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ABSTRACT

Understanding the biogeographic patterns of root-associated fungi and their sensitivity to temperature
may improve predictions of future changes in terrestrial biodiversity and associated ecosystem pro-
cesses, but data are currently limited. Anticipating change will require combining observational data,
which predict how climatic factors limit current species distributions, with direct manipulations of
climate, which can isolate responses to specific climate variables. Root endophytes are common sym-
bionts of plants, particularly in arctic and alpine environments, yet their responses to climate warming
are not resolved. Here, we directly cultured endophytic fungi from roots collected along altitudinal
gradients in replicated mountain watersheds and from a 27 y field warming experiment in the Rocky
Mountains, USA, to improve understanding of climate impacts on fungal root endophytes. Fungal taxa
that were common at high elevations declined most under climate warming, whereas low elevation
dominants responded neutrally or increased with experimental warming. Altitudinal gradients in fungal
communities were strongly specific to the plant host species. Specifically, Poa species had 25—60%
greater fungal isolate abundance and 25—38% greater fungal diversity at high elevations than at low
elevation sites. In contrast, Festuca thurberi had 64% lower fungal diversity on roots at high elevation than
at low elevation. Our results help to improve understanding of the potential for climate change to alter
plant-fungal interactions in mountain ecosystems.

© 2020 Elsevier Ltd and British Mycological Society. All rights reserved.

1. Introduction

direct manipulations of climate, to isolate response mechanisms to
specific climate variables (Knapp et al., 2018; Urban, 2019).

Under the business-as-usual scenarios, climate models predict a
2—4 °C increase in global mean annual temperature over the next
century (IPCC, 2014; Masson-Delmotte et al., 2018) with intensified
warming at high elevations (Rangwala and Miller, 2012; Wang et al.,
2016). Many species experience shifts in their geographic distribu-
tions as a consequence of contemporary climate change (Parmesan,
2006; Chenetal.,2011). In particular, many plant species are moving
up mountainsides into cooler, higher elevation climates (Lenoir
et al., 2008; Engler et al., 2011). The ability to anticipate future
range shifts will require a combination of observational data, to
predict how climatic factors limit current species distributions, and
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For plants and animals, observational and experimental data on
the effects of climate change on species distributions and commu-
nity structure are becoming widely available (e.g., Diamond et al.,
2012; Liu et al., 2018), but such data remain limited for fungi and
other microorganisms (Miyamoto et al., 2018; Kazenel et al., 2019).
Understanding the biogeographic patterns of root-associated fungi
and their sensitivity to temperature may improve predictions of
future changes in terrestrial biodiversity and associated ecosystem
function under climate warming. Root endophytes are common
symbionts of plants, particularly in arctic and alpine environments
(Haselwandter and Read, 1980; Porras-Alfaro and Bayman, 2011).
These fungi can have important ecological functions by improving
plant nutrient uptake (Newsham, 2011) and buffering plants under
warming or drought (Kivlin et al., 2013). The abundance, diversity,
and species composition of plant-associated fungi often follow
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altitudinal patterns (reviewed by Kivlin et al., 2017), suggesting that
fungi are sensitive to temperature in mountain ecosystems. For
example, both root colonization by arbuscular mycorrhizal fungi
(AMF) and the diversity of AMF declined with elevation (Gardes and
Dahlberg, 1996; Wu et al., 2007; Gai et al., 2012), although excep-
tions to these patterns also exist (Ruotsalainen et al., 2004; Zubek
et al., 2009). Despite their putative importance in plants, altitu-
dinal patterns in the composition and colonization of non-
mycorrhizal root-associated fungi are poorly resolved (Read and
Haselwandter, 1981; Schmidt et al., 2008), representing just 31 of
374 records in our meta-analysis of altitudinal patterns in fungal
symbiosis in plants (Kivlin et al., 2017). This lack of information
limits our ability to predict how these fungi, and their host plants,
may respond to climate change.

Traditionally, abiotic determinants of species distributions, such as
climate, are assumed to operate over broad spatial scales, while biotic
interactions, such as those among plants and fungi, are expected to
have the strongest influence at local scales (Bowman et al., 2017).
However, accumulating evidence suggests that biotic interactions can
be important broad-scale determinants of species distributions
(Thuiller et al., 2008; Van der Putten et al., 2010; Lewis et al., 2017;
Lynn et al,, 2019). Indeed, several examples for root-associated fungi
suggest an overriding influence of host plant identity on fungal
composition, abundance, or diversity (Davison et al., 2016; Polme
et al., 2018; Ramirez et al., 2019). Host plants may affect the distri-
butions of root endophytes if variation in plant species traits such as
root architecture (Maherali, 2014) or chemical quality and stoichi-
ometry (Averill et al., 2019) are correlated with fungal communities.

In this study, we assessed the abundance, diversity, and
composition of culturable root endophytes in replicated pairs of high
and low elevation sites and in a 27 y warming experiment in the
Rocky Mountains, USA. Plant species in this region have moved, on
average, ~40 m higher in elevation during the past 65y (Zorio et al.,
2016). Likewise, plant species composition has responded to
experimental warming. For instance, an increase of 2 °C during 25 y
of year-round infrared heating increased sedges, decreased grass
abundance, and increased AMF and root endophyte colonization for
some grass species (Rudgers et al., 2014). Here, we focused on fungi
that are culturable (i.e., non-obligate symbionts) because they can be
isolated, stored, and manipulated. These taxa have potential to play
roles in land management and restoration, improving practices such
as assisted migration or myco-remediation. We used a combination
of culturing and Sanger sequencing to assess whether: (1) altitude
acts as a determinant of abundance, diversity, and composition of
culturable root endophytic fungi; and (2) culturable root fungi
respond to experimental warming. By combining observational and
experimental datasets, we then evaluated whether (3) fungal re-
sponses to direct warming are predictable from their altitudinal
distributions within a mountain ecosystem.

2. Materials and methods
2.1. Focal host plant species

We selected four pairs of congeneric grass species, plus an
additional species Trisetum spicatum, that lacked a congener but is
abundant over a broad altitudinal range (Table 1). Within congeneric
pairs, one species had a broad altitudinal distribution and the other
was restricted to low elevations (Lynn et al., 2019).

2.2. altitudinal survey
We collected plants within three replicate watersheds (Slate

River, Washington Gulch, and East River) in the Gunnison National
Forest near the Rocky Mountain Biological Laboratory (RMBL),
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Table 1

List of focal plant species for the Altitudinal Gradients Survey at high elevation (H) or
low elevation (L) sites and in the Warming Meadow Experiment (W). Plant species
are grouped by Tribe/Subtribe within the Poaceae, then alphabetically by genus.
Distribution indicates the typical altitudinal range of each species in the Upper
Gunnison Basin based on plant surveys (Lynn et al., 2019).

Tribe-Subtribe Distribution Plant Species Collection
Stipeae broad Achnatherum lettermanii H/L/W
Stipeae low Achnatherum nelsonii L
Triticeae broad Elymus trachycaulus H/L
Triticeae low Elymus elymoides L
Poeae-Loliinae broad Festuca thurberi H/L/W
Poeae-Lollinae low Festuca saximontana L
Poeae-Poinae broad Poa leptocoma H/L
Poeae-Poinae low-mid Poa pratensis H/L/W
Aveneae broad Trisetum spicatum H/L

Gunnison County, Colorado, USA. Each watershed had a high and a
low elevation subalpine meadow site (Table 2, Supporting Material
Fig. S1). Sites were chosen based on the presence of the focal grass
species at low (~2800—3000 m) or high (~3200—3400 m) elevation.

2.3. warming meadow experiment

The warming experiment was established across a small glacial
moraine spanning 10 m along an east-west oriented gradient
(38.95136240 N, —106.98635923 W, elevation 2885 m, Supporting
Material Fig. S1) (Harte and Shaw, 1995; Price and Waser, 2000), with
~1—2 m change in elevation along the moraine. Approximately 60
herbaceous perennials and a few annuals have been identified in the
plots (Price and Waser, 2000; De Valpine and Harte, 2001). The
higher and drier, western portion of the moraine was dominated by
sagebrush (Artemisia tridentata), rabbitbrush (Ericameria parryi),
and bunchgrasses (Festuca thurberi and Achnatherum spp.) while the
wetter, eastern portion was dominated by willow (Salix spp.) and
monkshood (Aconitum columbianum). We collected root samples
from three grass species that were present in both the Altitudinal
Survey and the Warming Meadow. These were: A. lettermanii, P.
pratensis, and F. thurberi (Table 1).

The warming experiment was designed to simulate conditions
under a doubling of atmospheric CO, (Harte and Shaw, 1995). Along
the moraine, ten plots (10 x 3 m) alternated between a warmed or
control treatment. Each plot was oriented with the long axis of the
plot running west to east from higher to lower elevation and drier to
wetter soil conditions, respectively. Beginning fall 1990, two electric
heaters (15 W m~2 infrared radiation) were suspended on aircraft
cable ~1.5—-2.5 m above the center of the long axis of the warmed
plots. Heating began January 6, 1991, and has run continuously until
July 2019. A third heater was added between two existing heaters in
May 1993, increasing the total flux to 22 W m 2. Heaters shaded only
2% of the soil surface, and there was no experimental control for the
presence of heating infrastructure. The treatment warmed the top
15 cm of soil ~2 °C on average, decreased soil water content by
10—20%, and extended the duration of snow-free soil conditions at
each end of the growing season by ~12 d (Harte and Shaw, 1995;
Saleska et al., 2002; Harte et al., 2015).

Heating had the strongest effects on abiotic conditions, plant
communities, and fungal colonization of roots at the upper, drier end
of the moraine within each plot. Of particular importance to this study,
graminoid (grass and sedge) species composition diverged between
warmed and control plots over time (Rudgers et al., 2014). In 2011,
sedges occupied a larger percentage of sampled quadrats under
warming in the upper and mid-elevation (drier) portions of the plots,
while grasses generally declined in these drier areas. At the upper,
drier end of the moraine, AMF root colonization increased in one grass
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Table 2
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Geographic coordinates (Latitude = Lat., Longitude = Long.) of the root collection locations for the Altitudinal Gradients Survey. High and Low elevation sites are shown for
each watershed, the East River, Washington Gulch, and Slate River. Elevation is given in m.

East River Slate River Washington Gulch

Lat. Long. Elev. Lat. Long. Elev. Lat. Long. Elev.
High 38.97529 -106.978 3358 38.97073 —107.059 3210 38.97018 -107.03 3381
Low 38.96642 —106.99 3001 38.93282 —107.05 2812 38.9346 —-107.011 2945

species and in sagebrush, but did not change in sedges. Intraradical
non-AMF fungi, characterized by septate hyphae, did not differ be-
tween control and warming plots within individual graminoid species.
However, due to increases in the abundance of some graminoid spe-
cies with large colonization by septate fungi, the abundance of septate
fungi increased at the plot scale (Rudgers et al., 2014).

2.4. Sampling methods

Altitudinal Survey. We sampled grasses between 11 and 17 July
2017 from naturally occurring populations. All species were sampled
from low-elevation habitats, while only species with broad distri-
bution were sampled from high-elevation habitats (Table 1). Within
a site, six individuals of each species were uprooted using a bleach-
sterilized soil knife. Care was taken to obtain roots from the base of
the plant to the edge of rooting depth. We removed as much soil and
litter as possible from the roots and then combined all six individuals
per species into a single, sterile Whirl-pak® (Nasco, Fort Atkinson,
WI, USA). Whirl-paks were stored on ice and returned to the lab.

Warming Meadow Experiment. We sampled grasses during 12—18
July 2017 from the warming experiment (Table 1). Due to the sensitive
nature of the long-term warming experiment, roots from just three
individuals per species per plot were collected and with as little
disturbance as possible by wedging a bleach-sterilized soil knife un-
der one edge of the plant root system. Since entire plants could not be
removed from the plot, we were cautious to collect only live roots that
were attached to the base of the plant. We replaced disturbed soil and
caused no plant mortality. Roots of each replicate plant were placed
into separate sterile Whirl-paks, placed onice, and returned to the lab.

2.5. Fungal cultures

Culturing occurred within 24 h for all samples. Root samples were
cultured under a biological safety cabinet using standard sterile
technique. Samples were surface-sterilized by submerging in 95%
ethanol for 1 min, then in 1% sodium hypochlorite solution for 2 min.
Roots were then rinsed three times with sterile, DI water. Root frag-
ments were cut into smaller segments (~3 mm) using a flame-
sterilized scalpel, then placed onto 10 cm diameter Petri plates con-
taining malt extract agar with penicillin and streptomycin (50 mg/L).
Plates were sealed with parafilm then incubated at room tempera-
ture. We checked plates daily and transferred unique morphotypes to
50 mm Petri dishes of the same media to create pure cultures. The last
round of sub-culturing for unique morphotypes took place until
August 4, 2017 (18 days after the first round of sub-culturing). The
original plates were monitored until the end of August, at which point
the plates were saturated and no new fungi appeared. We maintained
and counted all replicate morphotypes per species per treatment. All
isolates were archived in sterile water in replicate reference collec-
tions at University of New Mexico and Trinity University.

2.6. Fungal identification
DNA extraction and PCR. Multiple subcultures of each unique

morphotype were randomly selected for sequencing. We extracted
DNA with the Qiagen Dneasy Plant Kit and amplified via PCR with the

ITS1-FL and TW13 primers (White et al., 1990; Taylor et al., 2008).
Cultures that contained the 50—500 bp intron between the ITS1-FL
and the ITS1 region were additionally amplified using the ITS1
(White et al., 1990) and TW13 primers. Each PCR used the Phusion
High-Fidelity DNA polymerase kit (ThermoFisher Scientific, Wal-
tham, MA). We used 5 pL of 5x High fidelity buffer, 0.5 uL of dNTP,
0.25 pL of each primer at 25 pM, 18.75 of nanopore water and 0.25 puL
of Phusion, and 1 pL of template (~10 ng/uL). The thermocycler
conditions for the ITS1-FL and TW13 pair consisted of denaturing at
96 °C for 2 min, 27 cycles of denaturing 94 °C for 30 s, annealing at
60.6 °C for 40 s, extending at 72 °C for 2 min, and a final extension at
72 °C for 10 min. Thermocycler conditions for the ITS1 and TW13
pair were identical except the annealing temperature was increased
to 64 °C and the number of cycles was increased to 29 cycles. Each
amplicon was Sanger sequenced by Genewiz (South Plainfield, NJ).

Bioinformatics. We trimmed the raw sequences to exclude low-
quality bases (quality score < 20) and assembled the sequences us-
ing 4 peaks (Griekspoor and Groothuis, 2018) and Geneious (2018).
The assembled sequences were aligned using MAFFT v7.407 (Katoh
and Standley, 2013) and trimmed to include only the ITS region by
removing nucleotides beyond the ITS1 and ITS4 primer regions. The
sequences were clustered into operational taxon units (OTUs) at 97%
similarity with UCLUST implemented in USEARCH (v10.0.240, 32 bit)
(Edgar, 2010). If subcultures assigned to the same morphotype
yielded different OTUs, we split the subcultures into separate mor-
photypes and the new morphotypes were subsequently sequenced
to confirm inclusion in an OTU. Representative sequences for each
OTU was generated in USEARCH and the taxonomy for each pre-
dicted using the “sintax” command (Edgar, 2016) with the Utax
(v7.2) sequence dataset (UNITE Community, 2017). In addition, we
used the BLAST algorithm (Altschul et al., 1990) against the GenBank
database with an e value of < 1e-09 and a coverage of at least 80% to
obtain more detailed taxonomy for each isolate that was sequenced.
Sequences are hosted in GenBank under accession numbers
MT820041:MT820113.

2.7. Statistical analysis

2.7.1. Are there altitudinal gradients in the composition or diversity
of culturable root fungi?

To evaluate sensitivity of fungal diversity, the number of isolates
cultured (abundance), and fungal OTU composition to altitude, we
used elevation (high/low) and focal species identity or plant genus
(Table 1, nine species, five genera) as fixed effects, with the random
effect of replicate watershed (Table 2, three watersheds) in general
linear mixed effects models. To assess the number of culturable
isolates, we counted and tracked all isolates on each plate. Fungal
isolates were characterized into morphotypes by visual assessment,
followed by Sanger sequencing of similar morphotypes. For fungal
community composition, we used a Bray-Curtis distance matrix to
conduct permutational MANOVA in Primer version 6 (Clarke and
Gorley, 2009). Pseudo-F statistics were calculated with Type III
sums of squares. We visualized community composition using non-
metric multidimensional scaling (NMDS) analysis with 500 re-starts
(3-dimensional stress = 0.12 following the exclusion of one outlier
sample that had low fungal abundance (P. leptocoma at East River
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low). Analysis of multivariate dispersion (permDISP, 9999 permu-
tations, Primer v. 6, Clarke and Gorley, 2009) showed no significant
heterogeneity in dispersion by elevation or by plant species
(Table 3a).

To assess fungal diversity responses, we calculated the Shannon
diversity index, OTU richness, and the inverse Simpson Evenness in-
dex in the <vegan> package (Oksanen et al., 2018) in R (R Core Team,
2018) from an OTU matrix in which samples were rows, OTUs were
columns, and each cell was the number of times we isolated each OTU
from the root sample. For diversity metrics, we built mixed effect
models using <lmer> in the Ime4 (v1.1-19) package (Bates et al., 2015)
with the fixed effects of elevation x genus, as well as plant species
nested within genus and watershed as a random effect. Models were
evaluated using analysis of deviance with function <Anova> in the car
package (Fox and Weisberg, 2019). For significant main effects, post-
hoc comparisons and 95% confidence intervals were obtained using
the emmeans package (Lenth, 2018) with a false discovery rate
correction for multiple comparisons.

2.7.2. Do culturable root fungi respond to experimental warming?

We applied a similar analysis framework to the warming exper-
iment. Models for fungal diversity metrics were built with <lmer>
with the fixed effects of the warming treatment (warmed/control)
and plant species identity (Table 1, three species), warming X plant
species, and the random effect of block (spatially paired warm/
control plots). Fungal OTU composition was analyzed with the same
model structure implemented in perMANOVA (Clarke and Gorley,
2009). Analysis of multivariate dispersion (permDISP, 9999 per-
mutations, Primer v. 6) showed no significant heterogeneity in
dispersion by treatment or plant species (Table 3b), indicating
similar degrees of turnover in OTUs among individual samples
within a treatment or plant species group.

2.7.3. Are fungal responses to direct warming predictable based on
their altitudinal distributions?

A significantly positive correlation between a species decline with
low elevation and its decline under experimental warming would
indicate that fungal responses to warming were predictable from
their altitudinal distributions. A subset of 11 fungal taxa co-occurred
in a sufficient number of sites and plots (at least 3 of each per
study) to compare their sensitivities to both elevation and experi-
mental warming (see Results: Fungal composition, Fig. 1). We deter-
mined a measure of effect size for each OTU using the Relative
Interaction Intensity metric (RII) (Armas et al., 2004) because it scales
symmetrically from —1 to 1. We calculated RII for the altitudinal
survey as: (mean abundance at low elevation — mean abundance at
high elevation)/(mean abundance at low elevation +mean abun-
dance at high elevation). Thus, OTUs that were most abundant at low
elevation had a positive RII, and taxa that were most abundant at high
elevation had negative RII. For the warming meadow experiment,
RII = (mean abundance in warmed plots — mean abundance in control
plots)/(mean abundance in warmed plots +mean abundance in
control plots). Thus, fungal taxa that increased with warming had a
positive RII and those that declined with warming had a negative RII.
We then used Pearson product-moment correlation to evaluate
whether responsiveness to warming was predictable from the change
in abundance with elevation, using each OTU as an observation. Both
variables were normally distributed.

3. Results
3.1. Fungal composition

We cultured 1517 fungal isolates from the altitudinal survey and
the warming experiment combined. We sequenced 606 of these
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isolates, which were clustered to 77 OTUs (Supporting Material,
Table S1). Ascomycetes were the most common phylum of fungi,
comprising 84% of the OTUs (Supporting Material, Table S1). Basi-
diomycota comprised 12% of OTUs and Mortierellomycota were 4%.
Common orders were Pleosporales (30% of OTUs), Helotiales (23%),
and Hypocreales (13%) (Table S1).

The five most abundant OTUs were consistent across both the
altitudinal survey and the warming experiment. OTU1 Fusarium tri-
cinctum (Ascomycota: Hypocreales) comprised 18% of isolates for
altitudinal samples and 27% in the warming experiment and is
considered to be a weak plant pathogen with a broad host range and
geographical distribution (Norberg et al., 2014). Unidentified taxa
were common: OTU23 (an unidentified Helotiales) comprised 15% of
isolates for altitudinal samples and 12% for the warming experiment,
OTU12 (an unidentified Pleosporales) comprised 11% of isolates for
altitudinal samples and 8% in the warming experiment, and OTU45
(another Helotiales) was 6% of isolates in the altitude study and 9% in
the warming experiment. A Mycena sp. (OTU34, Basidiomycota:
Agaricales: Mycenaceae) was the fifth most abundant taxon in the
survey and fourth in the warming experiment, comprising 4% and 10%
of isolates, respectively. Mycena form small saprotrophic mushrooms
that are typically gray or brown (Smith, 1947), and have been previ-
ously characterized from grass roots and litter (Geesteranus, 1991;
Osono, 2010; Tejesvi et al., 2013). An Ophiosphaerella sp. (Ascomycota:
Pleosporales: Phaeosphaeriaceae) — a genus containing common
turfgrass pathogens — was 4% of altitudinal survey isolates, and a
Plectania sp. (Ascomycota: Pezizales: Sarcosomataceae), commonly
associated with melting snow, was 4% of isolates in the altitudinal
survey and 3% of isolates in the warming experiment.

Spatial variation in fungal composition among watersheds was
larger than variation associated with altitude. Of the 54 taxa
collected from the large spatial scale of the altitudinal survey
(~10 km), ~30% (17/54) were shared between the high and low
elevation sites (Fig. 1A) and just 15% (8/54) were present in all three
watersheds (Fig. 1B). At the small spatial scale of the warming
experiment (40 m x 100 m), ~40% (23/54) of the taxa cultured were
present in both warmed and control plots (Fig. 1C). In addition,
within each study, plant species shared some taxa but also had many
unique fungal OTUs (Fig. 1D&E). In the altitudinal study, just seven
percent (4/54) of taxa were shared among all six grasses surveyed
whereas 17% (9/54) of taxa were shared among the three grass
species sampled in the small footprint of the warming experiment.

Both altitude (Fig. 2) and experimental warming (Fig. 3) had
marginally non-significant effects on the community composition
of culturable root endophytes (Table 3, 0.05 < P < 0.1). Across the
altitudinal survey, plant species identity did not strongly structure
fungal composition (P > 0.4), but spatial patterns were evident from
the significant effect of watershed identity (Table 3a), indicating
sufficient statistical power for this dataset. At the small spatial scale
of the warming experiment, warming had a weaker effect on fungal
composition than the identity of plant species (Fig. 3); the three
grass species significantly diverged in fungal composition (Table 3b,
P < 0.03). Neither warming nor elevation altered the dispersion of
fungal communities among samples (Table 3).

3.2. Fungal diversity

Overall, OTU fungal abundance and diversity did not signifi-
cantly vary with elevation (Table 4a, “Altitudinal Gradient”) and did
not decline under experimental warming (Table 4b, “Treatment”).
However, altitudinal gradients in diversity indices were detected
for some grass species, and these patterns diverged based on plant
identity (Fig. 4, Table 4a, “Altitudinal Gradient X Genus”). Specif-
ically, Poa species had 25—60% greater fungal isolate abundance
(Fig. 4A, Elevation, X*> = 16.7, P < 0.0001) and 25—38% greater fungal
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Fig. 1. Venn diagrams indicating the amount of overlap in fungal OTU composition for root samples in the Altitudinal Gradients Survey and Warming Meadow Experiment. Abiotic
Effects: (A) Overlap in fungal taxa between Low and High elevations, (B) among watersheds, and (C) in control and warmed plots. Biotic Effect: D and E show overlap in fungal taxa
among the six species of the Altitudinal Gradients Survey and (E) among the three species in control and warmed plots in the Warming Meadow Experiment. All numbers are

numbers of OTUs.

O Achnatherum

A Elymus
A

[] Festuca
|

\/ Poa

NMDS axis 3
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L 208 |

Fig. 2. Nonmetric multidimensional scaling plots depicting variation in fungal com-
munity composition for Altitudinal Gradients Survey. Each point is a unique root
sample as described in the methods. Open symbols are low elevation sites. Filled
symbols are high elevation sites. 3D stress = 0.12. Elevation: P = 0.0867 (Table 3a).
Genus and species were 1. s.

diversity (Fig. 4B, X> = 27.5, P < 0.0001) at high elevation than low
elevation sites. The diversity increase for Poa was driven by a
combination of ~1.67 more OTUs per sample for both Poa species
(richness X? = 27.5, P < 0.0001) and 15—48% greater evenness
(Elevation, X? = 19.2, P < 0.0001; Fig. 4). In contrast, F. thurberi had
64% lower fungal diversity on roots at high elevation (Fig. 4B,
Elevation, X* = 14.7, P= 0.0001 ), driven by 2.3 fewer OTUs (X2 =9.6,
P = 0.0020) and 70% lower evenness (X*> = 19.4, P < 0.0001). No
other plant taxon had significant altitudinal patterns in fungal di-
versity or abundance (Fig. 4).

Plant species also trended toward divergence in fungal diversity
and evenness on the small spatial scale of the warming meadow
experiment (<10% probability that data support the null hypothesis
of difference: Table 4b, Plant Species, 0.05 < P < 0.1). Poa pratensis
had the highest fungal diversity and evenness in roots (Shannon

H’ = 0.98 + 0.10, Inverse Simpson 1/D = 2.64 + 0.23) relative to
either A. lettermanii (H' = 0.77 + 0.10, 1/D = 2.20 + 0.22) or
E thurberi (H' = 0.79 + 0.10, 1/D = 2.19 + 0.22) (Table 4b).

3.3. Individual fungal taxa

The response of individual fungal taxa to experimental warming
was positively correlated with their altitudinal distributions (Fig. 5,
Pearson r = 0.61, P = 0.046). Specifically, fungal taxa that were most
abundant in warmed plots were also most abundant at lower ele-
vations. The two taxa that were more abundant at high elevations
also declined under warming. Clonostachys rosea (Bionectriaceae,
Hypocreales, OTU26) was absent from warmed plots and present
only in E thurberi. OTU23 (unidentified Helotiales) declined with
elevation and under warming (RII = —0.31) and was a generalist
present in all three warming meadow grass species (Supporting
Information, Table S1). Generally, those fungi that were more
abundant at low elevation had positive or neutral responses to
experimental warming. The strongest increases under warming
were two taxa present in all three plant species: OTU3 — Cadophora
sp. (Helotiales, RIl warming = 0.76) and OTU6 — Lachnum sp.
(Hyaloscyphaceae, Helotiales, RIl warming = 0.48). In addition, one
fungus that was absent from F. thurberi (OTU5 — Fusarium redolens
(Nectriaceae, Hypocreales)) had strong positive response to
warming (RII = + 0.27) across the other two grass species
(Table S1).

4. Discussion

4.1. Are there altitudinal gradients in the composition or diversity of
culturable root fungi?

The majority (68%) of root endophytes varied with elevation but
caused relatively small shifts in overall fungal composition between
high and low elevation sites. This pattern was not driven by changes in
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(A) AChna th erum l etteman" Fig. 3. Nonmetric multidimensional scaling plots depicting variation in fungal com-

munity composition in the Warming Meadow Experiment for (A) Achnatherum let-

_~ 1 — termanii, (B) Festuca thurberi, or (C) Poa pratensis. Each point is a unique root sample
o~ 7 from an individual plant. Open symbols are warmed plots. Filled symbols are control
o [ O warmes plots. 3D stress for the ordination (all species together) = 0.13. Plant species identity
1567 - @ Cova | ‘ (P = 0.0062) had a stronger influence than warming (P = 0.0955, Table 3b).

root endophyte diversity (gains or losses of species), but instead by

individual root endophyte taxa that appear to be sorted by the steep

.. f altitudinal gradients as well as by plant host identity. Importantly,

o) ' plant species identity shaped the relationships between fungal

| endophyte communities and altitude, even though there was not a

strong overall signature of plant species identity on root endophyte

composition. Specifically, root endophyte abundance and diversity

° ‘ 1 peaked at high elevation sites in Poa spp. but peaked at low elevations

10 W ',""0 i in E thurberi. In previous culture-based and next-generation

“1“\_ é’ sequencing surveys of the same plant species, their leaf fungal en-

—~—— 0‘9 dophytes similarly showed host-specific altitudinal trends in di-

NMDS - 2 $ versity and abundance (Kazenel et al., 2019, Kivlin et al., 2019).

s 2 Additionally, the abundance of AMF colonizing roots displayed

) species-specific trends with elevation in an earlier study (Ranelli et al.,

(B) Festuca thurberi 2015).

— Several interacting mechanisms may explain the variation in

_~ B B R S fungal diversity and composition among plant species over envi-

1 - ] ronmental gradients. For example, these trends may reflect differ-

- -~ 0 l ential plant host filtering for fungal symbionts throughout portions

'5l ‘ B Cotra of their altitudinal range that vary in conspecific host densities

| — (Cobian et al., 2019). Plants may select fungi based on their context-

1 | dependent costs and benefits under different abiotic environments

0 5‘ r . = ' (Afkhami et al., 2014). Alternatively, environmental selection for

o e suitable abiotic and biotic conditions may structure plant-fungal

| symbiont communities along multivariate resource gradients

P (Kivlin et al., 2017). Additional manipulative studies that study

05 o " To— more than one plant host, such as ours with temperature, could
| / help disentangle these potential interactive effects.

NMDS axis 3
o
L

-1.01

0
Y

1 S‘i:\ '0 é’ 4.2. Do culturable root fungi respond to experimental warming?
"y _r

Te— ) \XQ Individual root fungal endophytes responded to 27 y of experi-
: J 3 mental warming. For example, OTU26 — Clonostachys rosea and
OTU23 only occurred in control plots whereas OTU3, OTU5, and OTU6
. were mostly found in warmed plots. These effects were fungal-taxon
(C) Poa pratensis specific and did not translate into broader patterns of shifts in fungal
—— diversity or composition with warming. Previous results from next-
- ——— generation sequencing of these plots confirm this trend: The overall
_~ abundance, diversity, and composition of root fungal endophyte did
a ’ not vary with warming (Kazenel et al., 2019). In other warming ex-
periments, species-specific response of root fungal endophytes have
been common (Fujimura et al. 2008), and sensitivities may vary
f among fungal functional guilds, with increases in dark septate en-
dophytes and decreases in other fungal endophytes in warmed versus
cool environments (Olsrud et al., 2010). Aboveground, foliar fungal
symbionts also had idiosyncratic responses to warming in our host
00 ll s"vv'""-x> species. Leaf fungal endophyte abundance was only sensitive to
v v B PN warming in one plant host (Festuca thurberi), and neither culture-
) sl 4 v based nor next-generation sequencing revealed significant effects of
yd / the warming treatment on foliar fungal endophyte diversity or
105 / 0 .o composition (Kazenel et al., 2019; Kivlin and Rudgers, 2019). Instead,
1 1 0)0'? individual fungal endophytes may shift their metabolism to better-
0 T~/ § acclimate to warmer conditions (Kivlin and Rudgers, 2019); unfor-
2 S tunately, such plasticity in fungal responses to climate is not yet

predictable given the limited data available.

Y
o
\ L

NMDS axis 3
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Statistical results for fungal root endophyte community composition for (a) Altitudinal Gradients Survey and (b) Warming Meadow Experiment. n.t. indicates that block effects
on community dispersion were not tested. P-values < 0.05 shown in bold and P < 0.10 in italics.

PERMANOVA PERMDISP

(a) pseudo-F df P F df P

Altidudinal Gradient 1.57 1 0.0867 0.64 1,42 0.5642

Watershed 1.59 2 0.0284 1.23 241 0.3526

Plant species 1.01 8 0.4498 1.23 2,35 0.6413

(b)

Treatment 1.60 1 0.0955 0.06 1,89 0.819

Plant species 1.98 2 0.0062 1.06 2,88 0.4169

Plant species X Treatment 0.83 2 0.6834 1.03 5,85 0.3773

Block 2.05 4 0.0004 n.t. n.t. n.t
Table 4

Statistical results for fungal root endophyte abundance and diversity indices for (a) Altitudinal Gradients Survey and (b) Warming Meadow Experiment. Evenness was the

inverse Simpson index. P-values < 0.05 shown in bold and P < 0.10 in italics.

Isolate abundance

Shannon H' (log)

Species richness Evenness (log)

(a) X2 P X? P X2 P X? P
Altitudinal Gradient 0.65 0.4195 0.8 0.3702 0.39 0.53 1.86 0.1731
Genus 1.75 0.7822 8.81 0.0659 5.49 0.2492 5.37 0.2511
Altidudinal Gradient X Genus 8.12 0.0874 12.65 0.0131 11.11 0.0254 13.21 0.0103
Plant species (Genus) 5.5 0.2398 1.75 0.7809 3.24 0.5192 5.05 0.282
(b)

Treatment 0.24 0.6221 0.12 0.7318 0.02 0.8903 0.04 0.8503
Plant species 0.21 0.9002 5.08 0.0787 2.67 0.2632 5.41 0.0669
Plant species X Treatment 0.71 0.7015 1.5 0.4723 1.03 0.5966 2.11 0.3479

& (A) | == Low elevation
@ High elevation

20

Isolate abundance per sample

201 (B) -

1.5 1

1.0 1
0.5 1
0.0 -

Achnatherum  Elymus

Shannon Diversity Index H'

Festuca Poa Trisetum

Plant genus

Fig. 4. Altitudinal Gradients Survey means + s. e. from linear mixed effects models
evaluating the influence of elevation (low or high) on (A) culturable root fungal
abundance or (B) fungal diversity (Shannon index, H'). Asterisks indicate pairwise
comparisons within a genus with P < 0.05.

4.3. Are fungal responses to direct warming predictable from their
altitudinal distributions?

For common root fungal endophytes, altitudinal distributions
could provide inference into their sensitivity to warming: Fungal
taxa that declined with warming were also less abundant at lower
than higher elevation sites across the altitudinal survey. This is one of
the first indications that space-for-time substitution can partially
inform fungal root endophyte responses to warming. However, this
effect was not predictable based on limited data available for fungal
evolutionary histories, life-history strategies (e.g., decomposer
versus pathogen), or growth form. Specifically, the four main re-
sponders to warmer climates were Clonostachys rosea (Hypocreales),
Cadophora sp. (Helotiales), Lachnum sp. (Helotiales) and Fusarium
redolens (Hypocreales). While all of these species are within phylum
Ascomycota, the taxa come from two distinct subphyla (Pezizomy-
cetes and Sordariomycetes). Furthermore, whereas some of these
taxa are usually beneficial to plant hosts, protecting plants from
pathogens (e.g., Clonostachys rosea), others can be pathogenic (e.g.,
Cadophora, Fusarium redolens), or have wide distributions on a va-
riety of substrates (e.g., Lachnum). The specific ecological roles of
these species in association with host plants in our study remain
unknown. Thus, a predictive framework for fungal symbiont win-
ners and losers with climate change is still elusive.

Determining the ecological outcomes of specific plant-fungal
symbioses will be critical if plant success in new environments
depends on interactions with fungal symbionts (Kivlin et al., 2013;
Ramirez et al.,, 2019). For example, plant altitudinal shifts with
climate change may be hindered via establishment lags if certain
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00 05 1.0

RII Altitudinal survey

Fig. 5. Relationship between fungal sensitivity to elevation (RII Altitudinal survey) versus sensitivity to experimental warming (RIl Warming experiment). Pearson's r = 0.61,

P = 0.046, slope estimate § = 0.52 + 0.22. The dashed line shows the 1:1.

biotic interactions are absent from the novel species range
(Alexander et al., 2018). Similarly, reciprocal transplants of plants
and their fungal symbionts along altitudinal gradients have shown
a home field advantage, where plants grow largest with symbionts
that originate from their local elevation. However, the outcomes of
specific plant-fungal symbioses are also commonly dependent on
the degree of environmental stress (Wagg et al., 2011; Yang et al.,
2018). In range-shifting plant species, the successional develop-
ment of specific plant-fungal interactions common to the home
range may require several generations of plant-soil feedback to
rebuild (Chung et al., 2018; Collins et al., 2018; Van Nuland et al.,
2019). Mismatches between plants and their microbial commu-
nities could slow rates of upward plant range expansion in
mountain ecosystems and increase the likelihood of plant local
extirpation or wholesale extinction under climate change.

5. Conclusion

Root-associated fungi, like their host plants (Smith et al., 2009),
likely follow a hierarchy of responses to altitudinal gradients, natural
warming, and global environmental change (Bardgett et al., 2013).
Results of this study must be analyzed with caution as samples were
collected over a 2 week period at the beginning of the growing season
and fungal isolates were grown on a single culture medium for all
plant species across all treatments. Nonetheless, several trends
emerge. First, individual organisms can respond through changes in
physiology, morphology, growth or reproduction. Our culture-based
study revealed both winner and loser fungal taxa under long-term
experimental warming, providing evidence of this first-level
response. Second, global change can cause community reordering,
altering whole community composition and the rank abundances of
species. We found only weak support for re-ordering, with marginally
non-significant changes in the fungal composition of plant roots
subjected to long-term warming. The influence of abiotic conditions
was generally weaker than that of host plant species identity, sug-
gesting that non-mycorrhizal root endophytes may be relatively
resilient to climate warming. This may be good news where host-
symbiont associations benefit the fitness of native grass species.
Third, species loss and immigration can cause the largest ecological
responses to global change. Experimental manipulations may lack
power to detect such responses because taxa can disperse across the
small spatial scales of experimental plots. Our study detected just one
species (Clonostachys rosea) that was present in control plots but
absent under warming. However, general concordance between the

altitudinal distributions of fungal OTUs and the magnitude of their
responses to warming provides some optimism that geographic
patterns in fungal abundances can help to predict their future sensi-
tivities to warming (but see Kazenel et al., 2019). Importantly, our
work supports other recent studies (Becklin et al.,2012; Liet al., 2014;
Davison et al., 2016; Polme et al., 2018; Cobian et al., 2019; Rudgers et
al., n.d.) documenting strong plant-species specificity in the bioge-
ography of plant-associated fungi, indicating that studies of single
plant taxa will not reveal general patterns for Ascomycota and other
non-mycorrhizal endophytes in plant roots.
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