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Abstract—Quality control in crowdsourcing is challenging due to the heterogeneous nature of the workers. The state-of-the-art
solutions attempt to address the issue from the technical perspective, which may be costly because they function as an additional
procedure in crowdsourcing. In this paper, an economics based idea is adopted to embed quality control into the crowdsourcing
process, where the requestor can take advantage of the market power to stimulate the workers for submitting high-quality jobs.
Specifically, we employ two sequential games to model the interactions between the requestor and the workers, with one considering
binary strategies while the other taking continuous strategies. Accordingly, two incentive algorithms for improving the job quality are
proposed to tackle the sequential crowdsourcing dilemma problem. Both algorithms are based on a sequential zero-determinant (ZD)
strategy modified from the classical ZD strategy. Such a revision not only provides a theoretical basis for designing our incentive
algorithms, but also enlarges the application space of the classical ZD strategy itself. Our incentive algorithms have the following
desired features: 1) they do not depend on any specific crowdsourcing scenario; 2) they leverage economics theory to train the workers
to behave nicely for better job quality instead of filtering out the unprofessional workers; 3) no extra costs are incurred in a long run of
crowdsourcing; and 4) fairness is realized as even the requestor (the ZD player), who dominates the game, cannot increase her utility

by arbitrarily penalizing any innocent worker.

Index Terms—Crowdsourcing, quality control, sequential game, zero-determinant strategies

1 INTRODUCTION

HE advent of crowdsourcing has created new oppo-

rtunities that can facilitate the accomplishment of labor-
intensive jobs that are difficult for machines alone [1], [2], [3],
[4]. In crowdsourcing, a crowdsourcer (requestor) recruits
multiple crowdsourcees (workers) online to complete jobs
that can be easily done through gathering dispersed human
resources. However, workers recruited through crowdsourc-
ing usually have different skills, intents, and backgrounds.
This heterogeneous nature leads to the diverse submission
quality of the completed tasks, pressing an urgent need for
quality control.

The state-of-the-art quality control in crowdsourcing can
be categorized into two classes: worker-based [5], [6], [7],
[8], [9], [10], [11], [12], [13] and job-based [14], [15], [16], [17],
[18], with the former considering that the quality of a

e Q. Hu is with the College of Information Science and Technology, Beijing
Normal University, Beijing 100875, China, and the Department of Com-
puter Science, The George Washington University, Washington DC
20052. E-mail: qinhu@gwu.edu.

e S. Wang, P. Ma, and R. Bie are with the College of Information Science
and Technology, Beijing Normal University, Beijing 100875, China.
E-mail: {wangshengling, rfbie)@bnu.edu.cn, mapeizi@mail bnu.edu.cn.

o X. Cheng is with the Department of Computer Science, The George
Washington University, Washington, DC 20052.

E-mail: cheng@gwu.edu.

o W. Lv is with the School of Computer Science and Engineering, Beihang

University, Beijing 100191, China. E-mail: lwf@buaa.edu.cn.

Manuscript received 16 May 2018; revised 27 Dec. 2018; accepted 28 Jan.
2019. Date of publication 1 Feb. 2019; date of current version 1 Apr. 2020.
(Corresponding author: Shengling Wang.)

Recommended for acceptance by R. Cheng.

Digital Object Identifier no. 10.1109/TKDE.2019.2896926

completed task is closely related to the workers and hence
the job quality can be guaranteed through selecting good
(professional) workers, and the latter developing different
methodologies or tools to directly evaluate or monitor the
job quality. These existing methods might be costly in terms
of operation, because they usually function as an additional
procedure in crowdsourcing.

In this paper, we take a drastically different approach in
which quality control is embedded in a crowdsourcing pro-
cess itself. Our novel approach is enlightened by the essence
of paid crowdsourcing, which is actually a trade between a
requestor and the workers. Hence, even though a worker can
reduce his' cost through offering low-quality contributions
or even behave maliciously to get filthy lucre, the requestor
could punish such behaviors by lowering payment. Thus,
through a suitable pricing scheme according to the job qual-
ity, the requestor can take advantage of the market power to
stimulate workers to submit high-quality jobs. This method
is not restricted to any specific crowdsourcing scenario;
instead, it is an economic means proposed according to the
common trait of all crowdsourcing scenarios, which renders
it suitable for an extensive application domain.

Another outstanding property of our quality control
approach lies in that it does not filter out unprofessional
workers; instead, it trains the workers. More specifically, we
use a monetary reward or penalty to encourage or force the
workers to behave nicely, turning bad guys into good ones.

1. In this paper, we denote the requestor as “she” and a worker as
“he” for easy differentiation.
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Compared to the existing worker selection approach, such a
mechanism can call on all possible human resources, which
is also a key trait of crowdsourcing that results in its success.
However, this seemingly simple method needs to address
the constraint problem of incentive cost. In this paper, we
aim at achieving the following challenging objective: incen-
tivizing a worker to submit high-quality jobs without a long-term
extra payment.

To that aim, we make use of the zero-determinant (ZD)
strategy [19] and revise it to obtain a variant that is suitable
for a sequential game adapting to our scenario, in which the
requestor acts first and the worker reacts according to the
requestor’s strategy. ZD is a probabilistic and conditional
strategy whose adopter (i.e., the ZD player) can unilaterally
set the opponent’s absolute or relative expected payoff. By
virtue of a sequential ZD strategy, we propose two incentive
algorithms in this paper that can improve the job quality of
the workers. Our contributions are summarized as follows:

e We employ two sequential games to model the inter-
actions between the requestor and a worker when
their strategies are either binary or continuous. We
also prove that the sequential crowdsourcing dile-
mma phenomenon exists in both cases. Note that
players may take strategies from their corresponding
discrete spaces; but this can be treated as special
cases of the continuous-strategy model.

e The original zero-determinant strategy is modified in
this paper to get a variant applicable to sequential
games. Such a variant (i.e., the sequential zero-
determinant strategy) not only provides a theoretical
basis for designing our incentive algorithms, but also
enlarges the application domain of the original zero-
determinant strategy.

e Based on the sequential zero-determinant strategy,
two incentive algorithms for improving the job qual-
ity of the workers are designed when both players
take either binary or continuous strategies. The simu-
lation results demonstrate that the proposed algo-
rithms can encourage the workers to become
cooperative without a long-term extra payment.
More importantly, such an incentive mechanism is
fair because even though the requestor dominates
the game, she cannot increase her utility by arbi-
trarily penalizing innocent workers.

The rest of the paper is organized as follows. The most
related work is summarized in Section 2. Section 3 investi-
gates the sequential dilemmas in crowdsourcing when
the strategies are either binary or continuous. The original
zero-determinant strategy is extended to the sequential
scenario in Section 4. We propose two incentive algorithms
in Sections 5 and 6 respectively considering the cases of
binary and continuous strategies. Simulation results of our
algorithms are reported in Section 7 and we conclude this
paper in Section 8.

2 RELATED WORK

As mentioned earlier, existing studies on quality control
in crowdsourcing can be classified into two categories:
worker-based and job-based.

Since the quality of a crowdsourcing job is closely related
to the recruited workers, worker-based quality control regu-
lates the quality of a crowdsourced job by identifying the
characteristics of the workers [5], [6], [7], [8], [9], [10], [11],
[12], [13]. This can be done by either considering quality
detection and worker selection seperately [5], [6] or combin-
ing these two processes to filter out low-quality workers at
the very beginning [7], [8]. Wang et al. [5] utilized the ran-
dom forest model, a classic machine learning method, to
build a filter that was experimentally proved to have more
than 95 percent of accuracy for detecting workers” quality;
Xuan et al. [6] employed a number of machine learning
algorithms and proposed their own adversarial detecting
framework, in which they found that the support vector
machine (SVM) model outperforms all the rest. Folorunso
et al. [7] took advantage of the trust-based access control
(TBAC) and fuzzy-expert systems to develop a TBAC-fuzzy
algorithm for filtering out the malicious workers in crowd-
sourcing computing. A trust evaluation model was con-
structed in [8], by which the trustworthy worker selection
process was converted to a multi-objective combinatorial
optimization problem and finally resolved by an evolution-
ary algorithm. In [9], Wang et al. utilized the historical infor-
mation of the workers to accurately estimate their long-term
quality in a dynamic manner, based on which they further
proposed a reverse auction based incentive mechanism. In
[10], a knowledge-based domain estimation approach was
proposed to model the quality of workers, based on which
an online task assignment algorithm was developed to
appropriately match tasks and workers. To better describe
the behavior of workers in crowdsourcing, Cao et al. [11]
formulated two versions of the Jury Selection Problem (JSP)
and proposed efficient algorithms to solve them. Focusing
on crowdsourced filtering and rating tasks, Das Sarma et al.
[12] developed a novel pruning and search-based approach
to find the global maximum likelihood solution for estimat-
ing the ground truth and worker quality. To adaptively
evaluate diverse accuracies of a worker on various tasks,
Fan et al. [13] proposed a crowdsourcing framework,
termed iCrowd, which could assign the tasks to the most
appropriate workers on the fly.

On the other hand, observing that the quality of a job
directly affects the quality of the whole crowdsourcing
task, researchers aimed at achieving job-based quality con-
trol by employing different approaches or criteria to evalu-
ate the job quality [14], [15], [16], [17], [18]. Based on the
classical gold standard with fixed gold units and the corre-
sponding answers, Oleson et al. [17] put forward a pro-
grammatic gold creation mechanism to automatically
generate new gold units with known answers so as to
assure each submitted job’s quality. In [14], a crowdsourc-
ing quality control model was proposed for parallelly dis-
tributed jobs by assessing the quality of each worker’s
contribution. Vuurens et al. [15] proposed an approach to
detect spammers for the crowdsourced relevance learning
problem of information retrieval (IR) systems, by compar-
ing the obtained value with an expert value. In [16], Zheng
et al. devised a quality-aware job assignment scheme in
crowdsourcing with known ground truth of each question.
Qiu et al. [18] considered the feedback from other workers
and/or the public as a quality factor, and utilized it to
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R, —m

Ry, +b

Requestor’s Payoff | R, R, +n R, —m+n

Worker’s Payoff | R,, Ry, —a Ry,+b—a

Fig. 1. The game tree of the sequential game between the requestor and
the worker in one round under the binary model.

propose a Stackelberg game based scheme for heteroge-
neous contract design.

Note that most existing schemes require an additional
component such as the worker selection procedure in
worker-based approaches or the job evaluation procedure
in job-based methods to guarantee the crowdsourcing qual-
ity. In contrast, our work aims to embed quality control into
the crowdsourcing process, which does not need any extra
supporting mechanism.

3 GAME FORMULATION

In this section, we present our system model for the sequen-
tial game between a requestor and a worker.

We focus on the following multi-round crowdsourcing
scenario with one requestor and multiple workers. To
launch one round of crowdsourcing, the requestor first
presents the required jobs and the corresponding payments;
then the workers choose what they can accomplish so as to
obtain the corresponding payments. Within each round, the
requestor can assign different payments to the same job
while the workers can choose to make different levels of
effort to accomplish the jobs after witnessing the payments,
resulting in various job quality. More seriously, there may
exist extreme circumstances where the workers may behave
maliciously to get filthy lucre such as submitting fabricated
data to the requestor and/or attacking other peering work-
ers to steal their data or even destroy their outcomes. The
interactions between the workers and the requestor under
the above scenario can be depicted by a sequential game.
When the requestor recruits the same worker for multiple
rounds, this game becomes an iterated one. Note that from
the perspective of the requestor, the actions of the workers
are similar or follow the same pattern; thus a successful
incentive to any worker implies a high possibility of a large-
scale success when it is applied to all workers. In light of
this, we focus on analyzing the game between the requestor
and an arbitrary worker in this paper.

In the iterated sequential game mentioned above, the
strategy of the requestor is the amount of payment she
offers to the worker for a specific task, and that of the
worker is the quality of the claimed job he achieves. Obvi-
ously, the strategies of both the requestor and the worker
could be discrete (selected from a discrete space) or continu-
ous (selected from a continuous space). Nevertheless, we
only consider the binary and continuous cases as the dis-
crete case can be treated as a special one of the continuous
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case. When the strategies are binary, the players perform
either extremely friendly or extremely maliciously.

3.1 Binary Model

In the binary model, the requestor offers either the highest
or the lowest payment for the same job, and the worker
decides to provide the highest or the lowest quality when
completing the job. We denote the strategy of the requestor
as 7 € {c,d}, where ¢ indicates her cooperation behavior of
providing the highest payment to the worker and d refers to
the defection behavior with the lowest payment. Similarly,
the worker’s strategy is denoted as § € {c, d}, where cand d
respectively refer to cooperation and defection, i.e., provid-
ing either the highest or the lowest job quality.

Since the requestor moves first and the worker makes his
decision later, we can depict their sequential interactions
in one round as a game tree (see Fig. 1). Denote the payoff
vector of the requestor (r) by S, = (R, R, +n, R, —m, R, —
m+n) and that of the worker (w) by S, = (R, Ry —a,
R, +b,R+b—a), where R, and R, are respectively the
normal payoffs of the requestor and the worker when they
both cooperate; n is the increase of the requestor’s normal
payoff and a is the reduction of the worker’s normal payoff
when the requestor defects while the worker cooperates;
similarly, when the worker defects while the requestor
cooperates, the worker gets an increment b on his normal
payoff and the requestor receives a payoff decrement m.
Note that n < m and b < a since the requestor’s lowest
payment and the worker’s lowest job quality should result
in less payoff for both players when compared with the case
of mutual cooperation.

It is obvious that no matter what the requestor’s strategy
is, the worker’s best strategy is d; with backward induction
[20], the requestor can also derive her best strategy d. Thus,
the only equilibrium of the above sequential game is (d, d),
where the payoffs of both players are obviously less than
those in state (¢, c). This comes into the sequential crowd-
sourcing dilemma.

3.2 Continuous Model

When the continuous-strategy model is adopted, the
requestor can choose to offer any amount of payment in her
strategy space while the worker can provide any job quality
in his strategy domain. Here we denote the strategy of the
requestor (r) as z € [I,,h,] and that of the worker (w) as
Y € [ly, hy), where [, 1, and h,, h,, are respectively the lower
and upper bounds of the strategy spaces of the players, i.e.,
the lowest/highest payment that the requestor can offer
and the lowest/highest job quality that the worker can
provide.

Hence, the utility of the requestor can be defined as

wr(-ra y) = Ar¢(y) — B, (1)
where the first term is the profit she can obtain from the job
completed by the worker while the second term reflects the
payment she makes; A, > 0and B, > 0 are scaling param-
eters; and ¢(y) is monotonically increasing with the work-
er’s job quality .

With a similar structure, the utility of the worker can be
defined as
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ww(x, y) = Ay — Bu“/f(y)’ (2)

where the first term is the payment he can obtain by
completing a specific job while the second one represents
his cost for accomplishing the job; A, > 0 and B, > 0
are scaling parameters; and ¥(y) is positively propor-
tional to y since a higher quality implies more effort
needed.

Theorem 3.1. The sequential crowdsourcing dilemma exists in
the continuous-strategy model.

Proof. Since v(y) increases as y increases, we have
¥/(y) > 0. According to (2), we get 3”“(”’) —B, V' (y).
Comblmng with the condition of B, > 0, we obtain
‘9““31’ %) < 0, which means that w, is inversely propor-
t10na1 to y. Thus, the worker’s best strategy is y* = [,

Similarly, considering that B, >0, we have
M = —B, < 0, which 1mp11es that the requestor’s
best strategy with respect to y* is «* = [,. Thus, the stable
equilibrium of the continuous sequential game is
(z*,y*) = (I, ), where the payoffs of both players are
less than those in the state of (x,y) = (h;, h,). Therefore a
sequential crowdsourcing dilemma exists under the con-
tinuous-strategy model. ]

Remark. Note that it is possible for the two players to take
discrete strategies within their personalized strategy
spaces that can be heterogeneous to each other due to
various decision preferences of the game players. Nev-
ertheless, we claim that this can be regarded as a special
case of the continuous model for the following two rea-
sons: i) both the upper and the lower bounds of the two
players’ continuous strategies can be solely decided by
the players themselves; and ii) a continuous strategy
space can be discretized to a customized discrete one
according to the player’s personalized requirements. In
this case, the game analysis and algorithm design for the
continuous model in sequel can be easily revised to
adapt to the heterogeneous discrete-strategy situation.
So we omit the detailed description for brevity and for
avoiding redundancy.

4 EXTENSION OF THE SEQUENTIAL
ZERO-DETERMINANT STRATEGY

According to our analysis in Section 3, one can conclude
that sequential crowdsourcing dilemmas always exist
whether the strategies are binary or continuous. In the short
term, a dilemma can lead to low utilities of both players;
while in the long run, it can result in low efficiency and low
effectiveness of the whole crowdsourcing system or even
breakdown the system. To address this problem, it is rea-
sonable for the requestor to work out a scheme that can
encourage the worker to be cooperative. Here are the two
underlying reasons: first, the requestor is dominant in the
game since she has a global observation on all the participat-
ing workers and thus can estimate their strategies from a
statistical perspective; second, the requestor moves first in
the sequential game, which can influence the actions of the
workers. As we all know, players in a game are utility-
driven; thus, if the requestor wants to drive the worker

1001

cooperate, she has to make the worker perceive the positive
correlation between his cooperation and his utility. The ZD
strategy proposed in [19] brings us a significant inspiration
for realizing such a correlation.

Generally speaking, a ZD strategy can enforce a linear
relationship between the payoffs of two players in an iter-
ated game by setting appropriate values for one player’s
mixed strategy [21]. Particularly, facilitated with the ZD
strategy, a player can unilaterally set the expected payoff of
its opponent according to some arbitrary property. This
motivates us to consider a mechanism in which the
requestor may take advantage of ZD to reward the worker’s
cooperation while penalize his defection so as to achieve a
win-win situation and finally get rid of the dilemma. How-
ever, the classical ZD strategy is derived for simultaneous
games where the two players act at the same time without
knowing the action of the opponent in the current round.
Therefore, we need to extend the classical ZD and make it
fit our sequential game.

As proved in [19], a long-memory player has no priority
against a short-memory player in an iterated game. Thus to
extend the classical ZD strategy, here we assume that the
requestor has only one round of memory, and her mixed
strategy at each round is the conditional probabilities she
chooses strategy c under all possible states of the previous
round. We denote the requestor’s mixed strategy at round ¢
as p' = (p},ph, ph. p}), where p! is the probability of choosing
¢ when the outcome of round ¢ — 1 is £j = cc; thus the prob-
ability of choosing d is 1 — p!. Similarly, p}, p}, and p are
the probabilities of adopting ¢ when the previous state is
7y = cd, dc, and dd, respectively. The worker makes his
decision at any round ¢ after seeing the requestor’s action in
that round; thus his strategy is the conditional probability
of choosing c given the requestor’s possible action in the
current round. We denote the worker’s strategy at round ¢
as q' = (¢!, q,), where ¢ and ¢} are the probabilities of
choosing ¢ when the requestor’s strategies are £ = c and d,
respectively.

With the above definitions of p* and q’, we can construct
a Markov matrix,

piat pil—q) (1—=pDg (1—p)(1—gh)

M oy Py(1—qi) (1 —=ph)gy (1 —ph)(1—gh)
phai ph(1—d) (1—=ph)gh (1—ph)(1—gh) |
phdi pi(1—q) (1—p)gs (1 —p)( - gh)

where each element denotes the state transition probability
from round ¢ — 1 to t. Taking the first row of M as an exam-
ple, one can see that the four elements denote the transition
probabilities from state £y = cc at round ¢ — 1 to the four
possible states 7y = cc, c¢d, de, dd at round ¢. Similarly, the
probabilities in the other three rows correspond to the states
Iy = cd,dc,dd at round t — 1.

Let v be the stable vector of the above transition matrix;
then vIM =v'. Let M' =M —1, where I is the unitary
matrix; then we have v'M’ = 0. According to the Cramer’s
rule, we have Adj(M')M’ = det(M'I) = 0, where Adj(M’) is
the adjugate matrix of M'. Comparing the above two equa-
tions, one can see that v is proportional to each row of
Adj(M'). Therefore, when computing the dot product of the
stable vector v and any vector f = (f1, fa, f3, f1), we have
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V'f:D(Ptvqt»f)

pidi—1 pi—1 (1-phg+pigi—1 fi

et Phai ph—1  (1=phg+p5di  fo
Phd) Py (I—ph)gh+phdi =1 f3

it t 1 ot t it ’

Pady Dy (1 —pl)dh + g} fa

(3)

Notably, the second column is only related to the strategy
= - Lph — Lphpl)"
Besides, the expected payoff of the requestor E' and that of
the worker E! at round ¢ can be calculated as follows:

of the requestor, denoted as p

ot v Sr _ D(pt’ qt7s7')

E=317 D(p',q',1)’ W
ot A\ Su,v _ D(ptyqtvsw)
By = v-1  D(p',q,1) ° ®)

Hence, when computing a linear combinations of the above
two expected payoffs, with «, B, and y being constant
parameters, we have

aEi+ﬁE~‘;+y:V. (asr“'l‘ﬁlsw+7/1)
_ D(p',q",aS, + Sy + y1)
B D(p',q',1)
Therefore, when the requestor sets her strategy p' satisfy-
ing p' = (p, —1,p, — 1,p4,p))" =aS, + BS, + 1, the sec-
ond and the fourth columns in (3) are proportional to each
other, which means that the right side of the above equation
is zero. In this case, what the requestor adopts is called the
sequential zero-determinant strategy.
When a = 0, the requestor’s strategy p' meets p' = S, +
y1, and we then have E!, = — With several steps of vari-

able substitutions, the worker’s expected payoff at round ¢

can be written as Efv = (17115)(fwtb7?)+piRuv
—P1tPy

[Ry + b—a, R,] since pi, p} € [0,1].

The above analysis implies that with the adoption of the
sequential ZD strategy, the requestor has a unilateral control
on the worker’s expected payoff, i.e., setting it to a fixed value,
which provides the requestor a powerful tool to encourage
the worker’s cooperation in a sequential crowdsourcing game.

Note that in our sequential ZD strategy, only the first
mover (the requestor) can act as the ZD player since only
one column (the second one) in (3) is determined by the first
strategy maker; while in the classical ZD strategy [19]
derived for the simultaneous games, both players can adopt
the ZD strategy because the value of the corresponding
determinant can be exclusively determined by either of the
players. Also note that the proposed extension to the classi-
cal ZD strategy for the sequential crowdsourcing game sce-
nario not only solves our problem but also contributes to
enlarge the ZD application space.

(6)

, which resides in

5 SEQUENTIAL ZD STRATEGY BASED INCENTIVE
ALGORITHM FOR THE BINARY MODEL

With the help of the sequential ZD strategy, the requestor
can unilaterally set the expected payoff of the worker in our

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 5, MAY 2020

sequential game. In this section, we utilize the power of the
sequential ZD strategy to design an algorithm for the requ-
estor to drive the cooperation of the worker. In fact, there is
hardly a universal strategy that can beat all variety of strate-
gies from the opponent. Hence, we need to first consider the
worker’s strategy before starting the design of our algorithm.

Obviously, if the worker’s strategy is fixed, no incentive
can change his strategy. Therefore, we consider the worker’s
strategy to be adaptive that may change with the game result
of the requestor or himself. Note that in the sequential game,
the worker stays in an information-lacking position com-
pared with the requestor who has the global information
about all the workers. Consequently, to maximize his payoff,
it seems to be rational for the worker to adopt an evolutionary
strategy that is inspired by the idea of “survival of the fittest”
in biological evolution. Here we give a loose definition of the
evolutionary strategy as follows.

Definition 5.1 (Evolutionary strategy). The evolutionary
strategy adopted by a game player indicates that the player can
adjust its strategy to maximize its payoff regardless of the strat-
egy or payoff of its opponent.

Here we give an example evolutionary strategy [22].
Suppose that ¢! is the worker’s cooperation probability at
round ¢. If he adopts the evolutionary strategy in [22], his
cooperation probability in the next round, denoted by ¢,
may evolve as follows:

¢
¢ =g, e, ™

t
w

where W! is the expected payoff when he cooperates and
can be calculated by W! = p'R,, + (1 — p!)(R, — a), with p!
being the cooperation probability of the requestor at round ¢
that can be statistically calculated according to the coop-
eration frequency in practice; and E, is the expected payoff
of the worker that can be calculated by E! = ¢ W!+
(1— ¢ )Wt with W} = pL(R, +b) + (1 — pL)(Ry + b — a) be-
ing the expected payoff when the worker defects. Thus, it is
obvious that the evolutionary worker’s cooperation proba-
bility can increase only if he perceives that cooperation is
profitable, i.e., W! > E!; otherwise, his cooperation proba-
bility keeps unchanged or decreased, implying that he tends
to be more defective. Note that there could be other evolu-
tionary strategies [23], but we demonstrate only this one
here and claim that our basic idea is suitable for other var-
iants of the evolutionary strategies.

Next, we propose an algorithm for the requestor con-
fronting a worker who adopts the evolutionary strategy
described above to induce his cooperation. The main idea is
to reward the cooperation of the worker, i.e., providing the
highest job quality, and penalize his defection, i.e., accom-
plishing job with the lowest quality, with the help of the
sequential ZD strategy. The pseudo-code of the algorithm is
presented in Algorithm 1, which includes a preparatory
stage of N, rounds to get the necessary initial values of the
state transition probability vector P, = (P, P.q, Pic, Pia),
where P, i,j € {c,d}, is the probability of the worker
changing from state i to j. More specifically, Pj; is set to
be the ratio of the number of rounds the worker’s action
changing from state ¢ to j to the total number of rounds.
Note that P, can also be set to (0.5, 0.5, 0.5, 0.5) or any other
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reasonable set of initial values and then be updated gradu-
ally to approximate the real values as much as possible.
Obviously, this process is similar to the preparatory stage
mentioned above.

Algorithm 1. Sequential ZD based Incentive Algorithm
for the Binary Model

Require: p' = {pi, p}, pi, pi}: the requestor’s strategy at round i
and its initial values are the ones used in the NS’L round;
P, = (P.c, Pea, Pic, Pya): the state transition probabilities of the
worker, and their initial values are calculated statistically
through the preparatory N, rounds; N: the total number of
rounds.

1: Initialize(E?)

2: fori =1to N do

3:  if The worker’s last move is ¢ then

4: if P.. > P, then L Y R B
5t Set {p].phpj.pi ST
Ry NO < pi, ph, Pl 0l < 1}
6: Ei —R,
7 else LV (Rt iR > P(:(: < Rt{]~
8: Set {p}, p, i, p'| L 7p1>(1f;;)+p4 = =
. . 1P
Ry+b—an0<pp,py,py 0y < 1}
9: E,—Ry,+b—a
10: end if
11:  else > The worker’s last move is d.
12: if Py > Py then )
) T =) (Rutb—a) i Ry
13: Set {Pppgapgapﬂw—
Ry NO < pl,ph, o, 0y < 1}
14: El « R,
15: else ; 5 > Py < Py.
16: Set {p].phpjpf| T
1 4
Ry +b—an0<p,ph,pjp) < 1}
17: El —R,+b—a
18: end if
19: endif

20:  if The current round ends then
21: Update P

22:  endif

23: end for

After initializing E°, (Step 1) during the preparatory stage,
the requestor adjusts the worker’'s expected payoff E!
according to the prediction on the worker’s action at each
round 4. More specifically, when the worker’s last move is
cooperation (Step 3), the prediction of his current move is
determined by the relationship of P.. and Pg. If P, > P,
the requestor regards that the worker is friendly and sets the
highest expected payoff £ = R,, to him (Steps 4-6) ; if not,
the lowest EN‘; = R, + b— a is given to the worker (Steps 7-
10). Similarly, when the worker’s last move is defection, it
comes to the comparison between P, and Py. If the former is
greater, the requestor gives the worker the highest payoff £,
(Steps 12-14), and vice versa (Steps 15-18). At the end of each
round, the values of the state transition probabilities are
updated (Steps 20-22). When the total number of rounds is
reached, the whole process terminates (Step 23).

According to the above description, one can see that once
the requestor predicts that the worker would cooperate in
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this round, she should give the worker a reward of R,,
equaling to the payoff obtained by the worker when both
cooperate, which implies that the requestor does not sacri-
fice any extra cost for incentivizing the worker. It is also
worthy of noting that to stimulate the high-quality submis-
sions from multiple workers, the requestor can implement
the above algorithm with different initial state transition
probabilities for different workers, calculating and storing
different values for different workers separately.

Note that other binary strategy situations with I > 3 are
very similar to the above situation with Il = 2, except for
the increased cardinality of the strategy and payoff sets. In
this case, the derivation of sequential ZD strategy and
incentive algorithm design can be conducted following the
same basic idea. Thus, due to the page length limitation, we
omit the detailed description.

6 SEQUENTIAL ZD STRATEGY BASED INCENTIVE
ALGORITHM FOR THE CONTINUOUS MODEL

In order to take advantage of the sequential ZD to encourage
the cooperation of the worker adopting a continuous strategy,
we make use of an idea similar to that proposed in [24] to con-
struct the continuous-sequential ZD strategy. To that aim, we
first calculate the expected utilities of the requestor and the
worker at round ¢ with their utility functions w,(z,y) and
wy,(x, y) are respectively defined as follows,

haw hy
@:[ [ o (g, , y)dedy, ®)

b phe
m:%‘[ o, y)wa (, y)dedy, ©)

where v/ (z, y) is the joint probability function of the requestor
adopting strategy « and the worker adopting y at round ¢. To
calculate o'(z,y), we define the mixed strategy of the
requestor p'(z|z_1,y_1) as the conditional probability at
which the requestor chooses to offer a payment of z at round ¢
with the outcome z_,y_; atround ¢t — 1, where z_y, x € [I,, h,]
and y_; € [ly, hy). With the above definitions, we have

hy
/ Pz 1,y 1, x)de = 1. (10)
Ir

For the worker, the trait of a sequential game makes him
choose a strategy according to the requestor’s current strat-
egy; thus we define the mixed strategy of the worker ¢'(y|z)
as the conditional probability at which the worker provides
the job quality y when the requestor offers him the payment
x at the current round ¢, where = € [, h,],y € [lw, hy). Also,
we have

hay
/ qd (ylo)dy = 1. (11)
Ly

The transition function M(z_;,y_1,z,y) denoting the
state transition probability from round ¢ — 1 to round ¢ can
be expressed as follows:

M(z_1,y-1,2,y) = p'(zlz_1,y-1)q (y|z). (12)
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It shapes the relationship between the state probability at
round ¢ — 1 and that at round ¢ as shown below:

Ve yo) - M(zoyyoay) =o' (zy). (13)

Similar to the sequential ZD strategy derived under the
binary model, we can deduce its counterpart in the continu-
ous model, which is summarized by Lemma 6.1.

Lemma 6.1. When the mixed strategy of the requestor
p(alw1,y 1) satisfies 5 (hy|z_1,y 1) = aw,(z,y) + Pw(z,
y) + v, the expected utilities of the requestor and the worker
have the following linear relationship,

oE' + BE! +y =0, (14)

where D' (hy|z_1,y-1) is defined as follows:

t
% _ o (hle_,y-1), © < hy,
Pltaory) = {Giprrvvh o < e

The detailed proof of the above lemma is elaborated
in Appendix A.

According to Lemma 6.1, when o = 0, we have E! = - %
thus the strategy of the requestor p'(z|z_1,y_1) can be calcu-
lated, and one can consequently figure out the maximum and
minimum of the worker’s expected utility, denoted by
max(E' ) and min(E")), respectively. To design an algorithm
for the requestor to drive the worker to provide high job qual-
ity under the continuous model, we need to choose a metric
to quantify the willingness of the worker’s good behavior.
Motivated by the approach used in Section 5, one can focus
on the probability of the worker providing the highest job
quality. However, since the strategies the requestor and
the worker can adopt are continuous, the probability of a
point in a continuous interval is zero; thus we employ the
probability density of providing the highest job quality to
measure the willingness of the worker behaving friendly.
Therefore we define f; as the probability density of the
worker choosing h,, as the job quality at round ¢. As men-
tioned above, a rational worker would take an evolutionary
strategy to obtain a high utility in an iterated sequential
game; thus, f,tl evolves as follows,

Wi

t+1 gt
h fh ¢ )

(15)
where W} is the expected utility of the worker when he adopts
y = hy, which can be calculated by W} = flf’ ghwy(z, hy)dz,
and E! is the expected utility of the worker, which can be cal-
culated by E! = Z’:” fiW,dy, with g, being the probability
density of the requestor offering the payment z in its value
range [, h,| atround ¢, f; being the probability density of the
worker providing the quality y in its value range [l,,, k] at
round t, and W being the expected utility of the worker
when he provides the job quality y. Note that W] can be calcu-
lated by W, = f[:” gLwy(z,y)dz. Thus, one can conclude that
only if the worker’s expected utility of adopting y = h,, is the
maximum compared to those obtained when using other
strategies, would the worker choose or maintain the job qual-
ity y = h,,; otherwise, the worker’s job quality would come to
alower level.
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In light of the above evolution characteristic of the worker,
we design a sequential ZD based incentive algorithm (sum-
marized in Algorithm 2) for the requestor to stimulate the
worker’s provision of the highest job quality in a continuous
crowdsourcing game. The core idea of this algorithm is
similar to that of the binary one, i.e., rewarding the high job
quality provided by the worker and penalizing his low job
quality. Note that there is also a preparatory stage including
Ny rounds to initialize the parameters. Also note that in order
to better control the evolution path of the worker’s prob-
ability density f}, the requestor needs to maintain a state
transition probability matrix P{ = {F},,, to predict the
worker’s action, where P is the statistical probability of the
worker’s state changing from interval [l,, + (i — 1)8, 1, + 4]
to [l + (j — 1)8,1, + 78], with § being a sufficiently small
number specifically defined in Appendix A and satisfying
Ly + 16 = hy.

Algorithm 2. Sequential ZD Strategy based Incentive
Algorithm for the Continuous Model

Require: p'(z|x_1,y_1): the requestor’s strategy and its initial
value is the one used in the N{" round; P¢ = {P5},«,: the state
transition probability of the worker, and its initial value is cal-
culated statistically through the preparatory N, rounds; N: the
total number of rounds for algorithm termination.

1: Initialize(E?)

2: fori =1to N do
3 ify € [ly + (k — 1)8, 1, + k8] then

4: if P =P Vi€ {1,w,...,n} then
5: Set p'(z|x_1,y_1) to let
El — max(E.)
6: else > P, < P,
7: Set p'(z|x_1,y-1) to let
El — min(E)
8: end if
9: endif

10:  if The current round ends then
11: Update P¢

12:  endif

13: end for

The initialization of E' is completed through the prepa-
ratory Ny rounds (Step 1). After that, the requestor adjusts
her strategy to make the worker’s expected utility change
with his action at each round i. Specifically, according to
the state transition probability matrix P, the requestor can
predict the worker’s current action. When the worker’s
last move is located at interval [l,, + (k — 1)8,1,, + k8] (Step
3), the requestor determines the worker’s tendency of pro-
viding the highest job quality by comparing the transition
probability from the state interval [I,, + (k — 1)8,1, + «4] to
the interval [I, + (n —1)8, hy). If P is the largest, the
requestor regards that the worker is likely to provide
the highest quality in this round and thus she would set
the highest expected utility for the worker (Steps 4-6); if
not, the requestor would set the lowest E (Steps 7-10).
At the end of each round, the requestor updates the
state transition probability matrix P for a more precise
estimation of the worker’s next action (Steps 12-14).
The algorithm terminates when certain number of rounds
are performed (Step 15). Similar to Algorithm 1, at each
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Fig. 2. Cooperation probability evolution of the worker in the binary
model.

round, the reward that the requestor gives to the worker
if he cooperates is equivalent to that obtained by the
worker when both players cooperate, which means that
the requestor does not give extra payment for incentivizing
the worker to be cooperative.

7 SIMULATION RESULTS

In this section, we present our simulation study for the pro-
posed incentive algorithms under the two different game
models. First, we simulate the algorithm in a binary sequen-
tial crowdsourcing game by setting R, =3,R, =3,a =
3,b=2,m = 3,n =2, which satisfies the parameter value
relationship claimed in Section 3; thus we have S, =
(3,0,5,2) and S,, = (3,5,0,2). Note that we also simulate
other parameter settings satisfying the aforementioned
parameter constraint and obtain very similar results, which
are omitted here due to redundancy. Besides, we set
Ny =100, the number of rounds in the preparatory stage,
and N = 400, the number of rounds for the algorithm execu-
tion. Here we assume that both the requestor and the
worker adopt the evolutionary strategy in the preparatory
stage; thus the initial cooperation probabilities at the begin-
ning of Algorithm 1 are the same, i.e., p? = ¢°. Each simula-
tion has been repeated 30 times to obtain the average value
with sufficient statistical confidence.

Fig. 2 presents the evolution of the worker’s cooperation
probability under the binary model, with different initial
cooperation probabilities p? and ¢”. One can see that the
worker’s cooperation probability ¢, always reaches 1 in the
end no matter what value of ¢”, he selects at the beginning,
which implies that the worker could finally become cooper-
ative whether or not he cooperates at the beginning of the
game. This result obviously justifies the effectiveness of our
proposed ZD based algorithm. Note that there exists obvi-
ous difference between the case of p! = ¢’ = 0.1 and the
other three cases. The concave parts under the cases of
the three larger initial cooperation probability values are
resulted from the higher initial expected payoff, which
leads to a smaller rewarding space and a larger penalty
space when ¢!, drops down for a while.
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Fig. 3. Payoffs of the requestor and the worker in the binary model.

Fig. 3 plots the actual payoffs and the expected payoffs of
the requestor and the worker with different initial coopera-
tion probabilities p! and ¢°, in the binary model. In the left
side of Fig. 3, the bar graph shows that both players get
relatively equivalent average actual payoffs under different
situations, which indicates that our proposed algorithm is
fair to both players. In other words, even though it is the
requestor who dominates the sequential crowdsourcing
game, she cannot get a higher than the normal payoff value
by reducing the worker’s payment. In addition, as the initial
cooperation probabilities increase, the payoffs decrease
slightly. The reason lies in that a larger ¢, causes a trough
on the evolution of g, during which the payoffs are lower.
Figures (a) (b) (c) (d) in the right side report the expected
payoffs of the requestor and the worker corresponding to
different values of p? and ¢!, which are coincident with the
average actual payoffs in the left side.

We also compare our proposed ZD based algorithm for the
binary model (labeled by ZD) with five other classical strate-
gies, i.e., win-stay-lose-shift (WSLS) [25], tit-for-tat (TFT) [26],
all-cooperation (ALLC), all-defection (ALLD), and random
(Random), by simulating the cases where the requestor ado-
pts different strategies while the worker always adopts the
evolutionary strategy. We mainly focus on the worker’s coop-
eration probability evolution and the average actual payoffs
of the requestor and the worker. Fig. 4 demonstrates the
change of the cooperation probability of the worker when
more rounds are performed. Note that only the first 50 rounds
are displayed in Fig. 4 for a clear observation on the differen-
ces among these strategies, though in total we perform 400
rounds. It is obvious that only when the requestor adopts
the ZD strategy based method can she drive the worker to be
finally cooperative, and the other five classical strategies are
not able to stimulate the worker’s cooperation.

The actual payoffs of both the requestor and the worker
are presented in Fig. 5. One can see that the ZD based
algorithm leads to a relatively commensurate payoffs of
around 3 for both players, which corresponds to the payoffs
of mutual cooperation; while WSLS, ALLC, and Random
make the requestor stay in a disadvantage position, getting
far less payoffs than the evolutionary worker, which means
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Fig. 4. Cooperation probabilities of the worker when the requestor
adopts different strategies in the binary model.
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Fig. 5. Payoffs of the requestor and the worker when the requestor takes
different strategies in the binary model.

that there are too many rounds at state cd resulted from the
requestor lacking the capability to incentivize the worker’s
cooperation; when the requestor adopts either TFT or
ALLD, she has an equivalent payoff of 2 with the worker,
which means that their state is mostly dd during the whole
simulation process, failing to encourage the final coopera-
tion of the worker.

To simulate Algorithm 2, we assume that both the
requestor and the worker can choose their strategies from
the interval [0, 10], i.e., I, = I, = 0, h, = h,, = 10. We further
assume that ¢(y) = 17, Ar =4, and B, = 0.1, and that
Y(y) = W 1, A, =0.3, and B, = 4; then we have
wr(0,0) = w,(0,0) =2 and  w,.(10,10) = w,(10,10) = 3.
Note that multiple sets of parameters and monotonically
increasing functions have been tested but we only present
the simulation results of the above ones to avoid redun-
dancy as the results are very similar. Besides, to have a bet-
ter statistical calculation of the state probability transition

Average Actual Payoff
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PLd

Fig. 7. Payoffs of the requestor and the worker in the continuous model.

matrix P¢, we divide the continuous strategy space into 10
sub-spaces. We also set the preparatory stage to Ny = 100
rounds and the whole simulation process takes N = 400
rounds; but we only display the outcomes of the first
100 rounds for a clear observation on the experimental
results. Each simulation has been repeated 30 times to
obtain the average value for sufficient statistical confidence.

The worker’s cooperation probability and the actual pay-
offs of both players in the continuous model are presented
in Figs. 6 and 7. In Fig. 6, one can clearly observe that our
ZD strategy based algorithm can facilitate the requestor to
force the cooperation probability of the worker to increase
to 1, no matter what the initial cooperation probability of
the worker is. The average actual payoffs in Fig. 7 demon-
strate that both players have payoffs of 3, which means that
they adopt (z,y) = (10, 10) most of the time during the sim-
ulation process. This is an indication of fairness of our pro-
posed algorithm, where the requestor has no way to obtain
an income higher than the normal payoff received from the
mutual cooperation state.
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Fig. 8. Cooperation probability of the worker with different strategies of
the requestor in the continuous model.

We also compare our sequential continuous ZD strat-
egy with the other five classical ones mentioned above.
The cooperation probability’s evolution of the worker
and the payoffs of both players are presented in Figs. 8
and 9, respectively. The worker’s cooperation probability
demonstrates totally different evolution paths when the
requestor takes different strategies. One can see that
only the proposed sequential continuous ZD strategy can
drive the worker to be finally cooperative, while the
other five classical strategies fail to realize the ultimate
goal of the requestor. In addition, the average payoffs
are similar to those obtained in the binary model, where
only the ZD strategy results in an equivalent payoff of 3,
which corresponds to w,(10,10) = w,,(10,10); while the
other strategies trap the requestor into an unfavorable
position.

8 CONCLUSION

In this paper, we propose an economics-based quality con-
trol mechanism for crowdsourcing in which monetary
reward and penalty are employed to encourage or force the
workers to behave nicely. To that aim, we revise the ZD
strategy so that its variant can be employed in our sequen-
tial games. By means of the sequential ZD, we design two
incentive algorithms to improve the job quality of the
worker when both players perform binary or continuous
strategies. In both algorithms, the requestor can unilaterally
set the expected payoff of the worker according to the pre-
dicted action of the worker. Thus, our algorithms can incen-
tivize the cooperation of the workers without a long-term
extra payment. Note that our methods do not involve spe-
cific crowdsourcing scenarios; they focus on training rather
than simply filtering out unprofessional workers, and hence
can call on all possible human resources, which is a key trait
of crowdsourcing resulting in its success. The extensive sim-
ulation results demonstrate that our proposed algorithms
can efficiently and effectively encourage the workers to
become cooperative.
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Fig. 9. Payoffs of the requestor and the worker with different strategies of
the requestor in the continuous model.

APPENDIX A
PROOF OF LEMMA 6.1

Proof. For the continuous strategy space, we divide it into n
parts. Thus, the requestor’s strategy = can be one of
{l;,l, + 8,1, +25,...,1, + n8}, and the worker’s strategy y
can be one of {l,,l, + 8,1, +28,...,1, + nd}, where § is a
sufficiently small number while 1 is a sufficiently large
number, which satisfy {, +né = h,,l, + n8 = h,,. Thus,
when § — 0, their strategies become continuous. Accord-
ingly, the payoff of the requestor becomes
W, ={w, (I, lw)y oy Wl by +18), .o ywe (L + 18, 1w)y - -y
wy(l, + 08,1, +18)}, which can be denoted as W, =
{wr00, - .- s Wy0p, - - -, Wy, - - ., Wryy b, and the payoff of the
worker should be W, = {wy,(l;,l,),..., wy(l, L, + nd),
vy wy(l 18,1y, -y wy(l + 18,1, +n8)}, denoted  as
Wy = {Ww00, - - s Wy, - - -, W0 - - - , Weppy }- Then we can
denote the mixed strategy of the requestor at round ¢ as
Pi; 1 where i,5,k € {0,1,...,n}, which is the probability
of the requestor offering a payment of /. + k8 at round ¢
when she offers the payment of [, + i§ and the worker
provides the job quality of i, + jé at round ¢ — 1; simi-
larly, we denote the mixed strategy of the worker at
round t as qf_j, where i,j € {0,1,...,n}, which is the
probability of the worker providing the job quality /,, + jé
at round ¢ when the requestor offers the payment of
[, + 18 in the same round.

According to the above partition on the strategy
spaces and the corresponding utility spaces, we can con-
struct the following Markov state transition matrix,

M, = [My,...,My,,My1,...,My,....,My,...,M,,], (16)
where M;;,Vi,j € {0,1,...,n} is a vector containing the
transition probability from all the possible last state of zy
to the current state x = [, + 4§ and y = [,, + j§, and it can

be expressed as follows,

_ [t t t t t t
M, _[p()()fiqi—j? s Pop—i%i—jp Pri—i%i—jo -+ +»
t ]T

t (17)
' Pop—i9i—j

t t t t
P1y—i%i—jo - - - Pyo—i%i—yjs - - -
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If the stable vector of the above transition matrix is vy,
we have viM,; =v]. Suppose M, =M, —1, we get
vIM/, = 0. With the similar calculation method for the
binary model, we obtain that v, is proportional to each
row of Adj(M)). Therefore, for any vector f= [fy,
fors-- o, f,m]T, with the known condition }77 qﬁ_j =1,

we can compute the dot product of f and v, as follows,

Vd'f:D(pt7qfaf)

[ Poo—040-0 T pf,o,,] foo ]
¢ t ¢
— det Pi-1yy-o%-0 " Po1pmy fa-1m
¢ t A B
Pyn—0%0-0 Py 10
_p;n,nqg,o pfmw -1 S |

(18)

It is obvious that the penultimate column of the above
determinant is only determined by the requestor, which

can be denoted as §€n+1)(,7+1>-

When f = oW, + W, + y1, we have v, - f = v, (aW, +
BW,, + y) = aE! + BE! +y. Therefore, if the ((n+1) x
(n+ 1))th column ﬁfnﬂ)(nﬂ) =aW, + BW,, + y1, we have
aE! + BE! +y =0. When the small number § approa-

w

ches 0, we obtain the result of the lemma. a
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