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Abstract—Modern big data computing systems exemplified
by Hadoop employ parallel processing based on distributed
storage. The results produced by parallel tasks such as computing
modules in scientific workflows or reducers in the MapReduce
framework are typically stored in a distributed file system across
multiple data nodes. However, most existing systems do not
provide a mechanism to compose such distributed information,
as required by many big data applications. We construct an-
alytical cost models and formulate a Distributed Information
Composition problem in Big Data Systems, referred to as DIC-
BDS, to aggregate multiple datasets stored as data blocks in
Hadoop Distributed File System (HDFS) using a composition
operator of specific complexity to produce one final output. We
rigorously prove that DIC-BDS is NP-complete, and propose
two heuristic algorithms: Fixed-window Distributed Composition
Scheme (FDCS) and Dynamic-window Distributed Composition
Scheme with Delay (DDCS-D). We conduct extensive experiments
in Google clouds with various composition operators of commonly
considered degrees of complexity including O(n), O(nlogn), and
O(n?). Experimental results illustrate the performance superior-
ity of the proposed solutions over existing methods. Specifically,
FDCS outperforms all other algorithms in comparison with a
composition operator of complexity O(n) or O(nlogn), while
DDCS-D achieves the minimum total composition time with
a composition operator of complexity O(n?). These algorithms
provide an additional level of data processing for efficient infor-
mation aggregation in existing workflow and big data systems.

Index Terms—Big data; distributed algorithms; information
composition; task scheduling

I. INTRODUCTION

Nowadays, a wide spectrum of applications in science, engi-
neering, and business domains are generating data of colossal
amounts, which require big data computing systems for timely
and efficient processing and analysis [1]. In many of these
applications, various tasks for data generation, processing, vi-
sualization, and analysis are represented as computing modules
and assembled in a workflow structure! [2]. Particularly, in
the broad science community, workflow systems have been
recognized as an important technology for mission-critical
applications, allowing execution and management of complex
computations on distributed resources [3], [4]. As we enter the
era of big data, workflow applications have been increasingly
deployed in big data systems as exemplified by Hadoop [5], [6]
using different computing frameworks such as MapReduce for
batch parallel data processing [7], Spark for in-memory data
processing [8] and Storm for streaming data processing [9].

'In the context of workflows, these computing entities are usually referred
to as modules that represent either a serial computing program or a parallel
processing job such as a MapReduce application in Hadoop.
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In workflow-based applications, there may exist multiple
computing modules processing and producing data (interme-
diate or semi-final results) in parallel at different locations,
which must be aggregated to produce the final result. Some
scientific workflows such as Montage [10], [11] and Cyber-
Shake [11] follow an aggregation approach to combine differ-
ent results or data from different sub-workflows or components
of a workflow. In big data computing systems, even for a single
computing module implemented within distributed processing
frameworks such as MapReduce, it may use multiple reducers
to produce outputs stored as different files/data blocks in
Hadoop Distributed File System (HDFS) [6]. Since each
reducer processes a subset of (key, value) pairs depending on
the associated key assigned to that reducer, it generally does
not have access to all (key, value) pairs. In the simplest case
to identify the top n words with the highest use frequency
in a large text document, it is generally insufficient to use a
classical WordCount program as each reducer only outputs the
number of occurrences for a subset of words, and another pro-
cedure is typically required to aggregate all these occurrences
for a global sorting to determine the top word list as the final
result.

In this paper, we construct analytical cost models and for-
mulate a Distributed Information Composition problem in Big
Data Systems, referred to as DIC-BDS, to aggregate multiple
datasets stored as data blocks in Hadoop Distributed File Sys-
tem (HDFS) using a composition operator of specific complex-
ity to produce one final output. We rigorously prove that DIC-
BDS is NP-complete, and propose two heuristic algorithms:
Fixed-window Distributed Composition Scheme (FDCS) and
Dynamic-window Distributed Composition Scheme with De-
lay (DDCS-D). We conduct extensive experiments in Google
clouds with various composition operators of commonly con-
sidered degrees of complexity including O(n), O(nlogn), and
O(n?), and compare the performance with existing methods
in the literature in terms of execution time. Our experimental
results show the performance superiority of the proposed
algorithms over existing methods. Specifically, FDCS achieves
a performance improvement of about 31-61% and 44-65% on
average with a composition operator of complexity O(n) and
O(nlogn), respectively, and DDCS-D achieves a performance
improvement of about 61-95% on average with a composi-
tion operator of complexity O(n?) over other algorithms in
comparison. The proposed algorithms provide an additional
level of data processing for efficient information aggregation
in existing workflow and big data systems.
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The rest of the paper is organized as follows: Section II
conducts a survey of related work. Section III presents the
cost models and problem formulation. Section IV details
the design of the proposed algorithms. Section V presents
experimental results and Section VI concludes our work.

II. RELATED WORK

In this section, we conduct a survey of related work on
distributed information composition in different computing
environments.

In [12], Mayer et al. formulated a set of partitioning and
scheduling problems in TensorFlow and proved them to be NP-
complete. In [13], Yun et al. studied a workflow optimization
problem and designed an approach that integrates workflow
mapping and on-node scheduling. Although these problems
are discussed in the framework of TensorFlow or in a generic
computing environment, they are conceptually similar to the
problem under our study. However, the solutions proposed in
their work cannot be directly applied to our problem since they
require prior knowledge about the execution of a workflow,
which is not always available in practice.

Our work is focused on distributed information composition
in big data systems such as Hadoop and provides an addi-
tional level of data processing to improve the performance of
existing workflow engines and computing frameworks such as
MapReduce. In particular, a significant number of efforts have
been made to improve the performance of the MapReduce
framework. In [14], Elteir et al. proposed asynchronous data-
processing techniques to enhance the performance of MapRe-
duce without considering data locality, which, however, is
an important aspect in our work and has been extensively
explored in many other methods [15], [16], [17], [18], [19],
[20], [21], [22], [23].

Information integration or aggregation has also been studied
in other contexts such as service-oriented computing [24] and
image composition in volume visualization. Particularly, for
the latter, several approaches have been proposed to decide
the composition order of partial images to minimize the
total image composition time on a cluster [25], [26], [27],
[28]. These approaches consider minimizing the number of
communication messages. Since we focus on the composition
time that mainly depends on the data size and the complexity
of the composition operator, the solutions originally designed
for image composition are not directly applicable. For in-
stance, Wu et al. proposed an optimized approach for image
composition with a linear pipeline for efficient image delivery
to a remote client [25]. However, the proposed algorithm does
not consider the complexity of composing a segment in each
step/phase. Moreover, they considered data transfer throughput
over a wide-area network connection for remote visualization,
which is out of the scope of this work.

In this work, we adapt two algorithms in the literature for
performance comparison with our proposed algorithms. The
first one follows a simple greedy procedure to process and
compose distributed data, and the second one is inspired by
a data aggregation method developed in the field of sensor
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Fig. 1. A general cluster structure.

networks [29], [30], [31], [32]. More specifically, in Periodic
Sensor Networks (PSN) [33], [34], this method guides sensors
to send data collected over a period of time to a Cluster Head
(CH) through an aggregation tree.

III. PROBLEM FORMULATION

In this section, we construct analytical cost models and de-
fine formally a Distributed Information Composition problem
in Big Data Systems.

A. Cost Models
1) Cluster Model

As illustrated in Fig. 1, we model a cluster as a tree of
Physical Machines (PMs) connected via high-speed switches.
Without loss of generality, we consider two-level switches. The
top-level or root switch S, has a capacity Cs,,,,, and connects
other in-rack switches S, 4k, €ach of which connects a
number of PMs that are located in the same rack R. Each
PM is associated with a resource profile that specifies the
CPU frequency fcpy, memory size sgay, I/O speed ry o, disk
capacity cg;s, and a Network Interface Card (NIC) with uplink
bandwidth BW,, and downlink bandwidth BWy,,,,. Also, each
PM provisions a number of Virtual Machines (VMs) and each
VM is associated with a set of performance attributes including
CPU frequency f{p;, 1/O speed ";/0’ and disk capacity ¢/,
[2]. However, provisioning VMs on PMs is beyond the scope
of this paper.

2) Composition Model

We consider a generic scheme of information composition
that can be applied to many scenarios such as aggregating
the output from a workflow or the output of multiple reduce
tasks in the MapReduce framework. Mainly, our composition
model has two components: 1) datasets to be composed, and
2) a composition operator.

a) Datasets

Suppose that we have n datasets (dsy, dsy, ..., ds,) that have
to be composed into one final output F'. Also, each dataset is
of different size s;;, where s denotes the size of dataset ds
in bytes. If we consider Hadoop system, the dataset or data
block size ranges from 64 to 128 MB as widely implemented
in HDFS [6].
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In the MapReduce framework [7], such datasets could be
the intermediate results (temporary files) after executing map
tasks, or the output of reduce tasks. The intermediate data
produced by a map task is generally stored locally on the
corresponding map node [5], but could be stored in HDFS if
there is not enough storage space on the map node. On the
other hand, the output of a reduce task is generally stored
directly in HDFS [6]. In this work, we consider datasets as
HDEFS data blocks distributed on a cluster.

b) Composition Operator

Each dataset ds must be processed by a composition op-
erator &, which could be in different forms, for example,
a machine learning program based on a stochastic gradient
descent (SGD) procedure to train the model or a statistical
function to calculate a single value such as the sum or average
of some measurements. Different composition operators are
typically of different time complexity. Also, each operator
@ takes two operands oprl and opr2 and produces output
comp_ds of different size that resides on a node of the cluster.

Once some datasets are available

and ready to be composed, we need
to specify the location where a com-
position process takes place. Deter- Y
mining such location depends on the
resource availability of the cluster as m...pasman‘
well as the computational and stor- B
age requirements of the composition ;
operator. Furthermore, data locality
should be always considered to min-
imize the communication overhead.
3) Time Cost
a) Transfer Time

In a cluster environment, datasets
are often distributed on different nodes and have to be
transferred over the network for composition. In general,
transfer_time = data_size / network_bandwidth. On each PM,
the uplink bandwidth may be equally shared (if using TCP-
friendly protocols) if the PM sends data concurrently to other
PMs; similarly, the downlink bandwidth may be equally shared
if the PM receives data concurrently from other PMs. The time
cost Ty, of data transfer is determined by both the data size
DS and the sharing dynamics ofD %andwidth BW [2]:

Ty =

comp_ds \
N

Fig. 2. A single-composition
operation.

7

.z 1
;. B‘/V”P BWiown ’ ( )
in( sy )

where ng and n, are the number of concurrent data transfers

from a sender PM; and to a receiver PM,, respectively.
Also, given the network topology in our cluster model, we
need to consider the uplink and downlink bandwidths for the
root switch Sy, and in-rack switches Sj, 4k We write Eq. 1
as follows: DS DS
(P, Py e By, gy

ng ny mln( nsg nsy

where ns; and ns, are the number of concurrent data transfers
from sender Sj;,_,qck and to receiver Si,;—,qck, respectively.

b) I/0 Cost

Data could be stored locally on the map or reduce node,
or distributed in HDFS. Accessing data on disk is expensive
especially in the case of big data. We denote the cost of reading
and writing data on disk as:

Tjj0 = MAX(1/Oiocat; 1/ Onprs)- (3)

Computing the actual /O time requires the knowledge
about the size of the data being accessed and the speed of
the /O operation.
c) Composition Time

Fig. 2 illustrates a single-composition process, where two
datasets are aggregated by a composition operator &. We
calculate the time of such a single-composition process as:

Tc =Ty + Tar + fer (0(®),DS), 4)

where Tj/o is the time consumed to read the input data
and write the output data, Ty is the total time for trans-
ferring the data from their source to the destination, and
Jfer(O(@®),DS) is a function that computes the time for the
composition operation given the complexity O(®) of the
composition operator and the data size DS to be composed.
For a multi-composition process taking place concurrently in
parallel, Eq. 4 is insufficient to model the composition time.
Considering a dynamic case where the composition process
starts at different times, since multiple compositions take place
concurrently, we consider the longest one as the total time
needed for composition. In other words, we consider the
critical path (CP) in this distributed scheme to define the total
composition time (TCT), i.e.,

TCT =Y (Tyjo + Tt + fer (0(®),DS))ce, (5)

which is the sum of I/0 time, transfer time, and composition
time along the CP.
B. Problem Definition

We formally define a Distributed Information Composition
problem in Big Data Systems, referred to as DIC-BDS:
Definition 1. Given n datasets (dsi, dsy, ..., ds,) that: (i) are
different in sizes (sqs,, Sdsy» --- » Sds,), (ii) become available
at different time points (11, tp, ... ,t,), and (iii) are distributed
across m virtual machines (VMy, VM, ---, VM,,) provisioned
on a number of PMs, we aim to compose these datasets using
a composition operator @ that takes two operands oprl and
opr2 at a time and follow a composition scheme to produce
one final output F to minimize the TCT.
C. Complexity Analysis

We prove the NP-completeness of DIC-BDS by reducing
an existing NP-complete problem, Single Execution Time
Scheduling (SETS) [35], to it in polynomial time.

We first consider a decision version of our problem as
follows:
Definition 2. Given the input of DIC-BDS as defined in
Definition 1 and a bound B, does there exist a composition
scheme that yields the TCT such that TCT < B?

The SETS problem [35], [12] is defined as follows: Given
a set S of jobs that take unit time, a partial order < on S,
K processors, and a time limit f,4y, iS there a scheduling
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TABLE I
NOTATIONS USED IN THE COST MODELS AND PROBLEM DEFINITION.
Parameters Definitions
Sroot the root switch
Cs,oor the capacity of the root switch
in—rack an in-rack switch
a rack of PMs
Ty time cost of data transfer
DS data size
BW,;, the uplink bandwidth
BW00m the downlink bandwidth
ng, ny the number of concurrent data transfers from
a sender PM;, to a receiver PM,
BWsyp the uplink bandwidth within a rack
BWsgoun the downlink bandwidth within a rack
nsg, NSy the number of concurrent data transfers from
a sender Sj,_,qck, tO a receiver Si,—,ack
PM,; the i-th PM
PM; the sender PM
PM, the receiver PM
Jepu(i the CPU frequency of PM;
SRAM(i) the memory size of PM;
10() the 7/0 speed of PM;
Cdisk(i) the disk capacity of PM;
VM; the i-th VM
m the number of VMs
féPU the CPU frequency of a VM
S;e AM the memory size of a VM
"1/0 the 1/0 speed of a VM
ik the disk capacity of a VM
I/Ojpcal the cost of 7/0 on a local node
1/Onprs the cost of 1/0 in HDFS
ds dataset for composition
n the number of datasets for composition
Sds the size of dataset ds in bytes
tas the available time of dataset ds
) composition operator
oprl first operand
opr2 second operand
comp_ds dataset resulting from a composition process
F final composition result
TCT Total Composition Time
Tc Composition Time of a composition process
CcpP Critical Path

fer(O(®),DS)  function to compute T¢ given O(®) and DS

function g: S — {0,...,tmax — 1} such that the following three
properties hold? (i) The scheduling function respects the
ordering relation, i.e., vE S <V € S5 — g(v) < g(V'). (ii) The
time limit is not exceeded, i.e., Vv € §: g(v) < timax, and (iii)
There are at most k active jobs at each point of time, i.e.,
Vi€ {0,... tmax}: [{vES|g(v) =i} <K.

Theorem 1: DIC-BDS € NP-complete.

Proof. Obviously, DIC-BDS is in the class of NP. We prove
its NP-hardness by reducing SETS to it as follows.

Let Isgrs be an arbitrary instance of SETS, which has a set
of jobs S and a partial order < on S. Accordingly, we construct
an instance of DIC-BDS denoted as Ipjc—pps. For each partial
order <; of Isgrs, we construct a corresponding bucket b; of
Ipic—_pps such that the number of datasets in each bucket is
the same as the number of jobs in the corresponding partial
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order of Isgrs. Also, the size of each dataset is equivalent in
value to the number of instructions in the corresponding job.
Moreover, we show that the complexity of the composition
operator @ is determined by the size of the second operand
opr2 as illustrated in the following example:

Suppose that Iggrs has a partial order <; that has three
jobs: Jo, Jo, and Ji. Accordingly, Ip;c—pps has a bucket b;
that has three datasets: dsg, ds;, and ds;. Following the partial
order <, we start composing the first dataset with a dummy
data set dSqummy as ®(dSgummy,dso), which produces the first
result denoted as ry of size sqq,. The second composition is
®(ro,ds;) that produces a result of r; with an output of size
Sds,- The final composition is @©(ry,ds;) that produces a result
of r» with an output of size sy, .

Furthermore, in Ip;c_gps, we set the number of VMs to
be k', which is the same as the number of processors in
Isers. Also, since the processors in Isgrs are homogeneous,
we only consider homogenous VMs in Ipjc_pps. Furthermore,
we focus only on the execution time of Isgrs, which is
equivalent to the composition time of Ipjc_pps. Therefore,
the constructed Ipjc—pps is a special case of DIC-BDS where
both the transfer time and I/O time are set to be zero. It is
obvious that this instance construction process can be done in
polynomial time.

Next, we show that if there is a solution to Isgrg, that
solution solves Ipjc—_pps as well. Assuming that the answer of
IseTs is true, this means that there exists a scheduling scheme
such that the three properties of SETS are satisfied. If we use
that scheduling scheme as an order to perform the composition
process on the corresponding datasets of Ip;c_pps, the total
composition time is minimized. On the other hand, if we
have a solution to Ipjc—_pps, it implies that there exists an
order that guarantees to minimize the total composition time,
and this order can be used to schedule the execution of the
corresponding jobs of Isgrs.

Hence, if the answer to the given instance of SETS is YES
or NO, the answer to the constructed instance of DIC-BDS
is also YES or NO, and vice versa. This completes the NP-
hardness proof of DIC-BDS. ]

IV. ALGORITHM DESIGN

We design a Distributed Composition Scheme (DCS) as a
heuristic approach to solve DIC-BDS defined in Section III-B.

The main goal of DCS is to minimize 7CT. In this scheme,
we have two main types of datasets: (1) the original given
datasets (dsi, dss, ---, ds,) that become available for compo-
sition at different time points (Zgs,, 45, » - *» tds,) » and (2) the
intermediate results that become available during the entire
composition process (comp_dsy, comp_ds,, ---, comp_dsy).
According to Eq. 5, the composition time is defined as the
sum of three time cost components: I/O time, data transfer
time, and time consumed by the composition operator & for
data composition. Typically, the composition time with a given
composition operator is considered to be fixed, and the I/O
time for reading/writing a given amount of datasets does not
vary significantly. However, a network-based data transfer is
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Fig. 3. The global list (GL).
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dynamic in nature, largely depending on the location of the
datasets. Thus, we focus on minimizing the time cost of data
transfer by considering data locality.

There are two main phases in the proposed DCS approach.
The first phase is to partition the datasets into groups, and for
that, we design two partitioning algorithms:

1) FDCS: Fixed-window Distributed Composition Scheme

2) DDCS-D: Dynamic-window Distributed Composition
Scheme with Delay

The second phase of DCS is to schedule the formed groups
for composition.

Moreover, we adapt two existing algorithms for perfor-
mance comparison, i.e., greedy composition, and periodic time
interval-based grouping, which are briefly introduced as well.
A. The Global List (GL)

Prior to providing the details of algorithm design, we design
a data structure, referred to as Global List (GL), which is an
important component in our solution.

As illustrated in Fig. 3, the Global List (GL) is a list-
based data structure, which is used to hold the datasets and
maintain their order based on the time of their availability.
GL starts with a pre-defined number of original datasets, and
may change dynamically over time, as composed datasets are
removed from GL and new datasets, i.e., either intermediate re-
sults produced by the composition process or original datasets
arriving late, are inserted into GL. However, towards the end
of the composition process, the number of datasets that need
to be composed would decline until producing the last dataset,
i.e., the final output F.

Based on this data structure, we design two partition-
ing algorithms to partition the datasets into groups, each
of which is assigned to a computer node for composition.
These partitioning algorithms build a Composition Tree CTree
(Section IV-D) to calculate the TCT as shown in Alg. 3 and
are followed by the group scheduling algorithm (Section IV-E)
to determine the composition order.

B. Fixed-window Distributed Composition Scheme (FDCS)

We design a Fixed-window Distributed Composition
Scheme (FDCS), whose pseudocode is provided in Alg. 1 with
an illustration of its process in Fig. 4.

In this algorithm, we prefix a window size x, which defines
the number of datasets in a group used for composition. We
first check if there are x or more datasets available on the GL.
If yes, we create a group of x datasets from the GL and call a
scheduling function for composition; otherwise, we wait until
enough datasets have arrived to form a group for composition.
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Fig. 4. FDCS.

Algorithm 1 Fixed-window Distributed Composition Scheme
(FDCS)
Input: a number of datasets (dsy, ds3, ..., ds,) that become available
at different time points (tys,, tdsys --» Ids,)» Which are stored on the
global list GL, and distributed among different virtual machines (v,
Vi, -+, Vi)
Output: a group gr; of datasets that are ready for scheduling

1: Initialize x to be the pre-fixed number of datasets in a

group;

2: if (GL.size() >=x) then

3:  create a group gr;;

4. while (gr.size()<=x) do

5: gri.add(dataset);

6:  schedule(gr;);

7: else

8:  wait till there are x or more datasets on GL;
9: if (not the last dataset) then
10: create a group gr;;

11 while (gr;.size()<=1x) do
12: gri.add(dataset);

13: schedule(gr;);

14:  else

15: return

C. Dynamic-window Distributed Composition Scheme with
Delay (DDCS-D)

We adapt the concept of delay scheduling from [36], which
aims to improve the performance of Hadoop system using a
default fair scheduler, and design a Dynamic-window Dis-
tributed Composition Scheme with Delay (DDCS-D). Delay
scheduling is originally introduced for cluster scheduling
where fairness is relaxed in order to explore data locality.

DDCS-D adopts a dynamically changing window size. It
starts with a window size set to be the smallest group size,
i.e., 2 datasets for composition. Every time when a group
of datasets are formed, it checks the size of the GL. If the
GL size is larger than the current window size, it increases
the window size by adding one additional dataset; otherwise,
the new window size is the same as the number of available
datasets on the GL.
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Moreover, to make the composition process more adaptive,
we introduce a delay, which defines an amount of time DDCS-
D has to wait before checking the size of the GL. In this case,
we allow more datasets to arrive and be added to the GL, which
may yield a larger group with more datasets for composition.
However, an excessively long waiting time would delay the
entire composition process. We will conduct experiments to
provide insights into choosing an appropriate value for the
delay. Compared with FDCS, DDCS-D is more adaptive to
the arriving pace of the datasets. The pseudocode of DDCS-
D is provided in Alg. 2 with an illustration of its process in
Fig. 5.

Algorithm 2 Dynamic-window Distributed Composition Scheme
with Delay (DDCS-D)

Input: a number of datasets (ds, ds3, ..., ds,) that become available
at different time points (ty,, tdsys --» tds,)» Which are stored on the
global list GL and distributed among different virtual machines (v,
vmy, -+, Vity)

Output: a group gr; of datasets that are ready for scheduling

1: Initialize win_size = 2;

2: while (true) do

3. if (GL.size() > win_size) then
4 win_size = win_size + 1;

5 else

6: win_size = GL.size();

7:  create a group gri;

8. while (gri.size() < win_size) do
9 gri.add(ds);

0:  schedule(gr;);

11:  wait for a delay amount of time;
12: return

—

D. Composition Tree CTree

As shown in Fig. 6, a CTree, which is a binary tree, is
constructed from multiple leaves to the root as the composition
process proceeds. Each node with two incoming edges and one
outgoing edge represents a dataset, and each edge represents a
composition operation associated with a weight reflecting its
cost. The root of the composition tree CTree is the final output
F that is generated from the last composition operation, and
the TCT is calculated as the sum of the time cost components
along the critical (longest) path (CP) of the tree, which may
or may not be balanced.

Once a composition operation takes place, the tree is
constructed or updated. In Alg. 4, after each composition
operation, the function update_CTree() creates a branch in
the tree that contains: two (parents) nodes, two edges and one
child node. Once the entire composition process is completed,
the tree is fully constructed. Hence, the TCT can be computed
by traversing the CP in the CTree, as shown in Alg. 3.

E. Group Scheduling for Composition

Once a group gr; of datasets become available for com-
position, the scheduling algorithm begins by deciding the
target node among the ones with available datasets, which
performs all composition operations. We employ a locality-

Algorithm 3 Calculate the TCT using CTree
Input: Composition Tree CTree
Output: the total composition time 7CT

1: initialize TCT = 0;

2: find the critical path CP in CTree;
3: for all (edge e along the CP) do
4:  current_cost = cost_e;
5
6

TCT = TCT + current_cost;
: return 7CT,

— ]
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Fig. 5. DDCS-D.

based scheduling approach to minimize transfer time cost by
minimizing transfer overhead. Data locality is the placement
of computation on the same node as its input data [17]. Given
a group gr of datasets, we follow two rules to choose the target
node as follows:

1) Primary rule of majority vote: We choose the target node
to be the one that holds the majority of the datasets for
composition.

2) Secondary rule of minimum transfer cost: We choose the
target node to be the one with the minimum cost of

)

@

7

O

&
T

n.

H '
D

7

TCT is determined by the CP of the CTree

Fig. 6. Illustration of the composition tree (CTree).
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transfer time based on the available network resources
on the cluster, and transfer any needed non-local datasets
to it.
Moreover, after performing the composition, we update
CTree and GL accordingly, as detailed in Alg. 4.

Algorithm 4 Group Scheduling for Composition

Input: a group gr; of datasets

Qutput: true if the composition is completed successfully; false,
otherwise

1: while (true) do

gri.decide();

pairs|| = gri.pair_up_ds();

for all (pair p; € pairs[]) do
comp_ds = compose(p;);
update_CTree(p;,comp_ds);
GL_insert(comp_ds);

NN RN

F. Algorithms for Comparison
1) Greedy Composition

A greedy approach has been frequently used for dynamic
information composition. It is a simple heuristic based on a
greedy strategy. At any time, if there are two or more datasets
on GL, it selects two datasets and performs composition
regardless of data locality, as detailed in Alg 5 and illustrated
in Fig 7.

Algorithm 5 Greedy Composition

Input: a number of datasets (dsy, ds», ..., ds,) that become available
at different time points (f4y,, t4s,> ---» tds,), Which are stored on the
global list GL and distributed among different virtual machines (v,
Vi, <+, Vi)

Output: GL after performing all the composition

1: set start_time ;

2: while (true) do

3. if (GL.size() >=2) then

4 oprl = GL.getOpr1();

5 opr2 = GL.getOpr2();

6: comp_ds = compose(oprl, opr2);

7 GL.insert(comp_ds);

8 else

9: wait till there are 2 or more datasets on GL;
10: return GL;

For the greedy composition process in Alg. 5, we calculate
the TCT as the available time of the final output or last dataset
F, as shown in Alg 6.

Algorithm 6 Determine the TCT for greedy composition
Input: the Global List GL
QOutput: the total composition time TCT

1: F = GL.retrieveLast();

2: end_time = F.getAvalTime();

3: TCT = end_time - start_time

4: return 7TCT;
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Fig. 7. Greedy composition.
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Fig. 8. Intra-rack and inter-rack bandwidths on the cluster testbed.

2) Periodic Time Interval-based Grouping

This is another simple heuristic, which repeatedly collects
datasets to form a group in every time period of a certain
length, e.g., 10 seconds. Both Greedy and Periodic algorithms
follow the scheduling procedure as described in Section IV-E.

V. ALGORITHM IMPLEMENTATION AND PERFORMANCE
EVALUATION

A. Experimental Settings

We implement our algorithms in Python and use Google
cloud to build a Hadoop cluster of 3 racks, each of which
has 3 computer nodes. These racks are located in different
geographical zones. As shown in Fig. 8, the bandwidth on
the same rack (intra-rack) is 1.96 Gbps, while the bandwidth
between different racks (inter-rack) may differ.

We consider three degrees of time complexity for the
composition operator: O(n), O(nlogn) and O(n?). To evaluate
the performance, we consider different problem sizes in terms
of the number of datasets from small to large scales in a range
of [100,1000]. We set the size of each original dataset to be
64MB, the same as the default data block size in Hadoop 1.

We implement two proposed algorithms, i.e., FDCS and
DDCS-D, and two algorithms in comparison, i.e., Greedy
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and Periodic with a fixed period of 10 seconds. Each com-
position experiment is repeated three times and the average
performance is calculated and plotted for comparison. In
each performance figure, the x-axis represents the number of
datasets in the range of [100, 1000] and the y-axis represents
the corresponding average TCT.

The source code of the algorithm implementation is
made publicly available at https://github.com/Big-Data-
World/Composition-in-Hadoop.git.

B. Experimental Results

For FDCS, we test different window sizes and select the one
that yields the best performance for each composition operator
of a different complexity.

1) Composition Operator of Complexity O(n)

The composition time T¢ for an operator of complexity O(n)
is relatively small. We use a composition operator of this
complexity to run four different algorithms, i.e., 1) FDCS,
2) DDCS-D, 3) Greedy, and 4) Periodic. We observe that
FDCS performs better than DDCS-D, which is explained as
follows: The window size of DDCS-D increases as the datasets
arrive at a fast pace at the GL, and the time for composing
the datasets in a given group increases accordingly, which
yields a latency in the arrival time of the dataset at the GL.
Therefore, the window size shrinks and the time for composing
the datasets in a given group decreases, which makes the
newly composed datasets be inserted into the GL faster. FDCS
performs better because it provides more stable processing,
while there is an overhead for DDCS-D due to the variation
of the window size and the delay. Table II and Fig. 9 show the
performance measurements of different algorithms processing
various numbers of datasets.

2) Composition Operator of Complexity O(nlogn)

The performance measurements of the algorithms using a
composition operator of complexity O(nlogn) are qualitatively
similar to those produced by the algorithms using the compo-
sition operator of complexity O(n). Table III and Fig. 10 show
the results of different algorithms processing various numbers
of datasets.

3) Composition Operator of Complexity O(n?)

In this case, DDCS-D starts outperforming FDCS, which is
explained as follows: A composition operator of complexity
O(n?) incurs a large composition time T¢, which implies that
the composed datasets are inserted into the GL at a slower
pace. FDCS has to wait until there is a sufficient number of
datasets to form a group (as defined in the algorithm), thus
causing a latency. On the other hand, DDCS-D dynamically
updates the window size to accommodate the arrival pace of
the datasets.

With a composition operator of complexity O(n?), it still
causes some fluctuation in the window size but is not as
frequent as in the cases of O(n) and O(nlogn). Therefore,
DDCS-D cuts down the TCT more than FDCS. Table IV
and Fig. 11 show the performance measurements of different
algorithms in comparison for processing various numbers of
datasets.

In all these experiments with different complexities, we
observe that the Greedy algorithm performs the worst.
4) Algorithm Execution Dynamics
a) The Fluctuation of Window Size

To explain the behavior of DDCS-D, we conduct an experi-
ment to show the fluctuation of the window size over a period
of time. Fig 14 plots the change of the window size with three
degrees of complexity for a problem size of 300 datasets.
As shown in Fig 14, DDCS-D with a composition operator
of complexity O(n) fluctuates the most, but exhibits a stable
behavior with O(nlogn). This is because the composition time
Tc is relatively small and the arrival pace of the datasets to
be inserted into the GL is high. Accordingly, the window
size increases to accommodate more datasets, and the time
to process a group increases, which slows down the arrival
of more datasets. Hence, DDCS-D is adaptive by decreasing
the window size. In the case of O(nlogn), there is almost
no fluctuation, and the windows size always tends to be the
minimum, since datasets are inserted into the GL at a very
slow pace as the composition time contributes more.
b) Optimization of the Window Size in FDCS

To find the most efficient window size for FDCS, we
conduct an experiment with 300 datasets. As illustrated in
Table V and Fig 12, FDCS with a composition operator of
complexity O(n), O(nlogn), and O(n?) yields the minimum
TCT when the window size is 4, 2, and 3, respectively.
¢) Optimization of the Delay in DDCS-D

To find the most efficient delay for DDCS-D, we conduct
an experiment with 300 datasets. Fig 13 and Table VI show
that DDCS-D with O(n) achieves the minimum 7CT when
the delay is 1 second, DDCS-D with O(nlogn) achieves the
minimum 7CT when the delay is 0 seconds (no delay at all),
and DDCS-D with O(n?) achieves the minimum TCT when
the delay is 0.4 seconds.
d) Analysis of the Results from DDCS-D

With a composition operator of complexity O(n), Tr is
relatively small and hence the arrival pace of the newly
composed datasets is high. Hence, the grouping in DDCS-D
progresses quickly and it will eventually reach the minimum
window size, which is 2. Therefore, we introduce a delay
of 1 second to achieve the most efficient window size of 4,
which yields the minimum 7CT. For a composition operator
of complexity O(nlogn), the most efficient window size is 2,
which is the minimum window size, and there is no delay
introduced. In the case of an operator of complexity O(nz),
Tc is higher than the other operators. Empirically, we observe
that the most efficient window size is 3 with a delay of 0.4
seconds. The arrival pace of the newly composed datasets in
the case of O(n?) is slower than its counterpart O(n). Hence,
we have a smaller window size and less delay with an operator
of complexity O(n?).

VI. CONCLUSION

We formulated a generic problem of Distributed Information
Composition in Big Data Systems, referred to as DIC-BDS,
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tion operators of different complexities for process-
ing 300 datasets with different window sizes.

TABLE 11
THE AVERAGE TCT (SECONDS) OF DIFFERENT ALGORITHMS UNDER
DIFFERENT PROBLEM SIZES WITH AN OPERATOR OF COMPLEXITY O(n)
AND THE CORRESPONDING STANDARD DEVIATIONS.

# of ds Greedy StdDv Periodic StdDv FDCS StdDv DDCS-D StdDv
100 96.72 5.87 59.10 4.48 56.59 3.05 55.20 4.87
200 210.47 6.29 80.49 6.49 74.76 4.68 76.73 6.34
300 219.28 7.43 111.23 7.95 92.08 6.42 93.46 5.59
400 232.36 7.04 139.19 6.52 107.91 8.49 117.82 5.12
500 247.61 8.27 161.36 8.61 109.26 6.27 134.44 7.76
600 304.38 6.72 189.96 7.49 118.19 7.29 151.51 6.42
700 363.42 7.33 218.11 6.42 123.41 6.44 172.17 7.03
800 425.77 8.29 240.19 7.33 134.13 7.22 189.02 8.18
900 489.64 6.43 274.59 5.34 139.12 6.37 213.14 6.19
1000 558.92 8.33 303.10 8.19 147.41 6.31 228.15 5.04

TABLE III

THE AVERAGE TCT (SECONDS) OF DIFFERENT ALGORITHMS UNDER
DIFFERENT PROBLEM SIZES WITH AN OPERATOR OF COMPLEXITY
O(nlogn) AND THE CORRESPONDING STANDARD DEVIATIONS.

# of ds Greedy StdDv Periodic StdDv FDCS StdDv DDCS-D StdDv
100 158.62 9.45 90.13 6.78 113.32 7.21 88.01 5.65
200 299.48 7.64 179.45 8.43 146.80 5.44 102.31 4.36
300 445.30 7.63 283.41 7.92 170.23 6.55 123.12 8.32
400 530.94 6.44 339.76 6.32 182.18 6.21 164.17 731
500 619.84 9.62 393.60 7.43 198.38 8.33 195.12 7.39
600 758.40 7.38 442.27 5.66 217.90 7.48 227.13 6.46
700 901.42 6.87 487.95 7.12 241.30 6.77 256.36 5.66
800 1045.62 5.42 539.30 733 258.19 8.01 291.10 7.21
900 1198.28 6.33 588.13 6.45 277.10 6.42 318.09 8.22
1000 1317.91 8.52 639.39 7.11 301.32 7.41 346.10 7.81

which was proven to be NP-complete. We designed heuristic
algorithms for DIC-BDS that take into consideration the arrival
dynamics of datasets, and demonstrated their performance
superiority over other existing methods for composition op-
erators of various time complexities through extensive experi-
ments on a real cloud-based cluster. The proposed composition

composition operators of different complexities for
processing 300 datasets with different delay time.
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time in DDCS-D for three degrees of complexity.

TABLE IV
THE AVERAGE TCT (SECONDS) OF DIFFERENT ALGORITHMS UNDER
DIFFERENT PROBLEM SIZES WITH AN OPERATOR OF COMPLEXITY O(n?)
AND THE CORRESPONDING STANDARD DEVIATIONS.

# of ds Greedy StdDv Periodic StdDv FDCS StdDv DDCS-D StdDv
100 1676.83 15.36 193.24 4.38 159.57 3.64 133.78 5.01
200 3337.49 18.28 430.74 5.99 279.74 6.49 197.80 6.44
300 4996.32 18.97 683.61 8.43 391.51 7.84 236.06 8.54
400 6665.37 19.43 945.84 9.84 462.65 8.86 314.91 7.93
500 8329.39 21.87 1055.10 14.37 519.26 10.48 360.83 11.29
600 9999.06 20.56 1173.19 12.44 577.90 8.32 406.98 10.48
700 11682.34 26.44 1281.73 10.82 632.42 9.31 452.20 8.29
800 13373.28 25.64 1393.10 9.41 689.51 8.51 491.11 6.75
900 15071.32 29.39 1503.91 1119 751.14 9.16 536.51 8.42
1000 16774.08 39.85 1614.38 12.85 811.18 8.17 581.13 7.71

TABLE V

THE AVERAGE TCT OF FDCS WITH COMPOSITION OPERATORS OF
DIFFERENT COMPLEXITIES FOR PROCESSING 300 DATASETS WITH
DIFFERENT WINDOW SIZES.

window_size O(n)  SWDv_| O(nlogn)  SudDv 0(n%)  SwdDv
2 130.42 6.29 141.17 5.26 261.41 7.88
3 100.05 6.89 159.77 5.49 235.73 731
4 89.09 7.76 172.81 5.93 391.52 8.42
5 127.01 8.38 319.92 5.4 692.83 7.19
6 104.09 1231 253.61 13.28 592.40 10.29
7 128.52 9.07 341.94 12.62 916.40 13.25
8 145.83 7.67 440.14 8.54 | 124130 11.18
9 162.76 6.32 528.26 7.16 | 1519.19 13.28
10 194.19 11.31 617.22 11.28 | 1833.46 1243
11 211.17 9.11 734.40 932 | 2207.11 13.18

algorithms add another level of intelligence for big data
analytics in existing big data computing systems.

It would be of our future interest to investigate the problem
with other distributed frameworks such as Spark and evaluate
our algorithms with real-life big data workflows. Also, we plan
to implement and integrate these algorithms into Hadoop.
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TABLE VI

THE AVERAGE TCT OF DDCS-D WITH COMPOSITION OPERATORS OF

DIFFERENT COMPLEXITIES FOR PROCESSING 300 DATASETS WITH
DIFFERENT DELAY TIME.

delay (seconds) 0(n) StdDv O(nlogn) StdDv 0(n?) StdDv
0 137.75 6.95 121.02 I87 | 249.19 6.83
02 129.19 7.13 138.33 626 | 280.42 7.61
04 122.43 7.42 144.05 5.47 229.40 5.32
0.6 118.92 5.88 146.20 5.39 303.64 8.29
0.8 112.33 6.18 198.83 7.65 276.57 6.24
1 95.44 538 274.52 827 | 28257 731
12 126.34 6.11 224.85 7.16 263.33 8.33
14 131.14 447 323.95 1072 | 360.42 7.87
1.6 136.47 6.32 435.89 11.26 376.62 6.21
1.8 143.73 7.22 518.23 12.21 484.93 10.44
2 147.37 5.57 624.87 11.17 774.96 11.38
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