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Local-scale Arctic tundra heterogeneity affects
regional-scale carbon dynamics
M. J. Lara 1,2,3✉, A. D. McGuire3, E. S. Euskirchen 3, H. Genet 3, S. Yi4, R. Rutter3, C. Iversen 5,

V. Sloan6 & S. D. Wullschleger5

In northern Alaska nearly 65% of the terrestrial surface is composed of polygonal ground,

where geomorphic tundra landforms disproportionately influence carbon and nutrient cycling

over fine spatial scales. Process-based biogeochemical models used for local to Pan-Arctic

projections of ecological responses to climate change typically operate at coarse-scales

(1km2–0.5°) at which fine-scale (<1km2) tundra heterogeneity is often aggregated to the

dominant land cover unit. Here, we evaluate the importance of tundra heterogeneity for

representing soil carbon dynamics at fine to coarse spatial scales. We leveraged the legacy of

data collected near Utqiaġvik, Alaska between 1973 and 2016 for model initiation, para-

meterization, and validation. Simulation uncertainty increased with a reduced representation

of tundra heterogeneity and coarsening of spatial scale. Hierarchical cluster analysis of an

ensemble of 21st-century simulations reveals that a minimum of two tundra landforms (dry

and wet) and a maximum of 4km2 spatial scale is necessary for minimizing uncertainties

(<10%) in regional to Pan-Arctic modeling applications.
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There are considerable uncertainties regarding the fate of
permafrost carbon pools with projected warming over the
next century. Warming1, thawing1,2, and degrading per-

mafrost2 have increased the vulnerability of modern and ancient
soil carbon to decomposition3. Although evidence suggests that
substantial losses of permafrost carbon may be inevitable4, the
pace of change spanning the Pan-Arctic is likely to vary regionally
with climate change, vegetation composition, landform, soil car-
bon density, and ground ice content5–8. Therefore, uncertainties
may be amplified in coarse-scale Pan-Arctic projections by the
limited representation of local-scale processes, intrinsically linked
with the mosaic of tundra landforms that profoundly influence
ecosystem structure and function9–11.
The tundra on the Arctic Coastal Plain of Alaska is highly

heterogeneous (Fig. 1), nearly 65% of this landscape is com-
posed of an intricate network of ice-wedge polygon landforms
(Fig. 2)12,13 developed by ground ice aggregation and degrada-
tion associated with frost heaving and ground subsidence14. The
spatial distribution of these low relief (<0.5 m) landforms varies
over small spatial scales (10–100 m2), strongly influencing sur-
face and subsurface hydrology2,15, snow distribution and
depth16–18, vegetation composition19–21, soil carbon and nitro-
gen22–25, carbon dioxide and methane fluxes9,26–29, and an array
of soil-forming processes30. Despite mounting evidence of the
fine-scale microtopographic and landform-specific controls on
ecosystem processes that govern ecosystem function, data lim-
itations in the Arctic have restricted our ability to understand
the importance of scale-, process-, and landform-dependent
responses to global change.
Here we leveraged the legacy of measurements collected

(described in “Model initialization”) between 1973 to 2016 from a
data-rich subregion of the Arctic Coastal Plain (i.e., Barrow
Peninsula) to comprehensively parameterize the diverse mosaic of
all dominant polygonal tundra landforms within a process-based
terrestrial ecosystem model with dynamic organic soil layers
(DOS-TEM). DOS-TEM is an intermediate-scale model capable
of simulating carbon, nitrogen, and water cycles, with interacting
permafrost dynamics31. DOS-TEM has been extensively validated
and applied at a range of spatial scales32–34. Due to the strong
control of polygonal landforms on ecosystem structure and
function, we hypothesize that the local-scale representation of
tundra heterogeneity (defined here as the total number of land-
forms represented in the model) will markedly influence regional-
scale soil carbon projections. However, the potential impact of
tundra heterogeneity and model spatial scale (i.e., grid size) on

Arctic tundra carbon dynamics remains highly uncertain, yet
paramount for reducing model uncertainties spanning the Pan-
Arctic. We evaluate the error of prediction in twenty-first century
Arctic soil carbon stocks associated with tundra heterogeneity
and spatial scale by running parallel DOS-TEM simulations with
a range of resolved tundra landforms (6–1) and spatial scales
(30 m–25 km2). Results indicate model error will be significantly
constrained by representing a minimum of two tundra landforms
(dry and wet) at a maximum model spatial scale of ≤4 km2.
However, all efforts to advance the representation of local-scale
heterogeneity in terrestrial and earth system models will sig-
nificantly improve global climate change projections in response
to thawing and degrading permafrost carbon.

Results
Study region. The Barrow Peninsula (~1800 km2) is situated on
the northern limit of the Arctic Coastal Plain (Fig. 1). The mean
annual temperature, precipitation, and snowfall are −11.2 °C,
115 mm, and 958 mm, respectively (1981–2010)35 and the max-
imum thaw depth ranges from 30 to 90 cm36,37. This continuous
permafrost region is characterized by meso-scale (tens to hun-
dreds of square kilometers) drained thaw lake basins (DTLBs)
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Fig. 1 Heterogeneous distribution of polygonal tundra landforms on the Arctic Coastal Plain of Alaska. The polygonal tundra map10,13 is projected over
ArcGIS World Imagery basemap (Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the
GIS User Community).
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Fig. 2 Oblique aerial photograph of the dominant polygonal tundra
landforms on the Arctic Coastal Plain of Alaska. Photograph acquired in
August 2008 from southeast (~135° azimuth) of 71°16’46.02”N, 156°
25’45.35”.
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and interstitial tundra9,38, which are composed of a mosaic of
fine-scale polygonal tundra landforms (tens to hundreds of
square meters). Excluding lakes and rivers, the dominant poly-
gonal tundra landforms in this region includes low-center (LC)
polygon, flat-center (FC) polygon, high-center (HC) polygon,
coalescent LC polygon, drained slopes (DS), nonpatterned
DTLB (nDTLB), and thermokarst ponds, which cover an
estimated 34, 24, 16, 11, 11, 3, and 1% of the land surface
area, respectively9,13. Due to the similarity in morphological
and physiological characteristics of coalescent LC polygons and
thermokarst ponds, they are rarely differentiated in field
observations. Therefore, both these landforms are combined
and referred to as Ponds in the proceeding analysis. Though
multiple vegetation communities may be found on each tundra
landform, communities typically assemble along a soil moisture gra-
dient representative of each landform21. These community–landform
associations are identified as follows: dry Salix heath–DS, dry Luzula
heath–HC, moist–wet Carex–Oncophorus meadow–FC, moist–wet
Carex–Eriophorum meadow–LC, wet Dupontia meadow–nDTLB,
and wet Arctophila pond margin–Pond21.

Model parameterization and validation. We synthesized an
extensive collection of field data measured on the Barrow Peninsula
to parameterize and validate DOS-TEM (Supplementary Table 1
and Fig. 3). The majority of this data was acquired by scientific
initiatives: (1) International Biological Research Program during the
early 1970s21,38–40, (2) Next Generation Ecosystem Experiments
between 2010 and 201641–47, and (3) Carbon in Arctic Reservoirs
Vulnerability Experiment (CARVE) during 2011–201548. In addi-
tion, we leveraged key ancillary datasets including: soil carbon
pedons (i.e., 100 cm soil cores)22–24,30,38,39,49–51, vegetation carbon
and nitrogen21,38–40,52, eddy covariance measurements48, and
polygonal tundra landform maps9,13.
Modeled carbon fluxes were compared to net ecosystem

exchange (NEE) measurements from the CARVE tower near
Utqiaġvik (71°19′22.72′N, 156°35′47.74′W). The tower footprint
(~250 m radius) was located in a heterogeneous tundra site
composed of all dominant polygonal tundra landforms (exception
of Ponds). Although we identified good correspondence with
modeled and measured NEE for most of our observations, DOS-
TEM underestimated respiratory losses during the zero-curtain

seasonal freeze and thaw isothermal period (e.g., September and
October)53, resulting in an underestimate of the 1 to 1 line (R2=
0.46, p < 0.001, Fig. 3a, b). Simulated carbon pools for each tundra
landform were compared and validated to (i) model benchmarks
(Supplementary Table 1) and (ii) an independent subset of soil
carbon pools (i.e., pedons), identifying excellent correspondence
with modeled and measured carbon pools (Fig. 3c). Together
these results demonstrate the ability of DOS-TEM to capture
seasonal and inter-annual patterns of carbon dynamics in tundra
ecosystems.

Response of soil carbon to climate change. We simulated the
response of soil carbon pools to climate change within frozen and
seasonally thawed organic (fibric and humic) and mineral hor-
izons. These soil horizons are vertically stratified and vary in the
degree of organic matter decomposition. Due to the known data
limitations across the Arctic54–56, the complete representation of
tundra heterogeneity has not been possible. We used high (i.e.,
Canadian Centre for Climate Modeling and Analysis (CCCMA)
A2) and low (i.e., ECHAM5 B1) climate and emission scenarios,
comparable to the five best-performing CMIP5 (Coupled Model
Intercomparison Project phase 5) model mean representative
concentration pathways 6.0 and 4.5 for the Barrow Peninsula
(Supplementary Figs. 1 and 2). Scenarios CCCMA A2 and
ECHAM5 B1 project an increase in air temperature (6.96–5.72 °
C, precipitation (182–215 mm), and atmospheric CO2 (509–214
ppm) between 1970 and 2100.
Model simulations indicate that all landforms will gain soil

carbon by the end of the twenty-first century (Fig. 4a). However,
the trajectories between wetter versus dryer landforms diverged
between climate change scenarios. Dependent on climate
scenarios from 1970 to 2100, simulated soil C stocks in wet
nDTLBs and LC increased between 6127 and 4012 (11.9–7.8%)
and between 5246 and 3715 (8.5–6.0%) g Cm−2, respectively
(Fig. 4a). Moist FC and aquatic Ponds gained soil carbon at a
slightly lower rate than wet landforms, increasing between 2838
and 2073 (5.3–3.9%) and between 4762 and 3970 (7.2–6.0%) g C
m−2, respectively. While dry HC and DS landforms slowly
increased in soil carbon content between 2389 and 1895
(3.6–2.8%) and between 2596 and 1834 (3.2–2.3%) g Cm−2,
respectively.
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Fig. 3 Validation of modeled carbon fluxes and carbon pools. Monthly net ecosystem exchange (NEE) fluxes measured by the CARVE eddy covariance
tower (71°19’22.72”N, 156°35’47.74”W, a) during 2011–2015, were compared with NEE fluxes simulated with DOS-TEM (dashed line in b). Negative NEE
indicates carbon uptake, while positive NEE indicates loss. Footprint % indicates the accumulated percentage of measured NEE used to compare with
modeled NEE, weighted by polygonal landform (DS drained slope, HC high center, FC flat center, LC low center, nDTLB nonpatterned drained thaw lake
basins) using the Kormann and Meixner93 flux footprint model (e.g., a). Modeled carbon pools (colored circles; c) were compared to 44 pedons collected
(solid gray circles with standard error bars) and validated against 11 independent random subset of soil carbon pedons (open circles) measured on each
respective landform across the Barrow Peninsula.
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The rates of soil carbon accumulation varied by soil horizon
(Supplementary Fig. 3). Although all landforms increased soil
carbon at a relatively constant rate in the fibric horizon, the rate
of accumulation differed between landforms in the humic
horizon. Wet landforms continued to increase in carbon content,
while moist and dry landforms either did not change (i.e., FC and
HC) or lost carbon (i.e., DS). No notable changes in the mineral

horizon were identified (Supplementary Fig. 3), with the
exception of FC that slowly increased at a rate of ~3.5 g Cm−2

year−1.
We grouped landforms using a single cluster analysis,

employing six key biogeophysical characteristics (i.e., water table
depth, thaw depth, vegetation carbon, soil carbon, soil nitrogen,
and percentage of clay) and re-parameterized and re-calibrated
the model to evaluate the uncertainty associated with incremen-
tally reducing the spatial resolution of the representation of
tundra heterogeneity. The ensemble of “grouped” landform
simulations (Fig. 4b) followed a similar change trajectory as
individual landforms (Fig. 4a), identifying the magnitude of
change among landforms to be greater than climate uncertainty
(CCCMA A2 versus ECHAM5 B1). Similar to individual
landform responses, wet landform groups “FC+ LC+ nDTLB”
and “FC+ LC+ nDTLB+ Pond” increased in soil carbon
between 4523 and 3397 (7.7–5.8%) and between 3570 and 2570
(6.2–4.4%) g Cm−2, respectively (Fig. 4b). Landform groups
moist “FC+ LC” and dry “DS+HC” increased in soil carbon
content between 3822 and 3126 (6.6–5.4%) and between 1356 and
907 (1.9–1.3%) g Cm−2, respectively (Fig. 4b). The “tundra-
biome” landform group (parameterized with data from all
landforms) well represented the mean trajectory across land-
forms, increasing between 2630 and 2094 (4.5–3.6%) g Cm−2

(Fig. 4b). Generally, the change in soil carbon by horizon for
landform groups (Fig. 4b) was comparable to that identified by
individual landforms (Fig. 4a and Supplementary Fig. 3).

Impact of model spatial scale on soil carbon. DOS-TEM was
regionally extrapolated using all landform parameterizations
across nine different scales (0.0009, 0.25, 0.5, 1, 2, 4, 8, 16, and 25
km2), to evaluate the influence of model spatial scale on soil
carbon dynamics. Input landform distributions were aggregated
using a majority filter algorithm (i.e., resampling approach that
reclassifies course resolution pixels using the most abundant
underlying fine pixel values) from a 30-m resolution (i.e., 0.0009
km2) tundra landform map9. Six non-overlapping 75 km2 sub-
regions of the Barrow Peninsula (Fig. 5b) were randomly selected
to (i) standardize the area extent of the simulation domain and
(ii) estimate model uncertainties associated with landform het-
erogeneity and model spatial scale, expressed as the bias and
random error57,58.
The coarsening of model spatial scales incrementally magnified

uncertainties (Fig. 5a) and were directly linked to the mis-
representation of landform distribution (Fig. 6). The bias error
became increasingly negative with scale, decreasing by −0.6% for
every 1 km2 coarsening of spatial scale. Bias errors ranged from
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0.5 to 11.9% associated with relatively fine (i.e., ≤4 km2) to coarse
spatial scales (i.e., >4 km2), while random error became increas-
ingly positive with scale, increasing by 1.4% for every 1 km2

coarsening of spatial scale. Random errors ranged from 3.9 to
22.8% associated with fine to coarse-scale representation of
tundra landforms.
Both the bias error and random error were significantly

minimized at fine scales (Fig. 5a), as twenty-first century soil
carbon was only overestimated by a maximum of 3.7 and ±7.4%,
respectively. This is in contrast to coarser spatial scales as bias and
random error sharply increased at 8, 16, and 25 km2 by −6.1%
(±10.7%), −17.0% (±22.1%), and −12.6% (±35.5%), respectively
(Fig. 5a). The increase in spatial scale led to the overestimation in
the area of low productivity thermokarst lakes (1.1% for every 1
km2) and underestimated wet productive landforms such as
Ponds (−0.5% for every 1 km2) and LC polygons (−0.5% for
every 1 km2; Fig. 6). This underestimation of wet landforms was
particularly concerning as wet landforms have been regionally
identified as those most sensitive to change59–61, while represent-
ing a significant proportion of the regional carbon cycle9,60,62,63.

Influence of tundra heterogeneity and model spatial scale. To
evaluate the causes, consequences, and mitigation strategies for
twenty-first century errors of prediction (i.e., bias and random
error), we examined the combined influence of both tundra
heterogeneity and model spatial scale. Correlation matrices clar-
ified the potential causes of variable prediction errors, while
hierarchical cluster analysis implemented using Euclidean dis-
tance and McQuitty linkage methods were used for grouping
tundra heterogeneity and model spatial scales with similar errors
of prediction to identify potential mitigation strategies or
recommendations for future modeling applications.
Correlation matrices supported our presumption that an

overestimation of lakes and underestimation of productive wet
landforms altered the quantification of landscape-level soil carbon
stocks, as bias error was strongly negatively correlated with lake
cover (r=−0.98) and positively correlated with wet landforms
(r= 0.94; Fig. 7). We found an inverse correlation in bias error as
the prevalence of lake cover increased with spatial scale at the
expense of nearly all other landforms, but in particular the

landforms in low abundance such as tundra ponds (Figs. 6 and 7).
Similar to the identified influence of spatial scale on random error
(Fig. 4), correlations were highly positively related with model
spatial scale (r= 0.99; Fig. 7), reinforcing the impact of
coarsening model scale on uncertainty propagation.
Overall, bias error was linked with the misrepresentation of tundra

landforms as spatial scale increased (Fig. 7 and Supplementary
Fig. 4). Therefore, we next elucidated the influence of hetero-
geneity and scale on random error. Though random error was
correlated with spatial scale, we explored the variability across
tundra heterogeneity and scale. The lowest and highest random
errors occurred at the finest (≤4 km2) and coarsest (≥16 km2)
spatial scales, respectively (Fig. 8). Landform clusters include one
or more landforms and landform groups needed to represent
tundra heterogeneity on the Barrow Peninsula. Random error
was constrained to ±4.5% by considering 5 or 6 tundra landform
groups at fine scales. However, at coarse scales these hetero-
geneous groups also showcased the greatest errors (±28.9%) due
to the high number of landforms parameterized within increas-
ingly uncertain landform distributions as scale increased (Figs. 5
and 8). The lowest error among clusters was identified in
landform cluster 2 (i.e., ±3.4%; dry and wet), likely due to
biogeophysical similarities (i.e., soil anaerobicity, soil available
nitrogen, productivity gradients) between dry versus wet land-
forms (Supplementary Table 1) and similar responses to climate
change (e.g., Fig. 4a). Interestingly, even at coarse scales the error
found in cluster 2 remained lower than all other landform
clusters. Although the “tundra-biome” cluster 1 had a relatively
low random error across spatial scales (Fig. 8), this result would
not be directly transferable to other modeling applications as
we leveraged (i) a robust dataset for model parameterization and
(ii) high-resolution polygonal tundra landform maps, currently
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unavailable across the Arctic for initializing and weighting model
parameterization data. The importance of our data assimilation
and landform weighting protocol was confirmed by testing the
performance of a single unweighted landform parameterization
(i.e., HC polygon) extrapolated across the Barrow Peninsula. We
found random error to double (±15%) that of cluster 1 at fine
scales (≤4 km2) and nearly triple (±45%) at coarse scales (>8
km2). Therefore, to best simulate dynamically changing carbon
pools in permafrost soils, our analysis recommends a minimum
of two landform groups (i.e., dry and wet) at a maximum model
spatial scale of ≤4 km2 (Fig. 8).

Implications for modeling soil carbon dynamics in Arctic
tundra. Current uncertainties among Pan-Arctic model projec-
tions reflect inadequate spatial and temporal data needed to
initialize, parameterize, and validate key Arctic ecosystem
processes55,56,64. This study overcame many of these limitations
by leveraging a legacy of data (1973–2016) collected from the
data-rich Barrow Peninsula to constrain parameter, climate, and
model uncertainties, to improve the representation of Arctic
tundra heterogeneity across model spatial scales. We identify a
scale-dependent balance between tundra heterogeneity and model
spatial scale, linked with the decoupling of actual and simulated
tundra landform distributions as spatial scales increased (Figs. 5
and 6). The scale-dependency of model process representation is
supported by ground-based assessments, as the drivers of carbon
dynamics vary across local (e.g., drainage conditions affecting
aerobic/anaerobic processes), regional (e.g., vegetation distribu-
tion), and landscape scales (e.g., climate variability). Though we
identified relatively minimal differences in carbon accumulation
rates between polygonal tundra landforms, this was not neces-
sarily surprising as Arctic coastal tundra landforms are relatively
young (<5500 years)24, often forming within drained lake basins
underlain by the same initial soil substrates65. It is not until ice-
wedge aggradation alters surface microtopography14 that local
changes in soil moisture, vegetation community composition, and

carbon and nitrogen fluxes incrementally alter soil carbon and
nitrogen pools. Therefore, our results are ecologically consistent
and computationally relevant, as the two recommended dry and
wet tundra landforms are at opposite ends of the geomorpholo-
gical succession spectrum21 and found to not only be those most
important to adequately represent tundra heterogeneity but also
for minimizing prediction errors (bias and random error) while
maximizing computational efficiency in Pan-Arctic modeling
applications.
Because all models are subject to imprecision associated with

imperfect observations66, evaluating the influence of various
sources of uncertainty in data-poor high-latitude ecosystems are
of utmost importance56,67,68. The inherent randomness in natural
systems over space and time was constrained by iteratively
synthesizing nearly all possible data combinations to parameter-
ize and simulate change in soil carbon across landforms and
groups using relatively moderate climate scenarios for our study
region (Supplementary Table 1 and Supplementary Fig. 2).
Measurement error (i.e., imprecision of data) was overcome by
capitalizing on the robust data collected across multiple projects,
initiatives, and programs, thereby minimizing systematic error
associated with sampling bias. Due to the difficulty quantifying
the influences of cause-and-effect relationships among para-
meters, we constrained model structural uncertainty in this
application by using a single process-based model, ensuring that
ecosystem processes are constant among simulations
Despite constraining multiple sources of uncertainty, simulation

limitations persist. For example, we did not explicitly simulate
carbon dynamics in lakes on the Barrow Peninsula as regional
carbon accumulation has been very low throughout the Holocene
(~10 g Cm−2 year−1)69–71. In contrast, lakes within yedoma
deposits accumulate carbon at a rate of ~47 g Cm−2 year−1 72. This
disparity highlights the importance of not only representing
heterogeneous tundra landforms for minimizing uncertainties in
Arctic carbon dynamics (Figs. 6 and 8) but also heterogeneous
Arctic lakes. Although our results clearly identify the scale-
dependency of simulated carbon dynamics, patterns of uncertainty
propagation with scale are likely to persist across most spatially
explicit model parameters (i.e., available nitrogen), specifically if
models are unable to represent sub-grid-scale spatial variability. In
addition, similar to many other models73 DOS-TEM does not
represent within-grid lateral flow (i.e., adjacent grid cells do not
interact), making us unable to evaluate the influence of spatial
scale on the lateral transport of carbon, nutrients, and water across
the landscape. Recent catchment-scale modeling applications
provide a more realistic representation of regional surface and
subsurface tundra hydrology and terrestrial–atmosphere fluxes74,
with the potential to minimize scale-dependent uncertainties.
Among the most conspicuous limitations in nearly all terrestrial
and earth system models is in the inadequate representation of
periglacial landscape evolutionary pathways (i.e., permafrost
degradation) that will control spatial and temporal patterns of
tundra wetting and drying75. Though DOS-TEM partially captures
this process associated with the vertically resolved thawing of
permafrost, these periglacial ecosystem dynamics are difficult to
represent in gridded process models76 because (i) data characteriz-
ing short- and long-term thermokarst (i.e., subsidence of the
surface with permafrost thaw) dynamics are limited, (ii) permafrost
degradation does not uniformly initiate across space and time75,77,
and (iii) degradation processes do not occur at a uniform rate for
initiated thermokarst77–79. These small but prevalent thermokarst
features may represent hot-spots of biogeomorphic change80, yet
not currently represented in any regional to Pan-Arctic process-
based biogeochemistry model.
Due to these known limitations, this assessment focused on

improving the representation of heterogeneous Arctic tundra
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ecosystems in carbon cycle models. Similar to others4,81,82,
simulations indicate that elevated atmospheric CO2 was the
dominant driving factor for projected soil carbon sequestration
(sum of carbon from litter, fibric, humic, and mineral soil
horizons; Supplementary Fig. 5). This projected increase in soil
carbon storage was in line with twenty-first century simulations
in northern Alaska83 and the Pan-Arctic4. As compared to Pan-
Arctic Permafrost Carbon Network model intercomparison4,
TEM models consistently project higher rates of soil carbon
sequestration than other models that do not include nitrogen
dynamics, as net primary production is enhanced by nitrogen
availability with soil warming. Compared to simulations from a
previous version of TEM that used a single parameterization to
represent Arctic tundra wetlands of northern Alaska83, our soil
carbon accumulation rates were still overestimated by as much as
75.4%. If these tundra wetland simulations83 were implemented
with at least two parameterizations (i.e., dry and wet), our
findings estimate a threefold decrease in the error of prediction.
Collectively, these results highlight that a slight increase in the
representation of tundra heterogeneity in terrestrial and Earth
System biogeophysical models may notably decrease uncertainties
in projected frozen and seasonally thawed soil carbon dynamics
in the Arctic.

Discussion
High-latitude regions are among the largest sources of identified
uncertainties to global climate projections56,84. Due to the spatial
and temporal data limitations that propagate uncertainties in the
Arctic, we leveraged the legacy of data measured near Utqiaġvik
to evaluate the influence of local tundra heterogeneity on regional
carbon modeling on the Barrow Peninsula. Comprehensive data
assimilation and analysis suggested that bias and random errors
will be significantly constrained by representing a minimum of
two tundra landforms (dry and wet) at a maximum model spatial
scale of ≤4 km2. However, models capable of representing sub-
grid processes, while accounting for landscape heterogeneity may
overcome many of these errors of prediction. Models capable of
accounting for landform distribution, shoulder season (i.e., zero-
curtain freeze–thaw isothermal period) carbon dynamics53, and
thermokarst-driven landscape evolutionary dynamics may
markedly minimize uncertainties in next-generation Arctic bio-
geochemistry models. Overall, our results indicate that model
error will gradually decrease with the improved representation of
tundra heterogeneity and spatial scale, and all efforts to advance
the representation of permafrost-driven tundra heterogeneity in
terrestrial and earth system models will significantly improve
global climate change projections in response to thawing and
decomposing permafrost carbon.

Methods
Dynamic organic soil in the terrestrial ecosystem model. We use a process-
based ecosystem model, the DOS-TEM, designed to simulate carbon and nitrogen
pools and fluxes across water, vegetation, soils, and the atmosphere. DOS-TEM has
been applied and validated at a range of scales and biomes4,8,31,34,85, while accu-
rately simulating the thickness and carbon content of organic-rich soils86 in bor-
eal34 and Arctic landscapes4,31,54,82. The DOS-TEM is driven by climate, CO2

forcing, vegetation-type distribution, soil texture, elevation, and disturbance. All
climate input datasets were downscaled from 0.5° spatial resolution (CRU, www.
cru.uea.ac.uk/) to 1 km resolution using the delta method87 by the Scenarios
Network for Alaska and Arctic Planning (www.snap.uaf.edu/). To represent the
potential range of temporal variability between 2010 and 2100 simulations, two
earth system models were used: (1) the CCCMA (version:3.1-t47, www.cccma.ec.
gc.ca/data/cgcm3/) and (2) Max-Planck Institut fur Meteorologie (ECHAM5,
version: echam-5.4.02, www.mpimet.mpg.de/en/wissenschaft/modelle/echam/).
Each of these models conducted simulations to represent high (A2), moderate
(A1B), and low (B1) CO2 emission scenarios, respectively (IPCC, 2014). Down-
scaled historical and projected climate datasets include monthly mean air tem-
perature, precipitation, vapor pressure, and surface incoming shortwave radiation
from 1901 to 2010. Regional soil texture geospatial products used for model

initialization were derived from the median texture values by landform9,13. Ele-
vation and wildfire disturbance were not important factors in this analysis as wet
sedge graminoid tundra on the Barrow Peninsula is generally <8 m above sea
level9,88 and wildfires are extremely rare.

Model initialization. Each polygonal tundra landform was parameterized using
vegetation and soil characteristics, including above and belowground vegetation
nitrogen (N) and carbon (C), net primary productivity (NPP), gross primary
productivity (GPP), N uptake, soil available N, CFall, NFall, organic horizon
thickness, total fibric, humic, and mineral C (Supplementary Table 1). We used
above and belowground biomass (g m−2) estimates reported by Webber21, to
estimate vegetation C and N pools for each landform. Four regression analyses
derived from datasets collected within ~1 km of sites sampled by Webber21, over
the summers of 2012–2014 (latitude: 71.28°, longitude: −156.60°) to estimate
aboveground vegetation C and N. We developed the following regressions for
vegetation C: y= 0.458639x− 0.017729 (R2= 0.99, p < 0.0001, n= 278), where
the dependent and independent variables were vegetation C (g m−2) and vege-
tation biomass (g m−2), and vegetation N: y= 0.025335x− 0.017729 (R2= 0.97,
p < 0.0001, n= 278), where the dependent and independent variables were
vegetation N (g m−2) and vegetation biomass (g m−2). Belowground vegetation C
and N were estimated using the following regressions: y= 0.461639x− 0.223021
(R2= 0.99, p < 0.0001, n= 51), where the dependent and independent variables
were root C (g m−2) and root biomass (g m−2), and y= 0.00859871x+ 0.022262
(R2= 0.87, p < 0.0001, n= 51), where the dependent and independent variables
were root N (g m−2) and root biomass (g m−2; unburned graminoid tundra)52.
Estimates of NPP (g m−2 year−1) and GPP (g m−2 year−1) specific to landform
were calculated by Webber21, while monthly CFall or the amount of C dropped
as litter was estimated by the following: CFall= (NPP/vegetation carbon) × (1/12).
NPP and GPP estimates in Pond landform parameterizations were weighted by
the ratio of pond margin vegetation (i.e., reported by Webber21) to total pond
area (~0.391) estimated from high-resolution vegetation map products9,19 to
improve the representativeness of vegetation productivity in ponds classified in
tundra landform maps used to initialize DOS-TEM9,13.

We synthesized 110 soil cores collected from this region to initialize soil carbon
pools in all landforms across the Barrow Peninsula22–24,30,38,39,49–51. However,
only 55 soil pedons (i.e., 100-cm soil cores) were used to estimate landform-specific
soil carbon as the remaining were collected to a depth of <80 cm and/or did not
have the necessary metadata for representing the geographic location or one of
the three soil horizons (i.e., fibric, humic, mineral). High-resolution satellite
imagery (i.e., World View 2 and Quickbird 2) was used to categorize each soil
pedon with the associated landform (DS:5, HC:10, FC:4, LC:10, Mdw:20, and
Pond:6). Soil horizon thickness is prescribed for fibric and amorphous soil
layers, but DOS-TEM assumes 1 m of mineral soil thickness. Therefore, we
estimated mineral soil carbon >100 cm using estimates89 that approximate all
soil carbon between 100 and 200 cm depth in this region at ~29 kg C m−3.
Estimates of total soil carbon (Supplementary Table 1) reflect updated values
indicative of 1 m of mineral soil. Linear relationships were developed to estimate
soil N from soil C using the following regression: y= 0.049662x− 0.673615
(R2= 0.88, p < 0.0001, n= 134), derived from data reported from Gersper39,
where the dependent and independent variables represent soil N (g Nm−2)
and soil C (g C m−2). Available soil N was computed as the sum of NH4-N
and NO3-N within the rooting zone90.

DOS-TEM was calibrated to ground-based data (i.e., benchmark values;
Supplementary Table 1) using local climate, vegetation, and soil properties to
estimate parameters that are difficult to measure in the field (i.e., decomposition
rate-limiting parameters). Model calibration matched simulated ecosystem
attributes to model benchmarks, which initiates by running DOS-TEM to an
equilibrium state using the mean climate (i.e., air temperature, precipitation, vapor
pressure, solar radiation) and CO2 concentration from 1901 to 1930 for Utqiaġvik,
Alaska. After tuning the model, equilibrium is achieved when model benchmarks
match simulated values and little to no additional change in model behavior is
observed during the simulation.

Prediction error. Error metrics were computed by assuming that the most accurate
tundra landscape simulation corresponds with the highest representation of tundra
landforms (i.e., all six landforms) and spatial distribution of landforms (i.e., 0.0009
km²), which we refer to as the reference simulation. Similar to others91,92, the bias

error was calculated as follows:
Pn

i¼1ðx�RÞ
n , where n is the total number of sub-

regions, x is a simulation at a given heterogeneity and scale (e.g., “landform cluster
4” at 1 km² resolution), and R is the reference simulation, whereas random error

was calculated as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðx�RÞ
2

n

r
, by propagating variances across sub-

regions, represented in the simplest form as the standard deviation.

Model validation. Gap-filled eddy covariance-derived NEE observations were
acquired from the CARVE tower48. In situ flux data were reported in half-hour
intervals between 2011 and 2015 and used to validate seasonal to inter-annual
simulated patterns in carbon dynamics. Data were summarized to coincide with
monthly time steps simulated by DOS-TEM. Measured NEE fluxes were linked to
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landforms by computing the Kormann and Meixner93 flux footprint model.
Though we acknowledge the inherent uncertainty among eddy covariance tower
footprint models and location biases, the Kormann and Meixner footprint model
was selected due to (1) its ability to achieve a relatively simplistic two-dimensional
analytical solution to the crosswind-distributed advection–diffusion equation52 and
(2) this footprint model has been widely applied in northern tundra ecosytems94,95.
Thus our tower footprint is approximated using the height of the tower, wind
speed, wind direction, friction velocity, Monin Ohbukov stability parameter, and
the standard deviation of the cross-stream wind component. Similar to others9,10,
we identified polygonal tundra landforms using high-resolution 0.6 m pan-
sharpened 2008 Quickbird 2 multispectral imagery and digitized polygonal land-
forms in a 300-m radius of the tower. The proportion of landforms within 80% of
the tower footprint were used to approximate NEE using DOS-TEM simulated
fluxes and compare with eddy covariance-derived NEE observations (Fig. 3).

Of the 55 soil pedons that were able to represent carbon pools at depth, we
randomly selected a subset of pedons for each landform (DS:1, HC:2, FC:2, LC:2,
Mdw:3, and Pond:1) to independently validate modeled carbon pools (Fig. 3). The
remaining 43 soil pedons were used to benchmark values for model calibration
(Fig. 3 and Supplementary Table 1).

Data availability
All data synthesized to parameterize DOS-TEM are summarized in Supplementary
Table 1 and publically available via publications21–24,30,38–40,49–51 or within data
repositories13,41–48,52. Input or additional data subsets may be provided by M.J.L. upon
request.

Code availability
Custom program code for DOS-TEM may be provided by M.J.L. upon request. See
provided correspondence details.
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