic pressure (E), osmotic pressure (F), and number of ions (G) in the protrusion as functions of time (minute).

Fig. S11. Theoretical model of cells in which the movement of the nucleus regulates opening of ion channels and the protrusion expansion by the transport of fluid. (A) Schematics of the cell body which has a protrusion and a nucleus (blue rectangle). (B) Theoretical model of mechanosensitive ion channel activation by surface tension at the cell membrane.

9 **Supplementary Movies**

10 **Movie S1. MSCs migrate in fast relaxing hydrogels.** Cell membrane and nucleus are indicated
11 by green and blue fluorescence, respectively. The surrounding matrix is indicated by red fluorescent
12 microbeads embedded in hydrogels. Scale bar, 50 μ m.

13

14 **Movie S2. MSCs maintain rounded cell morphology and do not migrate in the slow relaxing**
15 **hydrogels.** Cell membrane and nucleus are indicated by green and blue fluorescence, respectively.
16 For mapping the displacement of matrix, red fluorescent microbeads are embedded in hydrogels.
17 Scale bar, 50 μ m.

18

19 **Movie S3. Protrusion expansion generates force to open the hole in hydrogels.** Cell morphology
20 and surrounding matrix are indicated by bright field image and red fluorescent beads. Red
21 microbeads adjacent to the protrusion in yellow box are moved away from the protrusion when the
22 protrusion is expanding. Scale bar, 10 μ m.

23

24 **Movie S4. Protrusion is expanded by movement of the nucleus towards and into the narrow**
25 **entrance of the thin protrusions.** Cell morphology and nucleus are indicated by bright field image
26 and red fluorescence. Scale bar, 10 μ m.

27

28 **Movie S5. Blebs are observed at the cell membrane in protrusions following entry of the**
29 **nucleus into the protrusion.** Cell morphology and nucleus are indicated by bright field image and
30 red fluorescence. Scale bar, 10 μ m.

31

32

33

34

35

36

37

38