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Abstract—Time series forecasting is a key component in many
industrial and business decision processes and recurrent neural
network (RNN) based models have achieved impressive progress
on various time series forecasting tasks. However, most of
the existing methods focus on single-task forecasting problems
by learning separately based on limited supervised objectives,
which often suffer from insufficient training instances. As the
Transformer architecture and other attention-based models have
demonstrated its great capability of capturing long term depen-
dency, we propose two self-attention based sharing schemes for
multi-task time series forecasting which can train jointly across
multiple tasks. We augment a sequence of paralleled Transformer
encoders with an external public multi-head attention function,
which is updated by all data of all tasks. Experiments on a
number of real-world multi-task time series forecasting tasks
show that our proposed architectures can not only outperform
the state-of-the-art single-task forecasting baselines but also
outperform the RNN-based multi-task forecasting method.

Index Terms—Time series forecasting, Multi-task learning,
Transformer, Self-attention

I. INTRODUCTION

Multi-task time series forecasting, i.e. the prediction of
multiple time series data from different tasks, is a crucial
problem within both time series forecasting and multi-task
learning. In contrast to single-task learning, multi-task time
series forecasts provide users with access to estimates across
multiple related time series paths, allowing them to optimize
their actions in multiple related domains simultaneously in the
future. The development of multi-task time series forecasting
can benefit many applications such as stock prices forecast-
ing, weather forecasting, business planning, traffic prediction,
resources allocation, optimization in IoT and many others.
Especially in recent years, with the rapid development of the
Internet of Things (IoT), billions of connected mobile devices
have generated massive data and further bring many novel ap-
plications that can change human life [1], [2]. Analyzing these
data appropriately can bring considerable socio-economic ben-
efits such as target-advertising based on accurate prediction
of cellular traffic data, real-time health status monitoring,
etc. Different from general single-task forecasting problems,
practical multi-task forecasting applications commonly have
access to a variety of data collection resources as shown in

Fig. 1: A paradigm of cellular traffic data collected from
multiple base stations.

Fig. 1. In this cellular traffic forecasting problem, all the base
stations are well deployed in certain urban areas. Station A and
Station B share a similar pattern possibly due to geographical
proximity while different from the traffic pattern of Station
C a lot. If we want to forecast the future cellular traffic of
any of them, one main challenge is that how we can fully
utilize both commonality and difference among these time
series from different stations with the aim of mutual benefit. It
is vital especially when there is little acquired data from each
station due to failure or privacy reasons. Traditional time series
forecasting methods include auto-regressive integrated moving
average (ARIMA) [3], [4], vector auto-regression (VAR) [5],
support vector regression (SVR) [6], etc. Recently, deep neural
networks [7]-[10] offers an alternative. The recurrent neural
networks (RNNs) have become one of the most popular
models in sequence modeling research. Two variants of RNN
in particular, the long short term memory (LSTM) [11] and the
gated recurrent unit (GRU) [12], have significantly improved
the state-of-the-art performance in time series forecasting and
other sequence modeling tasks. Especially, meta multi-task
learning [13]-[15] proposed a new sharing scheme of compo-



sition function across multiple tasks based on LSTM models.
Most recently, as the ability to capture long term dependency
with good parallelism, the Transformer architecture [16], [17]
has been widely used in natural language processing (NLP)
and yields state-of-the-art results on a number of tasks. Despite
the popularity of various sequence modeling research, most
of the work focus on either single-task learning or combining
multi-task learning with recurrent neural networks and there
have been few works in combining MTL with Transformer,
especially the self-attention mechanism.

In this paper, we propose to bridge the gap between multi-
task learning and Transformer attention-based architectures
by designing a shared-private attention sharing scheme MTL-
Trans to jointly train on multiple related tasks. Inspired by
shared external memory [14] based on LSTM models, we
propose two architectures of sharing attention information
among different tasks under a multi-task learning framework.
All the related tasks are integrated into a single system that
is trained jointly. Specifically, we use an external multi-head
attention function as a shared attention layer to store long-
term self-attention information and knowledge across different
related tasks.

We demonstrate the effectiveness of our architectures on
a real-world multi-task time series forecasting task. Experi-
mental results show that jointly learning of multiple related
tasks can improve the performance of each task relative
to learning them independently. Additionally, attention-based
sharing architectures can outperform the RNN-based sharing
architectures. In summary:

o We are the first to propose an attention-based multi-task
learning framework (MTL-Trans) to solve multi-task time
series forecasting problems.

o We propose two different attention sharing architectures
for sharing self-attention information among different
tasks during jointly training process. The external public
multi-head attention helps to capture and recording self-
attention information across different tasks.

o We conducted extensive experiments on a real-world
multi-task time series forecasting task, and the proposed
approach obtains significant improvement over state-of-
the-art baseline methods.

II. RELATED WORK

Time Series Forecasting. Even though forecasting can be
considered as a subset of supervised regression problems,
some specific tools are necessary due to the temporal nature of
observations. Traditional data-driven approaches such as auto-
regressive integrated moving average (ARIMA) [3], [4] model,
Kalman filtering [4], support vector regression (SVR) [6],
and holt-winters exponential smoothing [18] remain popular.
Also, with the rise of various deep learning techniques, many
efficient deep models have been proposed for time series
forecasting. The recurrent neural networks (RNNs) [7], [8],
[11], [19] are powerful tools to model the temporal sequence
data. Specifically, based on the variational auto-encoder (VAE)
framework [20], [21], several variants of the RNNs have been

proposed to process a highly structured natural sequence by
capturing long-term dependencies. DCRNN [22] proposed a
deep learning framework for traffic forecasting that incorpo-
rates both spatial and temporal dependency in the time serial
traffic flow. DSSM [23] presented a probabilistic way that
combined state-space models with a recurrent neural network.
DeepAR [24] estimated a time series’ future probability dis-
tribution given its past by training an auto-regressive recurrent
neural network model.

Transformer framework. Even though the problems of
gradient vanishing or explosion have been overcome by
LSTMs to some extent, the RNN based models are still
not able to modeling very long term dependency [11]. Self-
attention, also known as intra-attention, is an attention mech-
anism relating different positions of a single sequence in
order to compute a representation of the same sequence. It
has been shown to be very useful in machine reading [25],
abstractive summarization, or image description generation.
With the help of the attention mechanism [16], [26], [27],
the dependencies between source and target sequences are
not restricted by the in-between distance anymore. Among
all the attention based variants, the Transformer model [16]
emerges as one of the most effective paradigms for dealing
with long-term sequence modeling. It presented a lot of
improvements to the soft attention [28] and make it possible to
do sequence to sequence modeling without recurrent network
units. The proposed “transformer” model is entirely built on
the self-attention mechanisms without using sequence-aligned
recurrent architecture. Recently, temporal fusion transformer
[29] combines high-performance multi-horizon forecasting
with interpretable insights into temporal dynamics, which
further demonstrated the advantages of attention mechanism
in time sequence forecasting. However, most existing research
approaches focus on the single-task learning problem. When
faced with multiple time series sequences collected from
many other related domains, the existing models have to train
each task separately without a strong multi-task generalization
capability.

Multi-task Learning. Multi-task learning (MTL) is an
important machine learning paradigm that aims at improving
the generalization performance of a task using other related
tasks [5], [7], [20], [30]. Particularly, CellScope [31] applied
multi-task learning to resolve the trade-off between data
collection latency and analysis accuracy in real-time mobile
data analytic, in which data from geographically nearby base
stations were grouped together. Luong et al. [10] examined
three multi-task strategies for sequence to sequence models:
the one-to-many setting, the many-to-one setting and the
many-to-many setting. Liu et al. [13]-[15] proposed several
multi-task sequence learning architectures by using enhanced
and external memory to share information among paralleled
RNN models. Despite the wide interest of various sequence
modeling research, there is hardly any previous work done
on combining multi-task time series forecasting with attention
based architectures based on my knowledge.
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Fig. 2: Multi-head attention architecture in Transformer.

III. SHARED-PRIVATE ATTENTION SHARING SCHEME

A. Task Definition

In this work, we focus on single-step forecasting. The basic
definition of a multi-task time series single-step forecasting
problem is: Given a dataset D = {{Xyn,¥Vmn A7 HA_,
with multiple sequence tasks, M denotes the number of tasks,
N,,, means the number of instances in m-th task, x,,,, is the n-
th sample in m-th task. For instance, X, = {zf1,.,... ot 1}
could be historical observation values with length s, and
Ymn = {y2,.... ,ywi'} means the future time series
sequence with the same length s corresponding to X.
Hence, the goal of the multiple single-step time series fore-
casting tasks is to learn a function that maps observation se-
quence {X,,, | HM_, to future sequence {y | M,
fXmn) — Ymn jointly by utilizing the latent similarities
among the tasks based on multi-task learning.

B. Preliminary Exploration

Scaled Dot-Product Attention. The original Transformer
used a particular scaled dot-product attention [16]. The input
consists of queries and keys of dimension dj, and values of
dimension d,. The dot product of the query with all keys
would be computed and divided each by /dg. A softmax
function would be applied to obtain the weights on the values.
In practice, the attention function on a set of queries is
computed simultaneously by being packed together into a
matrix ¢). The keys and values are also packed together into
matrices ' and V, as a result, the matrix of outputs is as
following:

QKT
Vi,

More specifically, this attention mechanism operates on an
input sequence, x = (x1, 2, - ,z,) with n elements where
x; € R%, and computes a new sequence z = (21,22, ,2p)
of the same length where z; € R%.

Attention(Q), K, V') = softmax(

WV D

Each output element, z;, is computed as weighted sum of a
linearly transformed input elements:

2 = Zaij (z;W") 2
j=1

Each weight coefficient, o}, is computed using a softmax

funtion:
€XP €;5

= n
D k1 €XD €ik
And e;; is computed by the attention function that essen-

tially finds the similarity between queries and keys using this
dot-product so as to perform a soft-addressing process:
(2:W9) (2, w5)"
€ij = A
where W@ € Ré=xdk WK ¢ RdeXde WV ¢ Rdexdv gre
parameter matrices. In practice, we usually set dy, = d,, = d..

Multi-head Attention. Instead of performing a single atten-
tion function with d,;,,q¢;-dimension keys, values, and queries,
it is beneficial to linearly project the queries, keys, and values
h times with different, learned linear projections to dy, dj
and d,, dimensions, respectively. Parallel attention function can
be performed on each of these projected versions of queries,
keys, and values, yielding d,,-dimensional output values. These
are concatenated and once again projected, resulting in the
final values. This multi-head attention mechanism (MHA)
allows the model to jointly attend to information from different
representation subspaces at different positions.

Generally, once we capture the new sequences output from
the multi-head functions as z(),z? ... z(» where z(*
means the attention score computed by the ith head. We
concatenate these scores as [z(1)z()...z(")] and multiple
them with an additional weight matrix to align the dimension
with targets. See Fig. 2 for an illustration of the multi-head
attention model used in Transformer.

Masking Self-Attention Heads. In order to prevent from
attending to subsequent positions, we apply attention masks,
combined with the fact that the output embeddings are offset
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Fig. 3: A global Shared-Private multi-head

by one position, ensuring that the predictions for position
can depend only on the known outputs at positions before .

Shared-Private Attention Scheme. The main challenge of
multi-task learning is how to design the sharing scheme. De-
spite the big success of recurrent neural networks in temporal
pattern recognition, long-term information has to sequentially
travel through all cells before getting to the present processing
cell which means it can be easily corrupted by being multiplied
much time by small negative numbers. This is the major cause
of shared information forgetting. Fortunately, the Transformer
helps drawing global dependencies between inputs and outputs
by creatively relies entirely on the attention mechanism result
in setting the distance between any two elements in a sequence
to 1. Additionally, its good parallelism is well suited for multi-
task learning. In this paper, we plan to provide a shared
attention model MTL-Trans among multiple tasks based on
the Transformer with two different sharing architectures.

C. General Global Shared Attention

Though the classic Transformer model employs an encoder-
decoder structure, consisting of stacked encoder and decoder
layers, in this work, we only consider the self-attention without
giving concern to the encoder-decoder attention since our work
focuses on a sequence self-modeling process. To exploit the
shared information between different tasks, the general global
shared attention architecture consists of private (task-specific)
encoder layers and a shared (task-invariant) attention layer.
The shared multi-head attention layer captures the shared in-
formation for all the tasks. In this architecture, the source time
series is modeled by task-specific stacked self-attention based
encoders. More formally, given an input time series sequence
x(m) = (x1,%2, -+ ,x,) from a random selected task m, the

! /Encoder layer k
: Task m

- ————————

attention scheme for multi-task learning.

shared attention information output s("™) = (81,82, ,8n)
from the public multi-head attention layer is defined as

s(m) = MultiheadAttentionshwed(x(’”)) (5)

where s5; € R%. Simultaneously, the task-specific attention
output zém) = (21,29, , 2n) of multi-head attention from
the kth encoder layer is computed as

z,gm) = MultiheadAttentionk(zfgf)l) (6)
where zé”_l)l is the output of the (k — 1)th encoder from task
m. The shared attention values and private values are then
arranged in concatenated manner. The task-specific encoders
take the output of the shared layer as input. The attention
output from kth encoder layer is updated as

Z(m) = Z](Cm)
A

T

] we (7
where WO e R(d=td=)xd- jg 3 parameter matrix that com-
putes the weighted average information on a combination of
both shared attention and private attention. This also helps
align the outputs as the same dimension with our target
sequences. The output is then fed into a fully connected feed-
forward network (FFN) just as the original Transformer does.
See Fig. 3 for the illustration of a general global attention
sharing scheme.

D. Hybrid Local-global Shared Attention

Different from the general global attention sharing scheme,
a hybrid local-global shared attention mechanism can make
all tasks share a global attention memory, but can also record
task-specific information besides shared information.



More generally, given an output sequence z,(cm) =

(21,22, ,zn) from the kth encoder layer for a random task
m. The output will be fed back into the shared multi-head
attention layer defined as

(m)

o vted = MultiheadAttention,ared(z), ") ®)

S

Again, the shared attention values and private outputs are
arranged in concatenated manner and fed into the next encoder
layer. The multi-head attention output from (k + 1)th encoder
layer is finally as

(m)
VA
s T DI )

updated

zfgf)l = MultiheadAttentiong 1

By recurrently feeding outputs from task-specific encoders
to the shared multi-head attention layer, this attention sharing
architecture can enhance the capacity of memorizing while
general global shared attention enables the information flowing
from different tasks to interact sufficiently. Fig. 4 and Fig. 5
clearly describe the two attention sharing architectures and
illustrate the difference.

Fig. 4: General global attention sharing architecture.

Fig. 5: Hybrid attention sharing architecture.

IV. EXPERIMENTS

In this section, we investigate the empirical performances of
our proposed architecture MTL-Trans on the following multi-
task real-world dataset.

A. Dataset Description

TRA-MI This traffic dataset was published by TELECOM
ITALIA! and it contained network measurements in terms of
total cellular traffic volume obtained from Milan city in Italy,
where the city was partitioned into 100 x 100 grids of equal

Thttps://dandelion.eu/datamine/open-big-data/

size 235m x 235m. The measurements were logged over 10-
minute intervals between 1 Nov 2013 and 1 Jan 2014. Inter-
estingly, each divided area is regarded as an independent task
while there are also some hidden connections between each
area. As an example, region A and region B are geographically
adjacent which means these two areas are somehow related,
such as sharing similar geographic information or municipal
resources. If our proposed model can learn the similarity
between different tasks, there is no doubt it will enhance
the generalization ability to forecasting other related tasks
even without pre-training it. For computing efficiency, we
geographically merge all the small grids into 10 regions as
10 different tasks. Each region contains 1000 samples and
naturally be marked as Task#1, Task#2, etc.

B. Benchmarks

We extensively compare MTL-Trans to a wide range of
models for time series forecasting. Hyperparameter optimiza-
tion is conducted using random search over a pre-defined
search space, using the same number of iterations across all
benchmarks for the same given dataset. Specifically, for single-
task learning, the methods in our comparative evaluation are
as follows.

e LSTM [11] Recurrent neural network with two-layer
hidden long-short memory units and dropout applied.

o Seq2Seq-Attn [8], [26] Sequence to sequence network
is a model consisting of two RNNs called the encoder
and decoder. The encoder reads an input sequence and
outputs a single vector, and the decoder reads that vector
to produce an output sequence. Additionally, attention
mechanism is applied.

o DeepAR [24] Auto-regressive RNN time series model
which consists of an LSTM that takes the previous time
points and co-variates as input for next time step.

o« DSSM [23] Deep state-space model is a probabilistic
time series forecasting approach that combines state-
space models with deep learning by parameterizing a per-
time-series linear state-space model with a jointly-learned
recurrent neural network.

For multi-task learning, we compare our proposed approaches
with the RNN-based generic sharing schemes.

e SSP-MTL [13], [14] An LSTM-based multi-task se-
quence learning model with a shared-private sharing
scheme by stacking hidden states from different tasks.

For the single-task learning methods above, we trained each
model on each task independently. All the models forecast
one-time step forward with a consistent historical horizon.

C. Evaluation Metrics

These methods are evaluated based on three commonly used
metrics in time series forecasting, including:

o Empirical Correlation Coefficient (CORR)
>y (9 —9) (ye — §)
n ~ =\ 2 n _\2
\/Zt:l (yt - y) \/Zt:l (y¢ —79)

CORR = (10)




o Root Mean Squared Error (RMSE)
n . 571/2
RMSE — E lzw—w] an
n

o Symmetric mean absolute percentage error (sSMAPE)

1 - ) —
SMAPE — OO%Z A|yt i
0 2 il + ) /2

where y; is the ground truth value and g}, is the forecast value.

(12)

D. Training Procedure

We partition all time series of all tasks into 3 parts in
chronological order — a training set (60%) for learning, a
validation set (20%) for hyperparameter tuning, and a hold-out
test set (20%) for performance evaluation. All time series have
been preprocessed by applying Min-Max normalization such
that all the values range from -1 to 1. Hyperparameter opti-
mization is conducted via random search, using 50 iterations.
Additionally, we use AdamW optimizer [32] with learning rate
decay strategy applied: the learning rate of each parameter
group decayed by gamma v every pre-defined steps 2. Full
search ranges for all hyperparameters are below, with optimal
model parameters listed in Table. 1.

o Shared and each task-specific embedding dimension

- 16, 32, 64, 128

e Number of heads — 2, 4, 8

o Number of encoder layers — 1, 2, 3,4, 5, 6

+ Dimension of feed-forward layer — 128, 256, 512, 1024

« Dropout rate — 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9

o Mini-batch size — 32, 64, 128, 256

o Learning rate — 0.0003, 0.003, 0.03

o Max. gradient norm - 0.01, 0.7, 1.0, 100.0

+ Learning rate decay rate — 0.80, 0.95, 0.99

o Decay step size — 1.0, 5.0, 10.0

Following [14], [33], the training is achieved in a stochastic
manner by looping over tasks:

1) Randomly select a task m.

2) Train a consecutive mini-batch b of samples from this

task m.
3) Update the parameters for this task by gradient backward
with respect to this mini-batch b.

4) Go to Step 1.

Across all training process, all task-specific models were
trained on the same single NVIDIA Tesla P100 GPU, and
can be deployed without the need for extensive computing
resources.

E. Loss Function

Both global-shared attention architecture and hybrid archi-
tecture are trained by minimizing the squared L? norm loss
[34], summed across all outputs:

g(xay):L:{llw--;lN}Ta ln:(xnfyn)Q (13)

where IV is the batch size. x and y are sequences of arbitrary
shapes with a total of n elements each.

2All the experiments were done by using Pytorch library.

TRA-MI

Dataset Details

Target Type R
Number of Tasks 10
Network Parameters
Embedding Dimension 32
Number of Heads 4

Number of Encoder Layers | 2

Dimension of FFN 128
Dropout Rate 0.1
Training Parameters

Mini-batch Size 64
Learning Rate 0.0003
Max Gradient Norm 0.7
Learning rate decay rate 0.95
Decay step size 1.0

TABLE I: Information on dataset and optimal training config-
uration.

F. Main Results

We compare our proposed two architectures with a wide
range of baselines for both single-task forecasting and multi-
task forecasting. Table. II summarizes the forecasting per-
formance of our proposed method through three evaluation
metrics. Our proposed MTL-Trans architectures significantly
outperform all benchmarks over the variety of metrics and
tasks. Moreover, the multi-task frameworks (SSP-MTL &
ours) that jointly train the data outperform the single-task train-
ing framework as the model performance consistently tells.
It demonstrates the shared information scheme across tasks
can enhance modeling ability and capture both similarities and
difference between tasks that finally benefits the model. With
the help of the shared attention layer, the performances of
all tasks by our proposed methods are significantly improved
roughly around 2% across all metrics compared to the LSTM-
based architecture SSP-MTL. This consistent improvements
demonstrate the long term dependency modeling capability
of the self-attention mechanism. Moreover, the two different
attention sharing schemes share the winning tickets since the
global sharing scheme performs better on Tasks 2, 3, 7, 8, 10
while the other one performs better on the rest tasks. As we
described in section III, for tasks with highly similar patterns,
a general global attention memory might be more suitable
since consistent global attention helps capture the similarity
and backward this information to each specific task more
efficiently. For tasks with more inconsistent patterns, a local-
global attention sharing scheme might be more appropriate
because it can also record task-specific information besides
globally shared information which can diversify each task-
specific pipeline.

Fig. 6 shows some predicted time series by local-global
sharing architecture. The predicted curve almost coincides
with the groundtruth which further demonstrate the model’s
predictive capability. Fig. 8 further shows the good predictive



Single-Task

Multi-Task MTL-Trans (ours)

Task  Metrics A
LSTM  Seq2Seq-Attn  DeepAR  DSSM SSP-MTL Global  Local-Global
CORR 0.7108 0.8005 0.8536 0.8640 0.8885 0.9045 0.9049 +1.85%
#1 RMSE 0.1138 0.1050 0.0986 0.0979 0.0952 0.0937 0.0934 +1.82%
sMAPE  16.20% 14.91% 13.92%  13.96% 13.50% 13.22% 13.17% +2.46%
CORR 0.6781 0.7673 0.8149 0.8248 0.8492 0.8628 0.8623 +1.61%
#2  RMSE 0.1279 0.1176 0.1102 0.1105 0.1068 0.1044 0.1046 +2.25%
sMAPE  14.66% 13.45% 12.53%  1251% 12.17% 11.96% 11.96% +1.74%
CORR 0.6967 0.7784 0.8392 0.8418 0.8679 0.8836 0.8835 +1.81%
#3  RMSE 0.1129 0.1041 0.0977 0.0966 0.0941 0.0925 0.0931 +1.77%
sMAPE  24.88% 22.76% 21.31%  21.44% 20.72% 20.31% 20.36% +2.00%
CORR 0.7339 0.8301 0.8882 0.8901 0.9211 0.9390 0.9392 +1.96%
#4  RMSE 0.1488 0.1354 0.1276 0.1278 0.1236 0.1211 0.1205 +2.50%
sMAPE  83.24% 76.10% 71.75%  71.68% 69.42% 68.16% 68.15% +1.83%
CORR 0.7585 0.8575 0.9183 0.9242 0.9489 0.9638 0.9646 +1.65%
#5 RMSE 0.1134 0.1045 0.0980 0.0974 0.0948 0.0929 0.0921 +2.81%
sMAPE  51.84% 47.839% 4490%  44.84% 43.34% 42.48% 42.03% +3.02%
CORR 0.6775 0.7618 0.8149 0.8199 0.8457 0.8587 0.8593 +1.61%
#6  RMSE 0.1635 0.1493 0.1405 0.1394 0.1356 0.1331 0.1330 +1.98%
sMAPE  70.18% 64.76% 60.65%  60.15% 58.63% 57.31% 56.89% +2.98%
CORR 0.7572 0.8523 0.9131 0.9149 0.9444 0.9593 0.9580 +1.58%
#7  RMSE 0.0728 0.0667 0.0628 0.0626 0.0608 0.0594 0.0602 +2.37%
sMAPE  7.98% 7.32% 6.89% 6.88% 6.67% 6.52% 6.69% +2.30%
CORR 0.5364 0.6001 0.6454 0.6494 0.6679 0.6814 0.6785 +2.01%
#8  RMSE 0.1051 0.0972 0.0910 0.0902 0.0880 0.0865 0.0868 +1.77%
sMAPE  9.75% 8.99% 8.40% 8.41% 8.15% 7.97% 7.99% +2.28%
CORR 0.6369 0.7144 0.7659 0.7726 0.7969 0.8107 0.8111 +1.78%
#9  RMSE 0.1865 0.1712 0.1606 0.1602 0.1558 0.1533 0.1532 +1.70%
sMAPE  53.70% 48.84% 46.29%  45.76% 44.61% 43.70% 43.85% +2.03%
CORR 0.6457 0.7258 0.7706 0.7785 0.8035 0.8231 0.8227 +2.44%
#10 RMSE 0.1711 0.1571 0.1472 0.1468 0.1432 0.1399 0.1404 +2.28%
sMAPE  33.79% 30.92% 29.00%  28.90% 28.04% 27.42% 27.37% +2.40%

TABLE II: Model performance of two proposed attention sharing schemes against state-of-the-art neural models on TRA-
MI dataset. Best performance in boldface. A represents the improvements compared to SSP-MTL. Experiments on all tasks
are with the same historical horizon as 15 hours and forecast window as 10 minutes. Our proposed MTL-Trans consistently
outperform all benchmarks over the variety of tasks and metrics.

ability of our proposed model as the simulated forecasting
based on partial real data maintains the original pattern well.

G. Ablation Analysis

One intuitive question is that what if we only train each
task-specific transformer encoder separately instead of sharing
public multi-head attention? If we tune the hyperparameter of
each task-specific model (As an example, increase the number
of heads, deepen the encoder layers, etc.) such that they own
similar amount of model parameters to the shared-attention
scheme, removing the performance gain induced by model
complexity, will they perform better than our shared attention
model? Fig. 7 tells us the answer by showing the loss decre-
ment against training steps among three architectures — global
sharing scheme, hybrid local-global sharing scheme, and pure
paralleled transformer encoders without sharing information.
The fastest for loss descent is by local-global attention sharing
scheme followed by the global attention sharing scheme and
they eventually converged together. Compared to the shared at-
tention architecture, the loss of pure encoders without sharing

information drops more slowly, and the final result is not as
good as the others which again demonstrates the effectiveness
of sharing paradigm in multi-task learning.

To further illustrate the effectiveness of MTL-Trans in
modeling the multi-task time series data, we summarize the
following reasons:

o First of all, there are similarities between all related tasks
and one fundamental mission in multi-task learning is to
find these similarities out and take further advantages of
them to benefit in solving other unseen tasks. The shared
attention captures the similarity between different tasks
and feedback on all related tasks. This is the main reason
why this shared attention architecture can outperform
naive models.

o Self-attention mechanism is the second hero that helps
to make this happen. As we have discussed in section
IV, the essence of the self-attention mechanism is a soft-
addressing process. Our shared multi-head attention plays
an important role that helps to record this query-key
pairwise addressing information that can benefit other
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from different tasks with the same historical horizon as 15
hours and forecast window as 10 mins on test set.
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Fig. 8: Simulation test on future prediction based on real data.

unseen tasks under the hypothesis that similar tasks share
similar self-addressing information.

V. CONCLUSION

In this paper, we presented a shared attention-based ar-
chitecture with two different sharing schemes for multi-task
time series forecasting. By setting an external public multi-
head attention function for capturing and storing self-attention
information across different tasks, the proposed architectures
significantly improved the state-of-the-art results in multi-
task time series forecasting on this multi-resource cellular
traffic dataset TRA-MI. With ablation analysis and empirical
evidence, we show the efficiency of the proposed architecture
and the essence of why it succeeds. For future work, we
will investigate the following two aspects: (1) applying the
proposed model to other sequence modeling tasks such as
machine translation; (2) developing other attention sharing
schemes to further enhance the predictive ability; (3) finding
another way or architecture that computes the shared multi-
head attention more efficiently, e.g. the time and memory
complexity of computing a multi-head self-attention function
would cost O(L?) where L is the length of input sequences.
It could be hard to compute when the sequence length is very
long or the computational power is limited.
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