
DoubleFaceAD: A New Datastore Driver Architecture
to Optimize Fanout Query Performance

Shungeng Zhang
Louisiana State University

szhan45@lsu.edu

Qingyang Wang
Louisiana State University

qwang26@lsu.edu

Yasuhiko Kanemasa
FUJITSU LABORATORIES
kanemasa@jp.fujitsu.com

Jianshu Liu
Louisiana State University

jliu96@lsu.edu

Calton Pu
Georgia Tech

calton.pu@cc.gatech.edu

Abstract
The broad adoption of fanout queries on distributed datas-
tores has made asynchronous event-driven datastore drivers
a natural choice due to reduced multithreading overhead.
However, through extensive experiments using the latest
datastore drivers (e.g., MongoDB, HBase, DynamoDB) and
YCSB benchmark, we show that an asynchronous datastore
driver can cause unexpected performance degradation es-
pecially in fanout-query scenarios. For example, the default
MongoDB asynchronous driver adopts the latest Java asyn-
chronous I/O library, which uses a hidden on-demand JVM
level thread pool to process fanout query responses, caus-
ing a surprising multithreading overhead when the query
response size is large. A second instance is the traditional
wisdom of modular design of an application server and the
embedded asynchronous datastore driver can cause an im-
balanced workload between the two components due to
lack of coordination, incurring frequent unnecessary sys-
tem calls. To address the revealed problems, we introduce
DoubleFaceAD–a new asynchronous datastore driver archi-
tecture that integrates themanagement of both upstream and
downstream workload traffic through a few shared reactor
threads, with fanout-query-aware priority-based scheduling
to reduce the overall query waiting time. Our experimental
results on two representative application scenarios (YCSB
and DBLP) show DoubleFaceAD outperforms all other types
of datastore drivers up to 34% on throughput and 1.9× faster
on 99th percentile response time.

Keywords distributed datastores, fanout queries, asynchro-
nous, performance.

1 Introduction
Distributed datastores are widely used by modern web ap-
plications to improve system scalability and response time
through data partitioning and fanout queries [16, 29, 46].
To speed up the tail response time, which has become a
particular concern for latency-sensitive web-facing applica-
tions [17, 19, 20, 44], a common practice is to parallelize sub-
operations (fanout queries) across multiple partitions [15, 17,
27, 43]. Since each partition only receives a limited partial
workload, the system bottleneck is likely to shift from the

Figure 1. The upper figure is the widely-adopted de-
sign where an application server and the correspond-
ing datastore driver handle the upstream (HTTP re-
quests) and the downstream (fanout queries) traffic
separately. The lower figure is our DoubleFaceAD de-
sign where the application server and the datastore
driver are integrated to handle traffic from both sides.

original datastore tier to the upstream application server
tier, or more specifically, the datastore drivers that interact
with the downstream datastore cluster via a large number of
fanout queries.
A recent study [26] advocates the asynchronous event-

driven architecture as a natural choice for the datastore
drivers to handle highly concurrent fanout queries. One
reason is that for some applications it is unnecessary to
wait for all fanout queries to return before continuing ex-
ecution and can often reduce the application completion
time significantly [25–27]. The second reason, which we
consider is more important, is to avoid multithreading over-
head caused by processing highly concurrent fanout queries.
Unlike a thread-based datastore driver using one-thread-per-
connection to handle each fanout query, an asynchronous
event-driven datastore driver can use only one or a few
threads to handle all the fanout queries, significantly reduc-
ing the multithreading overhead [37, 46].
Though conceptually simple, taking advantage of the

asynchronous event-driven architecture to construct high-
performance datastore drivers to interact with scalable

distributed datastores is a significant challenge. This is
because of the obscured request processing control flow in-
herited from the event-driven programming model [47, 55],
making the performance of an asynchronous datastore dri-
ver not only lie in the design of the asynchronous drivers
themselves, but also their interactions with other compo-
nents in the system. For example, our experiments show that
the asynchronous drivers of some popular datastores (e.g.,
HBase and DynamoDB) can have a significant performance
drop under high concurrency workloads similar to their
thread-based counterpart (see Figure 4). On the other hand,
while the two latest asynchronous drivers for MongoDB
do outperform their thread-based counterpart, their per-
formance superiority is surprisingly reversed when fanout
query response size changes (see Figure 5).
In this paper, we show that building high-performance

asynchronous datastore drivers to communicate with the
distributed datastores requires an integrated design of the
application server and the datastore driver itself (see Fig-
ure 1). This is primarily due to the simplified event process-
ing flow and the streamlined interaction between the two
components. Concretely, the network events from both the
upstream (the client) and the downstream (the distributed
datastores) are handled by pluggable event handlers (busi-
ness logic) that run on a few shared reactor threads. Such
an integrated design is especially important in fanout query
scenarios since the network events from the downstream
can be much larger than those from the upstream, causing
an imbalanced workload between the otherwise separate
frontend and backend reactor threads. As we will show in
Section 4, the imbalanced workload problem can incur fre-
quent unnecessary system calls (e.g., select() in Linux) for
separate reactor threads.

The first contribution of the paper is a quantitative evalu-
ation (based on YCSB [12] workload and dataset) illustrating
the unexpected performance variation of different datastore
driver architectures under varying workload conditions. For
example, we found that the asynchronous DynamoDB [4]
and HBase [22] drivers have a surprisingly similar perfor-
mance drop under high-level workload concurrency to their
thread-based counterparts. While the two asynchronous
MongoDB drivers perform well under high concurrency
workload, their performance has very different sensitivity
level to the change of fanout query response size.

The second contribution is a deep-dive analysis revealing
the causes of the performance degradation of the four latest
asynchronous datastore drivers. For example, the asynchro-
nous drivers for DynamoDB and HBase essentially adopt
the thread-based design but with an asynchronous interface,
thus introducing high multithreading overhead when facing
high concurrency workload. The default asynchronous dri-
ver for MongoDB is based on the latest Java asynchronous
I/O library (AIO in JDK1.7) while the alternative one is built

on top of a widely-used asynchronous network I/O frame-
work Netty [38]. We found that the former one still uses a
hidden on-demand JVM-level worker thread pool to process
fanout query responses, causing non-trivial multithreading
overhead when query response size is large (e.g., 20kB). For
the latter one, we found an interesting imbalanced workload
problem between the application server and the embedded
datastore driver due to a lack of coordination between them,
causing frequent unnecessary system calls.

As the third and themain contribution, we introduce a new
Asynchronous Datastore driver architecture (DoubleFaceAD)
that integrates the design of the application server and the
datastore driver. Concretely, DoubleFaceAD manages both
upstream and downstream connections using one or a few
reactor threads to handle the network events from both sides.
Such an integrated design maintains both high performance
and high flexibility since business logic and datastore dri-
ver management functions can be pluggable event handlers
that run on the same set of threads. We further introduce
a fanout-query-aware priority-based job scheduling algo-
rithm to reduce the tail latency of concurrent fanout queries.
The experimental results show that DoubleFaceAD outper-
forms all other types of driver architectures up to 34% on
throughput and 1.9× faster on 99th percentile response time.

In general, our results strongly suggest that the asynchro-
nous design of datastore drivers has a potentially significant
performance advantage over the traditional thread-based
design when interacting with distributed datastore clusters
through fanout queries. In fact, our work has a much wider
impact on real-world modern cloud systems since fanout
queries are not only common in distributed datastores, but
also many large-scale distributed systems adopting microser-
vices and serverless computing architecture [2, 6, 34, 48].

The rest of the paper is organized as follows. Section 2
illustrates the performance variation of three representative
datastores drivers (DynamoDB, HBase, and MongoDB). Sec-
tion 3 describes the unexpected multithreading overhead
problem in the Java AIO-based asynchronous MongoDB dri-
ver. Section 4 explains the imbalanced workload problem in
the Netty-based asynchronous MongoDB driver. Section 5
and 6 introduce and evaluate our new asynchronous datas-
tore driver architecture, respectively. Section 7 discusses the
cost and limitations of DoubleFaceAD. Section 8 summarizes
the related work and Section 9 concludes the paper.

2 Background and Motivation
2.1 Server Connector Categories
Connectors are commonly used by modern internet servers
to communicate with each other or with end-users. For ex-
ample, a Tomcat application server uses an HTTP connector
to communicate with end-users while uses a datastore dri-
ver to communicate with the downstream MySQL server.
Concretely, the Tomcat server uses the HTTP connector to

Figure 2. Illustration of a general asynchronous event-
driven connector architecture.

accept/close upstream network connections, read client re-
quests and respond via the established connections; and if
necessary, send queries to the downstream MySQL through
the datastore driver. Such a scenario is prevalent in practice:
an application server (via a frontend connector) manages the
upstream connections while the backend connector manages
the downstream connections separately.
Thread-based connectors. Thread-based connectors are
used by servers adopting the traditional synchronous RPC-
style request-response communication, in which the servers
follow the one-thread-per-connection model. In this model,
each established connection is handled by a dedicatedworker
thread until the connection close. In this case, concurrent
requests from clients consume the same amount of worker
threads in the server, bringing the well-known multithread-
ing overhead such as scheduling and lock contention [51].

Asynchronous connectors are for servers that do not want
to be blocked by busy waiting for responses [46] (e.g., from
datastores). They can be categorized into two types.

Type-1 asynchronous. This type simulates the asynchro-
nous behavior of the main thread of a server by delegat-
ing each asynchronous API call (e.g., sending out fanout
queries) to a worker thread in a pre-defined thread pool [26];
each worker thread still uses the synchronous RPC request-
response to communicate with other servers. Such a design is
easy to implement, however, it brings the same multithread-
ing overhead as the thread-based connectors.

Type-2 asynchronous. This type employs an event-
driven mechanism to manage connections and process all
network I/O events using one or a few threads [28, 46, 55].
Figure 2 shows the interactions of an asynchronous con-
nector with the application and the underlying operating
system. The asynchronous connector is responsible for man-
aging network I/O events from established connections by
continually looping over two phases. The first phase is event
monitoring, which determines connections with pending

Figure 3. Details of experimental setup.

network I/O events (readable or writable). Concretely, the
underlying operating system (OS) notifies the reactor thread
of the asynchronous connector the occurrence of pending
events through OS-specific event notification mechanisms
such as select, poll, or epoll. The second phase is event han-
dling, where the reactor thread repeatedly dispatches the
connections with pending events to corresponding event
handlers to process the business logic [28, 37, 51]. In practice,
there are two typical designs of the second phase.
1. Type-2a asynchronous. This type is a single-threaded

asynchronous connector which uses the same reactor
thread to loop over the aforementioned two phases, for
example, Node.js [1] and Lighttpd [33]. Such a design is
especially beneficial for in-memory workloads because
multithreading overhead is minimum [32].

2. Type-2b asynchronous. This type is to use a worker
thread pool in the second phase to concurrently pro-
cess connections with pending events. Such a design
is supposed to efficiently utilize CPU resources in
the case of transient disk I/O blocking or multi-core
environments [37, 51].

2.2 Experimental Environment
Datastore drivers under study.We study three represen-
tative NoSQL datastore drivers (DynamoDB, HBase, and
MongoDB) that follow the aforementioned thread-based or
asynchronous designs. Other than thread-based drivers, the
asynchronous drivers for DynamoDB [4] and HBase [22]
adopt the Type-1 asynchronous design. MongoDB has two
asynchronous drivers. The default one adopts the Type-2b
design, which is based on the latest Java asynchronous I/O
(AIO) library and uses a JVM-level on-demand worker thread
pool for event processing in the second phase. The alterna-
tive one adopts the Type-2a design, which is built on top of
Netty [38], a widely used asynchronous event-driven net-
work I/O framework. We will experimentally illustrate their
performance differences and explain the root causes next.

0

1K

2K

3K

4K

5K

6K

 1 4 16 64 256 1024

T
hr

ou
gh

pu
t [

re
q/

se
c]

Workload concurrency [# concurrent req]

DynamoDB-async
DynamoDB-thread

(a) DynamoDB driver case.

0

1K

2K

3K

4K

5K

6K

 1 4 16 64 256 1024

T
hr

ou
gh

pu
t [

re
q/

se
c]

Workload concurrency [# concurrent req]

HBase-async
HBase-thread

(b) HBase driver case.

0

1K

2K

3K

4K

5K

 1 4 16 64 256 1024

T
hr

ou
gh

pu
t [

re
q/

se
c]

Workload concurrency [# concurrent req]

MongoDB-async
MongoDB-thread

(c) MongoDB driver case.

Figure 4. The performance impact of different datastore driver architectures (thread-based vs. asynchronous).

 0

 20

 40

 60

 80

 100

 120

 1 4 16 64 256 1024

T
hr

ou
gh

pu
t [

re
q/

se
c]

Workload concurrency [# concurrent req]

AIOBackend
NettyBackend

Threadbased

(a) The 20kB response size case.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1 4 16 64 256 1024

T
hr

ou
gh

pu
t [

re
q/

se
c]

Workload concurrency [# concurrent req]

AIOBackend
NettyBackend

Threadbased

(b) The 1kB response size case.

0

1K

2K

3K

4K

5K

 1 4 16 64 256 1024

T
hr

ou
gh

pu
t [

re
q/

se
c]

Workload concurrency [# concurrent req]

AIOBackend
NettyBackend
Threadbased

(c) The 0.1kB response size case.

Figure 5. Throughput comparison among different drivers for MongoDB under different workload concurrencies
and fanout query response sizes. The fanout factor is fixed to 5. Subfigures (a) and (c) show that the throughput order
between AIOBackend and NettyBackend is reversed when the fanout query response size changes.

Experimental setup. Figure 3 shows our experimental
setup. We compare the performance of a Netty-based appli-
cation server equipped with the aforementioned datastore
drivers communicating with the downstream datastores (e.g.,
DynamoDB, HBase, and MongoDB). The experiments were
carried out by allocating a dedicated physical node to each
server (including datastores 1). We use a Netty-based applica-
tion server because it is among the best to efficiently handle
high concurrency workload [39]. We refer to the application
server equipped with the thread-based and asynchronous
driver for a specific data store as XXX-sync and XXX-
async, respectively, where XXX can be either DynamoDB,
HBase, or MongoDB. Since MongoDB has two asynchronous
drivers, we refer the server with the Netty-based driver as
NettyBackend and the one with Java AIO-based driver
as AIOBackend. All the server implementations will be
available in GitHub [54] upon publication.
We use JMeter [21] to generates HTTP requests (e.g.,

web search query) to access the application server, which
will trigger fanout queries to a cluster of NoSQL datastores.
These HTTP requests are categorized into three types: large,
medium, and small, with which the downstream datastores
respond with 20kB, 1kB, and 0.1kB of data for each fanout
query, respectively. We choose these three sizes because they
are representativeworkloads for realistic key-value stores [3].
For each HTTP request, the application server will simply
assemble the responses from the fanout queries and send
it back to the end-user. JMeter uses one thread to simulate
each end-user. Each thread will immediately issue the next

1We use Amazon DynamoDB [42] as our remote DynamoDB cluster while
the HBase and MongoDB clusters are in our local cloud testbed.

HTTP request once it receives the response from the previ-
ous request. Thus by specifying the number of threads in
JMeter, we can precisely control the workload concurrency
sent to the application server. For downstream datastores,
we shard YCSB [12] dataset across 20 datastores; thus we
can control the fanout factor from 1 to 20, which is a rea-
sonable fanout factor range for distributed datastores [52].
Each datastore shard contains one-million 1-kB records and
each contains a primary key and ten 0.1kB fields, thus the
size of each shard is about 1GB which can fit into memory.
Therefore, the downstream datastore will perform a scan
query for a large response while a point-lookup query for a
small response.

2.3 Significant Performance Variations of Different
Asynchronous Datastore Drivers

In this section, we show the significant performance varia-
tions of the same application server equipped with different
datastore drivers. Our goal is to illustrate the importance of
the problem. The detailed explanation is in Sections 3 and 4.
We first compare the performance of thread-based and

asynchronous drivers of MongoDB, DynamoDB, and HBase
as workload concurrency gradually increases from 1 to 1024,
shown in Figure 4. In all cases, we set the fanout factor to 5
and fanout query response size to 0.1kB. The performance of
all the three thread-based datastore drivers degrades dramati-
cally at high workload concurrency, which is expected due to
the well-known multithreading overhead as previous studies
show [49–51, 55]. However, the three asynchronous drivers
behave very differently. For example, both DynamoDB-async
and HBase-async encounter the same level of throughput

drop at high workload concurrency as their thread-based
counterpart while MongoDB-async (the default asynchro-
nous MongoDB driver AIOBackend) achieves the expected
high performance, for example, 140% higher throughput
than its thread-based counterpart at workload concurrency
1024. The poor performance of DynamoDB-async and HBase-
async is due to their Type-1 design, which essentially uses
a thread pool to simulate the asynchronous behavior of the
main thread of the server, thus introducing non-trivial mul-
tithreading overhead at high workload concurrency.
More interesting phenomena are observed when we

compare the performance of two asynchronous drivers for
MongoDB (AIOBackend and NettyBackend) under different
workload concurrency and fanout query response sizes,
shown in Figure 5. AIOBackend adopts the Type-2b design
while NettyBackend adopts the Type-2a design.

The first interesting observation is that the throughput
of AIOBackend starts to drop as the workload concurrency
increases beyond 64 especially in the 20kB query response
size case, shown in Figure 5(a). Such a throughput drop is
interesting because the same phenomenon does not occur in
NettyBackend. In Section 3, we will explain that AIOBack-
end adopts the latest Java asynchronous I/O (AIO) library
which uses an on-demand worker thread pool to process
datastore query response, generating unexpected high mul-
tithreading overhead when facing large query response size
and high workload concurrency.
The second interesting observation is the throughput

order reversal between NettyBackend and AIOBackend
when the datastore query response size decreases from 20kB
to 0.1kB. For example, NettyBackend achieves 19% higher
throughput than AIOBackend when workload concurrency
is 100 in the 20kB case (see Figure 5(a)), however, under
the same workload concurrency, AIOBackend achieves 15%
higher throughput than NettyBackend in the 0.1kB case (see
Figure 5(c)). The only change is the datastore query response
size. In Section 4, we will explain that small datastore query
response size could lead to imbalanced workload between
upstream and downstream connections in NettyBackend,
causing a large number of unnecessary system calls (e.g.,
select() in Linux) and thus high CPU overhead.

3 Unexpected Multithreading Overhead in
Type-2b Asynchronous Driver

In this section, we study the root cause of why asynchro-
nous AIOBackend (Type-2b) achieves lower performance
than NettyBackend (Type-2a) at high concurrency workload
as shown in Figure 5(a). What this study reveals is that the
Type-2b asynchronous driver has inherent deficiencies in
its basic design when it handles high concurrency of fanout
query responses from the downstream datastores.

AIOBackend essentially adopts the Type-2b asynchronous
design, which uses one or a few reactor threads to monitor
network I/O events, and an on-demand worker thread pool

Table 1. Both AIOBackend and Threadbased encounter
more context switches and lock contention overhead
than NettyBackend. Fanout query response size is 20kB.

AIOBackend NettyBackend Threadbased

Throughput [req/sec] 88 106 64
Concurrent running

threads [/sec]
22 3 48

Context Switch [/sec] 4550 670 5338

Syscalls
cpu usages

Locking
(mutex)

7.7% 1.2% 35.3%

thread
initiation

6.0% 0.8% 1.1%

Total CPU usage 100.0% 100.0% 100.0%

to process query responses from the downstream datastores,
as shown in Figure 6. Specifically, the frontend is a Netty-
based reactor thread (application server) to handle HTTP
requests from clients; the backend is an AIO-based Mon-
goDB driver that interacts with the downstream datastore
cluster. To improve the performance of event monitoring
and handling, the AIO-based MongoDB driver exploits the
asynchronous I/O supported in the latest Java Virtual Ma-
chine (JVM version after 1.7), which uses a JVM-level reactor
thread to monitor the network I/O events and a JVM-level
worker thread pool to handle those events (in our case, the
events are fanout query responses). By default, the JVM-level
worker thread pool adopts an on-demand strategy where a
worker thread will be launched as needed and terminated
after a certain period of idle time. Concretely, to process a
new client request, the following four main stages are taken:
1. The Frontend reads and parses HTTP requests from

clients, and then sends related fanout queries to the
downstream datastores (1∼ 3 in Figure 6);

2. The Backend JVM-level reactor thread monitors the
availability of read events (fanout query responses) from
the downstream datastores and wraps the read events
into a task queue (4 in Figure 6);

3. The Backend JVM-level worker thread pool fetches and
processes the read events from the task queue, and
passes the intermediate results to the Frontend (5 in
Figure 6);

4. The Frontend checks the completeness of the interme-
diate results from all the fanout queries regarding each
specific HTTP request, and assembles the final response
to return back to the clients (6 in Figure 6).

We found the unexpected multithreading overhead mainly
comes from the third stage (5 in Figure 6). In this stage, the
JVM-level worker thread pool fetches read events (fanout
query responses) from the task queue for further processing.
Since this stage does not involve network I/O (all the read
events are ready), a few worker threads should be enough

③ Non-blocking, return immediately

② Submit fanout job

Clients

① Read event

⑥Write event

JVM worker
thread pool

Frontend reactor thread

Distributed
Datastores

⑤ Results for
assembling JVM reactor

Backend MongoDB AIO driver

④ Results
returned
from DB

HTTP request

HTTP response

…

Fanout queries

Connection
management

Figure 6. Architecture of the asynchronous AIOBackend server.

 0
 0.2
0.4
0.6
0.8
1.0

1 5 20N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fanout factor

NettyBackend AIOBackend

Figure 7. The throughput of AIOBackend decreases as
the fanout factor increases from 1 to 20 when the
fanout query response size is large (20kB).

to process all the fanout query responses as long as each re-
sponse size is small (processing time is proportional to query
response size). However, once the fanout query response
size is large, more worker threads will be launched to con-
currently process the query responses due to the on-demand
scaling of the worker thread pool. In this case, the associated
multithreading overhead (e.g., locking, scheduling) becomes
large, especially when the workload concurrency is high.

We use perf [23] to demonstrate the non-trivial CPU over-
head caused by multithreading in asynchronous AIOBack-
end. Table 1 compares some key performance metrics among
the servers AIOBackend, NettyBackend, and Threadbased.
The workload concurrency from clients is fixed to 100. The
fanout factor is 5 and each fanout query response size is 20kB.
As expected, the throughput of Threadbased is the lowest
(64 req/sec) among the three because of the multithreading
overhead caused by a large number of concurrently run-
ning threads (48). Especially, the mutex lock CPU overhead 2

involved in multithreading in Threadbased reaches 35.3%,
significantly higher than that in the other two asynchronous
servers. Nevertheless, the asynchronous AIOBackend server
is also observed 7.7% CPU overhead in mutex lock. This
is because the AIO-based MongoDB driver in AIOBackend
adopts a JVM-level worker thread pool to process fanout
query responses as previously explained. For example, the
number of concurrently running threads in AIOBackend is
22 while such number is 3 for NettyBackend (the detailed

2Mutex lock contention occurs when multiple threads try to access a shared
resource; the higher contention, the more CPU overhead.

Table 2. NettyBackendwastes more CPU on select() sys-
tem calls than AIOBackend. The fanout factor is 5 and the
DB query response size 0.1kB.

AIOBackend NettyBackend
Throughput [req/sec] 5042 4373
of select()
[30s runtime] 54K 155K

select() CPU
utilization [%] 1.1% 8.1%

design is in Section 4), which helps explain the throughput
difference of the two asynchronous servers.

perf also reports that 6.0% CPU resource of AIOBackend
is used in initiating new threads (the thread initiation [36]
factor in Table 1) while the other two servers do not have
such CPU overhead. This is because of the on-demand scaling
of the worker thread pool in the AIO-based MongoDB driver
when handling fluctuations of fanout-query responses from
the downstream datastores.
We further study the impact of different fanout factors

on the performance of asynchronous AIOBackend and Net-
tyBackend. To clearly show the different impact, we use
NettyBackend as the baseline and compare the normalized
throughput between the two servers, shown in Figure 7. The
client workload concurrency still keeps 100 and the fanout
factor of queries to downstream datastores varies between
1 to 20. While the throughput of AIOBackend and Netty-
Backend is almost the same when the fanout factor is 1,
AIOBackend throughput decreases by 36% compared to Net-
tyBackend when the fanout factor increases to 20. Such a
performance degradation is due to the increase of the num-
ber of concurrent fanout query responses in the server. Thus
more concurrent worker threads are launched in AIOBack-
end to process the increased fanout query responses, result-
ing in high multithreading overhead as explained in Table 1.

4 Imbalanced Workload Problem of
Type-2a Asynchronous Driver

In this section, we study the design deficiencies of the
asynchronous NettyBackend when it handles small size
responses from the downstream datastores. NettyBackend
adoptsType-2a asynchronous design, which essentially uses

③ Non-blocking,
return immediately

② Submit fanout job

Clients

⑥ Results for
assembling

Netty reactor
thread looping
over events

⑤ Results
returned
from DB

④ Query DB

Frontend reactor thread Backend MongoDB Netty driver

① Read event

⑦Write event

HTTP request

HTTP response

Distributed
Datastores

…

Fanout queries

Connection
management

Figure 8. Architecture of the asynchronous NettyBackend server.

Table 3. Imbalanced workload between Frontend and
Backend reactor threads leads to inefficient system
call select() in NettyBackend. This table shows a 30-second
measurement of system call select() in NettyBackend.

of Backend
reactor threads

One Two Four

Throughput
[req/sec]

3537 4373 3397

total # of select()
(frontend+backend)

248K
(238K+10k)

155K
(87K+68K)

366K
(12K+354K)

total # of events
(frontend+backend)

401K
(174K+227K)

509K
(289K+220K)

390K
(330K+60K)

events per select()
(frontend / backend)

0.7 / 22.7 3.3 / 3.2 27.5 / 0.2

only a few reactor threads to both monitor and handle net-
work I/O events from the downstream connections, shown
in Figure 8. Concretely, NettyBackend employs one reactor
thread in the frontend connector to manage connections
from upstream clients and another few reactor threads
in the backend connector to manage connections to the
downstream datastores. While such a design truly reduces
the multithreading overhead, we found that the lack of
coordination of event processing between the frontend and
the backend reactor threads in NettyBackend could lead to
a serious imbalanced workload problem between the two,
causing frequent unnecessary system calls (e.g., select()).

We start our investigation by using perf to analyze some
key system calls and their CPU usage in both AIOBackend
and NettyBackend to capture any potential overhead, shown
in Table 2. The workload concurrency for both servers is
set to 100. The fanout factor keeps 5 while the fanout query
response size reduces from 20kB to 0.1kB. Under this work-
load condition, the CPU usage of both servers reaches 100%,
however, NettyBackend achieves about 15% less throughput
than AIOBackend. perf reports that NettyBackend has 155K
select() system calls during a 30-second experiment runtime,
which is nearly 3 times of that (54K) in AIOBackend. Sys-
tem calls are generally expensive due to the related kernel
crossing overhead [8, 45]. For example, the CPU usage of the
system call select() in NettyBackend is 7% more (8.1%−1.1%)

 0

 1

 2

 3

 4

 5

 120 122 124 126 128 130

of

 C
on

cu
rr

en
tl

y
R

un
ni

ng
 T

hr
ea

ds

Timeline [s]

NettyBackend AIOBackend

Figure 9. Concurrent running threads comparison be-
tween NettyBackend and AIOBackend.

than that in AIOBackend, contributing to about half of the
throughput difference between the two servers.

We find out that the exceptionally high number of select()
system calls in NettyBackend is due to the imbalanced work-
load between the frontend and the backend reactor threads.
select() is invoked during the event monitoring phase when a
Netty reactor thread performs an event occurrence checking
on all established connections. Once returning a list of con-
nections with the pending network I/O events, the reactor
thread will iterate through the list and handle each event
one by one. In general, the longer the list per select(), the
more efficient of the reactor thread because it can process
the same total number the events with fewer cycles. In the
case of NettyBackend, the frontend and the backend reactor
threads work independently to process events from upstream
clients (i.e., HTTP requests) and downstream datastores (i.e.,
fanout query responses), respectively. Our experiments show
that either the frontend or the backend reactor threads may
make inefficient select() system calls due to the imbalanced
workload, leading to high CPU overhead.

Table 3 shows the detailed profiling results by perf when
we configure one, two, and four backend reactor threads in
NettyBackend to process the fanout query responses from
the downstream datastores. The three configurations are de-
noted as OneCase, TwoCase (the default setting), and Four-
Case, respectively. The number of frontend reactor threads
is always set to 1 and the workload condition keeps the
same as in Table 2. The results show TwoCase outperforms
OneCase and FourCase by 22% and 44% in throughput, re-
spectively. The throughput gap among the three servers can
be explained by the CPU overhead resulting from different
levels of select() system calls. For example, in OneCase, totally

Clients

Netty reactor thread
looping over events

Distributed
Datastores

…

Fanout queries

Connection
management

① Read event

HTTP request

⑤Write event
HTTP response

Frontend handlers

③ Non-blocking,
return immediately

② Submit fanout job

④ Results
returned from DB

Backend handlers

Figure 10. Architecture of DoubleFaceNetty. One (or a few) reactor thread is (are) responsible for managing both the events
from the upstream clients (e.g., HTTP requests) and from the downstream datastores (e.g., fanout query responses).

248K select() system calls occur in NettyBackend, among
which 238K are invoked by the frontend reactor thread while
10K by the backend reactor thread, suggesting imbalanced
workload between two sides. More importantly, the frontend
reactor thread only processes 0.7 events per select(), suggest-
ing low efficiency of the frontend reactor thread because
it processes zero event in many select() system calls (thus
called "spurious" select()), purely wasting system resources.
On the other hand, once we increase the number of backend
reactor threads to four (FourCase), the select() system calls
invoked by the backend reactor threads become extremely
inefficient: only 0.2 events per select(), suggesting even more
frequent "spurious" select() and worse throughput compared
to the other two cases.

Large amount of ”spurious" select() system calls occur due
to two reasons. First, both the frontend and the backend
reactor threads in NettyBackend continuously loop over the
event monitoring and event processing phases even if there
are no pending events, leading to "spurious" select() system
calls 3. Second, the ratio of frontend and backend reactor
threads (assuming they have the same priority) determines
the chance which side grabs the shared CPU core during each
CPU scheduling. For example, in the FourCase in Table 3,
the four backend reactor threads (compared to one frontend
reactor thread) will likely grab the shared CPU core even
if some backend reactor threads have no pending events to
process, leading to "spurious" select() system calls and high
CPU overhead.

Readers may assume that TwoCase should be the optimal
configuration since the events per select() for both frontend
and backend are nearly the same (the last row in Table 3),
indicating a balanced workload between the frontend and
the backend. However, such a balance is only statistically
true over a long-running period, it does not hold in real-
time. Figure 9 shows the number of concurrently running
threads of the TwoCase NettyBackend and AIOBackend dur-
ing a 10-second runtime. TwoCase shows relatively stable
three running threads (one frontend and two backend reac-
tor threads) while the running threads in AIOBackend varies
significantly with the timeline, indicating the effectiveness
3Netty will set a small timeout (in a few milliseconds) between consecutive
loops. Our server log confirms that a large amount of select() system calls
return a few or even an empty set of connections with pending events.

of the on-demand scaling strategy of the worker thread pool
in balancing workload between the frontend and the back-
end connector in AIOBackend. Such a balancing workload in
AIOBackend makes it achieve 15% higher throughput than
the TwoCase NettyBackend as shown in Table 2, indicating
a static allocation of reactor threads in either the frontend
or the backend may not achieve the optimal performance.

5 DoubleFaceAD: A New Driver Architecture
So far we have studied two problems of typical designs of
asynchronous datastore drivers when dealing with fanout
queries: 1) the multithreading overhead due to the use of
thread pools (Type-1 and Type-2b asynchronous); 2) the un-
necessary system call overhead caused by imbalanced work-
load between frontend and backend reactor threads (Type-2a
asynchronous). We found that such two problems not only
exist in distributed datastore drivers, but also in many other
modern cloud systems such as microservices applications
where fanout queries are also common scenarios. We sum-
marize this representative asynchronous software in Table 4.
To address the above two problems, we introduce a new

datastore driver architecture, DoubleFaceAD, with a design
goal of achieving both high throughput and low tail response
time. Specifically, DoubleFaceAD integrates the frontend
and the backend by managing both upstream connections
(from clients) and downstream connections (from datastores)
through the same set of reactor threads to reduce the CPU
overhead (see Section 5.1). We further introduce a fanout-
query aware priority-based scheduling inside DoubleFaceAD
to mitigate the tail response time (see Section 5.2).

5.1 Integrated Design of DoubleFaceAD
The main idea of DoubleFaceAD is to use the same set of lim-
ited reactor threads to handle events from both the upstream
clients and the downstream datastores, shown in Figure 10.
Concretely, when a DoubleFaceAD-based server receives an
HTTP request, the following four stages are involved:
1. A reactor thread reads and processes the HTTP request,

and then sends related fanout queries to the downstream
datastores asynchronously (1∼ 3 in Figure 10);

2. The same reactor threadmonitors the occurrence of read
events (fanout query responses) from the downstream

Table 4. Summary of representative software sharing the design deficiencies of datastore drivers studied in this paper
Type Name Datastore model Note

Type − 1
Amazon DynamoDB driver [4] Document & KV-oriented Simulate the async behavior of the main thread of a server by delegating

each async API call to a pre-defined worker thread pool. It has the same mul-
tithreading overhead as the thread-based design.Apache Hbase driver [22] Column-oriented

Type − 2a

Apache Cassandra driver [13] Document-oriented
Drivers in this type use the same reactor thread to loop over both the event
monitoring and the event processing phase. Multiple copies of reactor threads
can be launched, and each reactor thread manages a subset of connections
(i.e., the N -copy model [53]).

Azure Cosmos DB driver [5] Document & Column &
KV & Graph-oriented

Redis driver [41] KV-oriented

MongoDB driver (Netty-based) Document-oriented

Type − 2b MongoDB driver (AIO-based) Document-oriented The main reactor thread monitors the occurrence of pending events (the first
phase), and a worker thread pool for event processing (the second phase).

connections, and handles each query response (4 in
Figure 10);

3. The same reactor thread checks the completeness of the
intermediate results from all the fanout queries for each
specific HTTP request and assembles the final response
to return back to the client (5 in Figure 10).

4. Multiple reactor threads are launched to fit a multi-core
environment (follow the N-copy model [53])

The above integrated design of DoubleFaceADmakes two
significant changes compared to the previously discussed
AIOBackend and NettyBackend (see Section 3 and 4). First,
in AIOBackend, the fanout query responses will be han-
dled by an on-demand scaling thread pool, which brings
a non-trivial multithreading overhead (e.g., mutex lock and
thread initialization) when the concurrency of fanout query
responses is high. DoubleFaceAD resolves this problem by
letting a limited number of reactor threads (e.g., one per
CPU core) manage both the event monitoring and handling,
thus reducing the multithreading overhead and avoiding the
thread initialization overhead during runtime.

Second, unlike NettyBackendwhich uses separate reactor
threads to manage upstream and downstream connections
(see Figure 8), DoubleFaceAD uses the same set of reactor
threads to manage connections from both sides. Concretely,
a reactor thread repeatedly loops over two phases: The first
phase (event monitoring phase) determines a set of connec-
tions with pending events; the second phase (event han-
dling phase) iterates over each of the connections that have
pending events; the type of connections (either upstream or
downstream) is determined based on the context associated
with each event handler. Such design avoids the imbalanced
workload problem between the frontend and the backend
reactor threads.

We note that the integrated design of DoubleFaceAD does
not necessarily sacrifice software maintenance flexibility for
high performance. In DoubleFaceAD architecture, both busi-
ness logic and datastore driver management are pluggable
event handlers running on top of the same set of reactor
threads. These handlers are logically divided into Frontend
and Backend for the events from the upstream clients and the

downstream datastores as shown in Figure 10. Thus, develop-
ers can independently upgrade either the Frontend business
logic or the Backend connection management by changing
the corresponding event handlers.

5.2 A Fanout-Query Aware Priority-based
Scheduling

Modern web-facing applications typically have strict latency
requirements due to its business impact [15, 17, 50]. For
example, Instagram wants to reduce the 99.9th percentile
response time of its production Cassandra datastore clusters
within 20ms to provide a smooth experience for millions
of Instagram users [19]. Here we introduce a fanout-query
aware priority-based scheduling algorithm to minimize the
tail response time of DoubleFaceAD-based servers.

Our scheduling algorithm is motivated by an observation
from realistic workloads for distributed datastore clusters:
the fanout queries to downstream datastores may not re-
spond at the same time due to the variety of each shard.4 On
the other hand, the completion of a client request usually
requires assembling all its fanout query responses before
sending the final response to the client. Remember that a re-
actor thread in DoubleFaceAD processes all the fanout query
responses (events) from different clients’ requests in a batch
mode after each event monitoring phase, so it is natural that
only partial fanout queries for a specific client request get re-
sponses from the downstream datastores in the current batch
due to the variety of each data shard. Thus the processing of
incomplete fanout query responses from a specific client re-
quest may significantly delay the processing of fanout query
responses from other client requests, causing overall long
waiting time. Figure 11 illustrates this process.

The main idea of our fanout-query aware scheduling algo-
rithm is to reduce the overall waiting time of client requests
by first handling those fanout query responses that can as-
semble a complete response to a client request in the current
batch, shown in Figure 12. For example, the client requests
with fanout factor 3 and 8 can be finished in the current
batch at timestamp tr eq1 and tr eq2, respectively. We schedule
4Dean et al. in his “the tail at scale” paper [15] reported a similar observation
on the variety of VMs causing the tail latency in Google’s clusters.

Figure 11. The completion of the client request with
fanout factor 3 is delayed by events of other uncom-
pleted requests.

Figure 12. Our fanout-query aware priority schedul-
ing is able to minimize the average waiting time for
all requests.

the events of these two requests first. In this case, the comple-
tion time of such two requests is reduced to t ′r eq1 from tr eq1
and t ′r eq2 from tr eq2, respectively (see the striped and the
grey boxes in Figure 12(b)). In the case of the client request
with fanout factor 5 (black boxes), only partial fanout query
responses (3 out of 5) are present, suggesting that this client
request cannot be finished in the current batch. Thus we
schedule the corresponding events the last.

In the next section, we experimentally show the effective-
ness of our introduced DoubleFaceAD and the associated
fanout-query aware priority-based scheduling algorithm.

6 Experimental Evaluation
To validate the effectiveness of our proposed DoubleFaceAD
architecture, we compare the DoubleFaceAD-based server
with aforementioned asynchronous AIOBackend (Type-2a)
and NettyBackend (Type-2b) using various synthetic and
real-life workload and datasets.

6.1 Experimental Results on YCSB Dataset
We start our evaluation on the synthetically generated
YCSB [12] dataset (see Section 2.2 for details). We use two
workload generators: JMeter [21] and RUBBoS [11]. JMeter
is for stress testing that generates workload with precisely
controlled workload concurrency for the target application
server; the RUBBoS workload generator is to simulate real-
world workload traffic (the request rate follows a Poisson

0

0.2

0.4

0.6

0.8

1.0

1 5 10 20

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fanout factor

DoubleFaceNetty
NettyBackend
AIOBackend

(a) The response size is 0.1kB.

0

0.2

0.4

0.6

0.8

1.0

1 5 10 20

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fanout factor

DoubleFaceNetty
NettyBackend
AIOBackend

(b) The response size is 20kB.

Figure 13. Normalized throughput comparison among
the three servers. DoubleFaceNetty performs the best un-
der various fanout factors and fanout query response sizes.

(a) The response size is 0.1kB. (b) The response size is 20kB.

Figure 14. Overhead analysis by comparing the CPU
util. at the same workload. The fanout factor keeps 20
and the fanout query response sizes are 0.1kB for (a) and
20kB for (b). DoubleFaceNetty has the lowest CPU over-
head, especially at the high workload levels.

distribution with the mean determined by the number of
end-users) to interact with the target application server.
We first use JMeter to validate the efficiency of our Dou-

bleFaceAD architecture in terms of throughput. For a fair
comparison, we implement a DoubleFaceAD-based server on
top of the same asynchronousNetty framework as used in the
other two servers (AIOBackend and NettyBackend), named
DoubleFaceNetty. The client workload concurrency always
keeps 20. We evaluate the impact of different fanout factors
(from 1 to 20) and query response sizes (0.1kB vs. 20kB) on
the performance of the three servers. Figure 13 shows that
DoubleFaceNetty (the baseline) always achieves the best
performance among the three servers under various work-
load conditions. For example, at 0.1kB query response size,
Figure 13(a) shows DoubleFaceNetty achieves 20% higher
throughput than NettyBackend when the fanout factor is 1,
due to the avoidance of the imbalanced workload problem
that causes significant select() system call overhead in Netty-
Backend (see Section 4). On the other head, as the fanout fac-
tor increases to 20, DoubleFaceNetty achieves 25% higher
throughput than AIOBackend due to reduced multithread-
ing overhead (see Section 3). When the query response size
increases to 20kB and the fanout factor is 20, Figure 13(b)
shows DoubleFaceNetty achieves 34% higher throughput

20
40
60
80

100

0 100 200 300 400 500 600

99th percentile166ms 314ms
P

er
ce

nt
il

e
[%

]

Percentile response time [ms]

w schedule
w/o schedule
AIOBackend

NettyBackend

(a) The fanout factor of Lf an and Sf an requests is 5 and 3.

20
40
60
80

100

0 200 400 600 800 1000 1200

99th percentile353ms 693ms

P
er

ce
nt

il
e

[%
]

Percentile response time [ms]

w schedule
w/o schedule
AIOBackend

NettyBackend

(b) The fanout factor of Lf an and Sf an requests is 7 and 1.

Figure 15. Percentile response time comparison
among different servers running on the YCSB dataset.
DoubleFaceNetty with scheduling can significantly reduce
the tail response time compared to the other three cases.

than AIOBackend since large fanout query response size ex-
aggerates the multithreading overhead in AIOBackend.

We then use the RUBBoS workload generator to evaluate
the CPU overhead of DoubleFaceNetty compared to other
servers (AIOBackend and NettyBackend). We set the fanout
factor to 20 in all cases and evaluate the overhead over two
fanout query response sizes: 0.1kB vs. 20kB. Figure 14 shows
that DoubleFaceNetty always has the lowest CPU utiliza-
tion among the three servers at different levels of concurrent
users. For example, at 350 of concurrent users workload in
Figure 14(a), the DoubleFaceNetty CPU utilization is 80%,
which is 20% and 8% less than that in AIOBackend and Net-
tyBackend, respectively. As the fanout query response size
increases to 20kB, Figure 14(b) shows that DoubleFaceNetty
consumes 30% less CPU utilization than that in AIOBackend
at 300 of concurrent users workload due to the exaggerated
multithreading overhead in AIOBackend. This set of experi-
ments show that DoubleFaceAD can mitigate or avoid both
multithreading overhead and the imbalanced workload prob-
lem when handling highly concurrent fanout queries.

We further use the RUBBoSworkload generator to validate
the effectiveness of our fanout-query aware priority-based
scheduling algorithm on mitigating the tail response time.
The generated HTTP requests can be categorized into two
classes: the Lf an requests with a large fanout factor (e.g.,
5) and the S f an requests with a small fanout factor (e.g.,
3). The percentage of Lf an and S f an requests are 50/50.
We use the same level of workload (i.e., 2500 concurrent
users) to test all the four servers (AIOBackend, NettyBack-
end, DoubleFaceNetty with or without scheduling). These
servers produce the same amount of throughput (around 230
reqs/sec) but at different levels of CPU utilization (i.e., from
70% to 90%) due to the variety of CPU overhead.

20
40
60
80

100

0 300 600 900 1200 1500

99th percentile366ms 636ms

P
er

ce
nt

il
e

[%
]

Percentile response time [ms]

w schedule
w/o schedule
AIOBackend

NettyBackend

Figure 16. Percentile response time comparison
among different servers running on the YCSB dataset
with large data shard size (i.e., ×10 times the size of that in
Figure 15(a)). The fanout factor of Lf an and S f an requests is
5 and 3. DoubleFaceNettywith scheduling still outperforms
the other three cases in tail latency.

Figure 15(a) shows the percentile response time com-
parison among four servers when the fanout factor for
Lf an and S f an requests are 5 and 3, respectively. This
figure shows DoubleFaceNetty with scheduling achieves
significantly lower tail response time than the other three
servers. For example, the 99th percentile response time of
DoubleFaceNetty with and without scheduling is 166ms
and 314ms, respectively, showing a more than 1.9× speedup.
The speedup is even greater when compared with Netty-
Backend and AIOBackend (540ms and 630ms). Figure 15(b)
shows a similar percentile response time comparison but
with a wider fanout factor gap between Lf an and S f an
requests (7 and 1, respectively). We observed that the gap of
percentile response time between DoubleFaceNetty with
and without scheduling becomes wider in Figure 15(b) than
in Figure 15(a) (compare the solid black and the dashed
blue lines), suggesting our scheduling algorithm can achieve
better performance improvement when the fanout factor
gap between requests becomes larger.
To evaluate the impact of large shard size of datastores

on our scheduling algorithm, Figure 16 shows the percentile
response time comparison among the four servers when we
increase the shard size of each datastore from the original
1GB to 10GB. Each shard still fits into the memory and the
average fanout query response size keeps the same as that in
Figure 15(a). The only difference is that the average response
time from the downstream datastores to the upstream data-
store drivers increases from 0.12ms to 0.18ms. We can see
that DoubleFaceNettywith scheduling still outperforms the
other three servers in tail latency, suggesting the robustness
of our scheduling algorithm.

6.2 Experimental Results on DBLP Dataset
To test how sensitive of DoubleFaceNetty on the variety of
dataset, we further validate the effectiveness of our sched-
uling algorithm on a real-life DBLP dataset [31], where the
dataset contains more than 7M co-author pairs (tuples), each
tuple is about 30kB, significantly larger than each record
in the previous synthetic YCSB dataset. The DBLP dataset
is evenly distributed among the 20 downstream MongoDB
servers. So each shard is about 20GB. We use the RUBBoS

20
40
60
80

100

0 200 400 600 800 1000

99th percentile 464ms 780ms
P

er
ce

nt
il

e
[%

]

Percentile response time [ms]

w schedule
w/o schedule
AIOBackend

NettyBackend

Figure 17. Percentile response time comparison
among different servers running on the DBLP dataset.

workload generator to generate a similar workload as de-
scribed in Section 6.1.
Figure 17 compares the percentile response time of the

same four servers as before but on the new DBLP dataset.
The fanout factor for Lf an and S f an requests are set to 5
and 3, respectively. We observe that the performance gain of
our scheduling algorithm on DoubleFaceNetty is less than
that in the YCSB dataset case by comparing Figures 15(a)
and 17. This is because the response of fanout queries on
the DBLP dataset is much heavier than that on the YCSB
dataset (30kB vs. 0.1kB), which reduces the weight of per-
formance improvement led by our scheduling algorithm. On
the other hand, we observed the tail latency of AIOBackend
is better than that in NettyBackend, which is due to the in-
creased response size of fanout queries, causing non-trivial
multithreading overhead in AIOBackend (see Section 3).

7 Discussion
From a system performance scalability point of view, event-
based implementations such as Nginx web server [35] are
often considered to have more stable scalability at high levels
of concurrencywhen compared to thread-based counterparts
such as Apache. This performance scalability advantage is of-
ten attributed to lower multithreading overhead of asynchro-
nous event-driven servers [14, 28, 37, 51, 55].In our experi-
mental studies (Figure 4, as well as subsequent figures and
tables), we have confirmed the limitations of thread-based im-
plementations and better scalability of asynchronous designs.
Furthermore, we found that some asynchronous approaches
are more scalable than others for workloads consisting of
fan-out queries in web-facing applications.
Our experiments showed that the performance of differ-

ent asynchronous approaches varied in non-obvious ways
when workload variables change. Two important factors that
cause performance problems are: 1) fanout query parallelism
and 2) fanout query response size. The first class of per-
formance problems consists of unexpected multithreading
overhead problem for Type-2b asynchronous drivers (Sec-
tion 3). For example, AIOBackend incurs higher overhead
than NettyBackend (Table 1 at high query response size
(20kB)). However, the situation is reversed at low response
size (0.1kB), when NettyBackend consumes more CPU due
to unnecessary select syscalls (Table 2). These factors also
interact with each other: at 20kB response size, NettyBack-
end has better scalability when fanout query parallelism

increases (Figure 7), but AIOBackend has better scalability
at 0.1kB response size (Figure 5).
The second class of performance problems consists of

workload imbalance between Frontend (app server) and Back-
end (datastore driver), resulting in less efficient select syscalls
for Type-2a asynchronous drivers (Section 4). Concretely, an
improper ratio of frontend and backend reactor threads in
NettyBackend (Table 3) can cause significant throughput
drop due to inefficient execution of syscalls. Since the exe-
cution of frontend and backend reactor threads vary inde-
pendently, both factors 1 (fanout query parallelism) and 2
(fanout query response size) can cause workload imbalance
due to fixed allocation of reactor threads. This problem ap-
pears to be more complex than a parameter tuning issue. For
example, Figure 13(a) shows a good balance between Fron-
tend and Backend when increasing fanout query parallelism
from 1 to 20 in NettyBackend for response size 0.1kB, but
imbalance for response size 20kB (comparing NettyBack-
end and DoubleFaceNetty throughput in Figure 13(b)). We
note that AIOBackend addresses this problem by adopting
an on-demand worker thread pool in Backend.

DoubleFaceAD design is able to reduce themulti-threading
overhead by combining the threads that handle both Fron-
tend and Backend (Section 5). In addition, DoubleFaceAD’s
combination of threads is able to avoid the imbalance be-
tween Frontend and Backend and the associated inefficient
syscalls. Figure 13 shows that DoubleFaceAD achieves the
highest throughput when compared to NettyBackend and
AIOBackend in a variety of fanout factors (from 1 to 20), and
query response sizes of 0.1kB and 20kB.
Our experimental results indicate that the two factors

shown in Table 5 appear to contribute to the lion’s share of
performance variability of asynchronous approaches. Cur-
rently, we are investigating other factors that may have po-
tential impact on the performance scalability of asynchro-
nous drivers. For example, Figure 16 shows preliminary re-
sults of shard size (1GB vs. 10GB) on query response time
tail latency, where DoubleFaceAD continues to achieve the
best response time tail latency. Another factor with potential
impact is the computation intensity of business logic, which
may affect the overall system performance since it changes
the CPU load of Frontend and may impact the workload
(im)balance between Frontend and Backend of the asynchro-
nous server. More generally, the interactions between CPU
load and overall throughput and response time will be a
subject of future research.

8 Related Work
Previous research on improving asynchronous datastore dri-
ver performance can be categorized into three classes:
Optimizing OS support mainly focuses on mitigating sys-
tem call overhead [30] and simplifying the application pro-
gram interfaces (APIs) of network I/O for asynchronous
programming [24]. For example, TUX [30] integrates both

Table 5. Comparison of performance degradation in synchronous approaches due to two important factors: im-
balanced workload and multi-threading overhead.

Factors NettyBackend AIOBackend Thread-based DoubleFaceAD

Fanout factor size (i.e.,
fanout query parallelism)

Imbalanced workload problem
(e.g., Figure 13(b))

Unexpected multithread-
ing overhead problem
(e.g., see Figure 7)

Multithreading overhead
problem

Avoid both problems (e.g.,
see Figure 13)

Fanout query response
size

Imbalanced workload problem
(e.g.,comparing Figure 13(a)
and 13(b))

Unexpected multithread-
ing overhead problem
(e.g., see Figure 5)

Multithreading overhead
problem

Avoid both problems (e.g.,
see Figure 13)

the event monitoring and event handling into the kernel
space to avoid kernel-user space crossing overhead caused
by system calls, but sacrifices the development flexibility of
business logic, which usually runs in the userspace. Han et
al. [24] present MegaPipe, a new API for efficient and scal-
able network I/O for message-oriented workloads such as
key-value stores, which is intended to provide lightweight
sockets for asynchronous event-driven programming.
Tuning software configurations to improve the perfor-
mance of asynchronous Internet servers has also been stud-
ied before. For example, Pariag et al. [37] show that care-
fully tuning the number of concurrent established TCP con-
nections and exploiting the non-blocking sendfile() system
call can improve the maximum achievable throughput of
an asynchronous event-driven µServer. Brecht et al. [9] fur-
ther improve the performance of µServer by modifying the
accepting strategy of new connections based on different
workload characteristics.
Applying novel scheduling algorithms to reduce tail la-
tencies in distributed datastores when handling highly con-
current has been studied recently [7, 10, 18, 40]. For exam-
ple, Rein [40] identifies the bottleneck fanout queries (the
slowest one) and schedules the smaller-bottleneck fanout
queries first to reduce head-of-line blocking and improve tail
latency. Cho et al. [10] implement Moolle in the production
distributed graph service at LinkedIn, which schedules the
optimal number of fanout queries per request (i.e., the fanout
factor) by removing the duplicate and the unnecessary fanout
queries to curtail tail latency.

To our best knowledge, the development of asynchronous
servers and datastore drivers so far are independent of each
other. While separating the two sides may follow the classic
modular design principle in software engineering, it also
brings significant overhead under recent new workload sce-
narios such as fanout queries on distributed datastores and
microservices applications. Taking advantage of the merits
of asynchronous design on both sides, our DoubleFaceAD
provides an integrated design of an application server and
a datastore driver as a whole package while maintains the
flexibility of application-level business logic development.

9 Conclusion
Compared to thread-based servers with high throughput
and short response time requirements (e.g., in web-facing

applications), event-based design and implementations are
considered to have better performance scalability at high
levels of concurrency. Our experimental studies on some
of the latest datastore drivers (e.g., DynamoDB, HBase, and
MongoDB) confirm the limitations of thread-based imple-
mentations. Furthermore, we found unexpected performance
degradations in some asynchronous approaches, including
multi-threading overhead and unnecessary syscalls.
Our experiments show that two factors cause the per-

formance degradation of asynchronous approaches. First,
Type-2b asynchronous drivers (e.g., AIOBackend) that adopt
thread pools incur non-trivial multithreading overheadwhen
the fanout query response size becomes large (Section 3).
Second, Type-2a asynchronous drivers (e.g., NettyBackend)
that adopt event queues may suffer from imbalanced work-
load between Frontend and Backend, causing unnecessary
system calls (Section 4), when the query parallelism and
response sizes vary.

We introduce the DoubleFaceAD approach, with a fanout-
query-aware priority-based scheduling algorithm (Section 5),
and a few threads that handle both Frontend and Back-
end events. Experiments show that DoubleFaceAD is able
to reduce multi-threading overhead and avoid unnecessary
syscalls. Further experiments (Section 6) also show that Dou-
bleFaceAD reduces the response time long tail problems that
plague many web-facing servers. Ongoing efforts to study
the potential impact of other factors such as shard size and
cost of business logic indicate that DoubleFaceAD may be
generally applicable in emerging high performance and high
efficiency middleware based on microservices to support
serverless computing.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Amy
Tai, for their feedback on improving this paper. This research
has been partially funded by National Science Foundation
by CNS (2000681), RCN (1550379), CRISP (1541074), SaTC
(1564097) programs, and gifts, grants, or contracts from Fu-
jitsu, HP, Intel, and Georgia Tech Foundation through the
John P. Imlay, Jr. Chair endowment. Any opinions, findings,
and conclusions are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation
or other funding agencies mentioned above.

References
[1] 2018. Node.js. https://nodejs.org/. Accessed: 2018-05-07.
[2] Atul Adya, William J Bolosky, Gerald Cermak, John R Douceur, Mar-

vin M Theimer, and Roger P Wattenhofer. 2006. Serverless distributed
file system. US Patent 7,062,490.

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store.
In ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM,
53–64.

[4] AWS. 2019. AWS SDK for DynamoDB. https://github.com/aws/aws-
sdk-java/tree/master/aws-java-sdk-dynamodb. Accessed: 2019-05-
05.

[5] Azure. 2018. Java SDK for SQL API of Azure Cosmos DB. https:
//github.com/Azure/azure-cosmosdb-java. Accessed: 2018-03-05.

[6] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, et al. 2017. Serverless computing: Current
trends and open problems. In Research Advances in Cloud Computing.
Springer, 1–20.

[7] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. 2018. RobinHood: Tail latency aware caching–
dynamic reallocation from cache-rich to cache-poor. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
18). 195–212.

[8] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-
hua Dai, et al. 2008. Corey: An Operating System for Many Cores.. In
OSDI, Vol. 8. 43–57.

[9] Tim Brecht, David Pariag, and Louay Gammo. 2004. accept () able
Strategies for Improving Web Server Performance.. In USENIX Annual
Technical Conference, General Track. 227–240.

[10] SungJu Cho, Andrew Carter, Joshua Ehrlich, and Jane Alam Jan. 2016.
Moolle: Fan-out control for scalable distributed data stores. In Data
Engineering (ICDE), 2016 IEEE 32nd International Conference on. IEEE,
1206–1217.

[11] Object Consortium. 2005. RUBBoS benchmark. Accessed: 2018-05-07.
[12] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[13] Datastax. 2018. Datastax java driver for apache cassandra. https:
//github.com/datastax/java-driver. Accessed: 2018-03-05.

[14] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.
fz: Fuzzing the server-side event-driven architecture. In Proceedings of
the Twelfth European Conference on Computer Systems. ACM, 145–160.

[15] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM 56, 2 (2013), 74–80.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. In ACM SIGOPS operating systems
review, Vol. 41. ACM, 205–220.

[17] Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s law for
tail latency. Commun. ACM 61, 8 (2018), 65–72.

[18] Diego Didona and Willy Zwaenepoel. 2019. Size-aware sharding
for improving tail latencies in in-memory key-value stores. In 16th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 19). 79–94.

[19] Instagram Engineering. 2018. Who moved my 99th percentile
latency? https://instagram-engineering.com/open-sourcing-a-10x-
reduction-in-apache-cassandra-tail-latency-d64f86b43589. Accessed:
2018-03-05.

[20] LinkedIn Engineering. 2015. Open-sourcing a
10x reduction in Apache Cassandra tail latency.

https://engineering.linkedin.com/performance/who-moved-my-
99th-percentile-latency. Accessed: 2018-03-05.

[21] Apache Software Foundation. 2018. Apache JMeter™. http://
jmeter.apache.org. Accessed: 2018-03-05.

[22] The Apache Software Foundation. 2019. Apache HBase Java Client.
https://github.com/apache/hbase/tree/master/hbase-client. Ac-
cessed: 2019-05-05.

[23] Brendan D. Gregg. 2018. perf. Accessed: 2018-05-07.
[24] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.

2012. MegaPipe: A New Programming Interface for Scalable Network
I/O.. In OSDI, Vol. 12. 135–148.

[25] Md E Haque, Yong Hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S McKinley. 2015. Few-to-many: Incremental
parallelism for reducing tail latency in interactive services. ACM
SIGPLAN Notices 50, 4 (2015), 161–175.

[26] Arun Iyengar. 2017. Providing Enhanced Functionality for Data Store
Clients. In Data Engineering (ICDE), 2017 IEEE 33rd International Con-
ference on. IEEE, 1237–1248.

[27] Myeongjae Jeon, Yuxiong He, Hwanju Kim, Sameh Elnikety, Scott
Rixner, and Alan L Cox. 2016. TPC: Target-Driven Parallelism Com-
bining Prediction and Correction to Reduce Tail Latency in Interactive
Services. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 129–141.

[28] Maxwell N Krohn, Eddie Kohler, and M Frans Kaashoek. 2007. Events
Can Make Sense.. In USENIX Annual Technical Conference. 87–100.

[29] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decen-
tralized structured storage system. ACM SIGOPS Operating Systems
Review 44, 2 (2010), 35–40.

[30] Chuck Lever, Marius Aamodt Eriksen, and Stephen P Molloy. 2000.
An analysis of the TUX web server. Technical Report. Center for
Information Technology Integration.

[31] Michael Ley. 2009. DBLP: some lessons learned. Proceedings of the
VLDB Endowment 2, 2 (2009), 1493–1500.

[32] Chuanpeng Li, Kai Shen, and Athanasios E Papathanasiou. 2007. Com-
petitive prefetching for concurrent sequential I/O. In ACM SIGOPS
Operating Systems Review, Vol. 41. ACM, 189–202.

[33] Lighttpd. 2018. lighttpd: fly light. https://www.lighttpd.net/. Ac-
cessed: 2018-05-07.

[34] Haifeng Liu, Jinjun Zhang, Huasong Shan, Min Li, Yuan Chen, Xi-
aofeng He, and Xiaowei Li. 2019. JCallGraph: Tracing Microservices
in Very Large Scale Container Cloud Platforms. In International Con-
ference on Cloud Computing. Springer, 287–302.

[35] NGINX. 2018. nginx. https://nginx.org/en/. Accessed: 2018-05-07.
[36] OpenJDK. 2018. The HotSpot Group. http : / /

www.808multimedia.com/winnt/kernel.htm. Accessed: 2018-03-05.
[37] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla, and

David R Cheriton. 2007. Comparing the performance of web server
architectures. In ACM SIGOPS Operating Systems Review, Vol. 41. 231–
243.

[38] The Netty Project. 2018. Netty. http://netty.io/. Accessed: 2018-03-05.
[39] The Netty project. 2019. Netty project: Adopters. https://netty.io/

wiki/adopters.html. Accessed: 2018-03-05.
[40] Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kostic, and Sean

Braithwaite. 2017. Rein: Taming Tail Latency in Key-Value Stores via
Multiget Scheduling. In Proceedings of the Twelfth European Conference
on Computer Systems. ACM, 95–110.

[41] reddison. 2018. Reddison: State of the Art Redis client. https:
//github.com/redisson/redisson. Accessed: 2018-03-05.

[42] Amazon Web Services. 2018. Amazon DynamoDB:
Fast and flexible NoSQL database service for any scale.
https://aws.amazon.com/dynamodb/. Accessed: 2019-05-13.

[43] N. B. Shah, K. Lee, and K. Ramchandran. 2016. When Do Redundant
Requests Reduce Latency? IEEE Transactions on Communications 64,
2 (Feb 2016), 715–722.

https://nodejs.org/
https://github.com/aws/aws-sdk-java/tree/master/aws-java-sdk-dynamodb
https://github.com/aws/aws-sdk-java/tree/master/aws-java-sdk-dynamodb
https://github.com/Azure/azure-cosmosdb-java
https://github.com/Azure/azure-cosmosdb-java
https://github.com/datastax/java-driver
https://github.com/datastax/java-driver
http://jmeter.apache.org
http://jmeter.apache.org
https://github.com/apache/hbase/tree/master/hbase-client
https://www.lighttpd.net/
https://nginx.org/en/
http://www.808multimedia.com/winnt/kernel.htm
http://www.808multimedia.com/winnt/kernel.htm
http://netty.io/
https://netty.io/wiki/adopters.html
https://netty.io/wiki/adopters.html
https://github.com/redisson/redisson
https://github.com/redisson/redisson

[44] Huasong Shan, Qingyang Wang, and Calton Pu. 2017. Tail attacks on
web applications. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 1725–1739.

[45] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls.. In Osdi, Vol. 10. 1–8.

[46] Akshitha Sriraman and Thomas F Wenisch. 2018. µTune: Auto-Tuned
Threading for {OLDI}Microservices. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 177–194.

[47] J Robert Von Behren, Jeremy Condit, and Eric A Brewer. 2003. Why
Events Are a Bad Idea (for High-Concurrency Servers).. In HotOS.
19–24.

[48] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart,
and Michael Swift. 2018. Peeking behind the curtains of server-
less platforms. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 133–146.

[49] Qingyang Wang, Hui Chen, Shungeng Zhang, Liting Hu, and Balaji
Palanisamy. 2019. Integrating Concurrency Control in n-Tier Applica-
tion Scaling Management in the Cloud. IEEE Transactions on Parallel
and Distributed Systems 30, 4 (2019), 855–869.

[50] QingyangWang, Chien-An Lai, Yasuhiko Kanemasa, Shungeng Zhang,
and Calton Pu. 2017. A Study of Long-Tail Latency in n-Tier Systems:

RPC vs. Asynchronous Invocations. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 207–217.

[51] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: an architec-
ture for well-conditioned, scalable internet services. In ACM SIGOPS
Operating Systems Review, Vol. 35. ACM, 230–243.

[52] Mindi Yuan, David Stein, Berenice Carrasco, Joana MF Trindade, and
Yi Lu. 2012. Partitioning social networks for fast retrieval of time-
dependent queries. In Data Engineering Workshops (ICDEW), 2012 IEEE
28th International Conference on. IEEE, 205–212.

[53] Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robert Morris, David
Mazieres, and M Frans Kaashoek. 2003. Multiprocessor Support for
Event-Driven Programs.. In USENIX Annual Technical Conference. 239–
252.

[54] Shungeng Zhang. 2018. Application server implementations. https:
//github.com/sgzhang/AsyncFanout. Accessed: 2019-03-05.

[55] Shungeng Zhang, Qingyang Wang, and Yasuhiko Kanemas. 2018. Im-
proving asynchronous invocation performance in client-server sys-
tems. In 2018 IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS). IEEE, 907–917.

https://github.com/sgzhang/AsyncFanout
https://github.com/sgzhang/AsyncFanout

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Server Connector Categories
	2.2 Experimental Environment
	2.3 Significant Performance Variations of Different Asynchronous Datastore Drivers

	3 Unexpected Multithreading Overhead in Type-2b Asynchronous Driver
	4 Imbalanced Workload Problem of Type-2a Asynchronous Driver
	5 DoubleFaceAD: A New Driver Architecture
	5.1 Integrated Design of DoubleFaceAD
	5.2 A Fanout-Query Aware Priority-based Scheduling

	6 Experimental Evaluation
	6.1 Experimental Results on YCSB Dataset
	6.2 Experimental Results on DBLP Dataset

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

