
Profiling-Based Big Data Workflow
Optimization in a Cross-layer Coupled

Design Framework

Qianwen Ye1, Chase Q. Wu1(B), Wuji Liu1, Aiqin Hou2, and Wei Shen3

1 Department of Computer Science, New Jersey Institute of Technology,
Newark, NJ 07102, USA

{qy57,chase.wu,wl87}@njit.edu
2 School of Information Science and Technology, Northwest University,

Xi’an 710127, Shaanxi, China
houaiqin@nwu.edu.cn

3 School of Informatics Science and Technology, Zhejiang Sci-Tech University,
Hangzhou 310018, Zhejiang, China

shenwei@zstu.edu.cn

Abstract. Big data processing and analysis increasingly rely on work-
flow technologies for knowledge discovery and scientific innovation. The
execution of big data workflows is now commonly supported on reliable
and scalable data storage and computing platforms such as Hadoop.
There are a variety of factors affecting workflow performance across mul-
tiple layers of big data systems, including the inherent properties (such as
scale and topology) of the workflow, the parallel computing engine it runs
on, the resource manager that orchestrates distributed resources, the file
system that stores data, as well as the parameter setting of each layer.
Optimizing workflow performance is challenging because the compound
effects of the aforementioned layers are complex and opaque to end users.
Generally, tuning their parameters requires an in-depth understanding
of big data systems, and the default settings do not always yield optimal
performance. We propose a profiling-based cross-layer coupled design
framework to determine the best parameter setting for each layer in the
entire technology stack to optimize workflow performance. To tackle the
large parameter space, we reduce the number of experiments needed for
profiling with two approaches: i) identify a subset of critical parame-
ters with the most significant influence through feature selection; and ii)
minimize the search process within the value range of each critical param-
eter using stochastic approximation. Experimental results show that the
proposed optimization framework provides the most suitable parame-
ter settings for a given workflow to achieve the best performance. This
profiling-based method could be used by end users and service providers
to configure and execute large-scale workflows in complex big data sys-
tems.

Keywords: Big data workflows · performance optimization · workflow
profiling · stochastic approximation · coupled design

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12454, pp. 197–217, 2020.
https://doi.org/10.1007/978-3-030-60248-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60248-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-60248-2_14


198 Q. Ye et al.

1 Introduction

Many large-scale applications in science, industry, and business domains are
generating colossal amounts of data on a daily basis, now commonly termed
as “big data”. The processing and analysis of such data increasingly rely on
workflow technologies for knowledge discovery and scientific innovation.

Big data workflows typically consist of several computing modules1 with
intricate dependencies, each of which could be as simple as a serial program
as in most traditional applications or as complex as a parallel job in big data
systems. The execution of such workflows goes far beyond the capability and
capacity of single computers and parallel computing is widely recognized as a
viable solution to support data- and network-intensive workflows.

In recent years, significant progress has been made in almost every aspect
of the hardware and software for big data computing, including the hardware
upgrade of computers, the bandwidth improvement of network infrastructure,
and the emergence of reliable and scalable data storage and analysis platforms
such as Hadoop MapReduce/Spark that can support parallel processing of colos-
sal amounts of data. For example, in China, the most popular search engine of
Baidu, the e-commerce transaction service of Alibaba, and the social network
platform of Tencent, all depend on Spark-based solutions at scale. Particularly,
Tencent has eight hundred million active users generating over 1 PB of data per
day, processed on a cluster consisting of more than 8,000 computing nodes [1].

However, even with these cutting-edge technologies, we have not seen the
corresponding performance improvement, because workflow performance largely
depends on how big data systems are configured and used. For example, workflow
makespan or end-to-end delay, which is the most commonly concerned perfor-
mance metric, is affected by multiple layers of big data systems, including the
inherent properties (scale and topology) of the workflow, the parallel computing
engine it runs on, the resource manager that orchestrates distributed resources,
the file system that stores data, as well as the parameter setting of each layer.

Optimizing workflow performance is challenging because the compound
effects of the aforementioned layers are complex and opaque to end users. Gen-
erally, tuning their parameters requires an in-depth understanding of big data
systems, and the default settings do not always yield optimal performance. Due
to the dynamics of workflow execution in distributed environments and the lack
of accurate performance models for parallel computing, it is generally very dif-
ficult to analytically derive the best system configuration for a given workflow.
Oftentimes, even production systems may run with misconfigured parameters
and present performance bottleneck, which significantly limits the productivity
of end users and the utilization of expensive computing resources. To end users,
who are primarily domain experts, it is a daunting task to troubleshoot the
performance issue and identify possible system misconfiguration.

1 A module is a processing unit, executed in serial or parallel, in a workflow, and is
also referred to as a job or subtask in some context.



Profiling-Based Big Data Workflow Optimization 199

In this paper, we propose a profiling-based cross-layer coupled design frame-
work to determine the most suitable configuration with a recommended param-
eter settings for each layer, including workflow structure, computing engine,
and cluster infrastructure to optimize workflow performance. Such a profiling-
based framework requires the exploration of a large parameter space across the
entire technology stack of big data systems by running a large set of workflow
experiments with different parameter settings. However, sweeping through the
entire parameter space is practically infeasible, due to the large number of tun-
able parameters and their corresponding seemingly infinite value ranges. Thus,
exhaustive profiling is generally unacceptable, especially when the overhead of
profiling is much higher than the time needed for actual workflow execution.

Therefore, we design and employ two approaches to reduce the number of
experiments needed in our framework to accelerate the exploration of the param-
eter space for optimal performance: i) identify a subset of critical parameters
with the most significant influence on workflow performance through feature
selection; and ii) minimize the search process within the value range of each
critical parameter using stochastic approximation. Experimental results show
that the proposed optimization framework provides the most suitable parameter
settings for a given workflow to achieve the best performance. This profiling-
based method could be used by end users and service providers to configure and
execute large-scale workflows in complex big data systems.

In sum, our work makes the following contributions to the field of big data
computing with a focus on workflow execution:

– We design a profiling-based workflow optimization framework, which con-
siders multiple layers in the entire technology stack of Hadoop MapRe-
duce/Spark and provides end users with configuration recommendations to
optimize workflow performance in terms of makespan.

– We employ feature selection to determine critical parameters with the most
significant influence on workflow performance and apply stochastic approxi-
mation to minimize the time needed to explore the parameter space.

– We implement and test the proposed method with extensive experiments,
which show that it yields satisfactory performance while significantly reducing
profiling overhead compared with traditional methods.

– The proposed workflow optimization framework and the profiling minimiza-
tion approaches are generic and hence applicable to other big data systems
to systematically determine the most suitable system configuration.

The rest of this paper is organized as follows. In Sect. 2, we survey related work.
In Sect. 3, we present a coupled design framework for cross-lay optimization of
big data workflows. In Sect. 4, we investigate the effects of different parame-
ters and propose a profiling-based approach to parameter setting. In Sect. 5, we
discuss the rationale of using the Simultaneous Perturbation Stochastic Approx-
imation algorithm and provide its convergence in our problem. In Sect. 6, we
present the overall system configuration recommendation framework. We con-
duct experiments for performance evaluation in Sect. 7.



200 Q. Ye et al.

2 Related Work

Application-layer configuration for performance improvement of scientific work-
flows has been investigated in various contexts. Grid-based workflow manage-
ment systems such as Taverna [2], Kepler [3] and Pegasus [4] seek to minimize
workflow makespan by adjusting workflow-level parameters to group and map
workflow components. Kuma et al. proposed an integrated framework, which is
capable of supporting performance optimization along multiple dimensions of
the parameter space [5]. In [6], in order to support domain-specific parameter-
based optimization, end users are required to provide performance and quality
models of expected application behaviors to the system. This approach is not
readily applicable to many situations, where the relationships between param-
eters and performances cannot be directly modeled with an analytical form.
In [7], Holl et al. proposed an optimization phase between the planning phase
and the execution phase of the common scientific workflow life cycle to assist
end users in determining the optimal setup of a specific workflow. This phase
indeed helps end users configure workflows properly, however, in a try-and-error
manner, which could be very time-consuming. In the aforementioned work, only
parameters at the workflow layer are considered, while neglecting the influence
of the configuration of other layers in the execution system.

There also exist a number of efforts on parameter setting in the layer of
computing engine for parallel processing. In [8], Gounaris et al. investigated
how parameters in Spark affects the performance of Spark jobs and proposed
a systematic method for parameter tuning.In addition, many machine learning-
based approaches have been proposed to tune Spark and Hadoop parameters.
In [9], a binary classification and multi-classification machine learning model
is proposed to accelerate the tuning of Spark parameters. In [10], Liao et al.
proposed a machine learning model to automatically tune Hadoop MapReduce
configuration parameters. In [11], Wu et al. proposed a profiling and performance
analysis-based framework for Hadoop configuration, which considers parameters
not only in the MapReduce layer but also in the Hadoop Distributed File System
(HDFS) layer. In [12], Li et al. proposed an online performance tuning system
that monitors a job’s execution, tunes its associated performance-related param-
eters based on historical statistical data, and provides fine-grained control over
parameter configuration.

Different from the existing work, we consider a generic end-to-end delay
minimization problem for big data workflows consisting of multiple MapRe-
duce/Spark jobs, investigate the cross-layer execution stack, analyze the com-
pound effects of parameters in all layers, and propose a coupled design framework
that determines and recommends the most suitable parameter setting.

3 A Coupled Design Framework for Cross-layer
Optimization of Big Data Workflows

Large-scale workflows executed in big data systems such as Hadoop are
complex processes that involve distributed storage and parallel computing.



Profiling-Based Big Data Workflow Optimization 201

Figure 1 illustrates a technology stack of Hadoop with multiple layers, each of
which has a non-negligible impact on workflow performance, as detailed below:

– The top layer defines abstract big data workflows comprised of data-intensive
computing jobs with execution dependencies. Such workflows are typically
modeled as a Directed Acyclic Graph (DAG), where each vertex represents
either a MapReduce or a Spark job, and each directed edge represents the
execution dependency and data flow between two adjacent jobs.

– The second layer is the parallel computing engine, which orchestrates data
processing by marshaling distributed nodes, running multiple tasks in parallel,
managing all communications and data transfers between various parts of the
system, and meanwhile providing redundancy and fault tolerance. Here, we
consider MapReduce and Spark as they are the two most widely used parallel
computing engines in Hadoop system.

– The third layer is the resource manager of the cluster, which is responsible
for keeping track of the resource use on each data node, allocating distributed
system resources to various jobs or applications submitted by different users,
and scheduling tasks for execution on different nodes. We focus on the Yet
Another Resource Negotiator (YARN), which was first introduced in Hadoop
2 to improve MapReduce implementation, and has been generalized to sup-
port different computing engines including Spark and Storm.

– The fourth layer is the distributed file system, which lays down the foundation
for big data processing, and is responsible for managing data storage across
multiple nodes and making it tolerant to node failures without suffering data
losses. In this paper, we consider Hadoop Distributed File System (HDFS) as
it is commonly used for distributed storage of big data in Hadoop.

Fig. 1. A coupled design
framework for big data work-
flow optimization.

Correspondingly, we list in Table 1 all
performance-related parameters in these technol-
ogy layers, namely, MapReduce, Spark, YARN,
and HDFS. Note that any of these parameters
could create a bottleneck and hence limit work-
flow performance. All of these parameters can be
controlled in the system configuration, such as
the degree of parallelism, the amount of comput-
ing resources allocated to each task, and the job
scheduling policy.

In general, parameter tuning helps improve the
performance of workflow execution in big data sys-
tems, but it usually requires considerable familiar-
ity with the system and in-depth domain knowl-
edge in parallel and distributed computing, which,
unfortunately, many end users lack. Researchers
have achieved remarkable results through parameter tuning in various layers,
including job scheduling scheme [13–16], Spark and MapReduce parameter tun-
ing [17–22], and resource manager configuration [21,23]. However, the parameter
setting in one layer may have an impact on the parameter setting in other layers,



202 Q. Ye et al.

which has not been largely explored. The proposed coupled design framework is
to account for the coupled effects of different parameters across multiple layers
in the technology stack to achieve optimal workflow performance.

Table 1. Performance-related parameters in MapReduce/Spark, YARN, and HDFS
layers.

Layers Parameters

MapReduce The number of reduce tasks per job

The fraction of the number of maps in the job, which should be
completed before reduces are scheduled for the job

Should the outputs of the maps be compressed before being sent
across the network?

Spark The number of executors for one Spark application

The amount of memory to use per executor process

The number of cores to use on each executor

The number of partitions in RDDs returned by transformations
such as join and reduceByKey, and parallelize when not set by user

The amount of storage memory immune to eviction

Whether to compress map output files?

How long to wait to launch a data-local task before giving up and
launching it on a less-local node?

The scheduling mode between jobs submitted to the same
SparkContext, which can be set to FAIR or FIFO

The number of cores to allocate for each task

YARN The type of resource scheduler

The amount of physical memory, in MB, that can be allocated for
containers

The number of vcores that can be allocated for containers

The maximum number of applications in the system, which can be
concurrently active both running and pending

The maximum percentage of resources in the cluster, which can be
used to run application masters (it controls the number of
concurrent active applications)

HDFS The number of block replications

The Sblock size for new files, in bytes

4 Parameter Effects and Workflow Profiling

4.1 An Empirical Study of Parameter Effects

In the workflow layer, the inherent properties of the workflow such as input data
size, workflow topology, and implementation language would affect workflow



Profiling-Based Big Data Workflow Optimization 203

performance. In addition, the performance of workflow execution is also affected
by the parameter settings in various layers.

To examine such parameter effects, we conduct a set of exploratory experi-
ments. For illustration, we collect and present the experimental results of work-
flow execution on a local cluster consisting of eight virtual machine instances to
show how different early shuffle rates affect workflow performance. We plot in
Fig. 2(a) the workflow end-to-end delay measurements with different early shuf-
fle rates using four MapReduce workflows, including 1) library checkout data
analysis from New York City Library (labeled as library checkout), 2) flight
data analysis (labeled as flight), 3) parking violation analysis in New York City
(labeled as parking violation), and 4) 311 service request analysis in New York
City (labeled as service request), all of which are based on online public data
repositories [24–27]. If the shuffling process starts earlier, at each time point,
there is less data on the fly, and data transfer is less likely to become the bottle-
neck of workflow execution. However, if reduce tasks are scheduled earlier, then
the computing resources allocated to reduce tasks are reserved and may lead to
resource waste and consequently undermine the workflow execution performance.
From these performance measurements, we observe that this parameter affects
the workflow performance of flight data analysis the least and exhibits different
performance patterns for parking violation analysis, service request analysis, and
library checkout analysis.

To illustrate the effects of different parameters in Spark on job execution
performance, we compare the execution time of these four different workflows
with three different executor memory sizes, as shown in Fig. 2(b). Theoretically,
a larger memory size allocated to each executor would lead to a shorter execution
time for a given Spark job. We observe in Fig. 2(b) that: i) for library checkout,
flight data analysis, and parking violation analysis, it is clear that increasing
memory improves workflow performance; ii) for 311 service request analysis,
which has many independent modules, there is an intensive resource competition,
which leads to performance degradation as the memory size increases.

We compare the end-to-end delay of these four workflows in Fig. 2(c) with dif-
ferent node locality delays, which define the number of missed scheduling oppor-
tunities, after which the scheduler attempts to schedule rack-local containers. On
a busy cluster, when an application requests a particular node where its input
data are stored, there is a good chance that other containers are running on it
at the time of the request. The obvious measure is to immediately loosen the
locality requirement and allocate a container on the same rack. However, wait-
ing a short time before scheduling to another node may significantly increase
the chance of getting a container on the requested node, and therefore increase
the efficiency of the cluster. On the other hand, waiting too long may exceed
the time saved by avoiding data transfer. In Fig. 2(c), we observe that these
workflows exhibit different performance patterns in response to this parameter.

Similar to native file systems, HDFS processes data in blocks, but with a
larger size (e.g., 128 MB in most systems). By default, each block is replicated
three times to increase reliability. Therefore, when a file is written into HDFS, it
is firstly split into multiple blocks according to the configured block size and each



204 Q. Ye et al.

MapReduce Workflows

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

Early Shuffle Rate = 0.25 Early Shuffle Rate = 0.5
Early Shuffle Rate = 0.75 Early Shuffle Rate = 1.00

(a) MapReduce layer: comparison of
end-to-end delay with different early
shuffle rates

Spark Workflows

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

Memory Size = 1G Memory Size = 2G
Memory Size = 4G Memory Size = 8G

(b) Spark layer: comparison of exe-
cution time with different executor
memory sizes

MapReduce Workflows

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

Delay Account = 0 Delay Account = 2
Delay Account = 4 Delay Account = 8

(c) YARN layer: comparison of end-
to-end delay with different node lo-
cality delays

Spark Workflows

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

Replica Count = 1 Replica Count = 2
Replica Count = 3 Replica Count = 4

(d) HDFS layer: comparison of end-
to-end delay with different replica
numbers

Fig. 2. Illustration of parameter effects in different layers on the performance of four
workflows.

block would be replicated and distributed across the entire cluster. Figure 2(d)
shows the impact of block replication number on the end-to-end delay of the
aforementioned four workflows. Theoretically, if there are more replicas stored
on the cluster, there would be a higher chance that each node has a local data
block to process. In this case, With sufficient computing resources, the node
does not have to retrieve data over the network to process, thereby reducing the
end-to-end delay. On the other hand, with a larger replication number, the time
for writing a file into HDFS would increase, hence negatively affecting workflow
performance. Also, since the output of MapReduce and Spark jobs is written
into HDFS automatically, the time for writing the output of each module in the
workflow would increase, hence negatively affecting workflow performance. We
observe that the impact of this parameter on the performance of these workflows
is different. Particularly, the parameter effect for library checkout data analysis
is not monotonous: the end-to-end delay decreases in the beginning and then
increases as the replication number increases.

4.2 Workflow Performance Profiling

A workflow profile WPw(G(θ), C, θ) is a control-response plot illustrating how a
set θ of system parameters affect the performance G(θ) of workflow w running



Profiling-Based Big Data Workflow Optimization 205

on cluster C. The workflow profile can be obtained by varying θ to exhaust the
combination of parameter values on cluster C and measuring the corresponding
average end-to-end delay T .

Effectiveness of Workflow Profiling. To illustrate the effectiveness of work-
flow profiling in improving workflow execution performance, we run the Spark
and MapReduce workflows for 311 service request analysis for 10 times, each
with the default setting and a customized setting, respectively, and plot the
performance measurements in Fig. 3. These measurements show that the cus-
tomized parameter setting significantly reduces the workflow end-to-end delay
in comparison with the default setting. We observe in Fig. 3 that the customized
setting makes more improvement over the default setting on MapReduce work-
flows. This is because, for a MapReduce job, the degree of parallelism in the
reduce phase is 1 by default, which hurts the performance. On the other hand,
Spark distributes the job workload to all executors, which results in a higher
degree of parallelism.

1 2 3 4 5 6 7 8 9 10

index

0

500

1000

1500

2000

2500

3000

W
or

kf
lo

w
 E

nd
-t

o-
E

nd
 D

el
ay

Default Setting
Advised Setting

(a) MapReduce Workflow

1 2 3 4 5 6 7 8 9 10

index

0

200

400

600

800

1000

W
or

kf
lo

w
 E

nd
-t

o-
E

nd
 D

el
ay

Default Setting
Advised Setting

(b) Spark Workflow

Fig. 3. Performance comparison of 311 service request analysis workflow with the
default setting and a customized setting.

Overhead of Exhaustive Search-Based Workflow Profiling. The goal
of workflow performance profiling is to determine the control parameter values
θ∗, at which the workflow end-to-end delay T reaches the global minimum. An
exhaustive search-based approach for workflow profiling is prohibitively time-
consuming. Take a MapReduce workflow as an example, where we consider
only one control parameter in each layer, including the number of reduce tasks
(m ∈ {1, 2, ...,M}) in MapReduce, memory size constraint (n ∈ {1, 2, ..., N}) in
Gigabytes for containers in YARN, and block size (b ∈ {

32, 64, ..., 2k
}

MBytes)
in HDFS. It would take a total time of O(k · N · M · ΔT ), where ΔT is the time
taken by a single workflow profiling test, and is typically on the order of minutes
or even hours. In the experiment of flight data analysis based on MapReduce,
even if we only vary the reduce task count from 1 to 5, the memory size constraint
from 1 GB to 8 GB, and the block size from 32 MB to 512 MB, a single profiling
test takes around 9 min and the exhaustive search takes 1,125 min (around 19 h)



206 Q. Ye et al.

in total to complete. Such a time overhead may be comparable with or even
longer than the total time required by big data workflow execution, which is
typically on the order of hours, days, or weeks. As the number of control param-
eters increases, the time to obtain a complete workflow profile rapidly increases,
making the exhaustive search approach practically infeasible.

5 SPSA-Based Profiling Optimization

To obviate the need for conducting exhaustive profiling, we propose a Simultane-
ous Perturbation Stochastic Approximation (SPSA) [28] based profiling method
to quickly determine the most suitable parameter setting in each layer.

5.1 Rationale on the Use of SPSA

As shown in Table 1, many components and factors are involved in the process
of workflow execution and may affect workflow performance observed by the end
user. Since our work is focused on workflow profiling with respect to end-to-end
delay, the execution dynamics could be treated as a “black box” system, where
the input is the set of control parameters θ and the output is the workflow end-
to-end delay G(θ). Based on this model, stochastic approximation algorithms are
suitable for quickly determining the optimal control parameter values, because
they i) do not require an explicit formula of G(θ), which is essentially unknown,
but only its measurement with random noise G(θ) + ξ, which can be obtained
by running a “one-time profiling” with a set of specific values; ii) do not require
any additional information about system dynamics or input distribution; and iii)
are of low time complexity. These are highly desirable features as they not only
account for the dynamics of workflow execution and the randomness in perfor-
mance measurements, but also significantly reduce the computational overhead
compared with exhaustive profiling.

SPSA algorithms are similar to gradient descent methods to find a global
minimum. In comparison with other methods, it has distinctive desirable fea-
tures: i) the gradient approximation of SPSA requires only two measurements
of the objective function, regardless of the dimension of the control parameters;
ii) SPSA produces instant results without requiring a large amount of historical
data; iii) SPSA has a proven convergence property, and thus its performance is
theoretically guaranteed.

5.2 Stochastic Approximation (SA) Methods

In our profiling problem, the average workflow end-to-end delay is denoted as
a function of G(θ) of control parameters θ. The goal is then to find the most
suitable control parameters value θ∗ that minimize G(θ) within the feasible space
Θ. Following the standard Kiefer-Wolfowitz Stochastic Algorithm (KWSA) [29],
the standard stochastic approximation form is given by,

θ̂k+1 = θ̂k − ak · ĝk(θ̂k), (1)



Profiling-Based Big Data Workflow Optimization 207

where θ̂k is the set of control parameter values in the k-th iteration, ĝk(θ̂k) is
the simultaneous perturbation estimate of G(θ)’s gradient g(θ) = ∂G

∂θ at the
iteration θ̂k based on the measurements of G(θ), and ak is a nonnegative scalar
gain coefficient.

The measurement of workflow end-to-end delay with noise, denoted as y(θ),
is available at any value θ ∈ Θ, and given by y(θ) = G(θ) + ξ, where ξ is the
noise incurred by system dynamics during workflow execution. In fact, y(θ) is
the observed average workflow end-to-end delay of a single profiling test with a
specific θ.

The essential part of Eq. 1 is the gradient approximation ĝk(θ̂k). With simul-
taneous perturbation, all elements of θ̂k are randomly perturbed at the same
time to obtain two loss measurements of y(·). For the two-sided SP gradient
approximation, this leads to

ĝk(θ̂k) =
y(θ̂k + ckΔk) − y(θ̂k − ck)

2ckΔk

⎡

⎢
⎢
⎢
⎣

Δ−1
k1

Δ−1
k2
...

Δ−1
kp

⎤

⎥
⎥
⎥
⎦

, (2)

where p is the number of control parameters under consideration, the mean-
zero p-dimensional random perturbation vector, Δk = [Δ−1

k1 ,Δ−1
k2 , · · · ,Δ−1

kp ]T ,
is independent and symmetrically distributed around 0 with finite inverse
E

∣
∣Δ−1

ki

∣
∣ , (i = 1, 2, · · · , p), and ck is a positive coefficient. Because the numer-

ator is the same in all p components of ĝk(θ̂k), the number of loss mea-
surements needed to estimate the gradient in SPSA is two, regardless of the
dimension of p.

5.3 Convergence of SPSA-Based Workflow Profiling

The convergence of the proposed SPSA-based workflow profiling method is
important as it affects both the quality of workflow profiling results and the
efficiency of parameter setting recommendation. To explore the applicability of
SPSA in the profiling optimization problem and investigate its convergence prop-
erty, we validate the conditions that lead to the convergence in the context of
workflow profiling.

As pointed out by Spall in [30] (pp. 161), the conditions for convergence
can hardly be all checked and verified in practice due to the lack of knowledge
on G(θ). We provide the following arguments to justify the appropriateness of
SPSA in solving the profiling optimization problem.

According to Theorem 7.1 in [30] (pp. 186), if Conditions B.1′′ − B.6′′ hold
and θ∗ is a unique minimum of G(θ), then for SPSA, θk almost surely converges
to θ∗ as k → ∞.

Conditions B.1′′, B.4′′, and B.6′′ are the most relevant since we govern the
gains sequence ak and ck and the random perturbation Δk. The coefficient
sequences ak and ck we choose (See Sect. 6.2) and the symmetric Bernoulli ±1



208 Q. Ye et al.

distribution we follow to generate the simultaneous perturbations {Δki} easily
validate Conditions B.1′′. We generate the simultaneous perturbations {Δki} to
ensure that Δki is a mutually independent sequence, which is independent of
θ̂1, θ̂2, · · · , θ̂k. The noise in workflow execution is mainly caused by the dynam-
ics and randomness of computer systems and network devices. Since the loss
measurement y(·) captures both positive noise and negative noise, the long-term
conditional expectation of the observed noise is considered to be zero, i.e., for
all k, E[ε+k −ε−

k |{θ̂1, θ̂2, · · · , θ̂k},Δk] = 0. Since {Δki} is generated following the
symmetric Bernoulli ±1 distribution with a probability of 0.5 for each outcome
of either +1 or −1, E[Δ−1

ki ] is uniformly bounded. In addition, the loss measure-
ments y(θ̂k ± ckΔk) are bounded by the full computing/networking capacity of
a given cluster, so the ratio of measurement to perturbation E[y(θ̂k ± ckΔk)Δki]
is uniformly bounded over i and k. Hence, Condition B.4′′ holds.

Fig. 4. Architecture
of the proposed
workflow configura-
tion advisor.

Condition B.2′′ and B.3′′ impose the requirement that
θ̂k (including the initial condition) is close enough to θ∗

so that there is a natural tendency for an analogous deter-
ministic algorithm to converge to θ∗. These two conditions
are intuitively valid in the profiling scenario because: i) the
main requirement for these conditions, i.e., supk≥0

∥
∥
∥θ̂k

∥
∥
∥ <

∞, can be satisfied since the control parameter values in
all layers are both finite positive integer numbers; ii) since
the feasible regions of the control parameters in workflow
execution is finite and mapped to a limited range of the
iterative variables, θ̂k (including the starting point) is suf-
ficiently close to θ∗; iii) in workflow execution environ-
ments, due to the system dynamics and randomness, dif-
ferent runs with identical parameter settings may yield
different end-to-end delays, which makes θ∗ be not a sin-
gle point but an “acceptable area” in order to tackle this
profiling problem.

B.5′′ asks G(θ) to be three-times continuously differentiable and bounded by
Rp. The end-to-end delay is obviously bounded by the cluster computing power
and network capacity among all dimensions of the control parameter θ. However,
the smoothness and differentiability of G(θ) is very difficult to verify since G(θ)
is practically unknown and spans over a parameter space of discrete values. For
this profiling problem, we assume G(θ) meets this condition.

In addition, it is worth pointing out that although the end-to-end delay
should have a unique theoretical peak over the feasible control parameter space
in a given distributed system, it has been observed that in our environments,
due to the system dynamics and randomness, identical parameter values may
yield different end-to-end delays in different runs, which makes the uniqueness
of θ∗ practically unverifiable. However, the loss measurement y = G(θ) + ξ
indeed shows a trough property over the feasible control parameter space in the
experiments.



Profiling-Based Big Data Workflow Optimization 209

6 A Workflow Configuration Advising Framework

We design a workflow configuration advising framework as shown in Fig. 4,
which conducts workflow profiling across the entire technology stack of big data
systems and provides end users with recommended configurations to deploy big
data workflows for actual execution. This framework integrates two strategies to
avoid the need of conducting exhaustive profiling and minimize the number of
profiling runs while still ensuring the recommendation of a satisfactory parameter
setting: i) it identifies a subset of critical parameters to be investigated; ii) it
reduces the search space within the value range of each critical parameter.

6.1 Information-Theoretic Feature Selection

Not all parameters play an equally important role in workflow performance, and
we, therefore, should focus on the parameters with the most significant influence.
Towards this goal, we employ an information-theoretic feature selection method,
the nearest neighbor method [31], to filter out a dominating subset of control
parameters using historical dataset.

For the control parameter X, we take random samples xi and repeat workflow
execution for multiple times, collect the end-to-end delay measurements yi and
construct a historical dataset D = {xi, yi}N

i=1, where N denotes the total number
of data points collected in D. For a given control-response data point i, we first
identify the k-th nearest neighbor of this point among data points with the same
configuration xi in terms of Euclidean distance, and denote the distance as d.
Note that k is a customizable parameter. Then count the number mi of nearest
neighbors in D that lie within distance d to data point i (including the k-th
nearest neighbor with the same configuration). The amount of information Ii

data point i carries is calculated as

Ii = φ(N) − φ(Nxi
) + φ(k) − φ(mi), (3)

where Nxi
is the number of data points who has configuration xi, φ is the

digamma function [32]. The mutual information of X and Y is calculated by
averaging Ii over all N data points in D:

I(X,Y ) = φ(N) − 〈φ(Nx)〉 + φ(k) − 〈φ(m)〉, (4)

where 〈〉 is an averaging operator. Based on the estimated mutual information
between X and Y , we decide to select X as a candidate critical parameter by
thresholding the score of the mutual information.

6.2 SPSA-Based Profiling Process

The SPSA-based workflow profiling process is described as follows.

Step 1: Set counter index k = 0. Choose an either fixed or random starting
point within the feasible space of the control parameters. Also, choose



210 Q. Ye et al.

nonnegative coefficients a, c, A, α, and γ in the SPSA gain sequences
ak = a

(K+1+A)α and ck = c
(k+1)γ . Practically effective (and theoretically

valid) values for α and γ are 0.602 and 0.101, respectively [33]. For the
choice of a,A and c, please refer to Sect. 6.2.

Step 2: Generate by Monte Carlo a p-dimensional random perturbation vector
Δk, where each of p components of Δk is independently generated from
a zero-mean symmetric Bernoulli ±1 distribution with probability of 1

2
for each ±1 outcome.

Step 3: Conduct workflow profiling to collect two performance observations
y+

k = y(θ̂k + ckΔk) and y−
k = y(θ̂kckΔk) with ck and Δk from Step

1 and Step 2.
Step 4: Compute the simultaneous perturbation approximation to the unknown

gradient g(θ̂k) using Eq. 2.
Step 5: Use the standard stochastic approximation form (see Eq. 1) to update

θ̂k to a new value θ̂k+1.
Step 6: Return to Step 2 with k + 1 replacing k, and repeat the above process

until the termination condition is met (please refer to Sect. 6.2).

Termination Condition. Many efforts have been made to establish the termi-
nation condition for SA-based methods since the Kiefer-Wolfowitz SA algorithm
was first proposed [29]. Our algorithm employs the following two practical rules
to guarantee its termination with satisfactory performance.

– Upper bound - the M rule: our algorithm terminates the profiling process
when the total number of profiling iterations exceeds a threshold M, which
is typically set to be much less than the maximum number of profiling tests
of the exhaustive profiling approach, i.e., M � ∏k

i=1 NVi, where k is the
number of control parameters and NVi is the number of possible values of
the k-th control parameter. Note that when M =

∏k
i=1 NVi, our algorithm

rolls back to the exhaustive search.
– Impeded progress - the R rule: if the number of consecutive profiling iter-

ations that do not produce any performance improvement compared with the
best one observed so far exceeds an upper bound R, our algorithm terminates
the profiling process for the given workflow.

Restrictions on Parameters. Restrictions have to be placed on some param-
eters to prevent unnecessary profiling runs and reaching the upper limit of the
cluster capacity. For the parameters in the discussion, we confine the CPU count
and memory size for a YARN container to be smaller than the capacity of com-
puting nodes. Similarly, we confine the block size of HDFS to be smaller than
the storage capacity of computing nodes and to be larger than 32 MB as an
excessively small block size would jeopardize workflow performance [34,35].



Profiling-Based Big Data Workflow Optimization 211

Choice of Gain Sequences. The coefficients ak and ck of the SPSA-based
method need to satisfy the following conditions to guarantee the convergence:

ak > 0, ck > 0; ak → 0, ck → 0;
∞∑

k=0

ak = ∞,

∞∑

k=0

a2
k

c2k
< ∞. (5)

The choice of the gain sequence is critical to the performance. With the Bernoulli
±1 distribution of Δk, α and γ are specified in Step 1 with values commonly
adopted in practice. Step sizes a and c are empirically determined based on the
size of the search space.

Control Parameter Calculation. The control parameters used in our SPSA-
based profiling algorithm are denoted as θ =

[
s

′
1 s

′
2 ... s

′
p

]T
, and set to be positive

values within a reasonably selected range to ensure a comparable magnitude for
each parameter dimension. These parameters are scaled and mapped to decide
the actual parameter values in each iteration. In calculating the actual values of
the parameters, we perform rounding operations in the case where the interme-
diate results are fractional.

The profiling unit of each critical parameter is denoted by μi, i ∈ 1, 2, · · · , p.
For the profiling unit, we calculate its corresponding actual value for perfor-
mance observation (i.e., y+

k and y−
k ) as si = round(λi(s

′
i) · μi), where λ(·) are a

scaling function that scales all control parameters into the same magnitude. For
example, with λi(s

′
i) = 2s

′
i , s

′
i increases exponentially as the original value of s

′
i

increases.
We apply different scaling functions to different control parameters as their

actual values exhibit different patterns. For instance, we consider i) linear type,
where the actual values of such parameters grow linearly, such as early shuffle rate
in MapReduce, and replication count in HDFS; ii) exponential type, where the
actual values of such parameters grow exponentially, such as block size in HDFS.
For linear type, we apply a min-max normalization approach to implement the
scaling function; while for exponential type, we apply both an exponential scaling
function and a min-max normalization approach to perform scaling.

7 Performance Evaluation

In this section, we evaluate the performance of the proposed workflow optimiza-
tion framework. We first conduct experiments to test our profiling algorithm,
and then demonstrate the advising procedure and illustrate the performance
benefits of our algorithm compared with random walk [36], tabu search [37] and
linear regression [38] plus dual-simplex algorithm [39].

7.1 Experiment Setting and Workflow Description

In our experiment, we establish a homogeneous cluster of three racks, each of
which has two computer nodes installed. On the cluster, we install Apache



212 Q. Ye et al.

Hadoop 2.9.5 [40], Apache Spark 2.4.4 [41] and Apache Oozie 4.3 [42], which
is a workflow engine that automatically dispatches each component MapRe-
duce/Spark job in a workflow once all of its preceding jobs finish execution.

Fig. 5. The topology of the workflow for 311 service request data analysis.

We download four public datasets online: i) airline on-time performance
dataset [24], ii) New York public library checkout records [25], iii) New York 311
service request record [27], and iv) New York parking violation record [26]. We
implement MapReduce and Spark workflows with complex topologies for each
dataset. For illustration, Fig. 5 shows a representative topology of the workflow
for 311 service request data analysis.

Table 2. Critical parameters through feature selection.

Layers Parameters

MapReduce mapreduce.job.reduce.slowstart.completedmaps

number of reducers

Spark num-executors

spark.executor.memory

spark.executor.cores

Yarn yarn.scheduler.capacity.node-locality-delay

maximum-am-resource-percent

HDFS dfs.replication

dfs.blocksize



Profiling-Based Big Data Workflow Optimization 213

7.2 Experimental Results

We consider all parameters tabulated in Table 1, which do not play an equally
important role in workflow performance. In fact, the combined setting of some
critical parameters across different layers dominates the workflow execution time.
Since exhaustive profiling by sweeping through the entire value range of all
parameters is extremely time-consuming, we first use information-theoretic fea-
ture selection to identify a subset of critical parameters as shown in Table 2, all
of which have a non-negligible influence on workflow performance.

MapReduce Workflows

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

SPSA RW

Tabu LR+DS

(a)
Spark Workflows

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

SPSA RW

Tabu LR+DS

(b)

Fig. 6. Comparison of end-to-end delay between different settings produced by SPSA-
based profiling (SPSA), random walk (RM), Tabu search (Tabu) and linear regression
plus dual-simplex optimization algorithm (LR+DS).

We compare our SPSA-based profiling with Random Walk, Tabu Search, Lin-
ear Regression plus dual-simplex and default Hadoop/Spark in terms of workflow
execution time (ED). The ED performance improvement of the SPSA-based
profiling algorithm over other algorithms in comparison is defined as:

Imp(Other) =
EDOther − EDSPSA

EDOther
× 100%, (6)

where EDother is the ED achieved by other algorithms, and EDSPSA is the
ED achieved by the SPSA-based profiling algorithm. The improvement result is
tabulated in Table 3, where the upper side of the table is for MapReduce workflow
(referred to as MR WFs in the table) and the lower side is for Spark workflow.
Note that there is no result listed for linear regression plus dual-simplex for Spark
service request workflow, because the proposed setting leads to the depletion of
all cluster resources and the workflow execution is therefore suspended. Figure 6
shows the comparison of normalized end-to-end delay between these algorithms.
These measurements show that our algorithm consistently outperforms the other
algorithms in comparison.



214 Q. Ye et al.

Table 3. The percentage of ED improvement made by SPSA-based profiling over
Default Setting (D), Random Walk (RW), Tabu Search (Tabu) and Linear Regression
plus Dual-Simplex (LRDS).

MR/Spark Workflows imp(D) imp(RW) imp(Tabu) imp(LRDS)

Library 38.95 15.81 2.43 11.24

Flight 32.71 9.49 12.54 10.62

Parking 24.17 16.45 3.42 13.9

Service 66.62 36.29 6.65 −2.28

Library 48.84 5.36 11.96 23.63

Flight 29.83 7.55 −2.44 8.70

Parking 44.63 11.71 12.50 20.97

Service 32.04 33.84 18.25 –

7.3 Efficiency and Effectiveness of SPSA-Based Profiling

As mentioned in Sect. 4.2, each profiling run takes from a few minutes to hours.
Therefore, to limit the time for identifying the best parameter setting, we con-
sider the following constraints: i) for all algorithms, we set the maximum number
of iterations to be 20; ii) for SPSA-based algorithm, we set R = 3, which is the
number of consecutive profiling iterations that do not produce any performance
improvement over the best one observed so far; iii) additionally, for Tabu search,
the tabu list size is set to be 3. We tabulate the average number of profiling runs
in Table 4 for comparison.

Table 4. The average number of profiling runs for SPSA-based profiling (SPSA), Ran-
dom Walk (RW), Tabu Search (Tabu), Linear Regression plus Dual-Simplex (LRDS),
and Exhaustive Profiling (EP).

SPSA Random Tabu LRDS EP

Number of runs 20 20 200 21 77,725

We further investigate if the parameter setting computed by the optimization
framework from small-scale workflows can be applied to large-scale workflows.
We sample a small amount of data from the original dataset and use the proposed
profiling method to provide advice on the most suitable parameter settings. We
apply these recommended settings to workflows processing the original dataset
and plot the corresponding performance measurements in Fig. 7. These results
show that the parameter setting recommended by the profiling approach from
a small-scale workflow can significantly improve the performance of large-scale
workflows in comparison with the default settings.



Profiling-Based Big Data Workflow Optimization 215

Comparison of End-to-end Delay
Between Default VS. Tuned Setting

MapReduce Workflows

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

Default
Tuned

(a)

Comparison of End-to-end Delay
Between Default VS. Tuned Setting

Spark Workflows

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
nd

-t
o-

en
d 

D
el

ay

Library
Checkout

Flight Parking
Violation

Service
Request

Default
Tuned

(b)

Fig. 7. Comparison of end-to-end delay between the default and recommended param-
eter settings across MapReduce/Spark, YARN and HDFS on large-scale workflows.

8 Conclusion and Future Work

We proposed a profiling-based coupled design framework for big data workflows,
which provides end users with the most suitable system configuration to improve
workflow performance in big data systems. Our framework employs feature selec-
tion and SPSA algorithm to accelerate the search process by obviating the need
for exhaustive profiling.

It is of our future interest to provide configuration advice in finer granularity
in the following aspects: i) recommend a suitable parallel computing engine,
since for the same workflow, its performance varies considerably in Spark and
MapReduce; ii) recommend parameter settings on a per-job basis, since not all
jobs in the same workflow achieve its best performance with the same setting; iii)
explore the most effective way to map parameter settings from small workflows
to large ones; and iv) improve the performance of the SPSA-based profiling
method, including gradient approximation averaging, step size adaptation, local
optima prevention, convergence speed acceleration, and intelligent termination
conditions, for faster profiling and more accurate recommendation.

Acknowledgments. This research is sponsored by U.S. National Science Foundation
under Grant No. CNS-1828123 with New Jersey Institute of Technology.

References

1. Zaharia, P.W.M., Xin, R.S., et al.: Apache spark: a unified engine for big data
processing. Commun. ACM 59(11), 56–65 (2016)

2. Oinn, J.F.T., Addis, M., et al.: Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004)

3. Ludascher, I.A.C.B.B., et al.: Scientific workflow management and the Kepler sys-
tem. Spec. Issue Workflow Grid Syst. 18, 1039–1065 (2005)

4. Deelman, E., Blythe, J., et al.: Pegasus: mapping scientific workflows onto the grid.
In: Dikaiakos, M.D. (ed.) AxGrids 2004. LNCS, vol. 3165, pp. 11–20. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28642-4 2

https://doi.org/10.1007/978-3-540-28642-4_2


216 Q. Ye et al.

5. Kumar, G.M.V.S., Sadayappan, P., et al.: An integrated framework for
performance-based optimization of scientific workflows. In: Proceedings of the
18th ACM International Symposium on High Performance Distributed Computing,
Garching, Germany, pp. 177–186 (2009)

6. Chiu, G.A.D., Deshpande, S., et al.: Cost and accuracy sensitive dynamic workflow
composition over grid environments. In: Proceedings of the 2008 9th IEEE/ACM
International Conference on Grid Computing, Washington, DC, USA, pp. 9–16
(2008)

7. Holl, M.P.S., Zimmermann, O., et al.: A new optimization phase for scientific
workflow management systems. Future Gener. Comput. Sci. 36, 352–362 (2014)

8. Counaris, A., Torres, J.: A methodology for spark parameter tuning. Big Data Res.
11, 22–32 (2018)

9. Wang, B.H.G., Xu, J., et al.: A novel method for tuning configuration parameters of
spark based on machine learning. In: IEEE 18th International Conference on High
Performance Computing and Communications, Sydney, NSW, Austrilia (2016)

10. Liao, G., Datta, K., Willke, T.L.: Gunther: search-based auto-tuning of mapreduce.
In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 406–
419. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40047-6 42

11. Wu, A.G.D., et al.: A self-tuning system based on application profiling and per-
formance analysis for optimizing hadoop mapreduce cluster configuration. In: 20th
Annual International Conference on High Performance Computing, Bangalore,
India (2014)

12. Li, S.M., Zeng, L., et al.: MRONLINE: MapReduce online performance tuning. In:
Proceedings of the 23rd International Symposium on High-Performance Parallel
and Distributed Computing, New York, NY, USA, pp. 165–176 (2014)

13. Shu, T., Wu, C.: Performance optimization of H adoop workflows in public clouds
through adaptive task partitioning. In: Proceedings of the IEEE INFOCOM,
Atlanta, GA, USA, 1–4 May 2017

14. Wu, C., Lin, X., Yu, D., Xu, W., Li, L.: End-to-end delay minimization for scientific
workflows in clouds under budget constraint. IEEE Trans. Cloud Comp. 3(2), 169–
181 (2015)

15. Yun, D., Wu, C., Gu, Y.: An integrated approach to workflow mapping and task
scheduling for delay minimization in distributed environments. JPDC 84, 51–64
(2015)

16. Ye, Q., Wu, C.Q., Cao, H., et al.: Storage-aware task scheduling for performance
optimization of big data workflows. In: The 8th IEEE International Conference on
Big Data and Cloud Computing, Melbourne, Australia, 11–13 December 2018

17. Wang, B.H.E.G. , Xu, J.: A novel method for tuning configuration parameters of
spark based on machine learning. In: 2016 IEEE 18th International Conference on
HPC and Communications, Sydney, NSW, Australia, 12–14 December 2016

18. Petridis, P., Gounaris, A., Torres, J.: Spark parameter tuning via trial-and-error.
In: Angelov, P., Manolopoulos, Y., Iliadis, L., Roy, A., Vellasco, M. (eds.) INNS
2016. AISC, vol. 529, pp. 226–237. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-47898-2 24

19. Gounaris, A., Torres, J.: A methodology for spark parameter tuning. Big Data Res.
11, 22–32 (2018)

20. Jia, G.C.E.Z., Xue, C.: Auto-tuning spark big data workloads on POWER8:
prediction-based dynamic SMT threading. In: 2016 International Conference on
Parallel Architecture and Compilation Techniques (PACT), Haifa, Israel, 11–15
September 2016

https://doi.org/10.1007/978-3-642-40047-6_42
https://doi.org/10.1007/978-3-319-47898-2_24
https://doi.org/10.1007/978-3-319-47898-2_24


Profiling-Based Big Data Workflow Optimization 217

21. Holmes, A.: Hadoop in Practice. Manning Publications Co., Greenwich (2012)
22. Li, S.M.E.M., Zeng, L.: MRONLINE: MapReduce online performance tuning. In:

Proceedings of the 23rd International Symposium on High-Performance Parallel
and Distributed Computing, Vancouver, BC, Canada, 23–27 June 2014

23. Ding, D.Q.E.X., Liu, Y.: Jellyfish: online performance tuning with adaptive con-
figuration and elastic container in hadoop yarn. In: 2015 IEEE 21st International
Conference on Parallel and Distributed Systems (ICPADS), Melbourne, Australia,
14–17 December 2015

24. Flight Data. http://stat-computing.org/dataexpo/2009/the-data.html
25. Library Checkout Data. https://data.seattle.gov/Community/Checkouts-by-

Title/tmmm-ytt6
26. Parking Violation Data. https://data.cityofnewyork.us/City-Government/Open-

Parking-and-Camera-Violations/nc67-uf89
27. Service Request Data. https://data.cityofnewyork.us/Social-Services/311-Service-

Requests-from-2010-to-Present/erm2-nwe9
28. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturba-

tion gradient approximation. IEEE Trans. Autom. Control 37, 332–341 (1992)
29. Kiefer, J.W.J.: Stochastic estimation of the maximum of a regression function.

Ann. Math. Stat. 23(3), 462–466 (1952)
30. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Sim-

ulation, and Control. Wiley, Hoboken (2005)
31. Ross, B.: Mutual information between discrete and continuous data sets. PLOS

ONE 9(2), 1–5 (2014)
32. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. Dover Publishing Inc., New York (1972)
33. Spall, J.C.: Implementation of the simultaneous perturbation algorithm for

stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34, 817–823 (1998)
34. Heger, D.: Hadoop performance tuning-a pragmatic & iterative approach. CMG J.

4, 97–113 (2013)
35. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2012)
36. Lawler, G., Limic, V.: Random Walk: A Modern Introduction. Cambridge Univer-

sity Press, Cambridge (2010)
37. Glover, F.: Tabu search: a tutorial. Informs J. Appl. Anal. 20(4), 1–185 (1990)
38. Montgomery, E.A.P.D.C., Vining, G.: Introduction To Linear Regression Analysis,

vol. 821. Wiley, Hoboken (2012)
39. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2006)
40. Apache, Hadoop (2016). http://hadoop.apache.org
41. Spark (2016). http://spark.apache.org
42. Oozie (2016). https://oozie.apache.org

http://stat-computing.org/dataexpo/2009/the-data.html
https://data.seattle.gov/Community/Checkouts-by-Title/tmmm-ytt6
https://data.seattle.gov/Community/Checkouts-by-Title/tmmm-ytt6
https://data.cityofnewyork.us/City-Government/Open-Parking-and-Camera-Violations/nc67-uf89
https://data.cityofnewyork.us/City-Government/Open-Parking-and-Camera-Violations/nc67-uf89
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
http://hadoop.apache.org
http://spark.apache.org
https://oozie.apache.org

	Profiling-Based Big Data Workflow Optimization in a Cross-layer Coupled Design Framework
	1 Introduction
	2 Related Work
	3 A Coupled Design Framework for Cross-layer Optimization of Big Data Workflows
	4 Parameter Effects and Workflow Profiling
	4.1 An Empirical Study of Parameter Effects
	4.2 Workflow Performance Profiling

	5 SPSA-Based Profiling Optimization
	5.1 Rationale on the Use of SPSA
	5.2 Stochastic Approximation (SA) Methods
	5.3 Convergence of SPSA-Based Workflow Profiling

	6 A Workflow Configuration Advising Framework
	6.1 Information-Theoretic Feature Selection
	6.2 SPSA-Based Profiling Process

	7 Performance Evaluation
	7.1 Experiment Setting and Workflow Description
	7.2 Experimental Results
	7.3 Efficiency and Effectiveness of SPSA-Based Profiling

	8 Conclusion and Future Work
	References




