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Abstract—Many next-generation scientific and business ap-
plications feature large-scale data-intensive workflows, which
require massive computing resources for execution on high-
performance clusters in cloud environments. Such computing
resources (e.g., VCores and virtual memory) requested through
parameter setting in big data systems, if not fully utilized by
workloads, are simply wasted due to the nature of exclusive access
made possible by containerization. This necessitates accurate
modeling and prediction of workflow performance to make
an effective recommendation of appropriate parameter settings
to end users. However, it is challenging to determine optimal
workflow and system configurations due to the large parameter
space and the interaction between various technology layers of
big data systems. Towards this goal, we propose a machine
learning-based feature selection method to identify influential
parameters based on historical performance measurements of
Spark-based computing workloads executed in big data systems
with YARN. We first identify a comprehensive set of parameters
across multiple layers in the big data technology stack including
workflow input structure, Spark computing engine, and YARN
resource management. We then conduct an in-depth exploratory
analysis of their individual and coupled impact on workflow
performance, and develop a performance-influence model using
random forest for prediction. Experimental results show that the
proposed approach identifies important features for performance
modeling and achieves high accuracy in performance prediction.

Index Terms—Spark; Big data workflows; machine learning;
representation learning; performance modeling and prediction.

I. INTRODUCTION

Next-generation scientific and business applications typi-
cally involve the processing and analysis of large-scale simula-
tion, observation, or experimental datasets, which are typically
structured and orchestrated as computing workflows. Such big
data workflows generally require massive computing resources
on high-performance clusters in cloud environments. Many
research efforts have been made to achieve both computation
and energy efficiency in workflow execution and most of
them adopt a top-down design methodology that takes into
consideration both program codes and hardware systems for
workflow performance optimization [1]–[4]. The technology
stack of such computing platforms designed for big data
workflows involves a large number of configurable parameters
and end users need to request computing resources as needed
in advance through parameter setting.

We consider a general problem of optimizing the execution
performance of big data workflows on widely used paral-

lel computing platforms such as Hadoop [5] built on top
of Spark [6] and YARN [7]. The life circle of computing
workflows in such big data systems spans across a number of
stages including submission with workflow input, assignment
of executors in Spark, coordination by YARN for container
allocation, and data access to HDFS [8] at runtime. Note
that the computing resources distributed on such platforms
are typically time-shared by multiple workflows submitted
by different users, hence causing a high level of topological
and temporal complexity in resource sharing and contention.
Therefore, efficient scheduling is needed to deal with such
complexity for resource reservation and allocation to improve
both resource utilization and user satisfaction.
For any given workflow executed in big data systems, it

is critical to determine which subset of parameters are more
influential than others and what parameter values to set with
respect to computation and resource efficiency [9]. Note that
executors created in the Spark layer for workflow execution
run in virtual containers provisioned by the YARN layer
from the underlying computing resources. Such virtualized
resources (e.g., VCores and virtual memory), once allocated
and granted, are used exclusively by the requesting user during
the execution process of queuing tasks. Due to this nature of
exclusive access, any allocated and granted resource, if not
fully utilized, is simply wasted. Therefore, making an effective
recommendation of appropriate parameter settings is not only
useful for end users to understand and optimize their strategies
for workflow execution, e.g., by determining the degree of
parallelism, the number of cores for executors, and the ratio of
CPU to memory, but also important for the system’s resource
manager to wisely schedule workflow execution requests, e.g.,
by rejecting requests with “over-claimed” memory require-
ments or granting resources in appropriate amounts that can
be actually utilized.
However, finding a satisfactory configuration for workflow

execution in such complex systems is challenging to end users,
who are primarily domain experts. Most existing big data
systems provide default values for parameter setting, which,
unfortunately, do not always yield the best performance.
Moreover, the complexity in a workflow execution process
makes it very difficult to choose and configure the right set
of parameters from different layers in the technology stack
as they oftentimes exhibit complex interactive effects within

978-1-7281-6607-0/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 06,2021 at 07:55:14 UTC from IEEE Xplore.  Restrictions apply. 



and across layers. Most of the existing work for workflow
parameter setting is carried out in the context of computa-
tional steering, which enables end users to interact with the
computing workflow and system during execution [10], [11].
Although having achieved remarkable success in their intended
environments, these methods often place an undue burden on
end users to spend a significant amount of time in sifting
through the large parameter space based on a try-and-error
process. Therefore, it is still an important yet largely unsolved
problem to decide the best parameter setting for optimal
workflow performance in big data systems, even with the aid
of certain domain knowledge in systems and workflows.

In this work, we tackle the problem of workflow per-
formance modeling and prediction by strategically selecting
a subset of hyper parameters and setting their parameter
values using machine learning. Since the importance of a
parameter is reflected by the level of its impact (either di-
rect or indirect) on the performance, our goal is to develop
an accurate performance-influence model that considers the
most influential independent and dependent parameters as
input features. Towards this goal, we first collect extensive
performance measurements from a large number of workflow
executions with different parameter settings across multiple
layers using different types of workflows. These performance
measurements carry informative knowledge about the pattern
and behavior of workflow execution under different configu-
rations in big data systems, which shed light on performance
optimization and configuration recommendation. Based on
such performance measurements, we identify a comprehensive
set of independent features (parameters) in multiple layers
of big data systems including workflow input structure (e.g.,
input data size), Spark computing engine, and YARN resource
management. We then conduct an in-depth qualitative and
comparative exploratory analysis to investigate the impact of
these parameters on workflow performance. With the findings
from the exploratory analysis and domain knowledge, we
construct dependent features by mapping subsets of parameters
with a number of candidate functions to model the corre-
sponding workflow performance. We further propose a feature
selection method based on information theory [12] to identify
the most influential parameters, and conduct experiments to
evaluate the performance of our method in identifying the best
parameter setting for workflow execution.

We summarize our contributions in this work as follows.
• Exploratory Analysis. We conduct an in-depth analysis
of a comprehensive set of execution-related parameters
to qualitatively explain their impact on workflow perfor-
mance in big data systems. Such analysis helps construct
dependent features and also provides a valuable insight
into feature selection to build an accurate performance-
influence model.

• Functional and Coupling Analysis. We show that in-
dividual parameters may interact with each other as de-
pendent features and collectively affect workflow perfor-
mance. Such dependent features reflect complex coupled
impact on the performance of big data workflows, which

cannot be explicitly modeled by an analytical form. We
design a functional mapping strategy to represent such
intractable features as explainable variations in workflow
performance.

• Information Theory-based Feature Selection. Since
high-order coupled features carry information related to
workflow performance, we propose a feature selection
method based on information theory to further filter
out the most influential features. This feature selection
method quickly identifies critical features that achieve the
maximum explainable variation.

• Parameter Recommendation Using Performance-
Influence Model. We develop a robust performance-
influence model by incorporating high-order feature con-
struction for coupled effects and information theory-
based feature selection in model training. We evaluate
our performance-influence model in terms of various
performance metrics based on extensive experiments to
choose the best parameter setting for recommendation to
end users.

The rest of the paper is organized as follows. In Section II,
we conduct a brief survey of existing work in related fields.
Section III describes the problem of workflow configuration
in big data systems. An exploratory analysis of workflow
performance is conducted in Section IV. In Section V, we
approximate high-order features using functional mapping. In
Section VI, we design an information theory-based feature
selection method and predict workflow performance based on a
performance-influence model. We evaluate the performance of
our approach with discussion of its robustness in Section VII.
We conclude our work and sketch a research plan in Sec-
tion VIII.

II. RELATED WORK

The importance of user interaction with model-based sim-
ulations or computing workflows has been well recognized
in the broad science community. In the past decade, a large
number of research efforts have been made to help end
users identify appropriate parameter settings for computational
steering or performance modeling. We conduct a brief survey
of such efforts in this section.
A. Computational Steering
The main goal of computational steering [13], [14] for

scientific workflows is to identify and recommend the best
parameter setting to end users for the simulation or computing
procedures. To facilitate real-time steering, some workflow
management systems (WMS) adopt bottom-up redesign to
provide the capability and flexibility of customization. Pega-
sus [15], a widely used WMS in the high-performance com-
puting (HPC) community, allows users to customize frame-
work configuration to meet various computing needs. Fire-
works [16], yet another powerful workflow system designed
for high-throughput performance, achieves high concurrency
and efficiency for workflow execution. Such customizable
WMS motivate the exploration of hyper parameter settings to
optimize workflow performance. For example, Lee et al. [17]
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proposed an adaptive scheduling method for workflow execu-
tion by analyzing historical workflow execution data collected
in Pegasus. Their analysis shows that the hyper parameter
setting of WMS significantly affects the performance of
workflow execution with different computing requirements.
Unfortunately, such analysis often introduces high complexity
in interpreting the impact of parameters and hence provides
a limited amount of information to assist in the selection of
hyper parameters in WMS.
B. Performance Modeling

With the pervasive use of workflow technology and the rapid
accumulation of performance measurements and provenance
data, many research efforts have been made to model workflow
execution and predict workflow performance in various WMS
in support of computational steering [18]–[20].

Miu et al. in [21] considered a set of properties of historical
workflow execution in WMS as input features to train a
decision tree-based model, and then used various combinations
of subsets of these features for evaluation. Although this work
met with some success in predicting workflow performance,
some important features such as execution configuration are
not explicitly considered for model construction. Also, the
learning process for performance prediction is black-boxed
and provides limited information for identifying important
hyper parameters. Li et al. [22] employed Support Vector
Regression (SVR) to model the observed performance pattern
and achieved efficient scheduling with a candidate assignment
strategy based on performance prediction.

Our research differs from the aforementioned work in two
main aspects: i) We focus on the performance of computing
workflows executed in modern big data systems, as instantiated
by Spark-based computing with YARN resource management.
ii) We explore the coupling effects of parameters across
various layers in the big data technology stack and incorporate
machine learning-based feature selection into the construction
of a performance-influence model. We would also like to
point out that the proposed exploratory analysis and machine
learning-based methods for workflow performance modeling
and prediction are generalizable to other big data systems with
a customizable framework.

III. PROBLEM STATEMENT

The performance (mainly, execution time or makespan) y
of a computing workflow executed in big data systems is
typically modeled as a function f of a vector x of features
x across various layers including workflow input, WMS, and
resource management, i.e., y = f(x). Constructing an accurate
model function and identifying the most important components
in feature vector x not only help end users understand how
these hyper parameters affect workflow performance, but also
provide practical guidance for end users to set parameters for
optimal performance. However, due to the complexity of the
workflow execution process and the large number of involved
control parameters, it is very difficult, if not impossible, to find
an analytical form of f , which is typically intractable. Some
learning-based approaches such as a black-boxed machine

learning model may work in some context, but generally
lack interpretability. Thus, we aim to identify and construct a
subset of interpretable features x̂, which could provide certain
guidance to workflow and system configuration (e.g., the ratio
of input data size to memory size), such that a performance-
influence model built upon such interpretable features can
achieve higher accuracy in performance prediction compared
to the original feature vector.
More formally, given a training dataset of historical perfor-

mance measurements

D = {(x1,y1), (x2,y2), . . . , (xn,yn)},

where xi (i = 1, 2, . . . , n) is a set of specific values for the
feature vector x that yield the corresponding performance yi,
we aim to construct x̂ based on x, i.e., f̂(x̂i) ≈ yi = f(xi)
such that f̂(x̂i) is close enough to the ground truth yi for all
training examples in D and could be used to predict yi with
high accuracy for future arbitrary xi.
The feature vector x in this context is assembled by a set

of parameters across different stages during the life circle of a
workflow execution process, including i) workflow submission
stage such as input data size, module functionality, etc.; ii)
Spark scheduling such as the number of executors, executor
cores, executor memory, etc.; and iii) YARN resource man-
agement such as maximum allocated VCores, memory, etc.
However, without domain knowledge, it is difficult to identify
the high-order representation terms x̂ within f̂ and build an
accurate prediction model.
Hence, in this work, we conduct a comprehensive ex-

ploratory analysis to construct candidate representation fea-
tures, and design an information theory-based learning method
to select important dependent features and develop an accurate
performance predictor based on such features.

IV. EXPLORATORY ANALYSIS

We first conduct an empirical study of the impact of various
parameters on workflow performance in big data systems
through repeatedly testing a workflow-based linear regression
experiment. This workflow consists of three pipelined comput-
ing modules performing i) data preprocessing to split the input
data into two files for training and testing, respectively, ii)
model training for linear regression with the training data, and
iii) model-based prediction with the testing data. The workflow
is implemented in Spark and executed on a local PC cluster
consisting of three virtual machine (VM) instances (one master
node and two slave nodes), each of which is equipped with
eight virtual cores and 24GB memory. By default, each slave
node provisions one executor with one virtual core and 1GB
of virtual memory.
The goal of this empirical study with performance analysis

is to understand and explore the individual and coupled
effects of various parameters across different layers. Such an
exploratory analysis motivates the use of feature selection
in performance-influence model development and inspires
the design and incorporation of an information theory-based
method in the development of a learning model to achieve high
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prediction accuracy. Particularly, we focus on investigating the
impact of a set S of parameters that are commonly accessible
and tunable by end users in the Spark layer, including executor
memory size, executor core count, degree of parallelism, and
task core count. To better illustrate the individual impact of
each parameter on the execution performance of computing
workloads, we fix all other parameters with system default
values or customized values within a reasonable range while
examining one parameter at a time.

A. Executor Memory Size

In HDFS, a file is partitioned into data blocks of equal
size (except for the last block), which are then replicated
and distributed across the cluster. In Spark, multiple tasks
are launched to process file splits in parallel, each of which
corresponds to a data block by default, in executors on
different data nodes. The number of tasks is generally de-
termined by the input file size, the split size, and the sub-
mitted program [23]. Spark-based WMS performs in-memory
processing for compute-intensive workloads. Executors in
Spark are memory-demanding Java Virtual Machine (JVM)
processes that provide execution environments for executable
units and are executed in containers provisioned according
to user requests. After receiving a Spark job with a specific
parameter setting, Spark further divides the job into multiple
sequential execution stages, each of which contains a set of
tasks. In general, a large executor memory size is conducive
to the successful completion of a task without being halted for
more resources or killed by the system.

To understand the impact of executor memory size on
workflow performance, we conduct two sets of experiments
where the Spark-based linear regression workflow is executed
in both of two executors, each with four virtual cores and
different sizes of memory. In the first set of experiments,
we process an input file whose size is comparable to the
smallest executor memory size (i.e., 800 MB), and repeat
each experiment five times. The workflow execution time and
garbage collection (GC) time are measured and normalized as
plotted in Fig. 1(a) and Fig. 1(b), respectively. Note that GC
is part of the execution process and the GC time is included in
the workflow execution time. We observe that with a relatively
small executor memory size (e.g., less than 1.5 × file size),
increasing the executor memory size improves the workflow
performance. This is because there is a lack of memory
for performing parallel Resilient Distributed Dataset (RDD)
operations of four concurrent tasks in each executor. However,
further increasing memory size beyond what is needed for the
input data size does not bring a corresponding performance
gain. For the same reason, the GC time exhibits a similar
pattern.

In the second set of experiments, we run the same workflow
to process smaller files, and measure the corresponding perfor-
mance in response to various executor memory sizes, as plot-
ted in Fig. 1(c) and Fig. 1(d). As the input file size increases
from 120MB, 240MB, to 479MB, more tasks are created and
executed, hence causing an increase in both the workflow

(a) Workflow execution time vs. ex-
ecutor memory size without suffi-
cient memory

(b) GC time vs. executor memory
size without sufficient memory

(c) Workflow execution time vs. ex-
ecutor memory size when processing
small files with sufficient memory

(d) GC time vs. executor memory
size when processing small files with
sufficient memory

Fig. 1. Illustration of the effect of executor memory size on the performance
of the linear regression workflow.

execution time and the GC time. These measurements also
show that the impact of executor memory size on the workflow
execution time is limited, when processing input data that
is relatively smaller than the executor memory size. This is
because the executor provides an execution environment with
sufficient memory to store and process the entire RDD in
Spark. Similar to Fig. 1(b), we observe that increasing the
executor memory size reduces the GC time because the GC
process is less frequently triggered in the presence of sufficient
memory, as shown in Fig. 1(d).

B. Executor Core Count

In general, the number of cores determines the computing
power of an executor as more cores would be able to run more
tasks in parallel and hence achieve faster execution of heavy
iterative workloads. While the specific execution dynamics
and time for processing different file sizes may be different
in scale, the performance pattern is qualitatively consistent.
As the core count increases, the workflow execution time
decreases as shown in Fig. 2(a), while the GC time increases
as shown in Fig. 2(b). More executor cores, which mean
more computing power to run more concurrent tasks, finish
workflow execution faster, but meanwhile requiring more
memory to store intermediate results and hence triggering the
GC process more frequently. The decrease trend in workflow
execution time and the increase trend in GC time reach
a plateau after a certain point, indicating that for a given
input data size, adding an excessive number of cores to the
executor would not bring a significant benefit to the workflow
performance.
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(a) Workflow execution time vs. ex-
ecutor core count with different file
sizes

(b) GC time vs. executor core count
with different file sizes

Fig. 2. Illustration of the effect of executor core count on the performance
of the linear regression workflow.

(a) Workflow execution time vs. par-
allelism

(b) GC time vs. parallelism

Fig. 3. Illustration of effects of parallelism on the performance of the linear
regression workflow.

C. Degree of Parallelism for RDD

The degree of parallelism is critical to the performance
of parallel computing, which is a viable solution to big
data processing. It is generally beneficial to increase the
degree of parallelism, but the performance gain from parallel
processing may be offset by the increased communication
overhead for intermediate data collection and exchange. Spark
achieves high-level parallel processing by introducing the
concept of Resilient Distributed Datasets (RDDs), which are
transformed from the data source (e.g., files in HDFS) and
then partitioned and processed in parallel on different data
nodes across the cluster. RDDs could be further divided
into smaller partitions to increase the degree of parallelism.
The parameter “spark.default.parallelism” defines the largest
number of partitions in a parent RDD for distributed RDD
operations. Fig. 3 plots the performance of the same linear
regression workflow to process an input file of about 4GB in
response to different settings of “spark.default-parallelism”. As
shown in Fig. 3(a), the performance increases significantly as
the degree of parallelism increases until reaching the “optimal”
number of parallelism, and remains stable afterwards. The total
amount of GC time decreases as the degree of parallelism
increases, as shown in Fig. 3(b), which is consistent with
the total execution time in Fig. 3(a). With a higher degree of
parallelism, the RDD is divided into smaller partitions, which
require less memory for processing, and hence trigger the GC
process less frequently.

D. Task Core Count
A task is an atomic executable unit that can be executed

in an executor on a partition of a RDD. The parameter
“spark.task.cpus” defines the number of cores allocated to
each task. Since Spark tasks are executed in serial and Spark
performs parallel computing at the task level, theoretically,
increasing the task core count does not affect workflow per-
formance. However, since the executor has a fixed number of
cores, increasing “spark.task.cpus” would reduce the number
of concurrent task executions (i.e., the degree of parallelism)
with less memory needs. This explains the increase in the
workflow execution time as shown in Fig. 4(a) and the
decrease in the GC time as shown in Fig. 4(b), which are
measured after allocating eight virtual cores to each executor.

(a) Execution time vs. task core
count

(b) GC time vs. task core count

Fig. 4. Illustration of effects of task core count on the performance of the
linear regression workflow.

We also run several other types of workloads such as
random forest regression to examine the impact of different
parameters on workflow execution performance. The perfor-
mance measurements are qualitatively similar to those mea-
sured from the linear regression workflow. We would like
to point out that the impact of these parameters is complex,
especially when there exist coupled effects between different
parameters, which strongly suggest the use of machine learn-
ing algorithms for performance modeling and prediction.

V. FUNCTIONAL AND COUPLED FEATURES

Big data systems encompass a large parameter space con-
stituted by multiple layers including application (workflow),
middleware (e.g., Spark/YARN), and hardware system (VM
provisioning). The performance optimization of big data work-
flow execution in such computing systems requires an explo-
ration of the configuration space, as well as the interacting
terms and other high-order mutated terms [24]. Functional
and interactive effects are typically hidden to end users.
Identifying the most influential hidden terms, e.g, the ratio of
two parameters such as memory size and input file size, which
largely determine the performance of workflow execution, is of
great importance to helping end users with parameter setting
for workflow submission to WMS. To achieve this goal, we
probe a comprehensive list of terms including the parameters
sampled in the configuration space and other terms constructed
using heuristic approaches and domain knowledge.
Building an accurate performance-influence model with

parameters across multiple layers in big data systems requires
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TABLE I
LIST OF PARAMETERS ACROSS DIFFERENT LAYERS FOR WORKFLOW

EXECUTION.

Layers Parameters Remarks

Workflow
input file size integer, MB
machine learning model string

WMS

executor memory integer, MB
executor CPU integer
driver memory integer
number of executor integer
maximum allocate memory integer, MB
shuffle compress boolean
locality wait integer, secs
number of parallelism integer
memory storage fraction float

Intermediate

CPU consumption integer
memory consumption integer
total GC time integer
total input bytes integer
total shuffle read integer
total shuffle write integer

an investigation into both independent and interactive param-
eters. We probe both configurable parameters of big data
systems and constructed terms derived from specially designed
mapping functions. However, it is theoretically impossible to
consider all parameters in constructing the feature pool, as
the number of possible combinations is exponentially large
with respect to the number of parameters. Hence, we employ
different heuristic strategies to sample candidate features that
affect workflow execution time.
A. Domain Knowledge-based Feature Selection

Fig. 5. Performance profile fitting
with an inverse sigmoid-based re-
gression function in response to the
number of parallelism.

Many existing big data sys-
tems such as Hadoop provide a
large number of interfaces for
end users to specify parameter
settings according to the needs
of their computing. For exam-
ple, Spark provides over 160
properties for end users to tune
and YARN specifies over 100
properties in the XML config-
uration files. A black-box op-
timization approach through an
exhaustive profiling strategy is
practically infeasible, as the number of required profiling ex-
periments grows exponentially with the number of parameters.
Hence, we adopt the human-in-the-loop (HITL) strategy to
perform configuration space sampling. Based on the domain
knowledge, we consider a list of parameters that are related
to the setting of executors and containers as well as some
observable intermediate parameters as shown in Table I.
1) Functional Features

The individual impact of any continuous parameter p in the
configuration space on the workflow performance could be
approximated by a function f(p), which is an important map-
ping that depicts its independent effect on the performance.
Such representation not only facilitates the interpretability of

a performance-influence model based on machine learning, but
also provides a valuable insight into parameter setting.
The exploratory analysis in Sec. IV suggests that the re-

gression of the influence of executor core count and degree of
parallelism can be approximated by a scaled inverse sigmoid
function:

f(p) = 1− 1/(1 + e−α(p−p0)), (1)

where α and p0 are hyper parameters. As shown in Fig. 5, the
performance profile in response to the number of parallelism
falls in the convex region of an inverse sigmoid function.
In order to expand functional representation and enrich the
candidate feature pool, we further construct a set of functional
mappings including tanh, sigmoid, inverse sigmoid and expo-
nential functions.
B. Coupled Features
In big data systems built on Spark and YARN, the setting

Y in the YARN layer often serves as a “threshold”, as it
defines important properties of the container, e.g., maximum
memory/CPUs allocated to containers. Different threshold
settings in YARN may have a significantly different impact on
the workflow execution time, as it controls the total number
of containers simultaneously provisioned in the system. The
setting S in the Spark layer configures the runtime environ-
ment for task execution by allocating computing resources at
the executor and task level. Since Y and S are controllable
parameters in different layers of the system and hence are
independent of each other in parameter setting, the probability
of a certain parameter setting P (Y, S) = P (Y ) · P (S). How-
ever, they may affect each other and have complex coupled
effects on the workflow performance, as demonstrated by the
interactive impact between executor memory size (Memory)
and executor core count (CPU) shown in Fig. 1. Such interac-
tive impact is also termed as k-interact [25]. As illustrated in
Fig. 6, individual effect (such as Memory or CPU in Fig. 6(a))
is generally observable and measurable, while coupled effect
(such as the one between Memory and CPU in Fig. 6(b)) is
typically complex and requires extra efforts to measure.
In order for the predictor to learn the corresponding knowl-

edge from interactive impact across layers, we construct new
features to approximate such coupled effects by combining
various parameters across different layers and fitting the corre-
sponding performance profile with a certain mapping function.
Such parameter combinations include the ratio of the input file
size to the executor memory size, and the ratio of the executor
memory size to the maximum memory size of a container
specified in the YARN layer.

VI. WORKFLOW PERFORMANCE PREDICTION IN BIG
DATA SYSTEMS

To build an accurate performance-influence model, we
propose to use a machine learning-based algorithm to select
critical features x̂ from the candidate feature pool. We first
present the information-theoretic feature selection method and
then discuss the prediction performance of our proposed
method.
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CPU Memory

Performance

(a) Independent influence

Memory

PerformanceCPU

(b) Interactive influence

Fig. 6. Independent and interactive influence of Memory and CPU on
workflow performance.

A. Machine Learning-based Feature Selection
Feature selection, which is an important problem in ma-

chine learning, produces a subset of features with minimum
irrelevant and redundant information to help reduce data size
and build an effective model without sacrificing prediction ac-
curacy. Traditional methods as exemplified by learning model-
based algorithms iterate through all possible combinations
of subsets and return one that yields the highest accuracy.
However, such an exhaustive search-based strategy is very
computationally expensive and practically infeasible when
dealing with a large number of features, as the total number
of possible subsets grows exponentially. Hence, we propose
to employ heuristic algorithms to compute such subsets, and
recognize performance patterns with machine leaning models.
1) Rational on the Use of Mutual Information-based Algo-

rithms
In our prediction problem, instead of directly modeling in

the original feature space, we conjecture that the performance
of big data workflows in big data systems could be approxi-
mated by independent features U , functional features D and
interactive features H , which are hidden in the candidate
feature pool, e.g., y = f(x̂) + ϵ, where x̂ = {U,D,H}, and
ϵ represents the error caused by system dynamics. Such an
approximation strategy not only improves the explainability of
the performance-influence model, but also provides end users
with valuable insights to parameter setting, e.g., by setting an
appropriate ratio of input file size to executor memory size to
avoid resource waste.

Performance

MemoryCPU

Fig. 7. Three-way positive inter-
action between CPU, memory, and
performance, where blue dots rep-
resent mutual information.

However, due to the large
candidate feature pool, it is
extremely challenging to per-
form feature selection, espe-
cially considering the com-
plex interactive impact between
individual features, which is
commonly recognized as k-
way positive interaction [25].
We further illustrate this prop-
erty in Fig. 7, where we use the
three-way interaction between CPU, memory, and performance
as an example. Memory (m) and CPU (c) are independent
of each other as they can be specified separately by end
users. Hence, the mutual information between m and c is zero
without any knowledge from performance y. However, given
the response value of performance, the conditional mutual

information MI(c,m|y) could be non-zero and measured
from historical data. Such analysis further motivates us to
use information-theoretic feature selection to validate our
conjecture and decide a proper subset of x̂. Based on the
new features constructed to represent interactive impact as
discussed in Sec. V-B, we propose to measure pair-wise mutual
information to rank the contribution of interactive features to
the performance. The mutual information between two random
variables A and B is defined as [12]:

DKL(JA,B ||MA ⊗MB),

where MA ⊗ MB denotes the product of two marginal dis-
tributions, JA,B denotes their joint distribution, || denotes the
distance between two distributions, and DKL is the Kullback
Leibler divergence between two distributions .
As stated previously, the performance y is largely affected

by U , D and H . As U could be represented by a weighted
value of individual parameters identified in Sec. IV, our work
is focused on quickly identifying the most important subset
of constructed features that affect the workflow execution
performance to the largest extent. More formally, we aim
to find a subset {S} from candidate features {O}, which
could maximize F (·) under a constraint such that the total
cost C is limited, where F is an evaluation metric that could
be used to evaluate the correlation between {S} and y (e.g.,
in terms of mutual information, accuracy, etc.), and C is the
iteration constraint. To rank the importance of interactions
between features, we propose to use mutual information as
a score function to quantify the correlation between S and y.
Therefore, our objective is to solve the following optimization
problem:

argmax
S

I(S : y), s.t. C(S) < δ, (2)

where I(·) denotes the mutual information.
Note that a set function that maps from N -dimensional

feature space to a real value, i.e., f : 2N → R, is
submodular [26] if for every A,B ⊆ N ,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B),

where N denotes the set of all available features, and A and
B are two subsets of N . Furthermore, as mutual information
belongs to the family of submodular function, maximizing
Eq. 2 is equivalent to optimizing k-constraint submodular
function, which has been proved to be NP-hard and solved
by a greedy heuristic approach in [26].
Similar to the work in [26], we choose candidate features

that affect y in a greedy manner by thresholding the mutual
information between the features and the response vector.
More specifically, in each step of feature selection, we evaluate
the mutual information between candidate features and y, and
then choose the one with the highest value if it is greater than
the pre-specified threshold. The pseudocode of this feature
selection process is provided in Alg. 1.
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Algorithm 1 Greedy Feature Selection
Input: candidate feature set P , mutual information threshold τ
Output: selected feature set X
1: X = ϕ;
2: for each ti in P do
3: ti = argmaxti

I(ti : Y);
4: if argmaxti

I(ti : Y) > τ then
5: X = X ∪ ti;
6: return X;

B. Performance Prediction and Configuration Recommenda-
tion
With a subset of critical features selected using the pro-

posed information-theoretic method, we now need to select
an appropriate machine learning model that can effectively
draw information from both individual and dependent features.
Towards this goal, we consider and compare the performance
of a set {M} of machine learning models commonly used
for regression, including [27]: i) Linear Regression (LR) as
a linear model, ii) Support Vector Regressor (SVR) as a
kernel-based model, iii) Random Forest Regressor (RFR) as
an ensemble model, and iv) Multiple Layer Perceptron (MLP)
as a Neural Network model.

We use the experiment-based cross validation method [28]
to solve the following optimization problem:

argmin
M∗,θ∗

m

L(M(X, θm), y), (3)

where M denotes a machine learning model with hyper
parameter θm, and L is the loss function. The best model
M∗ obtained by optimizing Eq. 3 can be used to predict
workflow performance with new parameter settings. Based on
such predictions, we are able to make performance comparison
and then select the optimal system configuration that results
in the minimum execution time for recommendation.

VII. PERFORMANCE EVALUATION

In this section, we first describe the experimental settings for
executing two test workflows, and then present the prediction
results of a performance-influence model based on our feature
selection method.
A. Test Workflows

To evaluate the performance of workflow execution time
prediction, we consider two test workflows that perform re-
gression on a set of input files. The first workflow employs
linear regression as in the empirical study conducted in
Sec. IV, and the second workflow employs random forest.
Both workflows feature a pipeline structure that consists of
three computing modules as shown in Fig. 8. Specifically,
the first module is to split a given input file into two parts
with ratio 9:1 for training and testing, respectively, the sec-
ond module is to train a model using linear regression or
random forest, and the third module is to test the trained
model. Both of the regression models are implemented in
Spark using the MLlib library [29]. These two workflows
are tested with input files of different sizes within the range

{120, 240, 479, 958, 1915, 3830}(MB) on a local PC cluster
consisting of 3 VM instances, each of which is assigned with
eight virtual cores and 24GB memory.

Data 

preprocessing
Model tuning Inference

Fig. 8. The pipeline structure of the test workflows for regression.

B. Configuration Space Sampling
We deploy and run these workflows on the same local

Hadoop cluster with Spark and YARN as in the empirical
study conducted in Sec. IV. Although Spark and YARN
provide a large configuration space, most of the settings are
irrelevant to the execution time, e.g., port number, log location,
etc. Hence, instead of investigating the entire configuration
space, we focus on tunable parameters related to executors
and observable runtime features as shown in Tab. I. For
numerical parameters, we take sample values incrementally
within a valid range, and for non-numerical parameters such
as boolean type, we exhaust all possible values. The test
workflows are executed with such combinatorial settings and
the corresponding workflow performance measurements are
used as the data source for performance prediction.
C. Performance Prediction Results
We implement a performance-influence model in Python

for workflow execution prediction with different regression
algorithms using the scikit-learn library [30]. The per-
formance of this prediction model is evaluated in two steps:
i) we compare the prediction results of various regression
algorithms based on the original set of individual parameters
in terms of different performance metrics and select the best
model as the baseline model; and ii) we show the performance
improvement of the baseline model based on both individual
and interactive features selected by the proposed information-
theoretic feature selection method.
1) Performance Comparison of Regression Models
We first split the performance measurement data collected

from the execution of two test workflows into two parts for
training and testing, respectively, and then perform 10-fold
cross validation [28] using the training data to fine tune four
representative regression models, i.e., LR, SVR, RFR, and
MLP. We measure the prediction accuracy of these models
in terms of various performance metrics including Normal-
ized Root Mean Square Error (NRMSE), Normalized Mean
Absolute Error (NMAE), and Normalized Mean Absolute
Percentage Error (NMAPE), as plotted in Fig. 9. The LR
model performs poorly as it fails to capture the non-linear
nature in the performance-influence relationship. The MLP
model exhibits a worse performance because the training data
is insufficient to train a neural network architecture with
multiple layers. RFR and SVR perform almost equally well
in terms of NMAPE. However, RFR has the best overall
performance for all metrics, and hence is selected as the
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(a) Normalized Root Mean
Square Error (NRMSE)

(b) Normalized Mean Absolute
Error (NMAE)

(c) Normalized Mean Absolute
Percetage Error (NMAPE)

Fig. 9. Performance comparison of various models in terms of different metrics.

TABLE II
LIST OF RANKED CRITICAL FEATURES

Name Source Description
CPURatio Constructed File size/executor core count
MemoryRatio Constructed File size/executor memory size
FileSize Original Input file size
InvSigPara Constructed Inv-sigmoid mapping of parallelism

baseline model for further investigation with feature selection
for performance improvement.
2) Performance Improvement with Feature Selection

Fig. 10. The performance of
the RFR-based predictor with
an increasing number of se-
lected features.

We use the proposed
information-theoretic feature
selection method to identify a
subset of critical individual features
and construct interactive ones that
have the most significant impact
on workflow execution time, as
tabulated in Table II. These selected
features are ranked according to
the amount of mutual information
between each feature and the
response vector, i.e., the workflow
execution performance. We rerun
the RFR-based performance predictor with an increasing
number of selected features and measure the corresponding
prediction performance. As shown in Fig. 10, the prediction
accuracy improves as more features are considered and the
top four are considered critical features.

VIII. CONCLUSION

In this work, we studied the problem of workflow per-
formance modeling and prediction in big data systems. We
conducted an exploratory analysis of the impact of both indi-
vidual and interacting parameters on workflow performance,
and proposed an information-theoretic method to quantify such
influence for feature selection. We developed a regression-
based performance-influence model that incorporates both
individual and constructed features for workflow prediction.
Experimental results showed that our predictor achieves high
accuracy with respect to actual execution time. We plan to
use new sampling methods to accelerate the exploration of the
configuration space and apply stochastic algorithms to identify
the optimal configuration for workflow execution.
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