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Abstract: Very high spatial resolution commercial satellite imagery can inform observation, mapping,
and documentation of micro-topographic transitions across large tundra regions. The bridging
of fine-scale field studies with pan-Arctic system assessments has until now been constrained by
a lack of overlap in spatial resolution and geographical coverage. This likely introduced biases
in climate impacts on, and feedback from the Arctic region to the global climate system. The
central objective of this exploratory study is to develop an object-based image analysis workflow
to automatically extract ice-wedge polygon troughs from very high spatial resolution commercial
satellite imagery. We employed a systematic experiment to understand the degree of interoperability
of knowledge-based workflows across distinct tundra vegetation units—sedge tundra and tussock
tundra—focusing on the same semantic class. In our multi-scale trough modelling workflow, we
coupled mathematical morphological filtering with a segmentation process to enhance the quality
of image object candidates and classification accuracies. Employment of the master ruleset on
sedge tundra reported classification accuracies of correctness of 0.99, completeness of 0.87, and F1
score of 0.92. When the master ruleset was applied to tussock tundra without any adaptations,
classification accuracies remained promising while reporting correctness of 0.87, completeness of
0.77, and an F1 score of 0.81. Overall, results suggest that the object-based image analysis-based
trough modelling workflow exhibits substantial interoperability across the terrain while producing
promising classification accuracies. From an Arctic earth science perspective, the mapped troughs
combined with the ArcticDEM can allow hydrological assessments of lateral connectivity of the
rapidly changing Arctic tundra landscape, and repeated mapping can allow us to track fine-scale
changes across large regions and that has potentially major implications on larger riverine systems.

Keywords: Arctic; permafrost; OBIA; commercial imagery; ice-wedge polygons; troughs

1. Introduction

Permafrost-Earth materials that remain at or below 0 ◦C for at least two consecutive
years underly approximately 24% of the exposed land surface of the Northern Hemi-
sphere [1]. Permafrost landscapes are warming across the Arctic [2] and this is coupled
with increased socioeconomic development [3,4]. Areas with ice-rich permafrost are espe-
cially vulnerable to destructive processes of ground-ice degradation, such as thermokarst
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and thermal erosion. Thawing ice-rich ground, especially in cold permafrost areas, is chal-
lenging geosystem and ecosystem services [5]. Thawing of ice-rich permafrost increases
lateral biogeochemical fluxes [6–8] and release of soil carbon to the atmosphere [9]. It also
alters coastal marine ecosystems [10], geomorphology [11–13], vegetation [14], and hydrol-
ogy [15]. Ice wedges are indicative of cold permafrost [16] and are ubiquitous ground-ice
features in the continuous permafrost zone, forming polygonal networks characteristic of
the vast lowland Arctic regions [17]. Vegetation and geology maps suggest that about 40–
70% or more of the Arctic landscape is occupied by polygonal ground [18,19], but the exact
extent is largely unknown. Ice-rich permafrost terrain in Arctic regions typically includes
several meter-wide ice wedges that form as a result of thermal contraction cracking in the
winter and subsequent infilling with snowmelt in the spring repeated over centuries to
millennia [20–22].

Morphometrically, ice-wedge polygons are pronounced on the landscape by networks
of discontinuities formed by ice-wedge troughs and/or linear ridge features (rims) framing
polygonal centers of low, flat, or high. Ice-wedge polygons typically vary in size from
10 to 30 m across. As ice wedges grow, low-centered polygons framed by elevated rims
form as a result of deformations of ice and soil caused by pressure from growing wedges.
Low-centered polygons often contain intra-polygonal ponds. At the stage of active ice-
wedge development, ice-wedge troughs are hardly visible or very shallow. Any wedge-ice
melt increases trough depth and the lateral hydrological connectivity among troughs.
Eventually, this results in the formation of high-centered polygons with elevated centers
and well-developed troughs over partially degraded ice wedges [23,24]. Active degradation
of ice wedges commonly leads to the formation of deep (>1 m) and wide (up to 10 m)
pits and troughs; within poorly drained terrain, these depressions are usually filled with
water. Pits and troughs are the most characteristic thermokarst landforms in polygonal
landscapes [25,26]. Under certain conditions, initial pits and troughs may develop into
large thermokarst ponds and lakes [27,28] though such transitions in the areas with cold
continuous permafrost are still relatively rare.

Degradation of ice wedges is a quasi-cyclical process, with degradation often oc-
curring over a shorter time scale than aggradation; stabilization of recently degrading
wedges occurs as a result of accumulation of soils and organic matter in ice-wedge
troughs [28,29]. The microtopography associated with polygonal tundra affects Arctic
ecosystems from local to regional scales, due to its impacts on the flow and storage of
water [23], vegetation [30], accumulation of organic carbon [31,32], and ground temper-
atures [33,34]. Over recent decades, widespread ice-wedge degradation has been docu-
mented at numerous locations across the Arctic tundra in the field and through remote
sensing techniques [23,29,35–37]. Ice-wedge degradation strongly affects the environment
and is extremely hazardous for infrastructure; it may be triggered by climatic fluctua-
tions [23,33], wildfires [35], human activities [4], or other factors that may lead to an increase
in active-layer thickness. Resolving deep ice-wedge trough occurrence and dynamics is
critical for detecting ice wedge degradation and in turn characterizing and understanding
future permafrost landscape behavior [29]. Techniques have been developed for mapping
ice-wedge polygons and estimation of volumes of wedge ice [38–42], but techniques to map
ice-wedge troughs specifically over large areas are lacking. Ice-wedge trough mapping can
allow a more accurate estimation of ground ice distribution and volumes [28] as well as
surface water connectivity. Studies have detected ice-wedge degradation in the absence
of ponding [34,35], therefore the ability to map and detect micro-topographic changes in
troughs will refine estimations of thermokarst extent. Improvements in resolving ice wedge
trough and polygon centers using remote sensing data will also contribute to a better spatial
representation of ground thermal regimes in permafrost regions [34]. Furthermore, being
able to detect and map ice-wedge trough subsidence will enable a better understanding
of the impacts and ecosystem responses [33] of current and future ice-wedge degradation.
The current lack of mapping and, therefore also knowledge, of fine-scale morphodynamics
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of polygonal landscapes introduces uncertainties to regional and pan-Arctic estimates of
carbon, water, and energy fluxes [23,43,44].

The limited utilization of VHSR imagery in Arctic science products is partly due
to prevailing knowledge gaps in sophisticated image analysis methodology, which can
effectively cope with the complexities of VHSR satellite imagery [42]. The ice-wedge
polygon landscapes are difficult to characterize in any remote sensing imagery of spatial
resolution coarser than 4 m [45]. Studies have emphasized the need for spatial details
to accurately detect and characterize ice-wedge polygons and their associative elements,
such as troughs and rims. In this context, VHSR satellite imagery holds great promise for
accurate delineation of morphometric characteristics over large geographic domains. In
the past, the VHSR data availability across the entire Arctic domain and the associated
cost have had been the main challenges in pan-Arctic mapping applications. However, in
recent years, the entire Arctic has been imaged by the VHSR commercial sensors owned by
DigitalGlobe (now known as Maxar) for nearly six times. The imagery is freely available to
United States National Science Foundation-funded researchers. Visual inspection and man-
ual digitization of VHSR imagery have widely been used in mapping micro-topographic
features to understand morphological dynamics [46] at the expense of time/labor and
with limited spatial extent. Traditional per-pixel-based algorithms are fundamentally chal-
lenged by sub-meter-resolution imagery [47]. Increasing spectral heterogeneity in VHSR
imagery leads to fewer class variances of the conventional per-pixel-based algorithms,
which make it very difficult to accurately resolve fine-scale features, such as troughs and
rims [48,49]. The GEographic Object Based Image Analysis method (GEOBIA, or
OBIA) [47,50] has proven to be one of the most powerful innovations in a contempo-
rary paradigm of remote sensing for analysis of very high spatial resolution imagery, as
well as for harmonizing other remote sensing data products [51,52]. Many argue that,
to a certain extent, GEOBIA attempts to mimic the cognitive processes that humans uti-
lize in image interpretation, either replicating and/or surpassing the accuracies of expert
interpretations via semi- or fully automated workflows [47,50,53,54]. GEOBIA has been
successfully used in conventional remote sensing-based land cover mapping applications,
as well as in a broad spectrum of interdisciplinary studies, including mapping refugees
in east Africa [55], documenting penguin guano in Antarctica [56], mapping dunes on
Mars [57], and extracting archeological features [58].

The central objective of this exploratory study is to develop a GEOBIA-based method-
ological framework, which links low-level motifs and domain knowledge, to automatically
extract ice-wedge polygon troughs from VHSR commercial satellite imagery. We further
perform a systematic experiment to understand the degree of interoperability of knowledge-
based workflows across tundra vegetation units focusing on the same semantic class. In a
broader context, this study relates to our on-going work on developing a mapping applica-
tion for Arctic permafrost land environments (MAPLE) [42,59,60], which aims to leverage
imagery-enabled science products for Arctic earth science applications.

2. Materials and Methods
2.1. Data and Study Area

We selected two candidate commercial satellite scenes from the North Slope of Alaska
(Figure 1) representing two distinct tundra vegetation units. The Polar Geospatial Center
(PGC) at the University of Minnesota provided the radiometrically corrected, orthorectified
imagery, which were acquired in July 2010 (site 1) and July 2015 (site 2) by the Worldview-2
(WV2) commercial satellite sensor. The WV2 hyper-spatial sensor records the panchromatic
(PAN) and eight multispectral (MS) bands with a ground sampling distance of ~0.46 and
~1.84 m at nadir, respectively, with 11-bit radiometric resolution.



Remote Sens. 2021, 13, 558 4 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 24 
 

 

the panchromatic (PAN) and eight multispectral (MS) bands with a ground sampling dis-
tance of ~0.46 and ~1.84 m at nadir, respectively, with 11-bit radiometric resolution. 

 
Figure 1. Geographical setting of the study area. Two candidate scenes from sedge tundra (1) and tussock tundra (2). (A) 
Low-centered ice-wedge polygons, Lonely area, Northern Alaska. Large ice wedges in this relatively old drained-lake 
basin have already experienced some limited degradation indicated by well-developed but still dry troughs (early stage 
of transition from low- to high-centered polygons). (B) High-centered ice-wedge polygons, old primary surface of the 
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wedges. Field photos of the water-filled trough (C) and drained trough (D) acquired in July 2019 from Prudhoe bay Alaska. 
The tundra vegetation map and the legend are adapted from [19]. Satellite imagery Copyright DigitalGlobe, Inc. 

The WV2 scene from site-1 comprises a sedge tundra-dominant wetland landscape 
(CAVM, [19]), with low-centered ice wedge polygons, where the polygon center is char-
acterized typically by water impoundment. The WV02 scene of site-2 primarily comprises 
tussock tundra and troughs indicative of actively degrading ice wedges or ice wedges that 
degraded in the past but that are no longer actively degrading. Site 1 is located in a marine 
silt terrain unit with a high ground ice content, whereas site 2 is located in a marine sand 
and silt terrain unit with a moderate ground ice content [25]. Both regions exhibit a mosaic 
of land surfaces that have been reworked by thermokarst lake processes, which have re-
sulted in the formation of numerous vegetated drained thaw lake basins (DTLBs), with 
characteristic epigenetic ice wedges and interstitial residual primary surfaces of the Arctic 
Coastal Plain with larger ice wedges. The dimensions and size of ice wedges here depend 

Figure 1. Geographical setting of the study area. Two candidate scenes from sedge tundra (1) and
tussock tundra (2). (A) Low-centered ice-wedge polygons, Lonely area, Northern Alaska. Large ice
wedges in this relatively old drained-lake basin have already experienced some limited degradation
indicated by well-developed but still dry troughs (early stage of transition from low- to high-centered
polygons). (B) High-centered ice-wedge polygons, old primary surface of the Arctic Coastal Plain,
McLeod Point area, Northern Alaska. Deep water-filled troughs indicate recent degradation of ice
wedges. Field photos of the water-filled trough (C) and drained trough (D) acquired in July 2019
from Prudhoe bay Alaska. The tundra vegetation map and the legend are adapted from [19]. Satellite
imagery Copyright DigitalGlobe, Inc.

The WV2 scene from site-1 comprises a sedge tundra-dominant wetland landscape
(CAVM, [19]), with low-centered ice wedge polygons, where the polygon center is charac-
terized typically by water impoundment. The WV02 scene of site-2 primarily comprises
tussock tundra and troughs indicative of actively degrading ice wedges or ice wedges
that degraded in the past but that are no longer actively degrading. Site 1 is located in
a marine silt terrain unit with a high ground ice content, whereas site 2 is located in a
marine sand and silt terrain unit with a moderate ground ice content [25]. Both regions
exhibit a mosaic of land surfaces that have been reworked by thermokarst lake processes,
which have resulted in the formation of numerous vegetated drained thaw lake basins
(DTLBs), with characteristic epigenetic ice wedges and interstitial residual primary surfaces
of the Arctic Coastal Plain with larger ice wedges. The dimensions and size of ice wedges
here depend mainly on the age of the vegetated land surface—the older, the higher the
likelihood of large ice wedges.
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Wedge-ice volume in the upper permafrost of the primary surface varies from 4% to
28% (13% average, 26 sites), while in DTLBs of the Arctic Coastal Plain, the ice volume
ranges from 1% (young basins, 3% average, 6 sites) to 22% (old basins, 11% average, 13 sites);
the average wedge-ice volume for all studied drained-lake basins (19 sites) is estimated to
be 8% [17]. The average size of polygons on the primary surface was 14 m, while in young
and old lake basins, it was 33 and 18 m, respectively. Low-centered ice-wedge polygons
(Figure 1A) prevail mainly within young DTLBs and flood plains, while high-centered
polygons (Figure 1B) may be observed mainly within remnants of the primary surface and
oldest DTLBs. Polygons that represent a transition from low- to high-centered are also
common in DTLBs of various ages that have experienced recent ice-wedge degradation.

2.2. Methodological Framework

Unlike in traditional per-pixel-based image classification, which solely sits on the
brightness values of individual pixels, the GEOBIA considers groups of pixels that form
homogenous objects. In general, this object resembles real-world entities. The success of
GEOBIA relies on its prime design goal of meaningfully grouping pixels (rather than treat-
ing them as single entities) by cross-pollinating spectral, textural, geometric, topological,
and contextual information. The GEOBIA utilizes a cohesive methodological platform for
machine-based characterization and classification of spatially relevant real-world entities,
incorporating multiscale regionalization techniques augmented with nested representa-
tions and rule-based classifiers [61–63]. This kind of integrated framework, linking the
concept domain and digital domain, is vital in landform mapping [64], because the imagery-
based feature extraction can be supplemented and guided with expert knowledge [65].
Fundamentally, GEOBIA sits on two pillars: segmentation and classification. The former
involves the creation of image objects using segmentation algorithms, whereas the lat-
ter attempts to semantically map “image” objects to “real-world” objects [58]. Overall,
re-segmentation and re-classification provide an expert-based iteratively refining model
for the semantic classes in question. Figure 2 illustrates our multi-scale trough modelling
workflow. The ultimate goal is to create a meaningful link between low-level features
(defined on image object candidates) and high-level semantics (class labels) in the image
via multiscale segmentation and knowledge-based rulesets.

2.3. Data Processing

We subjected the candidate WV02 imagery to mathematical morphological operations
to highlight the trough objects prior to the segmentation process. Our goal was to use
morphological filtering as a means of attenuating the other objects present in the image
and providing additional cues to effectively operate the segmentation algorithm. This will
yield image segments (image object candidates) with meaningful correspondence to real-
world objects. From a theoretical standpoint, mathematical morphology (MM) explores the
geometric structure of an image in a nonlinear fashion [66,67]. MM is a well-established
stand-alone image analysis framework with its own application opportunities and chal-
lenges [68–72]. Witharana et al. [58] demonstrated the practicality of MM operations as
pre-processing instruments in object-based image analysis. Erosion and dilation are the
most fundamental operations in morphological image processing. While the former erodes
the bright areas of the image and expands the dark zones, the latter dilates the bright
areas and shrinks the dark areas. Top-hat and black-hat transforms are a combination of
basic operations. The former involves subtraction of an opened image from the original
image. This process identifies points of high curvature [67]. The latter (the complement
of the former) identifies dark objects surrounded by bright objects. Gradient is another
MM operator that is useful for finding the outlines of structures. Based on a series of
MM filtering operations, we selected erosion, top-hat, black-hat, and gradient as useful
operators to create filtered images from the original WV02 images.
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2.3.1. Image Segmentation

We utilized two segmentation algorithms: (1) multiresolution segmentation and
(2) multi-threshold segmentation, which are available in the eCognition Developer (Trimble
Geospatial, Munich) software package. The conceptual basis of the above algorithms
is well addressed in the literature, therefore we will only briefly describe the candidate
segmentation algorithms. Multiresolution segmentation (MRS, see [73]) is a relatively
complex image- and user-dependent algorithm [54,74–76]. The MRS algorithm itera-
tively merges pixels based on homogeneity criteria driven by three parameters: scale
(s), shape, and compactness [77,78], of which the scale parameter is considered the most



Remote Sens. 2021, 13, 558 7 of 22

important [79,80]. The multi-threshold segmentation (MTS) algorithm couples histogram-
based methods and the homogeneity measurement of multiresolution segmentation to
calculate a threshold dividing the selected set of pixels into two subsets, whereby the
heterogeneity is increased to a maximum [56,81]. The MTS algorithm operates on the
image object domain. It splits the image objects and classifies resulting child objects based
on a pixel value threshold. The user can define the pixel value threshold, or it can operate
in a self-adaptive manner when coupled with the automatic threshold algorithm (ATA) in
eCognition Developer [81]. The ATA initially calculates the threshold for the entire scene,
which is then saved as a scene variable, and made available for the MTS algorithms for
segmentation. Subsequently, if another pass of segmentation is needed, the ATA calculates
the thresholds for image objects and saves them as object variables for the next iteration of
the MTS algorithm.

2.3.2. Trough Modelling Workflow

The first phase of the trough modelling workflow (Figure 2) involves the derivation of
secondary products from the candidate imagery and integration of existing GIS/thematic
layers, such as coarse-scale land cover data. Subsequently, the segmentation takes place in
a multiscale fashion. A coarser level segmentation that operates on existing thematic layers
handles the removal of large non-targets, for example, water bodies. The remainder of the
scene is further decomposed into a hierarchy of super-/child-image objects. Likewise, the
scene is systematically exposed to a class modelling process [82], the first cycle of which
progressively decomposes the input image layers into meaningful image object candidates,
and the remaining cycles perform class-/object-specific segmentation. Subsequently, the
remote sensing quantification (low-level image attributes) of image object candidates and
the domain knowledge of permafrost polygonal landscapes were interfaced via a fuzzy
rule-based system. We used the candidate scene from site-1 (sedge-dominant) to build
the master ruleset [83] and later repurposed it for the candidate image scene from site-2
(tussock dominant) to explore the portability of the master ruleset.

The MRS algorithm with a large-scale parameter (s = 50), which is a unitless parameter
that controls the size of the image segments [75], was run over the multispectral imagery
(with all bands) to produce coarse segments (Level 0 (L0), Figure 2). We used the normalized
difference water index (NDWI) to remove water objects before proceeding to the next level
of segmentation. The remaining coarser segments (super-objects) were then re-segmented
to smaller objects (sub-objects) based on the black-hat image using the MTS algorithm. This
step produced level 1 segments (L1, Figure 2). The thresholds for the MTS algorithm were
automatically adapted from local statistics of the super-objects (black-hat image) rather
than based on global (scene-wide) statistics. This process successfully yielded small seed
segments with acceptable correspondence (size and shape) with trough morphometry. At
this level (L1), we used image object properties (spectral, geometrical, and spatial) to extract
trough-like objects. Of the plethora of properties, we narrowed it down to a set that best
describes trough-like objects; those include the mean difference from the super object, area,
density, and radius of the smallest enclosing ellipse [81]. The standard deviation of the
gray-level co-occurrence matrix (GLCM) was calculated as an object variable for the non-
trough objects and used as an indicator to filter out texturally homogeneous objects. The
remaining object domain (non-trough objects) was subjected to another re-segmentation
cycle, based on the black-hat image using the MRS algorithm and a smaller scale parameter
(s = 5). This process re-partitioned the image objects (super-object) from the previous level
(L1) and produced another layer of sub-objects at Level 2 (L2, Figure 2). We then used the
mean ratio to super object and density as two key properties to extract trough-like objects.

Finally, we assessed the classification accuracies of our automated detection based
on manual detection. We randomly placed 100 × 100m grid cells in the study areas to
sample automated and manual detection. Quantitative error analysis comprised correctness
(Equation (1)), completeness (Equation (2)), and F1 score (Equation (3)). The correctness
and completeness measures gauge the commission and omission errors, respectively.



Remote Sens. 2021, 13, 558 8 of 22

The F1 score reflects the overall stability of the classification. Objective analysis was
corroborated with thorough visual inspections to gauge segmentation quality and assess
the final classification results:

Correctness =
True positive

True positive + False positive
(1)

Completeness =
True positive

True positive + False negative
(2)

F1 Score =
2 ∗ Correctness ∗ Completeness

Completeness + Correctness
(3)

2.3.3. Ruleset Transferability

We investigated ruleset transferability centered on the framework proposed by Hof-
mann et al. [84] for quantifying the robustness of fuzzy rulesets. The use of fuzzy rules
(which can take membership values between 0 and 1) is much favored in object-based
classification over crisp rules (which can take membership values constrained to two logical
values—‘true’(=1) and ‘false’(=0)) because the ‘fuzzification’ of expert-steered thresholds
improves transferability. A fuzzy function describing a property p can be defined using: α
(lower border of p), β (upper border of p), a (mean of membership function), and v (range
of membership function). We used site-1 to develop the master ruleset (reference ruleset)
and applied it over site-2 with and without adaptations to generally gauge the portability
of the master ruleset. For the sake of clarity, we briefly describe the relevant robustness
measures proposed by Hofmann et al. [84]. More details behind this framework can be
found in [56,58,84]. The fuzzy ruleset could undergo three types of changes (Type C, Type
O, and Type F), when a reference ruleset (Rr) is repurposed as an adapted ruleset (Ra) over
another image. Type C includes adding, removing, or deactivating a class. Type O is for
changing the fuzzy-logic connection of membership functions. Type F involves inclusion
or exclusion (Type Fa) and changing the range of fuzzy membership functions (Type Fb).
The summation of changes yields the total deviations (d) incurred during the adaptation of
Rr to Ra [84]:

d =
c

∑
i=1

Ci +
o

∑
i=1

Oi +
fa

∑
i=1

Fa
i +

fb

∑
i=1

δFb
i

δF = δa + δν

The robustness of the reference ruleset (r) can be estimated based on the total devia-
tions (d) and classification qualities of the reference image (qr) and candidate image (qa)
as follows:

rr =

qa
qr

da + 1

3. Results

A visual progression of our multiscale trough modelling approach is illustrated in
Figure 3, which contains three excerpts (Figure 3, Excerpt 1–3) selected from site-1. Each
excerpt houses the original multispectral image (a) and corresponding gray-scale image (b)
composed from the visible channels and morphologically processed images (erosion (c)
and black-hat operation (d)). Segmentation and classification results (e–h) are overlain on
the black-hat image. In general, when inspecting the multispectral and grayscale images
(Figure 3, Excerpt 1–3, a–b), it is evident that troughs do not readily stand out as unique
(and continuous) entities but rather blend in the background spectral details (for example,
see the red dotted circle on (a) of Excerpt 2). The erosion operation was able to open the
dark objects while closing bright areas to a certain degree. The black-hat operation was
very successful in delineating troughs as continuous entities. For example, as seen on (d)
of Excerpts 1 and 2, it is difficult to even visually delineate the trough (see red arrow) as a
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continuous geo-object. In contrast, corresponding black-hat images have clearly provided
ample visual cues to capture trough outlines. The first operation of segmentation on the
black-hat images partly captured the troughs (see the thick yellow lines and red arrows
on (e) of Excepts 1–2). The remainder of the trough objects was addressed by the second
cycle of segmentation (see the thin yellow lines accompanied with red arrows of (f) of
Excerpts 1–2). As seen on (e) and (f) of Excerpt 3, the trough shown under the red-dotted
circle was completely overlooked in the first segmentation cycle but captured at the next
level. Figure 4 depicts a side-by-side comparison of the segmentation results (red outlines
shown on (d) and (e)) obtained from the multiresolution segmentation algorithm using
the original multispectral imagery (a) and the black-hat image (b) (i.e., morphologically
processed multispectral image). A close inspection of the image segments underlying the
yellow-dotted rectangle reveals the greater geometrical resemblance of the image segments
(e) produced from the black-hat image than those of the multispectral image (d), in which
the actual trough object has largely been exposed to under-segmentation.
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Figure 4. Variation of the segmentation quality between the image object produced from original multispectral image
and morphologically processed image. (a) original multispectral image, (b) morphologically filtered image (black-hat),
(c) multiresolution segmentation results (magenta outline) based on the multispectral image, and (d) multiresolution
segmentation results (red outline) based on the black-hat image. Multispectral images are shown in false color campsites.
Satellite imagery Copyright DigitalGlobe, Inc.

Figures 5 and 6 depict the zoomed-in views of automatically extracted trough objects
(black hollow outlines overlain on false color imagery) from site 1 and site 2, respectively.
We used these test areas to visually inspect the segmentation quality and classification
accuracy of the extraction workflow. Of the eight close-ups presented in Figure 5, in
the majority of cases, the master ruleset was able to successfully extract over 90% of
the trough objects presented in the imagery. False detection was almost zero. Auto-
matically extracted trough boundaries resembled real-world discontinuities, showing a
high degree of spatial congruence with manual delineation. Zoomed-in views (2) and (3)
of Figure 5 show comparatively low detection. This is most likely attributed to the ill-
pronounced nature of troughs as dark objects that eventually trigger the black-hat operation.
Figure 6 depicts the classification results from the direct application of the master ruleset
on site-2. A careful inspection of the zoomed-in views reveals that our approach shows the
same level of performances as for site-1. In general, we were able to accurately detect and
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delineate approximately 85–90% of the trough objects in the images. Because of the scene
complexity associated with the tundra type, we observe slightly higher false positive rates
for site-2, where troughs are typically irregular without forming strong networks. They are
generally dry, shallow, and texturally smooth, and edges are not prominent. Collectively,
these factors drive the segmentation process. Compared to site 1, here we observe a higher
degree of under-segmentation, leaving mixed objects (i.e., trough and background as a
single segment).
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Quantitative statistics shown in Table 1 support our visual observations. For site-1,
our classification accuracy budget reports 0.99 correctness, 0.87 completeness, and an
F1 score of 0.92, reflecting promising overall classification accuracy. High correctness
values are an indication of very few false detections. Application of the master ruleset
on site-2 without any adaptations reports 0.87 correctness, 0.77 completeness, and an
F1 score of 0.81. While the metric values are generally lower than those of site-1, from
a remote sensing classification accuracy perspective, the overall accuracy is promising.
Comparatively lower values of correctness and completeness indicate elevated rates of false
detections and missed detections. Table 2 indicates image object-levels and corresponding
object properties, fuzzy membership functions, and their boundaries associated with the
middleware rules. It is noteworthy to point out the fact that we were able yield over 80%
overall classification accuracy without making changes to the middleware rules. Based on
the robustness metric calculated using F1 scores, we secure robustness values of 0.90 (close
to 1), indicating the elasticity of the middleware rules to image scene perturbations.

Table 1. Classification accuracies based on the master ruleset and adapted ruleset.

Site Ruleset Correctness Completeness F1 Score

[1] Master ruleset 0.99 0.87 0.92
[2] Adapted ruleset 0.87 0.77 0.81
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Table 2. Rule-set adaptation from site-1 to site-2.

Class
Image
Object
Level

Image Object
Property

(Feature/Variable)
Membership

Function
Parameters of the

Master Ruleset
Parameters of the
Adapted Rule Set

Deviations
Type F b Type F a

αr βr vr ar αa βa va aa δv δa δF Add/Remove

1 
 

 

M
id

dl
ew

ar
e

ru
le

s

1 
 

 

Trough

Ln NDWI

1 
 

 

0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.0 0.0 -

Ln+1

Mean difference to
scene

1 
 

 

0.0 10 10 5 0.0 10 10 5 0.0 0.0 0.0 -

Area

1 
 

 

50 1000 950 475 50 1000 950 475 0.0 0.0 0.0 -

Density

1 
 

 

0.0 1.6 1.6 0.8 0.0 1.6 1.6 0.8 0.0 0.0 0.0 -

Radius of smallest
enclosing ellipse

1 
 

 

2.0 5.0 3.0 1.5 2.0 5.0 3.0 1.5 0.0 0.0 0.0 -

Ln+2

GLCM standard
deviation

1 
 

 

0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 0.0 0.0 -

Mean difference to
super object

1 
 

 

0.0 5.0 5.0 2.5 0.0 5.0 5.0 2.5 0.0 0.0 0.0 -

Density

1 
 

 

0.0 1.6 1.6 0.8 0.0 1.6 1.6 0.8 0.0 0.0 0.0 -

Note: a and b of F depicts the inclusion/exclusion of fuzzy membership function and changing the range of fuzzy membership functions, respectively.
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Figure 7 shows the visual analysis of automatically extracted trough objects compared
to human delineation. On the side-by-side comparison of Figure 7a,b, it is evident that the
automated extraction was able to accurately segment out the trough without amalgamating
areas from the background (polygon center or the rim of the ice-wedge polygon). In other
words, the automated detection stays inside the manual delineation. The discrepancy
between the two methods (see area pointed by red arrow) is actually due to the boundary
generalization ability of humans. Spatial boundaries are fuzzy and scale dependent.
Similar observations can be made for Figure 7c,d. The automated detection is within
the generalized boundary of manual outlining. Overall, our approach shows promising
accuracy in trough boundary detection while optimizing over-segmentation and under-
segmentation scenarios.
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4. Discussion

In this study, we evaluated a knowledge-based approach centered on GEOBIA
paradigm to automatically extract ice-wedge polygon troughs from VHSR commercial
satellite imagery. Previous studies have used kites and balloons [85], UAVs [40], and LiDAR
data [49]. We do not know of any other study that has so far probed into this research
problem using broadly available VHSR data and a novel GEOBIA approach that is scalable
to the pan-Arctic domain. Here, we envisioned a mapping task beyond the development
of yet another sequential feature extraction, but rather applying a multiscale modelling
framework that builds semantic links between concept and digital domains [64,86], and
paves the way to generalize for other permafrost landforms. Rapid influx of VHSR com-
mercial imagery coupled with the pan-Arctic DEM (~2m resolution, [87]) provide Arctic
permafrost researchers an unprecedented luxury of landform mapping and documenting
morphodynamics across multiple spatial scales and time extents.

In order to fully capitalize on imagery-enabled science products, it is not only impor-
tant to gain access to optimized workflows and high-performance computing resources but
also crucial to establish shared conceptualizations of landforms in question. Lack of consen-
sus could potentially lead to plurality of interpretations. GEOBIA spontaneously provides
rich conceptual grounds for the semantic modelling process. In the context of landform
mapping application, such as for troughs or ice-wedge polygons, the processing units are
geomorphometric objects (as opposed to pixels) that better resemble the true landforms.
GEOBIA allows us to construct objects in a spatially concurrent multi-scale structure, en-
abling hierarchical modelling. This is important because the terrain surfaces exhibit spatial
continua [88] comprising a mosaic of landforms, without crisp boundaries, aggregated
into multiple scales [77]. If we apply this to polygonal tundra, polygon center—polygon
rim—trough can be viewed as a mosaic of geo-objects exhibiting fuzzy discontinuities
across scales. The visual progression rendered in Figure 3 testifies to the need for multiscale
analysis, since the form and behavior of trough objects change as we evaluate the image
at different scales. This ultimately leads to multilevel trough object extraction mediated
by adaptive segmentation (see Figure 2). Another advantage of GEOBIA is the opportu-
nity to feed domain knowledge about landforms (e.g., morphometry, morphology, and
topology) into the classification process that could further elucidate whether ice wedge
troughs are indicative of permafrost degradation. The merit of knowledge integration
in class modelling can quickly become a limitation of GEOBIA [51]. The authors of [56]
viewed it as its Achilles heel. Overwhelming involvement of the operator in the knowledge-
based workflow increases the subjectivity (operator dependency) [80] of rules and reduces
the transferability of the mapping workflow across landscapes. It makes the workflow
tailor-made to a specific area and data scale. Aligning with our previous work [56,58], in
this study, we adapted the concept of middleware rules. The luxury within GEOBIA of
constructing rules by incorporating an array of object-related properties (spectral, spatial,
and textural) and class-related features promotes class modelling with an optimal set of
rules. The transferability of the workflow is then assessed against the middleware rules.
After surmounting a certain level of classification accuracy based on middleware rules,
one could become more surgical about class modelling to enhance the classification, for
example, incorporating pixel-level segment operations (border optimization, object fusion,
region growing, etc.) but at the expense of transferability. As seen in Table 1, we framed
our middleware fuzzy rules based on a handful of spectral and spatial properties. One
of the noteworthy observations is that we were able to produce promising classification
accuracies (see Table 2) repurposing the middleware rules on site -2. This explains the
robustness of our middleware design. One could counter-argue that re-application of
master middleware did not yield the accuracy level of site-1, and making adaptations to
fuzzy membership functions (or introduction of new rules or removal of existing rules)
could raise the classification accuracies. We suggest that the point of trade-off between
the investment in adaptations and the mapping accuracy level should be pursued with
respect to the problem at hand. This especially holds true in large area mapping efforts,
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in which we need to sustain acceptable classification accuracy while deploying the map-
ping workflow across heterogeneous landscapes that are representative of the pan-Arctic
permafrost domain.

We experimented with creative avenues to enhance the efficiency and detection accu-
racy of an ice-wedge trough extraction workflow. We achieved this by using mathematical
morphological processing and adaptive segmentation strategies. Mathematical morphol-
ogy is a distinct image processing domain with its own application space, particularly in
grayscale image analysis. Unfortunately, its pre-processing potentials are ill explored in
GEOBIA. We were able to significantly inform the segmentation and classification process
using morphologically filtered images (Figures 3 and 4). The use of morphologically filtered
imagery led to high-quality image segments, which ultimately resulted in trough modelling
using a limited number of object properties. We would not have achieved the same level of
accuracy if we had only relied on the original multispectral imagery. We observed that the
black-hat operation is useful in areas where troughs are filled with water. This explains
the elevated detection accuracy in site-1 where dry troughs dominate, and the top-hat
operation can be utilized to inform the segmentation. In future research, we aim to use
the combined operations of top-hat and black-hat filters to further distinguish the trough
objects. Segmentation is the basic building block of GEOBIA. Depending on the com-
plexity of the algorithm, segmentation could be a highly time-demanding task. To avoid
unnecessary time investments, we complemented multiresolution segmentation, which
is a complex and time-intensive method, with the less time-demanding multi-threshold
segmentation to produce multi-scale image object candidates (see Figure 2). Such hybrid
approaches not only substantially reduced the processing time for large-scale operations,
but also facilitated the transferability of re-segmentation and re-classification tasks for
highly localized image object candidates.

In summary, we developed and tested an object-based approach to automatically
extract ice-wedge troughs from very high resolution satellite imagery while emphasizing
critical issues with regard to image pre-processing, class modelling, adaptive segmentation,
knowledge base, and transferability of fuzzy rules. We do not claim that the present
study is comprehensive in terms of semantic modelling but rather provide the impetus
to steer the trajectory of imagery-based and/or DEM-based landform characterization.
As ice-wedge troughs create niche environments for vegetation [33], and impact surface
hydrology [23,89], snow distribution [90], biogeochemical fluxes [32,91], and ground tem-
peratures [33,34], mapping troughs will enable the quantification of their significance and
the landscape responses to ice-wedge degradation. Furthermore, it will enable better esti-
mates of ground ice volumes at landscape and regional scales [17,92]. Further research into
such semantic-based modelling approaches would be of great interest for other permafrost-
related landforms, such as frost boils, pingos, baydzherakhs, thermo-erosional gullies,
active layer detachments, and retrogressive thaw slumps. One of the aspects that we aim to
explore further is the susceptibility of the ruleset to seasonal and phenological variations.
The findings of this study add to our expanding toolkit for better characterizing permafrost
region landscapes at sufficiently high spatial resolution, so that we can better observe how
these regions are responding to climate and land use changes in the Arctic.

5. Conclusions

Arctic scientists have direct access to sub-meter-scale commercial satellite imagery
more than ever before. However, valued-added data products are rare. Image analytics in
Arctic earth science are still mainly limited to manual or site-scale automated processing.
Our study sheds the first light on using object-based image analysis to automatically extract
ice-wedge polygon troughs. We sought the study beyond sequential feature extraction but
deeply probed into the practicality of the object-based trough modelling over polygonised
tundra landscapes. We aimed to stage critical discussion on image pre-processing, class
modelling, adaptive segmentation, knowledge base, and transferability of fuzzy rules.
Through this initiative we aim to broaden imagery-enabled and/or DEM-based Arctic
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landform characterization. From an Arctic earth science perspective, the mapped troughs
combined with the ArcticDEM can allow hydrological assessments of lateral connectivity
of the rapidly changing Arctic tundra landscape, and repeated mapping can allow us to
track fine-scale changes across large regions and that has potentially major implications on
larger riverine systems.
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