
Quantum Analysis on Task Allocation and
Quality Control for Crowdsourcing

With Homogeneous Workers

Minghui Xu , Student Member, IEEE, Shengling Wang ,Member, IEEE, Qin Hu ,Member, IEEE,

Hao Sheng ,Member, IEEE, and Xiuzhen Cheng , Fellow, IEEE

Abstract—Crowdsourcing has been emerging as a valid
problem-solving model that harnesses a large group of
contributors to solve a complicated task. However, existing
crowdsourcing platforms or systems could suffer from task
allocation and quality control problems. In this article, we first
prove that there exist two dilemmas while tackling the above
issues by using a game-theoretic approach. To overcome this
challenge, we are focusing on exploiting quantum crowdsourcing
schemes in which the welfare of requestor or worker can be
maximized since quantum players share the extended strategy
space, and the introduction of entanglement offers a new method
of depicting fine-grained relations between players. Specifically,
we propose a quantum game model for quota-oriented
crowdsourcing game to address dilemmas in task allocation. The
result indicates the dilemma based on classical strategy will
disappear with the increment of entanglement degree. While in
the quality-oriented crowdsourcing game, we adopt a density
matrix approach to calculate the optimal payoffs of both sides,
which demonstrates the superiority of our quantum strategy.
Moreover, our quantum scheme is generic since it is compatible
with the schemes from a classical perspective. Hence, our
noteworthy quantum crowdsourcing schemes offer a promising
alternative route for tackling dilemmas in crowdsourcing
scenarios.

Index Terms—Crowdsourcing, dilemma, quantum game,
entanglement.

I. INTRODUCTION

CROWDSOURCING has been emerging as a distributed

paradigm to solve complicated tasks by engaging large

groups of people. Generally speaking, participants in crowd-

sourcing refer to requestors and workers. Given a crowdsourc-

ing scenario, it is crucial to wisely allocate tasks among the

workers and control the quality of the submitted tasks.

Among the techniques tackling task allocation and quality

control in crowdsourcing, game theory is of frequent use to

design mechanisms modeling the conflict and cooperation

between intelligent, rational participants [1]–[7] since game-

theoretic approaches are relatively simple to reflect important

factors of improving social welfare. Nevertheless, classical

game theory might be faced with deficiencies in certain

crowdsourcing scenarios in which game dilemmas are

unavoidable [4], [5]. On the other hand, quantum game theory,

which is a combination of classical game theory and quantum

computing, provides two unique features that are very attrac-

tive to solve the crowdsourcing dilemmas: the large strategy

space and the quantum entanglement. In practice, players

interact with each other to compete or collude for maximizing

their own payoffs; thus, modeling their behaviors in crowd-

sourcing via quantum games has high potential to solve the

crowdsourcing dilemmas and improve social welfare.

More specifically, compared to the classical game theory,

quantum game theory can extend a player’s strategy space and

introduce a unique entangled state that can accurately depict

the connections between players in a more natural way [8],

[9]. The entangled players, to some extent, establish an inher-

ent interrelationship, which is measured by the degree of

entanglement. The degree of entanglement is set up at the

beginning of a game and cannot be modified during the game

process, which is analogous to a situation where players abide

by previously signed contracts in the business world. Collu-

sions or defections might lead to malicious players’ loss in a

quantum game, which is hard to achieve in a classical game.

The loss, in return, can regulate a malicious player’s behavior,

therefore increasing social welfare. Such excellent features

brought by quantum games have not been explored in crowd-

sourcing. For an exploratory purpose, in this article, we design

two straightforward game models to address the task alloca-

tion and quality control problems when homogeneous workers
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are considered in crowdsourcing. To demonstrate the effec-

tiveness of the quantum game theory, we illustrate how inevi-

table dilemmas in classical game models can be avoided and

how social welfare can be maximized using quantum games.

We first formulate a quota-oriented crowdsourcing game

between n homogeneous workers, in which the workers only

choose their task quota. The state of each worker is expressed

as a single-mode electromagnetic field, of which the quadrature

amplitudes have a continuous set of eigenstates corresponding

to our continuous quantum strategy. Moreover, the connection

between the workers is described by the degree of entangle-

ment �. When � ¼ 0, the quantum game is reduced to a classi-

cal one and shows identical results as the classical game, which

verifies the correctness of our approach. Secondly, we construct

a quality-oriented game in which workers accomplish their

tasks with high or low quality, and the requestors assign a low

or high payment for a worker’s submitted task. We deploy a

density matrix rather than a single-mode electromagnetic field

to represent the state of each player and � to depict the degree

of entanglement. Similarly, when � ¼ 0, the quantum game

degenerates into a classical one. Also, quantum strategies are

analyzed for a general case and for two special cases. To the

best of our knowledge, this article is the first one to employ

quantum games for task allocation and quality control in

crowdsourcing; and we intend to use simple cases for throwing

out a brick to attract jade. Our investigations pave a new way to

address the crowdsourcing dilemmas from a quantum perspec-

tive. Besides, we compare our quantum game results with the

classical game results and demonstrate the universality and

superiority of the quantum approach. Conclusively, our contri-

butions are summarized as follows:

� A quantum model for the quota-oriented game involv-

ing multiple workers is formulated. The optimal strat-

egy and the corresponding payoffs are quantitatively

analyzed through theoretical calculations as well as

simulation studies.

� For the quality-oriented game involving a requestor and

a worker, a quantum game model is formulated, and its

optimal strategy is found given an initial state of both

the requestor and the worker.

� The impacts of the degree of entanglement on the opti-

mal strategies and payoffs indicate that social welfare

can be maximized by adopting quantum strategies.

The rest of the article is organized as follows. The summary

of the related work is given in Section II. Section III presents

the quantum basics employed in subsequent sections. The

quota-oriented crowdsourcing game involving multiple work-

ers and the quality-oriented game involving a requestor and a

worker are analyzed in Section IV and Section V, respectively.

We conclude this article in Section VI with a future research

discussion.

II. RELATED WORK

Game theory has been frequently adopted to design new

techniques and mechanisms to address various problems such

as task allocation and quality control in crowdsourcing [1]–

[7], [10]–[12] since such approaches are relatively simple

when used to depict strategic interactions between rational

participants and reflect important factors of improving crowd-

sourcing performance. Crowdsourcing contests were modeled

as all-pay auctions played by workers who were partitioned

over skill levels in [1], which states that more reward can loga-

rithmically increase the participation rates that affect task allo-

cation from a game-theoretic perspective. Hoh et al. [2]

adopted game-theoretic protocols to validate the parking

information provided by the workers in a mobile crowdsourc-

ing scenario. Hu et al. [3] proposed two algorithms to solve

the sequential crowdsourcing dilemma using a zero-determi-

nant (ZD) strategy. ZD was also employed by Hu in [10] to

systematically investigate the methods of enhancing crowd-

sourcing qualities. The game-theoretic analysis in [4] shows

that there is a crowdsourcing game dilemma between two

requestors, and the highest welfare of the requestors is

obtained only when they stop crowdsourcing. An iterated

game claimed later in [5] can alleviate the above crowdsourc-

ing dilemma under certain conditions. Wu et al. [6] defined a

min-max mechanism in a game-theoretic model, which can

identify skilled talents, thus improving the quality of software

crowdsourcing. Based on game theory, Wang et al. [7] pro-

posed an incentive mechanism to statically select worker can-

didates and dynamically select winners after bidding. Zhang

et al. [11] utilized a selection game to design a crowdsourcing

mechanism for a Public Bike System. Using Stackelberg

game, an elegant scheme by Qiu et al. [12] takes into account

market history to provide fair compensation to workers. Hua

et al. [13] adopts a game-theoretic approach to enable scalable

large graph computation. In this article, we leverage classical

game theory to depict two straightforward crowdsourcing sce-

narios in which dilemmas were found and proved to be solv-

able using quantum games.

In addition to game-theoretic approaches, a large number of

techniques and mechanisms have been proposed by reseachers

for crowdsourcing. Existing task allocation techniques regard

workers as either homogeneous or heterogeneous, with the

former [14]–[18] aiming to design allocation mechanisms

based on the workers who can be treated the same while the

latter [1], [19]–[21] focusing on selecting eligible workers

with various backgrouds. The problem of quality control were

previously studied by [4], [22]–[24]. In the famous DARPA

network challenge [22], a team adopting the crowdsourcing

approach failed to filter false submissions due to coordinated

attacks from the workers. Generaly speaking, quality control

techniques can be divided as task-oriented and participant-ori-

ented, with the former [2], [3], [25]–[29] evaluating on the

quality of submissions while the latter [4]–[7], [23], [30], [31]

emphasizing on the quality of participants. In this article, we

address task allocation and quality control problems for homo-

geneous crowdsourcing.

III. QUANTUM BASICS

In this section, we are going to introduce the basic concepts

in quantum games. Quantum game theory is an extension of
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the classical game theory by bringing quantum mechanics and

quantum computing into the traditional games.

The strategy space of a quantum player is a Hilbert space.

The player’s quantum state jCi can be expressed as the linear

combination of all orthonormal basis vectors; that is,

jCi ¼ Pd
i¼1 aijcii, where j�i is a standard Dirac notation, d is

the dimensionality of the strategy space, and jcii is an ortho-

normal basis vector corresponding to the ith possible classical

strategy adopted with probability jaij2. It follows thatPd
i¼1 jaij2 ¼ 1, which means jCi is normalized. Concerning a

single player living in a two-dimensional strategy space, its

quantum state can be expressed as a quantum bit (or qubit),

which is analogous to the bit used in classical digital com-

puters. Such a qubit state can be represented by a linear com-

bination of j0i and j1i corresponding to two independent

classical strategies. For instance, a1j0i þ a2j1i represents a

state when the system is observed as j0i with probability ja1j2
and j1i with probability ja2j2.

Consider a more complicated composite system which con-

sists of n independent players. Its state can be noted by

jFi ¼ jC1i � jC2i � � � � � jCni = jC1C2. . .Cni, where jCii
represents the state of the ith independent subsystem (player)

and � refers to a tensor product operation. If players are

dependent, the state of their composite system cannot be rep-

resented as the tensor product decomposition of the states of

all subsystems but appears to be a special entangled state. For

example, a1j00i þ a2j11i is an entangled state because it can-

not be decomposed into a tensor product decomposition. Nev-

ertheless, a1j00i þ a2j10i is a pure quantum state since it can

be decomposed into a1j0i þ a2j1i and j0i; that is,

a1j00i þ a2j10i = (a1j0i þ a2j1iÞ� j0i.
In our quantum model, independent players are represented

by a composite system, while an entangled system describes

correlated players. In quantum crowdsourcing, players can

manipulate the state of the system with a unitary operator Û ,

which satisfies Û{Û ¼ ÛÛ{ ¼ I where Û{ is the adjoint of Û .

The social welfare largely depends on the profit-driven work-

ers whose primary strategies include the task quota they

undertake and the quality of the completed tasks. Therefore in

the following two sections, we carry out an analysis on the

workers’ strategies to figure out how a worker determines its

optimal strategy. For the sake of completeness, we transform

the classical game from a macro perspective to the quantum

game from a micro perspective, and the positive complemen-

tary of these two perspectives can help us conduct an accurate

analysis of crowdsourcing games.

IV. QUOTA-ORIENTED GAME ANALYSIS

In this section, we analyze how workers determine their task

quota to reach their optimal strategies from the classical per-

spective as well as the quantum perspective.

A. Analysis Based on Classical Strategies

We formulate a crowdsourcing game involving multiple

workers who undertake the same type of tasks. Assume qi is
the task quota decided by the ith worker. Then the total

number of tasks allocated to all the workers is

ðq1 þ q2 þ � � � þ qnÞ. According to Cournot’s duopoly, it is

reasonable to state that the more tasks the workers undertake,

the less unit payment they would obtain. Thus the price of a

unit task can be written as

P ðq1; q2; . . . ; qnÞ ¼ a� bðq1 þ q2þ; . . . ;þqnÞ; (1)

where a is the upper bound of the payment of a unit task and b
is a ratio coefficient. When the total number of allocated tasks

is extremely large, the unit payment would be close to zero,

which means that the task becomes worthless based on our

model. Note that when a < bðq1 þ q2þ; . . . ;þqnÞ, P ðq1; q2;
. . . ; qnÞ ¼ 0. Given the marginal cost of the production c, the
payoff of the ith worker can be written as

Uiðq1; q2; . . . ; qnÞ ¼ qi P ðq1; q2; . . . ; qnÞ � cÞ½ � (2)

Let k ¼ a� c. Then, n Nash Equilibria arise from the follow-

ing equations and inequalities:

@U1

@q1
¼ @U2

@q2
¼ � � � ¼ @Un

@qn
¼ 0

@2Ui

@2qi
< 0; i ¼ 1; 2; . . . ; n

(3)

The optimal strategy at theNash Equilibria is then computed as

q
0
1 ¼ q

0
2 ¼ � � � ¼ q

0
n ¼ k

ðnþ 1Þb : (4)

and the corresponding optimal payoff is

U
0
1 ¼ U

0
2 ¼ � � � ¼ U

0
n ¼ k2

ðnþ 1Þ2b (5)

However, this equilibria solution fails to maximize the payoff

of each worker. Considering Ui ¼ qi½k� bðq1 þ q2þ; . . . ;
qnÞ�; i ¼ 1; 2; . . . ; n, one can easily find a more profitable

strategy as

q
00
1 ¼ q

00
2 ¼ � � � ¼ q

00
n ¼ k

2nb
(6)

and the maximazed payoff is

U
00
1 ¼ U

00
2 ¼ � � � ¼ U

00
n ¼ k2

4nb
(7)

Since n � 1 and U
00
i � U

0
i ; 8i ¼ 1; 2; . . . ; n, we conclude that

the workers can not reach the maximized payoff at the Nash

Equilibria. In other words, the workers run into a crowdsourc-

ing dilemma.

B. Analysis Based on Quantum Strategies

In the previous subsection, we study the crowdsourcing

game based on classical strategies. In this subsection, we inves-

tigate quantum strategies in the same game. Unlike the classical

viewpoint, our quantum perspective is more general since we

allow the workers to be correlated, which is described by an
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entangled state. Specifically, we would like to extend the two

single-mode electromagnetic fields illustrated in [32] and

deploy n identical fields to depict the nworkers’ states (one for

each). The quadrature amplitude of each field has a continuous

set of eigenstates corresponding to a worker’s continuous strat-

egy, namely task quota. Fig. 1 shows the complete quantum

game model. This game starts from jvac1i � jvac2i � � � �
�jvacni, where jvacii refers to the ith worker’s initial state.

The state of the composite system becomes entangled through

an entangling gate Ĵð�Þ, where � is the degree of entanglement

which depicts the correlation between two workers, and the ini-

tial quantum state jcinii of the composite system is obtained as

jcinii ¼ Ĵð�Þjvac1i � jvac2i � � � � � jvacni: (8)

Then the ith worker can operate on the initial quantum state

with a unitary operator D̂iðxiÞ, where xi is the strategy param-

eter. Before measurement, a disentangling operator Ĵð�Þ{ is

carried out to reach a final quantum state jcfini, which can be

expressed as

jcfini ¼ Ĵð�Þ{ðD̂1 � D̂2 � � � � � D̂nÞĴð�Þ
jvac1i � jvac2i � � � � � jvacni: (9)

Finally, the worker’s expected payoff is obtained through the

measurement (i.e., a Stern-Gerlach experiment). Besides, we

assume that all the workers are homogeneous; thus the entan-

gling gate Ĵð�Þ should be symmetric and can be defined as

Ĵð�Þ ¼ exp �
Xn

i< j¼1;i 6¼j

�ðâ{i â{j � âiâjÞ
( )

; (10)

where â{i and âi are respectively the creation and annihilation

operators of the ith worker’s electromagnetic field, and

�ðâ{i â{j � âiâjÞ means that the mth worker entangles with the

jth worker in terms of the degree of the entanglement �. Obvi-
ously, a larger � stands for a stronger connection between

two workers. Note that when � ¼ 0, Ĵð0Þ ¼ 1 and jcfini ¼
ðD̂1 � D̂2 � � � � � D̂nÞjvac1i � jvac2i � � � � � jvacni, which

means that the entangling gate becomes invalid so that the

workers are not entangled and they choose the task quota inde-

pendently, i.e., our quantum game is reduced to a classical

one. In addition, the worker’s operator D̂iðxiÞ is defined as

D̂iðxiÞ ¼ expf�ixiP̂ig; xi 2 ½0;1�; (11)

where xi is the strategy parameter belonging to the ith worker

and P̂i ¼ iffiffi
2

p ðâ{i � âiÞ stands for a momentum operator.

After obtaining the final quantum state jcfini, the conse-

quent measurement corresponding to the ith worker’s observ-

able operator X̂i ¼ 1ffiffi
2

p ðâ{i þ âiÞ outputs its strategy as qi,
which is the linear combination of xi. That is, qi ¼Pm¼n

m¼1 cmxi, where cm is a coefficient associated with �.
When � ¼ 0, qi ¼ xi, implying that the worker adopts the

classical strategy xi.

Theorem 1:

Ĵð�Þ{D̂iĴð�Þ ¼ expf�ixi½P̂i
1

n
ðeðn�1Þ� þ ðn� 1Þe��Þ

þ
Xn

j¼1;j6¼m

P̂j
1

n
ðeðn�1Þ� � e��Þ�g (12)

Proof: The proof here is based on the Baker-Campbell-Haus-

dorff formula, which helps to give the mathematical derivation

of an important factor. We have

Ĵð�Þ{âiĴð�Þ ¼
X1
g¼0

1

g!
½ÂðgÞ; âi�

¼ âi
n� 1

n

X1
g¼0

½ 1

ð2 gÞ!�
2 gððn� 1Þ2g�1 þ 1Þ�

� â{i
n� 1

n

X1
g¼0

½ 1

ð2gþ 1Þ!�
2gþ1ððn� 1Þ2 g � 1Þ�

þ
Xn

j¼1;j6¼i

âj
1

kþ 1

X1
g¼0

½ 1

ð2 gÞ!�
2 gððn� 1Þ2 g � 1Þ�

�
Xn

j¼1;j6¼i

â{j
1

n

X1
g¼0

½ 1

ð2gþ 1Þ!�
2gþ1ððn� 1Þ2gþ1 þ 1Þ�:

Note that
P1

g¼0
1
g! ½ÂðgÞ; âi� is a commutator of elements ÂðgÞ

and âi. Specifically, ½Âð0Þ; âi� ¼ ai, ½ÂðgÞ; âi� ¼ ½Â; ½Âðg�1Þ; âi��,
where Â ¼ Pn

i< j¼1;m 6¼j �ðâ{i â{j � âiâjÞ. Similarly, one can

calculate Ĵð�Þ{nâ{i Ĵð�Þn. Once we have Ĵð�Þ{âiĴð�Þ and

Ĵð�Þ{â{i Ĵð�Þ, one can calculate Ĵð�Þ{P̂iĴð�Þ in the view of

P̂i ¼ iffiffi
2

p ðâ{i � âiÞ:

Ĵð�Þ{P̂iĴð�Þ ¼ iffiffiffi
2

p Ĵð�Þ{ðâ{i � âiÞĴð�Þ

¼ P̂i
1

n
½
X1
g¼0

1

g!
ððn� 1Þ�Þg þ k

X1
g¼0

1

g!
ð��Þg�

þ
Xn

j¼1;j 6¼i

P̂j
1

n
½
X1
g¼0

1

g!
ðk�Þg �

X1
g¼0

1

g!
ð��Þg�

¼ P̂i
1

n
ðeðn�1Þ� þ ðn� 1Þe��Þ

þ
Xn

j¼1;j 6¼1

P̂j
1

n
ðeðn�1Þ� � e��Þ:

According to the Taylor’s theorem, function D̂i in (11) can

be extended as a Taylor polynomial:

D̂iðxiÞ ¼
X1
h¼0

1

h!
ð�ixiP̂iÞh: (13)

Fig. 1. Quantum game model for quota-oriented game.
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Since ĴĴ{ ¼ 1, we have

Ĵð�Þ{ð�ixiP̂iÞhĴð�Þ ¼ ½Ĵð�Þ{ð�ixiP̂iÞĴð�Þ�h (14)

Therefore,

Ĵð�Þ{D̂iĴð�Þ ¼
X1
h¼0

1

h!
½Ĵð�Þ{ð�ixiP̂iÞĴð�Þ�h

¼
X1
h¼0

1

h!
f�ixi½P̂i

1

n
ðeðn�1Þ� þ ðn� 1Þe��Þ

þ
Xn

j¼1;j6¼1

P̂j
1

n
ðeðn�1Þ� � e��Þ�gh

¼ expf�ixi½P̂i
1

n
ðeðn�1Þ� þ ðn� 1Þe��Þ

þ
Xn

j¼1;j6¼m

P̂j
1

n
ðeðn�1Þ� � e��Þ�g (15)

&

Based on Theorem 1, the final quantum state of the compos-

ite system can be written as

jcfini ¼ ½ðĴð�Þ{D̂1Ĵð�ÞÞ � ðĴð�Þ{D̂2Ĵð�ÞÞ � � � � �
ðĴð�Þ{D̂nĴð�ÞÞ�jvac1i � jvac2i � � � � � jvacni

¼ expf�i½x1½1
n
ðeðn�1Þ� þ ðn� 1Þe��Þ

þ
Xn

j¼1;j6¼1

x̂j
1

n
ðeðn�1Þ� � e��Þ�P̂1gjvac1i�

expf�i½x2½1
n
ðeðn�1Þ� þ ðn� 1Þe��Þ

þ
Xn

j¼1;j6¼2

x̂j
1

n
ðeðn�1Þ� � e��Þ�P̂2gjvac2i � � � � �

expf�i½xn½1
n
ðeðn�1Þ� þ ðn� 1Þe��Þ

þ
Xn

j¼1;j6¼n

x̂j
1

n
ðeðn�1Þ� � e��Þ�P̂ngjvacni: (16)

The final measurement gives the task quota qi of the i
th worker

as the following:

qi ¼ xi

n
ðeðn�1Þ� þ ðn� 1Þe��Þ þ

Xn
j¼1;j6¼i

x̂j
1

n
ðeðn�1Þ� � e��Þ

(17)

Nash equilibrium requires that

@U1

@x1
¼ @U2

@x2
¼ � � � ¼ @Un

@xn
¼ 0

@2Ui

@2xi

< 0; i ¼ 1; 2; . . . ; n (18)

Thus we obtain the ultimate equilibrium solution of each

worker as

x�
1 ¼ x�

2 ¼ � � � ¼ x�
n ¼ kðeðn�1Þ� þ ðn� 1Þe��Þ

nbeðn�1Þ�ð2eðn�1Þ� þ ðn� 1Þe��Þ
(19)

Given (17) (19), the optimal task quota can be calculated as

q�1ðx�
1; . . . ; x

�
nÞ ¼ q�2ðx�

1; . . . ; x
�
nÞ ¼ � � � ¼ q�nðx�

1; . . . ; x
�
nÞ

¼ kðeðn�1Þ� þ ðn� 1Þe��Þ
nbð2eðn�1Þ� þ ðn� 1Þe��Þ (20)

In light of (2), a worker’s optimal payoff corresponding to the

equilibrium solution in (19) is shown below

U�
1 ðx�

1; . . . ; x
�
nÞ ¼ U�

2 ðx�
1; . . . ; x

�
nÞ ¼ � � � ¼ U�

nðx�
1; . . . ; x

�
nÞ

¼ k2eðn�1Þ�ðeðn�1Þ� þ ðn� 1Þe��Þ
nb½2eðn�1Þ� þ ðn� 1Þe��Þ�2

(21)

According to (19) (21), one can easily discover that when

� ¼ 0, the workers’ optimal strategies are q�1 ¼ q�2 ¼ � � � ¼
q�n ¼ k

ðnþ1Þb and the corresponding payoffs are U�
1 ¼ U�

2 ¼
� � � ¼ U�

n ¼ k2

ðnþ1Þ2b . These results have the same form as the

classical ones shown in (4)(5). Thus our quantum game is

reduced to a classical one and the dilemma still exists. How-

ever, when � ! 1, the workers’ optimal strategies are

q�1 ¼ q�2 ¼ � � � ¼ q�n ¼ k
2nb and the corresponding payoffs are

U�
1 ¼ U�

2 ¼ � � � ¼ U�
n ¼ k2

4nb. Compared to (6) and (7), these

results maximize a worker’s individual payoff as we expect

and the crowdsourcing dilemma shown in our classical sce-

nario disappears in our quantum crowdsourcing game.

Numerical simulation results shown in Fig. 2(a)(b) illustrate

more details about how the degree of entanglement � impacts

on the optimal strategy and payoff of each worker. As one can

see, with the increase of �, the task quota q�i decreases, and

thus, the payoff U�
i increases. This means that the correlation

between two workers becomes stronger so that they tend to

share the market and give up redundant tasks they undertake.

This rational and kind behavior increases the unit payment

P ðq1; q2; . . .qnÞ and leads to the growth of the individual opti-

mal payoff. Particularly, when � ! 1, the payoff is

maximized.

Fig. 2(c)(d) indicates that a worker’s maximized task quota

q�i and the corresponding optimal payoff U�
i decrease along

with the growth of the number of workers since a larger group

of workers leads to less unit payment.

In Fig. 2(e)(f), the parameter b stands for the sensitivity of

the unit payment to the overall allocated task quota. With a

larger b, which means a more sensitive market, a worker’s

optimal task quota and payoff become lower because a higher

sensitivity limits the task quota the worker can take and thus

makes the payoff lower. Interestingly, the larger the b, the

faster the q�i and the U�
i change. This means that a low sensi-

tivity of the market to task quota may lead to a high sensitivity

of a worker’s strategy to the degree of entanglement.

Fig. 3 illustrates the optimal task quota q�i when the unit

payment upper bound a and the unit cost c change. One can
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see that the optimal task quota grows with an increase of a and

a decrease of c. Fig. 4 shows the optimal payoff U�
i when the

unit payment upper bound a and the unit cost c vary. As shown
in Fig. 4, the optimal payoff increases when a increases and c
decreases.

V. QUALITY-ORIENTED GAME ANALYSIS

In a general crowdsourcing scenario, requestors launch tasks

and publish the corresponding payments at first, and then work-

ers choose tasks to finish and profit from the completion of the

selected tasks. Assume that all workers are homogeneous from

a requestor’s perspective; as a result, a successful strategy for

any worker can be appropriate for all the workers. This encour-

ages us to focus on a game with one requestor and one worker.

The requestor might assign low or high payment for a task

while the worker can accomplish the task with high or low qual-

ity. In this process, the payment can impact on the quality of the

worker’s submissions, and the quality finally determines the

payoffs of both sides. In this section, we study the task quality

problem of crowdsourcing by analyzing the behaviors of both

players in a crowdsourcing game. The classical game is

formulated and discussed in Section V-A while the quantum

game is analyzed in Section V-B.

A. Analysis Based on Classical Strategies

We define the strategy of the requestor as �r 2 fc; dg, where
c (cooperation) and d (defection) respectively denote high and

low payment the requestor provides. Similarly, the strategy of

the worker is defined as �w 2 fc; dg, where c and d respectively
indicate high quality and low quality of the task the worker

accomplishes.

Since the requestor releases tasks and the corresponding pay-

ments before the worker starts to work, we construct a crowd-

sourcing game as shown in Fig. 5. The payoff of the requestor

is �$R 2 fVr;Vr �m;Vr þ n;Vr �mþ ng while that of the

worker is �$w 2 fVw;Vw þ b;Vw � a;Vw þ b� ag, where Vr

and Vw are respectively the payoffs of the requestor and the

worker when both players choose cooperation. Besides, m is

the requestor’s loss and b is the extra payoff the worker can

obtain when the requestor chooses cooperation but the worker

chooses defection. Similarly, n is the increment of the reques-

tor’s profit and a is the reduction of the worker’s profit when

the worker chooses to cooperate even though the requestor

offers a low payment. Note that n < m and b < a, which
means that defection damages the interests of both sides com-

pared to cooperation.

Let P and Q respectively be the probabilities that the

requestor and the worker cooperate. Then, the payoffs of the

requestor (�$RðP;QÞ) and that of the worker (�$W ðP;QÞ) are
respectively

Fig. 3. The optimal task quota q�i varies with the unit payment upper bound a
and the unit cost c.

Fig. 4. The optimal payoff U�
i varies with the unit payment upper bound a

and the unit cost c.

Fig. 2. (a) q�i varies with � and n where b ¼ 1 and k ¼ 20; (b) U�
i varies with

� and n where b ¼ 1 and k ¼ 20; (c) q�i ð� ¼ 1Þ varies with n where b ¼ 1
and k ¼ 20; (d) U�

i ð� ¼ 1Þ varies with n where b ¼ 1 and k ¼ 20; (e) q�i
varies with � and b where n ¼ 10 and k ¼ 20; (f) U�

i varies with � and b
where n ¼ 10 and k ¼ 20.
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�$rðP;QÞ ¼ Vr þ P ð1�QÞðVr �mÞ þ ð1� P ÞQ
ðVr þ nÞ þ ð1� P Þð1�QÞðVr �mþ nÞ

¼ nð1� P Þ þmðQ� 1Þ þVr;

�$wðP;QÞ ¼ PQVw þ P ð1�QÞðVw þ bÞ þ ð1� P ÞQ
ðVw � aÞ þ ð1� P Þð1�QÞðVw þ b� aÞ

¼ bð1�QÞ þ aðP � 1Þ þVw: (22)

Theorem 2: In a classical quality-oriented game, the

requestor and the worker involve a dilemma.

Proof: Denote the Nash Equilibria of the requestor and that

of the worker byP � andQ�, respectively. According to the defi-
nition of the Nash Equilibria, we have �$rðP �; Q�Þ � �$rðP;Q�Þ
for 8P 2 f0; 1g and �$wðP �; Q�Þ � �$wðP �; QÞ for 8Q 2 f0; 1g.
That is,

�$rðP �; Q�Þ � �$rðP;Q�Þ ¼ nðP � P �Þ � 0 8P 2 f0; 1g;
�$wðP �; Q�Þ � �$wðP �; QÞ ¼ nðQ�Q�Þ � 0 8Q 2 f0; 1g:

(23)

These inequalities can be satisfied when P � ¼ 0;Q� ¼ 0. In this
situation, we have �$rðP �;Q�Þ ¼ Vr �mþ n and �$wðP �;Q�Þ
¼ Vw þ b� a. That is, the only equilibrium of the classical game

is ðd; dÞ, where the payoffs of the requestor and the worker are

lower than those of ðc; cÞ when n < m and b < a. In other

words, there exists a dilemma where the dominant strategy of an

individual cannot maximize the social welfare. &

B. Analysis Based on Quantum Strategies

In this subsection, we analyze the quality-oriented crowd-

sourcing game from a quantum perspective by using a density

matrix approach. The general case is discussed in Section V-

B1 while several special cases associated with the entangled

state are studied in Section V-B2.

1) General Case: As shown in Fig. 6, the quantum game

model starts from a two-qubit system composed by the

requestor (R) and the worker (W). Using j0i to represent

the state of cooperation and j1i for defection, one can model

the state of this composite system by a linear superposition of

four orthonormal basis states (j00i; j01i; j10i; j11i), where the
first and second positions in j � �i refer to the classical strate-

gies of the requestor and the worker, respectively. For

instance, j01i indicates that the requestor cooperates and the

worker defects. Thus an initial quantum state can be written as

jCinii ¼ c00j00i þ c01j01i þ c10j10i þ c11j11i (24)

where jc200j; jc201j; jc210j; jc211j refer to the probabilities and

jc200j þ jc201j þ jc210j þ jc211j ¼ 1. To simplify mathematical cal-

culations, we introduce a density matrix r to describe the

quantum state according to the Marinatto-Weber construction

illustrated in [33]. Hence one can use the following density

matrix to describe our initial quantum state:

rini ¼ jCiniihCinij (25)

Then the requestor manipulates its own strategy by using the

unitary operators ÎR with probability p and ĈR with probabil-

ity ð1� pÞ, where ÎR is an identity operator and ĈR is an

inversion operator. Note that ÎRj0i ¼ j0i, ÎRj1i ¼ j1i, which
means that ÎR would keep the original state and ĈRj0i ¼ j1i,
ĈRj1i ¼ j0i, which indicates that ĈR would change the state

to the opposite one. Similarly, the worker uses ÎW with proba-

bility q and ĈW with probability ð1� qÞ. These operations

help to give the following final density matrix:

rfin ¼pqÎR � ÎWriniÎ
{
R � Î{W þ pð1� qÞÎR � ĈWriniÎ

{
R�

Ĉ{
W þ ð1� pÞqĈR � ÎWriniĈ

{
R � Î{W þ ð1� pÞ

ð1� qÞĈR � ĈWriniĈ
{
R � Ĉ{

B: (26)

The measurement of the quantum model in Fig. 6 outputs the

payoff of the requestor and that of the worker by applying the

following trace operations:

�$Rðp; qÞ ¼ TrðPRrfinÞ;
�$W ðp; qÞ ¼ TrðPWrfinÞ; (27)

where PR and PW are the payoff operators corresponding

to the final state of the requestor and that of the worker,

respectively.

PR ¼ Vrj00ih00j þ ðVr �mÞj01ih01j þ ðVr þ nÞj10ih10j
þ ðVr �mþ nÞj11ih11j;

PW ¼ Vwj00ih00j þ ðVw þ bÞj01ih01j þ ðVw � aÞj10ih10j
þ ðVw þ b� aÞj11ih11j: (28)

Fig. 5. The game tree of the quality-oriented game. Fig. 6. The quantum game model for the quality-oriented game.
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Finally, we obtain

�$Rðp; qÞ ¼ pn½2ðjc210j þ jc211jÞ � 1� þ qm½2ðjc200j þ jc210jÞ � 1�
þ ½Vr �mðjc200j þ jc210jÞ þ nðjc200j þ jc201jÞ�;

�$W ðp; qÞ ¼ pa½1� 2ðjc210j þ jc211jÞ� þ qb½1� 2ðjc200j þ jc210jÞ�
þ ½Vw þ bðjc200j þ jc210jÞ � aðjc200j þ jc201jÞ�: (29)

Then the Nash Equilibria can be found by imposing the fol-

lowing two conditions

�$Rðp�; q�Þ � �$Rðp; q�Þ ¼ ðp� p�Þ½1� 2ðjc210j þ jc211jÞ� � 0;

�$W ðp�; q�Þ � �$W ðp�; qÞ ¼ ðq � q�Þ½1� 2ðjc200j þ jc210jÞ� � 0;

8p; q 2 ½0; 1�:
(30)

where (30) indicates that whether or not the Nash Equilibria

exists depends on the four coefficients, namely jc200j; jc201j;
jc210j; jc211j. If we choose the initial density matrix correspond-

ing to the state j00i when jc00j2 ¼ 1; jc01j2 ¼ jc10j2 ¼
jc11j2 ¼ 0, we can obtain the following payoffs by (29)

�$Rðp; qÞ ¼ nð1� pÞ þmðq � 1Þ þVr;

�$W ðp; qÞ ¼ bð1� qÞ þ aðp� 1Þ þVw: (31)

Note that the payoffs in (31) are consistent with those of the

classical games shown in (22). Therefore the Nash Equilib-

rium is obtained when p� ¼ 0; q� ¼ 0 again, which means that

both players choose operator C to manipulate their initial state

j00i to j11i. In other words, both of them defect in the end.

This dilemma remains unchanged with the other three initial

quantum states j01i; j10i; j11i, which implies that our quan-

tum model allows us to recover the classical game by putting

any basis strategy jiji; i; j ¼ 0; 1, as the initial state.
When jc210j þ jc211j ¼ 1

2 and jc200j þ jc211j ¼ 1
2, let’s consider a

simple situation where jc200j ¼ jc201j ¼ jc210j ¼ jc211j ¼ 1
4, which

means that the requestor and the worker choose the four basis

states with the same probability 1
4. In this case, their initial states

are jcinii ¼
ffiffi
2

p
2 j0i þ

ffiffi
2

p
2 j1i. An interesting finding is that their

optimal payoffs are constant, namely �$Aðp; qÞ ¼ Vr� 1
2mþ

1
2n and �$Bðp; qÞ ¼ Vw þ 1

2 b� 1
2 a. This outcome is not hard to

understand since no matter which operation the requestor or the

worker chooses, their final states remain fixed as jcfini ¼ffiffi
2

p
2 j0i þ

ffiffi
2

p
2 j1i ¼ jcinii; thus jCfini ¼ 1

4 j00i þ 1
4 j01i þ 1

4 j10i þ
1
4 j11i ¼ jCinii.

When jc210j þ jc211j > 1
2 and jc200j þ jc211j > 1

2, let’s assume

jc211j ¼ 1
2 ; jc200j ¼ jc201j ¼ jc210j ¼ 1

6, which indicates that the

requestor and the worker both choose defection with probability
1
4. According to (30), the game possesses a Nash Equilibrium

when p� ¼ q� ¼ 1. Consequently, the requestor and the worker
are supposed to choose the operator Î to keep their original

states. In other words, they are more likely to defect. When

jc210j þ jc211j < 1
2 and jc200j þ jc211j > 1

2, let’s assume that

jc200j ¼ 1
2 ; jc201j ¼ jc210j ¼ jc211j ¼ 1

6, which means that both play-

ers cooperate with a higher probability. In this case, we have

p� ¼ q� ¼ 0, which means that both players would choose Ĉ to

invert the initial state to a state which offers a higher probability

of defection. On the basis of considering possible coefficients,

we reach the conclusion that no matter which basis state exists

with a higher probability, both players tend to reach the same

final state j11i, which also implies that they are more likely to

defect and the dilemma still exists.

2) Special Cases: We consider several special cases in this

subsection. Let’s introduce an entangled initial state which can

be obtained by introducing an entangling gate Ĵð�Þ ¼
cos �

2 Î � Î þ i sin �
2 Ĉ � Ĉ, where Ĵð�Þ is a function of � and

� 2 ½0; p2�, and i is an imaginary number. Assume that the orig-

inal state is j00i; then the entangled initial state is

jcinii ¼ Ĵð�Þj00i ¼ c1j00i þ c2j11i; (32)

where c1 ¼ cos �
2 ; c2 ¼ i sin �

2, and jc21j þ jc22j ¼ 1. The initial

density matrix rini ¼ jciniihcinij, where hcinij ¼ c�1h00j þ
c�2h11j, and c�1 and c�2 are the conjugate complex numbers of c1
and c2, respectively. Thus we have

rini ¼ jc1j2j00ih00j þ c1c
�
2j00ih11j

þ c�1c2j11ih00j þ jc2j2j11ih11j: (33)

By using (26)–(28), the payoffs are written as

�$Rðp; qÞ ¼ pnðjc2j2 � jc1j2Þ þ qmðjc1j2 � jc2j2Þ
þ ½Vr þ jc1j2ðn�mÞ�;

�$W ðp; qÞ ¼ paðjc1j2 � jc2j2Þ þ qbðjc2j2 � jc1j2Þ
þ ½Vw þ jc1j2ðb� aÞ�: (34)

The criterion for judging the equilibria is then given by

�$Rðp�; q�Þ � �$Rðp; q�Þ ¼ ðp� p�Þnðjc21j � jc22jÞ � 0;

�$W ðp�; q�Þ � �$W ðp�; qÞ ¼ ðq � q�Þbðjc21j � jc22jÞ � 0;

8p; q 2 ½0; 1�: (35)

To illustrate how �$R, �$W , and �$R=�$W vary with the degree

of entanglement �, we propose a case when Vr ¼ 12;
Vw ¼ 10;m ¼ 5; n ¼ 4; a ¼ 2; b ¼ 1. As shown in Fig. 7, the

payoffs of the requestor and the worker increase along with

the growth of �. If � ¼ 0, jCinii ¼ j00i corresponding to the

classical game and �$R ¼ Vr þ n�m ¼ 11:0, �$W ¼ Vw þ
b� a ¼ 9:0. When � reaches its highest value p

2, the requestor

and the worker get their highest payoffs as �$R ¼ Vr þ 1
2 ðn�

mÞ ¼ 11:5 and �$W ¼ Vw þ 1
2 ðb� aÞ ¼ 9:5, respectively.

This means that in a quantum game, an entangled state can

lead to a better win-win situation compared to the classical

strategy. Besides, �$R=�$W decreases with �, which indicates

that the quantum strategy can narrow the income gap between

the requestor and the worker. In Fig. 8, since ðm� nÞ and

ðb� aÞ respectively denote the requestor’s and the worker’s

loss when the requestor cooperates while the worker defects,
�$R and �$W decrease with the growths of ðm� nÞ and ðb� aÞ,
respectively.

In another typical case of the entangled state, Ĵð�Þ can be

written as cos �
2 Î � Ĉ þ i sin �

2 Ĉ � Î and thus jCinii ¼ c1j01i þ
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c2j10i. The payoffs can be calculated by using the samemethod

as in the previous special case; thus finally we have

�$Rðp; qÞ ¼ pnðjc2j2 � jc1j2Þ þ qmðjc2j2 � jc1j2Þ
þ ½Vr �mjc2j2 þ njc1j2�;

�$W ðp; qÞ ¼ paðjc1j2 � jc2j2Þ þ qbðjc1j2 � jc2j2Þ
þ ½Vw� þ bjc2j2 � ajc1j2�: (36)

We also notice that the values of �$R; �$W , and �$R=�$W vs.

various �, �$R, and �$W for different b� a demonstrate the

same trends as those in Fig. 7 and Fig. 8.

VI. DISCUSSION AND FUTURE RESEARCH

In this article, we investigate crowdsourcing games from

both the classical and the quantum perspectives. Specifically,

we construct a quota-oriented crowdsourcing game and figure

out the dilemma where the workers’ optimal strategies cannot

maximize their payoffs. Then we propose a quantum game

model to solve this dilemma and carry out both theoretical and

numerical studies. Our results reveal a novel feature of the

quantum game, i.e., the impacts of the entanglement degree

on the optimal payoffs can be used to increase the participants’

welfare. Furthermore, we propose a quality-oriented crowd-

sourcing game involving a requestor and a worker and prove

that a dilemma exists in the classical version of the game. In

the corresponding quantum game model, we adopt the density

matrix approach to simplify the calculations. The two quan-

tum games are reduced to classical ones when there is no

entanglement, which proves the correctness of our approach.

Besides, our analysis based on the quantum strategy indicates

that entanglement can increase the payoffs of all players.

Quantum computing is a new technology that has not been

fully accessible to the general public even though existing

projects (e.g., IBM Q, D-Wave, ProjectQ) have provided spe-

cial-purpose quantum computers and great opportunities to

expand the corresponding limited experience. For example,

D-Wave [34] has provided a cloud-based platform, namely,

D-Wave Leap, where users can freely access a real quantum

computer to solve specific problems. The IBM Q [34] also

provides quantum cloud services and software platforms,

which support experiments on optimization, finance, and AI.

The excellent features brought by quantum computers encour-

age us to study the quantum game theory from a theoretical

perspective concerning crowdsourcing, which involves a

quantum network [35]–[38] rather than a single quantum com-

puter. To our knowledge, the crowdsourcing game model pro-

posed in this article is both pioneering and fundamental, and

the quantum analysis contributes to a new method of mitigat-

ing the competitions among the requestors and workers. That

is, the introduction of the entanglement state can lead to com-

pulsive collaborations that can hardly be managed in a classi-

cal game model. Also, the approach proposed in this article

can be generalized to address problems in those scenarios

when collaboration is required. In future, we will extend our

quantum game model to suit the more complicated crowd-

sourcing scenarios, such as those that involve real quantum

computers, in which collaborations among the players should

be established on a new game structure to improve social wel-

fare. Moreover, practical applications on quantum crowd-

sourcing could appear with the development of general-

purpose quantum computers and the spread of quantum cloud

services.
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