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a b s t r a c t

There is a rapidly growing need for processing large volumes of streaming data in real time in various
big data applications. As one of the most commonly used systems for streaming data processing,
Apache Storm provides a workflow-based mechanism to execute directed acyclic graph (DAG)-
structured topologies. With the expansion of cloud infrastructures around the globe and the economic
benefits of cloud-based computing and storage services, many such Storm workflows have been shifted
or are in active transition to clouds. However, modeling the behavior of streaming data processing and
improving its performance in clouds still remain largely unexplored. We construct rigorous cost models
to analyze the throughput dynamics of Storm workflows and formulate a budget-constrained topology
mapping problem to maximize Storm workflow throughput in clouds. We show this problem to be
NP-complete and design a heuristic solution that takes into consideration not only the selection of
virtual machine type but also the degree of parallelism for each task (spout/bolt) in the topology. The
performance superiority of the proposed mapping solution is illustrated through extensive simulations
and further verified by real-life workflow experiments deployed in public clouds in comparison with
the default Storm and other existing methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Extreme-scale applications in various scientific, industry, and
engineering domains have been the major source of big data. In
many of these applications, there is an increasing need to process
and analyze datasets as they are generated and transferred in real
time for various purposes such as stock prediction, malfunction
detection, social network analysis, and log data processing. To
meet such demands, a wide range of computing engines have
been developed and deployed for streaming data processing, in-
cluding Apache Storm [1], Apache Flink [2], Apache Spark (Spark
Streaming) [3], Apache Samza [4], Apache Apex [5], and Google
Cloud Dataflow [6]. For example, Yahoo adopted Apache Storm to
replace the internally developed S4 platform [7]; JStorm [8], now
being merged into Apache Storm, and Heron [9] are heavily used
by Alibaba Inc. and Twitter Inc., respectively; Spark Streaming
and Flink are also gaining a widespread adoption in industry. In
fact, real-time streaming data processing systems have become
an indispensable building block in the entire big data ecosystem.
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As one of the most commonly used systems for streaming data
processing, Apache Storm provides a workflow-based mechanism
to execute directed acyclic graph (DAG)-structured topologies1.
In recent years, we have witnessed a rapid deployment of cloud
infrastructures around the globe and great economic benefits
brought by cloud-based computing and storage services. As a
result, many such Storm workflows have been shifted or are in
active transition to cloud environments. As most public clouds
adopt a pay-as-you-go service model, one additional constraint
on financial budget must be considered in addition to traditional
performance optimization goals. However, efforts in improving
the performance of streaming data processing in clouds are still
very limited.

In this paper, we construct rigorous mathematical models to
analyze both the time and financial cost of Storm-based workflow
execution and formulate a Storm Topology Mapping problem
for maximum throughput in clouds under Budget Constraint,
referred to as STM-BC. We show STM-BC to be NP-complete
and design a heuristic solution that takes into consideration the
parallelism of each task (spout/bolt) in the topology. The perfor-
mance superiority of the proposed mapping solution is illustrated

1 The workflow structure in Storm is referred to as a topology, and hereafter,
these two terms are used interchangeably.
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through extensive simulations and further verified by real-life
workflow experiments deployed in public clouds in comparison
with the default Storm and other existing methods. Our workflow
mapping solution offers IaaS providers a cost-effective resource
allocation scheme to meet the budget constraint specified by the
user, and meanwhile also serves as a cloud resource provisioning
reference for scientific users to make proactive and informative
resource requests.

The rest of the paper is organized as follows. Section 2 de-
scribes related work on stream data processing. Section 3 mod-
els the performance of Storm workflows on clouds and formu-
lates STM-BC. Section 4 designs a workflow mapping algorithm.
Sections 5, 6 and 6.3 present simulation results, two sets of
experimental results for evaluation, and performance analysis,
respectively. Section 7 concludes our work.

2. Related work

We conduct a survey of related work on streaming data pro-
cessing in various computing environments.

Many existing efforts have been focused on workflow mapping
or job scheduling in grid environments under different mapping
and resource constraints. Agarwalla et al. proposed Streamline, a
workflow scheduling scheme for streaming data, which places
a coarse-grain dataflow graph on available grid resources [10].
Similar mapping problems are also studied in the context of
sensor networks. Sekhar et al. proposed an optimal algorithm for
mapping subtasks onto a large number of sensor nodes based on
an A∗ algorithm [11].

More recently, as Storm gains its popularity for streaming data
processing in big data systems, a number of improvements have
been made to Storm in either physical or cloud-based clusters.
The current Storm platform employs a pseudo-random round-
robin task scheduling and placement scheme without consider-
ing resource availability in the underlying cluster. This default
scheme is simple but does not always yield the best perfor-
mance in terms of workflow throughput and resource utiliza-
tion. Many efforts have been made to improve throughput per-
formance using resource-aware scheduling. In [12], Peng et al.
proposed R-Storm (Resource-Aware Storm), a system that im-
plements resource-aware scheduling within Storm, which is de-
signed to increase overall throughput by maximizing resource
utilization while minimizing network latency. In [13], Eskandari
et al. considered the data transfer rate and traffic pattern between
Storm’s tasks and assign task pairs with heavy communication to
the same node by dynamically employing two phases of graph
partitioning. In [14], Chen et al. presented the design, imple-
mentation, and evaluation of G-Storm, a GPU-enabled parallel
system based on Storm, which harnesses the massively paral-
lel computing power of GPUs for high-throughput stream data
processing.

There also exists some work on Storm scheduling that con-
siders various application features such as data transfer, work-
flow topology, and QoS. In [15], Xu et al. proposed T-Storm, a
traffic-aware online scheduler in Storm, to minimize inter-node
and inter-process traffic for better performance with even fewer
worker nodes. In [16], Aniello et al. proposed two schedulers
for Storm to improve performance by adapting the deployment
to application topologies, and by rescheduling the deployment
at runtime based on traffic information. In [17], Cardellini et al.
extended the Storm architecture by designing and implementing
the support for distributed QoS-aware scheduling and run-time
adaptivity.

Different from the aforementioned work that considers re-
sources or application features, we take an orthogonal approach
to maximize the throughput performance of Storm workflows in

clouds by deciding an appropriate degree of parallelism for each
component task of the topology and selecting a suitable virtual
machine (VM) type for each component task processing an input
instance.

3. Cost models and problem formulation

We begin with the construction of cost models used for prob-
lem definition. We consider a Storm topology as a directed acyclic
graph (DAG) Gtp(Vtp, Etp) with |Vtp| modules2 and |Etp| edges, each
of which represents the execution dependency and data move-
ment between two neighbor modules. A Storm-based streaming
application is executed in a heterogeneous cluster deployed in a
cloud with n virtual machine (VM) types VT = {vt1, vt2, . . . , vtn},
for each, there may exist multiple VM instances. Each VM type
vt has a set of performance attributes including CPU frequency
fCPU (vt), number of virtual cores nc(vt), and memory capacity
m(vt), as well as a commonly used ‘‘pay-as-you-go’’ VT pricing
model p(vt) = f (fCPU (vt), nc(vt),m(vt)), which determines the
financial cost per time unit for using a VM instance of that type.
Note that the actual computing or processing power of a given
core is typically measured in unit of MIPS (million instructions
per second). In this work, we consider a single cloud environment
and the cost for data transfer is not accounted as in most real-life
public clouds.

We define a Storm topology mapping scheme M as

M : vtp(DoP) → VM(vt), for all vtp ∈ Vtp, (1)

where VM(vt) represents the VT selection and DoP represents the
degree of parallelism for module vtp, which denotes a spout or a
bolt Bolt in the Storm topology.

In Storm [1], a data stream is comprised of tuples. As a source
of data streams in a topology, a spout reads tuples from an
external source and emits them into the topology. A bolt rep-
resents a data processing unit in the topology, such as filtering,
aggregation, join, communicating with databases, etc. Based on
a pre-specified DoP , each spout or bolt executes multiple tasks
concurrently across the cluster, each of which corresponds to one
thread of execution, and stream groupings define how to send
tuples from one set of tasks to another. Note that DoP determines
the number of VM instances of vt selected for executing vtp. In
other words, for each vtp, we create a number DoP of worker in-
stances that are launched on different VMs. In this work, a single
worker is created on each VM instance with a single executor to
process one tuple of input data.

We define the gap time of module vtp as the time interval
between the finish time of two adjacent tuples processed by two
copies of vtp. Note that the gap time of each module may or may
not be uniform during the entire streaming data processing. We
have the following theorem on the pattern of the module gap
time.

Theorem 1. The gap time of any module vtp in the Storm topology
occurs periodically.

Proof. We prove Theorem 1 by mathematical induction. In the
base case, we analyze the first bolt Bolt1 with N1 = m copies
running in parallel. As shown in Fig. 1, the gap time (i.e., t1, t2,
etc.) between m workers of the first bolt in the topology is the
same as the time interval of two adjacent tuples emitted from

2 We refer to the smallest computing entity in a general workflow (or more
specifically, spout/bolt in a Storm topology) as a computing module, which
represents either a serial computing task or a parallel processing job such as a
typical MapReduce program in Hadoop.
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the spout. T1 denotes the execution time of one copy of Bolt1.
Obviously, the base case is established.

Suppose that Bolti’s gap time occurs periodically. Basically,
there are three cases of Bolti+1:

• Case 1: when Ni+1 = Ni, i.e., Bolti and Bolti+1 have the same
number of workers. Let Ti denote the execution time of a
worker of Bolti processing one tuple. Fig. 2 shows the case
when Ti = Ti+1, so for Bolti, worker j of Bolti+1 always has
a delay of Ti after worker j of Bolti, where j = 1, 2, . . . ,Ni.
Hence, Bolti+1 has the same cyclic pattern as Bolti. Fig. 3
shows the case when Ti > Ti+1. Similar to Fig. 2, there
is still a delay of Ti between Bolti and Bolti+1 on each
corresponding worker, which means that Bolti+1 has the
same cyclic pattern as Bolti. Fig. 4 shows the case when
Ti < Ti+1. Each corresponding worker has a delay of Ti+1.
Since Ti < Ti+1, the gap time is different from that of Bolti.
However, there is a one-to-one mapping between the finish
time of Bolti and Bolti+1, as well as the gap time of Bolti
and Bolti+1. Therefore, Bolti+1’s gap time sequence can be
mapped to Bolti’s gap time sequence, and Bolti+1 should
have the same cyclic pattern as Bolti.

• Case 2 when Ni > Ni+1. Fig. 5(a) shows the case when
Ti < Ti+1. We assign the kth worker of Bolti+1 to process
the next tuple emitted from the jth worker of Bolti. There
is a one-to-one mapping from the finish time of each tuple
processed by Bolti to the finish time of the same tuple
processed by Bolti+1. Since the gap time of Bolti has a
cyclic pattern, so does the gap time of Bolti+1. Fig. 5(b)
shows the case when Ti > Ti+1, where the situation is
similar to Fig. 5(a). The only difference is that there may
exist a certain waiting time between the first tuple’s start
time in the next cycle and the last tuple’s finish time of
each worker of Bolti+1. Since the tuple mapping and the
corresponding delay time remain the same in each cycle,
so the cyclic pattern carries on in Bolti+1. When Ti = Ti+1,
it is obvious that Bolti+1 exhibits a cyclic pattern.

• Case 3 when Ni < Ni+1. The execution dynamics analysis is
similar to Case 2 and hence is omitted.

Note that Bolti may have multiple upstream bolts. Assume that
there are n upstream bolts Boltk, where k = i−n, . . . , i−2, i−1.
Since the number of workers for each bolt may be different,
we consider the lowest common multiple LCMi of all Nk as the
number of workers for each bolt. These n upstream bolts can be
treated as a single virtual bolt with LCMi workers. The jth worker,
j = 1, 2, . . . , LCMi, emits a tuple at the latest time when Boltk
emits the jth tuple. After the transformation, based on the above
case, we can prove that the gap time of any bolt has a cyclic
pattern.

Proof ends.

This cyclic pattern is critical to modeling the throughput of
any module vtp, which denotes either a spout or a bolt Bolt in
the Storm topology. According to Theorem 1, we plot the rela-
tionship between tuple index and processing time for each tuple
on module vtp in Fig. 6, which shows two cycles for illustration.
To calculate throughput, we consider a period of time and the
number of tuples processed during this period. Since the gap
time of Bolti has a cyclic pattern, we calculate the throughput by
counting the number of tuples processed per cycle. The first cycle
is from time 0 to n and the second one is from time n + 1 to
2n, where n is the end time of the first cycle in ms (time unit).
Hence, the cycle time CTvtp = n. In each cycle, vtp processes m
tuples, defined as tuple count per cycle TCPCvtp . We define the
throughput T (M , vtp) of module vtp under the mapping scheme

Fig. 1. Execution dynamics of the first bolt of the topology with DoP = m,
i.e., there are m concurrent workers executing the first bolt.

Fig. 2. Execution dynamics in Case 1: the gap time when Ti = Ti+1 .

of M as the inverse of the average processing time for each tuple
during each cycle:

T (M , vtp) =
1

CTvtp
TCPCvtp

=
TCPCvtp

CTvtp

. (2)

A bottleneck is a process in a chain of processes whose com-
puting power limits the computing capacity of the whole ex-
ecution chain, and may result in stalls in execution. A global
bottleneck module is the one with the smallest T (M , vtp), and the
throughput of the entire topology is determined by the bottleneck
module’s throughput, defined as:

GT (M ) = min
vtp∈Vtp

T (M , vtp). (3)

Based on the above mathematical models, we formulate a
Storm Topology Mapping problem for maximum throughput in
clouds under Budget Constraint, referred to as STM-BC, as follows.
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Fig. 3. Execution dynamics in Case 1: the gap time when Ti > Ti+1 .

Fig. 4. Execution dynamics in Case 1: the gap time when Ti < Ti+1 .

Definition 1. Given a DAG-structured Storm topology
Gtp(Vtp, Etp), a set VT of available VM types, and a fixed financial
budget b per time unit, we wish to find a topology mapping
scheme M to achieve the Maximum Throughput (MT):

MT = max
all possible M

MT (M ), (4)

while satisfying the following budget constraint:

C ≤ b, (5)

where C is the total financial cost of VMs used for the Storm
topology execution per time unit, calculated as

C =

∑
VMs(vt) used in M

p(vt), (6)

Fig. 5. Execution dynamics in Case 2.

where vtp is mapped to VM(vt), for each vtp ∈ Vtp.

The problem formulated above is a generalized version of
the MFR-ANR problem in [18], which only considers a pipeline
structured workflow without parallel computing for each module.
Specifically, in MFR-ANR, the authors consider a linear computing
pipeline consisting of a number of sequential modules and a
computer network represented as a directed arbitrary graph. They
aim to find a one-on-one mapping scheme between a module
and a computing node to achieve maximum frame rate. Note
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Fig. 6. Illustration of gap time for throughput calculation.

that a pipeline is a special case of workflow, and one-on-one
mapping does not allow parallel computing as one module must
be processed exclusively by one computing node. In our work, we
formulate STM-BC, which supports parallel computing since one
module (either a spout or a bolt in Storm) can be processed by
multiple workers. Since MFR-ANR, which is a special case of STM-
BC, has been proved to be NP-complete and non-approximable, so
is STM-BC. Hence, we focus on the design of heuristic solutions
to our problem.

We would like to point out that our cost models can be
adapted to other stream data processing platforms, such as Spark
Streaming [3] workflows where each module in the workflow is
a Spark Streaming job. Such adapted cost models can be used to
find the mapping of Spark jobs in the workflow to a set of physical
or virtual computing nodes.

4. Algorithm design

We design a bottleneck-oriented topology mapping (BOTM)
algorithm in Storm to solve STM-BC. BOTM determines not only
the VT selection but also the degree of parallelism (DoP) for each
module in the topology. The key idea is to iteratively identify
the global bottleneck module and strategically compute an ap-
propriate adjustment for this module’s VT selection and degree
of parallelism to achieve the maximum increase of the global
workflow throughput. Note that the default scheduler in Storm
assigns executors in a round-robin manner without considering
the global bottleneck.

4.1. Bottleneck-oriented topology mapping

The pseudocode of BOTM is provided in Alg. 1, which consists
of the following key steps.

Step (1) Sort the available VM types VT according to the total
CPU frequency of all virtual cores, which determines
the aggregate computing power in unit of MIPS (mil-
lion instructions per second), memory space, and I/O
speed. Initially, every module in the workflow is as-
signed to the worst vt in the cloud. If this mapping
scheme exceeds the budget, there is no feasible solution;
otherwise, continue.

Step (2) Calculate the throughput for each module in the work-
flow based on the initial mapping scheme from Step 1.
The module with the smallest throughput determines
the global bottleneck.

Step (3) Call Function SelectVT () in Alg. 2 check if it is possible
to adjust the degree of parallelism and upgrade the type
of VMs in order to achieve a higher global throughput
within the budget. There are multiple options to deter-
mine the degree of parallelism and the vt for the global
bottleneck module: add one more VM of the current vt
within Nvt , which denotes the number of VM instances
of the current vt; try to upgrade vt one level up at a
time until reaching the best vt , and for each vt , gradually
decrease the degree of parallelism from the degree of the
current vt selection to 1. Every time we try to make an
adjustment, we first eliminate the options that exceed
the budget, and then compare the new global through-
put after the adjustment. The option that results in the
maximum increase in the global throughput is selected.
Note that after each adjustment, the global bottleneck
module may change.

Step (4) If any upgrade adjustment within the budget does not
lead to a better global throughput, the algorithm termi-
nates. Otherwise, update the degree of parallelism and
the vt for the current bottleneck module, as well as the
current global throughput.

Step (5) Go back to Step 2, and repeat the above process until no
feasible upgrade adjustment option is available.

Algorithm 1: BOTM
Input: a DAG-structured topology Gtp(Vtp, Etp), a set VT of VM types,
the number Nvt of available VM instances of each vt , and a fixed
financial budget b.
Output: the max throughput MT of the topology.

1: curTH = 0;
2: MT = 0;
3: sort the VM type VT in an increasing order of system resources;
4: Assign every module vtp ∈ Vtp to a VM instance of the worst vt for the

topology;
5: if the cost > b then
6: throw ERROR(‘‘budget insufficient.’’);
7: Calculate curTH and assign MT with curTH
8: while true do
9: tIndex = the index of the bottleneck module with the smallest throughput

curTH;
10: {tType, tNum} = selectVT (tIndex, VT ,Nvt , b, curTH);
11: if (tType == −1) then
12: break;
13: update tType and tNum for this bottleneck module;
14: MT = curTH;
15: return MT .

After identifying the global bottleneck module in Step 2, we
try to increase the throughput of the current global bottleneck
module by making an adjustment to the VT selection and the
degree of parallelism of this module within the budget in Step 3.
We consider several adjustment options and select one that leads
to the maximum increase of the global workflow throughput. We
would like to point out that the global bottleneck may shift to
a different module after the adjustment, and therefore, it does
not always yield the best performance if we only maximize the
throughput increase of the current bottleneck module.

To increase the throughput of the current bottleneck module,
there are two ways to make adjustments: (i) increase the number
of VM instances of the current vt by one; (ii) choose a more
powerful vt and vary the module’s DoP from its current DoP
to one. Any option that exceeds the budget constraint is ruled
out. Among the feasible options within the budget constraint, we
select the option that maximizes the throughput increase of the
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Algorithm 2: SelectVT
Input: the index of the bottleneck module tIndex, the VM type VT
with the available number Nvt of VM instances of each vt , a fixed
financial budget b, and the current topology throughput curTH .
Output: the VT type tType and the degree tNum of parallelism for the
bottleneck module.

1: tType = −1;
2: tNum = −1;
3: curType = VT type of tIndex;
4: curNum = the degree of parallelism for the bottleneck module of tIndex;
5: for all vt ∈ VT do
6: if vt is the same as curType and one more VM instance of vt is available

then
7: assign one more VM instance of vt to module of tIndex;
8: calculate the topology throughput TH after the adjustment;
9: if cost ≤ b and TH > curTH then
10: tType = vt;
11: curTH = TH;
12: tNum = curNum + 1;
13: else if vt is better than curType then
14: tmpNum = curNum;
15: while tmpNum > 0 do
16: assign tmpNum VM instances of vt to module of tIndex;
17: calculate the topology throughput TH after the adjustment;
18: if cost ≤ b and TH > curTH then
19: tType = vt;
20: curTH = TH;
21: tNum = tmpNum;
22: tmpNum − −;
23: return {tType, tNum}.

entire workflow. Note that in some cases adding resources may
result in reduced cost. Hence, we calculate the financial cost every
time when we make a change to the selection of virtual machines.

In Storm, users are allowed to change the DoP for each module
of the topology, but it is generally difficult for them to decide
the most suitable DoP for each module. In many cases, users may
specify an arbitrary DoP based on their empirical study. Our work
not only selects the suitable vt but also determines the suitable
degree of parallelism for each module of the workflow.

The time complexity of BOTM is O(|Vtp|·max(Nvt )·|VT |), where
|VT | is the number of VM types, max(Nvt ) denotes the largest
number of VM instances for all vt ∈ VT .

5. Simulation-based performance evaluation

5.1. Simulation settings

We implement the proposed BOTM algorithm in C++ and
evaluate its performance in comparison with the default Storm
configuration, denoted as STORM_DEFAULT, and a heuristic algo-
rithm VM-GREEDY. By comparing with Storm’s default scheduler,
which is used by many real-life applications, we are able to
examine the benefits of BOTM to both service providers and
end users when executing budget-constrained workflows. VM-
GREEDY is a commonly used benchmark method that takes a
greedy strategy for VM optimization to assign as many high-
end VM instances as possible within the budget. The source code
of BOTM implementation is available for download in GitHub
Repository [19].

The problem size (reflected by the problem index) is defined
as a 2-tuple (|Vtp|, |Etp|), where |Vtp| is the number of Storm
topology tasks, and |Etp| is the number of topology links. We
generate topology instances of different scales in a random man-
ner as follows [20]: (i) lay out all |Vtp| modules sequentially
along a pipeline, each of which is assigned a workload randomly
generated within the range [5, 500], which represents the total
number of million instructions; (ii) for each module, add an input
edge from a randomly selected preceding module and add an
output edge to a randomly selected succeeding module (the first

Fig. 7. Performance measurements for simulations under different budget levels.

spout module only needs output and the last bolt module only

needs input); (iii) randomly select two modules from the pipeline

and add a directed edge between them (from left to right) until

reaching the given number of edges.
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Fig. 8. The number of optimal results among 50 instances (10 work-
flow instances × 5 budget levels) produced by BOTM, VM-GREEDY and
STORM_DEFAULT, respectively, under different problem sizes.

We compare BOTM with the other two algorithms in com-
parison in terms of workflow throughput under the same budget
constraint.

5.1.1. Comparison with optimal solutions
We compare BOTM with optimal solutions in three small-

scale problems of (3, 3, 2), (4, 4, 3), and (4, 5, 4), each in the form
of (number of modules, number of edges, number of VTs). For
each problem size, we randomly generate 10 problem instances
with different module workloads and DAG topologies. In each
problem instance, we specify five different budget levels. We
run all three algorithms on these instances and compare the
throughput measurements with the optimal ones computed by
an exhaustive search-based approach. Fig. 8 shows the num-
ber of optimal results among 50 instances (10 workflow in-
stances × 5 budget levels) achieved by BOTM, VM-GREEDY, and
STORM_DEFAULT, respectively, under different problem sizes. In
(3, 3, 2), STORM_DEFAULT does not produce any optimal solution
and thus is not visible in the chart. We observe that BOTM is more
likely to achieve the optimality than the others in a statistical
sense, which indicates the efficacy of BOTM. However, since these
are small-scale problem instances, the absolute values of the
differences from the optimal results are not significant.

5.2. Comparison with other methods

In the simulation, we consider 16 virtual machine types with
their respective system specifications and in-cloud financial costs
randomly selected from a range corresponding to commonly
used virtual machines provisioned by Amazon Web Services
(AWS) [21]. We consider 20 problem sizes from small to large
scales, indexed from 1 to 20. For each problem size, we randomly
generate 20 problem instances, in each of which, we choose 6
budget levels with an equal interval of ∆b = (bmax − bmin)/6
within a certain budget range [bmin, bmax], where Bmin is 10% more
than the minimum budget to run the entire workflow on the
worst cluster, and Bmax is 10% more than the maximum budget
to run the entire workflow on the best cluster. For each of the 6
budget levels from low to high levels, indexed from 1 to 6, we run
the scheduling simulation by iterating through 20 problem sizes
from small to large scales. We measure the average throughput
with a standard deviation achieved by BOTM, VM-GREEDY, and
STORM_DEFAULT, respectively. These measurements show the

Fig. 9. The optimization process of BOTM running the problem instance of Index
5 in the simulations under three different budget levels.

performance superiority of BOTM at each of the six budget levels.
The results at levels 1, 3 and 5 are plotted in Fig. 7 for a visual
comparison.

These performance results show that BOTM achieves per-
formance improvement over VM-GREEDY and STORM_DEFAULT.
Such performance improvements are considered significant for
stream data processing in large-scale scientific applications. On
average, the simulation results show that BOTM achieves a
throughput that is 2.3 times of VM-GREEDY and 50% higher
than STORM_DEFAULT. This is considered to be a significant
improvement when dealing with large-scale stream data.

5.3. Convergence of BOTM

To investigate the convergence property of BOTM, we run
this algorithm on the problem instance of Index 5 under three
different budget levels, i.e., low, medium, and high. The low
budget level is 10% more than the budget that is sufficient for
the workflow to be executed using the worst virtual machines;
the high budget level is 10% less than the budget that is sufficient
for the workflow to be executed using the best virtual machines;
the medium budget level is 50% of the budget that is sufficient for
the workflow to be executed using the best virtual machines. We
plot the optimization process of BOTM in these three scenarios
in Fig. 9, which shows that BOTM converges to the maximum
throughput after 30 iterations within less than one second. For
problem index 10 and above, we observe that BOTM converges
after at most 50 iterations.

6. Experiment-based performance evaluation

In this section, we conduct two sets of experiments on two
real-life datasets. Different data volumes (12 GB and less than 1
GB data) are tested for scalability evaluation.

6.1. Experiment 1 with flight data

6.1.1. Storm topology
We conduct Storm experiments for streaming data processing

to compute various statistics on 22 years of global flight datasets
of about 12 GB from 1987 to 2008 at Statistical Computing [22].
The topology structure is shown in Fig. 10, where every module is
a task (spout/bolt): w0 emits streaming data instances every 1 ms;
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Fig. 10. The structure of the Storm topology for flight data processing.

Table 1
System specifications of different VM types in the experiment.
VM Instance Availability CPU RAM Num of Price
type name zone (GHz) (GB) instances ($/min)

vt1 t2.small US West
(Oregon)

2.5 × 1 2 9 0.0230

vt2 t2.medium US West
(Oregon)

2.5 × 2 4 4 0.0464

vt3 t2.xlarge US West
(Oregon)

2.4 × 4 16 4 0.1856

vt4 t2.2xlarge US West
(Oregon)

2.4 × 8 32 4 0.3712

Table 2
Execution time matrix Te in ms.

w0 w1 w2 w3 w4 w5 w6 w7 w8

vt1 1.85 46.21 53.44 105.83 97.19 12.56 17.39 55.70 11.23
vt2 1.47 26.79 6.57 12.04 39.98 1.09 4.18 3.52 2.05
vt3 1.38 14.58 5.63 11.06 26.18 1.08 4.09 3.47 1.54
vt4 1.21 13.33 3.13 6.42 24.77 1.07 3.37 2.62 1.41

Table 3
The VM instances of the Storm cluster provisioned under different mapping
schemes in AWS.
Cluster vt1 vt2 vt3 vt4 Total number of

Inst. Inst. Inst. Inst. VM instances

C1: under BOTM 4 2 0 4 10
C2: under VM-GREEDY 6 1 1 4 12

C3: randomly generated 4 4 3 2 13

Table 4
Mapping schemes obtained by BOTM and VM-G (VM-GREEDY) in Experiment 1,
where each cell stores (vt,DoP) for the corresponding module.

w0 w1 w2 w3 w4 w5 w6 w7 w8

BOTM (1, 1) (2, 1) (2, 1) (4, 2) (4, 1) (1, 1) (4, 1) (1, 1) (1, 1)

VM-G (1, 1) (2, 1) (4, 4) (1, 1) (1, 1) (3, 1) (1, 1) (1, 1) (1, 1)

w1 filters out the headline in each data file; w2 and w5 calculate
the average taxi in/out time at each airport, where w2’s key is the
airport name and value is the taxi time, w5’s key is the airport
name and value is the average taxi time; w3 and w6 calculate
the average delay frequency of each flight, where w3’s key is the
flight number and value is the delay frequency, w6’s key is the
flight number and value is the average delay frequency; w4 and
w7 calculate the frequency of each ‘‘Flight Cancellation Reason’’
over all of the years, where w4’s key is the cancellation code and
w4’s value is 1, w7’s key is the cancellation code and w7’s value
is the cancellation frequency. w8 collects all the results in each
category, where key is the ranking type (cancellation code, airport
name, and flight number), and value is the result (the average taxi
time, the average delay frequency, the cancellation frequency).

6.1.2. Experimental settings
We consider four VM types in Amazon Web Services (AWS)

[21] and construct three different heterogeneous clusters. Table 1
tabulates the system specification and pricing model (in unit
of US Dollar per minute) of each VM type, and the number of
available VM instances of each VM type. In each cluster, we install
STORM 1.0.0 on the VM instances, and install ZooKeeper 3.4.8 on
the VM instance where Nimbus is installed. As shown in Tables 9
and 5, since the processing time of each tuple by any module of
the workflow is on the order of seconds, their performance is not
affected by the degradation of the virtual CPU performance, as
experienced by some users running long-time jobs in AWS.

6.1.3. Performance comparison
We first execute the entire topology on one VM instance for

each of four VT types in stand-alone mode to obtain the execution
time matrix for one tuple on the module, as shown in Table 2. For
w1 to w4, the time complexity of each task is O(n), where n is the
size of the record. For w5 to w8, the time complexity of each task
is O(1).

In the experiment, the time interval for emitting two con-
tiguous tuples is set to be a random value within a range of
[0.5 ms, 1.5 ms], and the budget is set to be five times p(vt4).
We run BOTM and VM-GREEDY to obtain two mapping schemes,
as tabulated in Table 4, where each cell stores (vt,DoP) for the
corresponding module. For example, (4, 2) for module w3 in the
mapping scheme produced by BOTM means that 2 VM instances
of VM type vt4 are used to run 2 instances of w3.

Based on the mapping schemes produced by BOTM and VM-
GREEDY, we set up two corresponding clusters C1 and C2. The C1
cluster produced by BOTM contains 10 VM instances, while the
C2 cluster produced by VM-GREEDY contains 12 VM instances.
We also set up a randomly generated cluster C3 that contains 13
VM instances satisfying the budget constraint. The configurations
of these three clusters are provided in Table 3.

We run the Storm topology for flight data processing in C1 and
C2 produced by BOTM and VM-GREEDY, respectively, for three
times. Also, we run the topology in the default Storm system
in clusters C1, and set the DoP for each module from 1 to the
highest DoP in the mapping scheme achieved by BOTM, which is
2. Similarly, we run the topology in the default Storm system in
clusters C2, and set the DoP for each module from 1 to the highest
DoP in the mapping scheme achieved by VM-GREEDY, which is
4. In the randomly generated cluster C3, we set the DoP for each
module from 1 to 4. Note that for each DoP , we run the exper-
iment for three times. The performance measurements in all of
these experiments are tabulated in Table 5, where the underlined
throughput performance measured within a 10-minute window
corresponds to the global bottleneck module. We provide such
microscopic behaviors in every experiment to study the stability
of each algorithm. These measurements show that the proposed
BOTM algorithm achieves consistent performance in three runs
while the other algorithms in comparison lack such stability.
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Table 5
Throughput measurements in tuples/min of BOTM, VM-G (VM-GREEDY), and STORM (STORM_DEFAULT) in Experiment 1 on Flight Data, where each run lasts for
10 h.
Alg. Idx w0 w1 w2 w3 w4 w5 w6 w7 w8 Throughput Average

(average number of tuples processed by each module within a 10-min window) Throughput

BOTM 1 25180 24800 24760 24940 24060 49040 24700 23980 97660 2398
C1 2 24640 24420 24360 24580 23640 48280 24300 23560 95900 2356 2389

3 25620 24880 24820 25240 24240 49200 25000 24140 97880 2414

VM-G 1 19340 19340 19360 19300 18860 38360 19100 18860 76160 1886
C2 2 22660 22660 22620 22600 21920 44720 22360 21920 89020 2192 1682

3 11460 11460 11440 11440 9 680 22620 11320 9 680 43580 968

STORM 1 15940 15920 15900 15880 15100 31460 15720 15120 62300 1510
C1 2 16700 16700 16660 16680 15900 32980 16500 15900 65380 1590 1573
DoP = 1 3 16680 16660 16660 16660 16180 32980 16480 16180 65520 1618

STORM 1 20200 18640 18600 18600 17700 36780 18400 17700 72880 1770
C1 2 18140 18140 18140 18120 16860 35860 17940 16860 70640 1686 1765
DoP = 2 3 20300 20200 20160 20160 18380 39940 19960 18340 78260 1838

STORM 1 2 140 1 440 1 420 1 440 720 2 860 1 440 720 5 000 72
C2 2 3 480 1 600 1 540 1 540 660 3 020 1 500 680 5 220 66 68
DoP = 1 3 2 740 1 580 1 560 1 580 660 3 120 1 560 680 5 320 66

STORM 1 7 160 2 180 1 480 1 500 820 2 880 1 500 840 5 200 82
C2 2 7 380 1 660 1 260 1 280 640 2 440 1 240 640 4 300 64 74
DoP = 2 3 7 540 1 480 1 460 1 460 760 2 880 1 440 740 5 020 76

STORM 1 9 640 2 080 1 360 1 480 760 2 720 1 440 800 4 860 76
C2 2 7 980 2 400 1 380 1 420 680 2 660 1 360 640 4 700 64 74
DoP = 3 3 9 760 2 180 1 380 1 320 820 2 700 1 300 840 4 760 82

STORM 1 10280 2 120 1 340 1 360 780 2 640 1 280 780 4 720 78
C2 2 11700 1 880 1 360 1 340 740 2 620 1 360 720 4 660 72 82
DoP = 4 3 10960 2 200 1 360 1 300 960 2 600 2 600 2 600 2 600 96

STORM 1 20440 19560 19500 19500 18920 38620 19320 18920 76860 1892
C3 2 16700 16720 16660 16660 15860 33040 16520 15860 65420 1586 1673
DoP = 1 3 16680 16120 16080 16080 15400 31840 15920 15420 63180 1540

STORM 1 22260 21040 21000 21000 19900 41580 20800 19880 82280 1988
C3 2 19220 17160 17140 17140 16220 33940 16960 16200 67140 1620 1320
DoP = 2 3 7 060 4 440 4 440 4 440 3 520 8 800 4 420 3 540 16720 352

STORM 1 5 380 5 140 5 160 5 160 2 300 10260 5 100 2 300 17700 230
C3 2 5 540 4 860 4 860 4 860 2 380 9 580 4 800 2 420 16760 238 236
DoP = 3 3 5 520 4 880 4 840 4 840 2 420 9 600 4 780 2 400 16800 240

STORM 1 6 520 4 160 4 100 4 120 2 180 8 200 4 100 2 160 14420 216
C3 2 7 120 4 960 4 960 4 960 2 320 9 800 4 920 2 340 17040 232 228
DoP = 4 3 6 660 4 360 4 320 4 320 2 360 9 560 4 280 2 380 15260 236

Table 6
Execution time matrix Te in ms for WRF.

w0 w1 w2 w3 w4 w5 w6 w7

vt1 100.17 6889.82 3434.38 8854.28 17591.02 55361.93 65107.75 1007.06
vt2 100.21 3592.12 1813.37 4069.33 7 821.38 29563.50 28720.50 586.00
vt3 100.28 1868.93 1710.83 2145.80 4 163.83 15309.33 11885.50 491.67
vt4 100.26 1119.35 554.91 1358.38 2 595.86 3 960.33 11646.00 141.50

We calculate the average throughput with standard deviation
across different DoP based on these performance measurements,
and plot them in Figs. 11 and 12 for a visual comparison. We
observe that BOTM consistently outperforms the other algorithms
in comparison.

Both BOTM and VM-GREEDY decide the VT selection and the
DoP for each module of the workflow. In default Storm, we vary
the DoP for every module from 1 to the highest DoP among all
modules in the mapping scheme produced by BOTM and VM-
GREEDY. These results show that a higher DoP does not always
yield a better workflow throughput performance as the default
scheduler in Storm does not consider the global bottleneck.

6.2. Experiment 2 with climate data

6.2.1. WRF workflow
To evaluate the performance of our algorithm in real comput-

ing environments, we conduct Storm experiments based on the
Weather Research and Forecasting (WRF) model [23], which has

Table 7
Storm cluster VM instances provisioned under different mapping schemes in
AWS.
Cluster vt1 vt2 vt3 vt4 Total number of

Inst. Inst. Inst. Inst. VM instances

C4: under BOTM 4 2 0 2 8
C5: under VM-GREEDY 4 2 1 3 10

C6: randomly generated 0 2 3 3 8

Table 8
Mapping Schemes obtained by BOTM and VM-G (VM-GREEDY) in Experiment 2,
where each cell stores (vt,DoP) for the corresponding module.

w0 w1 w2 w3 w4 w5 w6 w7

BOTM (1, 1) (1, 1) (1, 1) (1, 1) (2, 1) (4, 1) (4, 1) (2, 1)

VM-G (1, 1) (2, 1) (4, 3) (1, 1) (1, 1) (3, 2) (2, 1) (1, 1)
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Fig. 11. The average throughput with standard deviation of the Storm topology
across different degrees of parallelism (DoP) in clusters C1 and C2 produced
by BOTM and VM-GREEDY, respectively, and a randomly generated C3 under a
given budget.

Fig. 12. The average throughput (per core) with standard deviation of the Storm
topology across different degrees of parallelism (DoP) in clusters C1 and C2
produced by BOTM and VM-GREEDY, respectively, and a randomly generated
C3 under a given budget.

been widely adopted for regional to continental scale weather
forecast. The WRF model [24] generates two large classes of
simulations either with an ideal initialization or utilizing real
data. In our experiments, the simulations are generated from
real data, which usually requires preprocessing from the WPS
package [25] to provide each atmospheric and static field with
fidelity appropriate to the chosen grid resolution for the model.

The structure of a general WRF workflow is illustrated in
Fig. 13, where the WPS consists of three independent programs:
geogrid.exe, ungrib.exe, and metgrid.exe [26]. The geogrid pro-
gram defines the simulation domains and interpolates various

terrestrial datasets to the model grids. The user can specify infor-
mation in the namelist file of WPS to define simulation domains.
that typically contain more fields than needed to initialize WRF.
The ungrib program ‘‘degrib’’ the data and stores the results in
a simple intermediate format. The metgrid program horizontally
interpolates the intermediate-format meteorological data that are
extracted by the ungrib program into the simulation domains
defined by the geogrid program. The interpolated metgrid output
can then be ingested by the WRF package, which the data by WPS,
we will run the programs in WRF model. contains an initializa-
tion program real.exe for real data and a numerical integration
program wrf.exe. The postprocessing model consists of ARWpost
and GrADs. ARWpost reads-in WRF-ARW model data and creates
output files for display by GrADS.

We duplicate three WRF pipelines each from ungrib.exe to
ARWpost.exe, and group these programs into different aggregate
modules to simulate real-life workflow clustering and provide
various module parallelism, as shown in Figs. 14 and 15. Fig. 15 is
a high-level view of grouped workflow in Fig. 14, where w0 and
w7 are the start and end modules [26].

We execute the WRF topology in the same computing envi-
ronment as the experiments for flight data processing.

6.2.2. Performance comparison
We first execute the entire topology on one VM instance of

each of four VT types in the stand-alone mode to obtain the
execution time matrix for one tuple on the module, as shown in
Table 6.

Similarly, in this set of experiments, the time interval for
emitting two contiguous tuples is set to be a random value
within a range of [0.5 ms, 1.5 ms]. The budget is set to be
five times p(vt4). We run BOTM and VM-GREEDY to obtain two
mapping schemes as tabulated in Table 8. Similar to Table 4,
each cell stores (vt,DoP) for each corresponding module. Based
on the mapping schemes produced by BOTM and VM-GREEDY,
we set up two corresponding clusters C4 and C5. The C4 cluster
produced by BOTM contains 8 VM instances, while the C5 cluster
produced by VM-GREEDY contains 10 VM instances. We also set
up a randomly generated cluster C6 that contains 8 VM instances
satisfying the budget constraint. The configurations of these three
clusters are provided in Table 7.

We run the Storm topology for WRF workflow in C4 and
C5 produced by BOTM and VM-GREEDY, respectively, for three
times. Also, we run the topology in the default Storm system in
clusters C4, and set the DoP for each module to be 1, which is the
highest DoP in the mapping scheme achieved by BOTM. Similarly,
we run the topology in the default Storm system in clusters C5,
and set the DoP for each module from 1 to the highest DoP in
the mapping scheme achieved by VM-GREEDY, which is 3. In the
randomly generated cluster C6, we set the DoP for each module
from 1 to 3. For each DoP , we run the experiment for three
times. All performance measurements are tabulated in Table 9,
where the underlined throughput performance measured within
a 10-min window corresponds to the global bottleneck module.

We calculate the average throughput with standard deviation
across different degrees of parallelism based on these perfor-
mance measurements, and plot them in Figs. 16 and 17 for a
visual comparison. Again, we observe that BOTM consistently out-
performs the other algorithms in comparison. In Fig. 18, we also
illustrate the resource consumption (number of cores × mem-
ory size × time unit) for WRF data processing across different
degrees of parallelism (DoP) in clusters C4, C5, and randomly gen-
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Table 9
Throughput measurements in tuples/hour of BOTM, VM-G (VM-GREEDY), and STORM (STORM_DEFAULT) in Experiment 2 on WRF workflow, where each run lasts
for 10 h.
Algorithm Idx w0 w1 w2 w3 w4 w5 w6 w7 Throughput Average

(average number of tuples processed by each module within a 10-min window) Throughput

BOTM 1 960 440 900 400 200 60 40 100 240
C4 2 940 460 920 400 200 40 40 100 240 240

3 940 440 900 380 220 40 60 100 240

VM-G 1 875 482 71 393 196 54 36 120 216
C5 2 893 429 321 339 339 36 36 89 216 210

3 810 479 397 380 380 33 50 99 198

STORM 1 480 21 42 10 10 10 10 10 60
66C4 2 920 60 140 60 60 20 20 40 120

DoP = 1 3 137 9 24 9 23 3 3 3 18

STORM 1 531 11 23 34 34 11 11 22 66
36C5 2 133 9 17 9 9 3 3 3 18

DoP = 1 3 164 7 14 7 7 4 4 4 24

STORM 1 261 20 38 14 6 3 6 6 18
22C5 2 209 5 9 5 9 2 5 5 12

DoP = 2 3 564 58 122 58 38 13 6 13 36

STORM 1 485 4 11 4 20 4 4 8 24
24C5 2 631 28 42 19 14 14 14 5 30

DoP = 3 3 380 20 12 12 3 3 6 3 18

STORM 1 375 17 25 8 17 8 8 8 48
28C6 2 143 3 3 3 6 3 3 6 18

DoP = 1 3 120 5 8 3 10 3 3 3 18

STORM 1 297 13 30 13 13 3 7 7 18
18C6 2 281 24 46 17 12 4 3 6 18

DoP = 2 3 245 3 11 5 11 3 5 5 18

STORM 1 812 18 36 18 61 18 24 48 108
48C6 2 137 2 4 1 5 3 3 7 6

DoP = 3 3 345 8 16 10 23 8 5 13 30

Fig. 13. A general structure of the executable WRF workflow.

Fig. 14. The WRF Storm workflow of three pipelines in the experiments.

erated cluster C6 by BOTM, VM-GREEDY and STORM_DEFAULT,
respectively, under a given budget.

In this experiment, we observe that the DoP for each module
in the mapping scheme produced by BOTM is only 1. However,
we still run Storm in its default setting in the cluster provided
by BOTM and increase the DoP from 1 to the highest degree
decided by VM-GREEDY. These results show that even without
parallel processing, BOTM still outperforms the other algorithms
with parallel processing.

Fig. 15. The WRF Storm workflow after grouping.

6.3. Summary

The performance superiority of BOTM is brought by a careful
design that follows two important guidelines: (i) it is bottleneck-
oriented as the global bottleneck module determines the over-
all throughput of the entire workflow, and (ii) it is bottleneck-
adaptive as the global bottleneck may shift to a different mod-
ule after each adjustment and the most suitable adjustment is
adopted to maximize the global throughput of the workflow in-
stead of the local throughput of any component module. Storm’s
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Fig. 16. The average throughput with standard deviation of the Storm topology
for WRF data processing across different degrees of parallelism (DoP) in clusters
C4 and C5 produced by BOTM and VM-GREEDY, respectively, and randomly
generated cluster C6 under a given budget.

Fig. 17. The average throughput (per core) with standard deviation of the Storm
topology for WRF data processing across different degrees of parallelism (DoP)
in clusters C4 and C5 produced by BOTM and VM-GREEDY, respectively, and
randomly generated cluster C6 under a given budget.

default scheduler (STORM_DEFAULT) neither considers the bot-
tleneck module nor performs selective resource allocation; VM-
GREEDY also neglects the bottleneck and only allocates resources
to modules in a topologically sorted order.

7. Conclusion

We formulated a budget-constrained Storm topology mapping
problem to maximize the throughput in cloud environments,
referred to as STM-BC, which was shown to be NP-complete. We
designed a heuristic algorithm BOTM for STM-BC and demon-
strated its performance superiority over other methods through
extensive simulations and experiments.

Fig. 18. The resource consumption for WRF data processing across different
degrees of parallelism (DoP) in clusters C4, C5, and randomly generated cluster
C6 by BOTM, VM-GREEDY and STORM_DEFAULT, respectively, under a given
budget.

Both of the experiments were conducted on real-life datasets,
but with some differences. Firstly, different data volumes were
tested for scalability evaluation. The flight statistics workflow
processes 22 years of global flight datasets of about 12 GB, and the
WRF workflow processes less than 1 GB data. This difference in
scale was also reflected by their throughput measurements: the
throughput of the flight statistics workflow is around thousands
of tuples per minute, and the throughput of the WRF work-
flow is around hundreds of tuples per hour. Secondly, different
topologies, which imply different densities and processing dy-
namics, were tested to illustrate the robustness of our proposed
algorithm.

It would be of our future interest to refine and generalize
the mathematical models to achieve a higher level of accuracy
for workflow execution time measurement in real-world clouds.
Moreover, in real networks, physical servers may fail under a
certain probability and the actual workload of workflow modules
may be subject to dynamic changes, which will be considered in
our future work.
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