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ABSTRACT
The seismocardiogram (SCG) is a recording of a human heart’s me-
chanical activity. It captures fine-grained cardiovascular events such
as the opening and closing of heart valves and the contraction and
relaxation of heart chambers. Today, SCG recordings are obtained
by strapping an accelerometer at the apex of the heart to measure
chest wall vibrations. These recordings can be used to diagnose
and monitor various cardiovascular conditions including myocardial
infarction (heart attack), coronary heart disease, and ischemia.

This paper introduces RF-SCG, a system that can capture SCG
recordings without requiring any contact with the human body. The
system operates by analyzing the reflections of millimeter-wave
radar signals off the human body. RF-SCG can reconstruct the SCG
waveform, and it can time 5 cardiovascular events within individual
heartbeats with high accuracy. Our design is based on a hybrid
architecture that combines signal processing with deep learning. The
pipeline includes a 4D Cardiac Beamformer that can focus on the
reflections of the human heart and a deep learning pipeline (RF-
to-SCG Translator) that can transform these reflections into SCG
waveforms. Empirical evaluation with 40,000 heartbeats from 21
healthy subjects demonstrates RF-SCG’s ability to robustly time
five key cardiovascular events (aortic valve opening, aortic valve
closing, mitral valve opening, mitral valve closing, and isovolumetric
contraction) with a median error between 0.26%-1.29%.

CCS CONCEPTS
• Applied computing → Life and medical sciences; • Human-
centered computing → Ubiquitous and mobile computing sys-
tems and tools;

KEYWORDS
Seismocardiogram; Contactless Sensing; Wireless; Millimeter
Waves; Radar; Healthcare; Well-being

ACM Reference Format:
Unsoo Ha, Salah Assana, Fadel Adib. 2020. Contactless Seismocardiography
via Deep Learning Radars . In The 26th Annual International Conference
on Mobile Computing and Networking (MobiCom ’20), September 21–25,
2020, London, United Kingdom. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3372224.3419982

1 INTRODUCTION
The past decade has witnessed significant advances in using RF
signals to sense people and their vital signs. Novel algorithms and
software-hardware systems have enabled capturing human breathing
and heart rates based on the RF signals that bounce off the human
body and without requiring anybody contact [6, 58, 66]. While
this research has demonstrated that RF signals carry impressive
information about human vitals, it still cannot capture the level of

Figure 1—Contactless SCG Recording. The plot to the right shows SCG recordings
of a single heartbeat obtained from an accelerometer strapped to the apex of the heart
(in blue) and from RF-SCG without any body contact (in purple). RF-SCG can also
precisely time five micro-cardiac movements: opening and closing of the aortic valve,
opening and closing of the mitral valve, and isovolumetric contraction (of the ventricles).

detail in typical gold standard heart recordings, which are needed to
understand and monitor cardiovascular conditions.

In this paper, we ask the following question: Can we use RF sig-
nals to wirelessly capture a person’s seismocardiogram (SCG)? The
SCG is a heart recording that is analogous to the more-commonly
known electrocardiogram (ECG). In contrast to the ECG which mea-
sures the heart’s electrical activity (i.e., voltage), the SCG measures
the heart’s mechanical activity (i.e., vibrations). Medical literature
has shown that the SCG can be used to precisely time fine-grained
heart activities including the opening and closing of valves, which
allow blood to flow between the heart chambers and into the blood
vessels [7, 12, 44, 48]. These measurements are useful in the detec-
tion and diagnosis of several cardiovascular conditions like myocar-
dial infarction (heart attack), coronary heart disease, ischemia, and
hemorrhage [38, 45, 54].

The standard approach for measuring SCG signals today relies on
accelerometers that capture micro-vibrations of the chest wall [69].
The process typically requires users to take off their shirts, lie in a
supine position (i.e., on their back), and affix an accelerometer near
the apex of the heart using a chest strap. As a result, measuring SCG
today remains intrusive and inconvenient, and it typically needs to be
administered by medical practitioners in calibrated medical settings
or controlled environments.

Recognizing these limitations, prior work has taken initial
steps toward contactless cardiac monitoring. Early research in this
space focused on measuring the heart rate or the heartbeat pe-
riod [6, 40, 59, 71], but these systems could not extract micro-
cardiac events within an individual heartbeat. More recent re-
search [15, 32, 61] has shown how to recover micro-cardiac events,
by using contactless millimeter waves. However, these prior systems
still lack the granularity and/or the robustness to accurately time the
majority of micro-cardiac events. Our work shares the motivation
of these prior systems and aims to push the boundary of cardiac
monitoring by achieving an accuracy high enough to recover micro-
cardiac events that were not possible to sense before (in a contactless
fashion).

https://doi.org/10.1145/3372224.3419982
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We present RF-SCG, a deep-learning-based, contactless approach
for measuring SCG signals that enables passive, long-term moni-
toring of users in everyday environments. Our approach relies on
low-cost millimeter-wave radars (similar to those used in the Google
Pixel 4 [19]). The radar transmits a signal and captures its reflec-
tion off the user’s chest to sense cardiac micro-vibrations. Because
millimeter-wave signals can traverse clothes, this approach neither
requires users to take off their clothes nor requires affixing a sen-
sor to their chest. Such an unobtrusive approach would enable lay
users to routinely monitor their SCG signals (e.g., on a daily basis),
and may provide early warnings of cardiovascular conditions. This
capability could be particularly helpful for monitoring high-risk pop-
ulations – like the elderly, neonates, or patients with arrhythmia – in
their everyday environments. It may also enable on-the-spot heart
recordings in the event of a cardiovascular emergency. For example,
if someone suspects they may be suffering from a heart attack, they
could use such a system to immediately measure their SCG.1 Ob-
taining an early recording of the heart during an attack leads to better
diagnosis of the type of attack and results in better treatment [27, 55].
Additionally, RF-SCG may be used by health workers to remotely
monitor infectious disease patients (or burn patients) similar to how
infrared thermometers enable remote monitoring of temperature
while minimizing the risk of contagion.

Designing a system that wirelessly captures a person’s SCG is
very challenging. The system must model the relationship between
the observed radio waves and cardiovascular events inside the hu-
man heart. The measured reflections change with slight changes in
the user’s posture or location. Even if a user slightly slouches, the
location of the apex of his heart would change with respect to the
millimeter-wave radar, altering the relationship between the captured
reflections and the chest vibrations. Moreover, the reflected signal
and the vibrations are very minute, making it difficult to robustly
capture the SCG in the presence of other sources of motion and
noise in the environment. This also makes it challenging to associate
recorded micro-vibrations with their corresponding fine-grained car-
diovascular events. This is why past attempts to wirelessly capture
the human SCG either required additional contact-based sensors
(e.g., ECG leads [64]) or achieved low accuracy in timing micro-
cardiac events [32]

To overcome these challenges, RF-SCG introduces a hybrid ar-
chitecture that combines signal processing and deep learning to
robustly capture SCG recordings from millimeter-wave reflections.
The pipeline consists of a series of spatio-temporal filter functions
that capture the physics of RF propagation and incorporate con-
straints from heart physiology. RF-SCG’s architecture consists of
three main components, which collectively enable it to address the
above challenges:
• RF-SCG’s first component is a 4D Cardiac Beamformer (detailed

in §3.2) that zeroes in on the reflection coming from the apex of
the heart. At a high level, this component combines 3D filters
with a time-domain CNN to discover the 3D location of the heart
while estimating the heart rate. This component also filters out
various sources of noise and interference in space and time.

1Note that heart attacks share symptoms with other medical conditions like heartburns
or panic attacks, which do not need urgent medical care [30, 49].

• RF-SCG’s second component is an RF-to-SCG Translator (de-
tailed in §3.3) that aims to learn a transformation the function
between wireless reflections off the human chest and standard
SCG recordings. Our intuition for why learning such a transfor-
mation is possible stems from the fact the radar reflections (used
in RF-SCG) and accelerometer measurements (which are used
in standard SCG recordings) capture chest vibrations that arise
from the same underlying micro-cardiac events. Hence, during
the training phase, this component uses recordings from an ac-
celerometer placed at the the apex of the heart in order to learn
the transformation between radar reflections and standard SCG
recordings. Once it has been trained, RF-SCG does not need the
accelerometer anymore, and it uses the learned translation filters
to transform the reflections to SCG recordings.

• The final component RF-SCG’s pipeline performs automatic la-
beling of the SCG recordings (detailed in §3.4) in order to extract
the timing of five fiducial points of interest: mitral valve clos-
ing, isovolumetric contraction, aortic valve opening, aortic valve
closing, and mitral valve opening. This component modifies and
adapts that the U-Net model [42] – which is typically used in
Computer Vision to identify salient features in images [18, 36] –
to identify the fiducial points of interest in 1D SCGs.

The reasons for adopting the above-principled architecture in our
design is multi-fold: first, it allows us to isolate the different sources
of errors and develop our model to achieve high accuracy; such
flexibility would not be possible by implementing an end-to-end
deep neural network as a black box, which may be too risky for
critical tasks such as cardiovascular monitoring. And second, by
incorporating spatio-temporal filters that reflect domain knowledge
from the radar and signal processing communities, we can reduce
the training time and the complexity of the deep learning architec-
ture and initialize its tuning parameters with well-informed guesses
allowing it to converge faster and to more accurate solutions.

We evaluated our design using the IWR1443BOOST millimeter-
wave radar board from Texas Instruments [4]. The board has a steer-
able antenna array with vertical and horizontal elements and trans-
mits FMCW chirps in the 77 GHz band. We tested RF-SCG on 21
subjects wearing regular clothing on different days and collected
over 40,000 heartbeat measurements. Five fiducial points in each
heartbeat were hand-labeled and inspected to ensure that the la-
bels follow standard protocols for SCG labeling from the medical
literature [7, 12, 44, 48].

Our empirical evaluation demonstrates that RF-SCG can both ex-
tract SCG recordings for qualitative review by medical professionals
(similar to Fig. 1) as well as precisely time cardiovascular events.
The results also show that RF-SCG generalizes well to new (unseen)
subjects. Specifically:
• When RF-SCG is tested on subjects that it has not been trained on,

it achieves a median error between 0.26%-1.29% in timing each
of the five fiducial points.2 The corresponding timing errors (of
2-12 ms) are within one to two sampling periods (i.e., quantiza-
tion error) of gold standard cardiac ultrasounds used by medical
practitioners in cardiovascular monitoring [41]. Moreover, the
90𝑡ℎ percentile error of RF-SCG ranges from 3.6%-13.6% across
the micro-cardiac events.

2The error here is computed with respect to a heartbeat period.
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• In order to quantify RF-SCG’s ability to capture inter-subject
variability, we also implemented a baseline that learns the average
heartbeat template across subjects; the baseline then estimates the
timing of micro-cardiac events by stretching the template to the
heartbeat period. Unlike RF-SCG, the baseline is also provided
with the ground-truth heartbeat segmentation to aid it in stretching
the template. Our results demonstrate that the baseline achieves
median errors of 3.1%-4.6% and 90𝑡ℎ percentile errors of 17.7%-
19.5%.3 Thus, RF-SCG outperforms the baseline’s median by
3-12× and its 90𝑡ℎ percentile by 1.3-3.7×.

Our results also demonstrate that RF-SCG is resilient to slight
changes in posture (due to its 4D cardiac alignment) and can work
correctly in the presence of other objects/humans moving in the
environment. However, similar to past designs for RF vitals sensing,
RF-SCG requires the user to remain relatively static and close to the
millimeter-wave sensor (within a quarter to half a meter) [71]. To
deal with scenarios where the user is further away or significantly
moving, RF-SCG incorporates algorithms that automatically detect
and discard the corresponding signals, enabling it to avoid reporting
incorrect measurements (i.e., it favors precision over recall).

Contributions: RF-SCG is a system that can capture and recon-
struct a human’s seismocardiogram without requiring any contact
with the human body. It is based on a hybrid pipeline – of signal
processing and deep learning – that consists of a series of learnable
spatio-temporal filter functions which incorporate domain knowl-
edge from RF and physiological models. The paper also contributes
to a prototype implementation and evaluation, demonstrating median
errors of 0.26%-1.29% in timing five key micro-cardiac events.

So far, RF-SCG has been tested on healthy subjects (as per our
IRB protocol). As the research evolves, we hope it moves to clinical
trials for testing on patients, and that it may be integrated with past
proposals that have demonstrated the ability to diagnose and detect
various cardiovascular conditions using SCG recordings (obtained
from on-body accelerometers) [38, 45, 54]. Such clinical studies are
beyond the scope of this paper. We believe this research direction
is particularly promising since millimeter-wave radars are already
incorporated in millions of manufactured phones and their adoption
is likely to grow. Thus, it holds the potential of bringing powerful
cardiac monitoring solutions to the hands of lay consumers.

2 BACKGROUND & RELATED WORK
Seismocardiography was first studied in the late 1950s by scientists
who were inspired by the technology used in seismology to register
underground vibration and predict earthquakes [9]. They adapted
the technology to measure fluctuations of the cardiac movements
using accelerometers.

SCG was first adopted by aerospace programs for monitoring crew
health. It was used by Russian cosmonauts in 1963 on board the
Vostok 5. Since then, it has been repeatedly used in space missions,
and has been onboard the International Space Station since March
2007 as part of the Pneumocard and Sonocard experiments [34].

The medical community has invested significant effort in studying
and understanding SCG recordings since their discovery. Clinical

3These numbers are in line with the nominal values from the literature on inter-subject
variability [26].

studies have demonstrated that the SCG is more sensitive and spe-
cific than the ECG in detecting coronary heart disease during stress
exercise testing [63]. Multiple projects have been dedicated to under-
standing the peaks and valleys of SCG recordings and to mapping
these fiducial points to micro-cardiac events [7, 12, 22, 44, 48].
Various studies have demonstrated that SCG recordings can be
used to diagnose and monitor various cardiovascular conditions
including arrhythmia, myocardial infarction, ischemia, and hemor-
rhage [21, 37, 38, 43, 45, 47, 50, 51, 53, 54, 68].

Despite its clinical advantages over ECGs, the SCG was largely
ignored by the medical community for over two decades due to
the overly-cumbersome setups of early versions of the device [23].
Recent advances in miniaturization of accurate accelerometers have
renewed interest in SCGs and led researchers to propose and develop
a variety of wearable SCG sensors over the past decade [14, 57, 69].

RF-SCG builds on this rich literature and introduces a non-contact
approach for recording SCGs. Our approach is motivated by re-
cent advances in RF sensing which have demonstrated the abil-
ity to capture human vital signs (specifically breathing and heart
rate) [6, 16, 33, 40, 59, 71]. These systems use RF signals (including
millimeter wave signals [8, 11, 66]) that bounce off the human body
in order to sense minute body movements and map them to human
vitals. Prior work, however, remains too coarse and/or inaccurate
for the capturing the SCG waveform. In particular, the vast major-
ity of this work is limited to measuring the average heart rate or
the heartbeat period [6, 32, 65, 71]. Those that can recover richer
recordings either require additional contact-based sensors (e.g., ECG
leads [64]) or achieve low accuracy (58%, i.e., close to a random
guess [32]). Finally, two recent papers have used millimeter-wave
radars to time cardiovascular events via wave modeling and signal
processing [15, 61]. However, unlike RF-SCG, these systems could
only capture one or two fiducial points. Specifically, [61] focuses on
recovering the morphology of the two dominant heart sounds (S1
and S2) found in PCG signals, and it achieves correlation coefficients
of 80-82% for each of them. More recently, [15] proposed an ap-
proach to recover ECG waveforms from radar reflections; however,
the system was only evaluated qualitatively on one individual and
did not report accuracy numbers.

RF-SCG extends this body of work by introducing new deep-
learning-based techniques that enable capturing micro-vibrations
within a heartbeat in order to reconstruct the entire SCG wave-
form and to time the associated micro-cardiac events. Quantitatively,
in contrast to prior work that aims to time coarser cardiac events,
RF-SCG needs to time micro-cardiac events within few milliseconds,
i.e., it requires two-to-three orders of magnitude finer granularity
than state-of-the-art contactless designs.

3 RF-SCG’S DESIGN
RF-SCG consists of three main components: the first is a 4D cardiac
beamformer that focuses on reflections coming from the apex of the
heart; the second transforms these reflections into SCG recordings;
and, the third automatically labels the SCG recordings to extract the
timings of micro-cardiac movements. This section describes each of
these components in detail.
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3.1 Capturing the mmWave Reflection
Before we dive into RF-SCG’s core components, we provide a quick
background on how RF-SCG captures millimeter-wave reflections
off the human body. To capture these reflections, the sensor transmits
a millimeter wave signal, which bounces off the human body and
comes back to the device. The device captures these reflections and
analyzes them to extract the phase, which is given by the following
equation [56]:

𝜙 (𝑡) = 2𝜋
𝑑 (𝑡)
𝜆

where 𝜆 denotes the wavelength, 𝑑 (𝑡) denotes the distance between
the sensor and the human body, and 𝑡 is time. Since cardiac micro-
mechanics (like opening and closing of valves) result in small vibra-
tions on the chest wall, they impact the distance 𝑑 (𝑡) between the
sensor and the human body. RF-SCG can sense these vibrations in
the phase and use them to record the SCG signals.

We note two additional points about how RF-SCG captures RF
reflections:
• The sensor incorporates a 2D antenna array with horizontal and

vertical components. Each of the receive antennas can compute
its own phase 𝜙 (𝑡). This 2D array will be used by the beamformer
in the next section to focus on the heart’s reflection.

• The transmitted radar signal is a Frequency Modulated Carrier
Wave (FMCW) signal. FMCW is a well-known radar technique
that isolates reflections coming from different ranges into different
buckets [5, 31].4

The above two methods are well-known techniques, which
RF-SCG repurposes for zooming in on the heart’s reflection and
maximizing the SNR of the received signal as we explain next.

3.2 4D Cardiac Beamforming
The goal of RF-SCG’s first component is to focus on RF signals
reflected from the human heart. Obtaining a good signal-to-noise
ratio (SNR) for these reflections is important since RF-SCG needs
to time micro-cardiac events which are very minute.

At first blush, one might wonder if standard antenna array beam-
forming can be used to focus on the direction of the reflection coming
from the heart. Specifically, since RF-SCG has a 2D antenna array,
it can try to use standard beam steering techniques to scan the space
for the direction with the strongest reflection. Unfortunately, this
standard approach to beamforming might not work (and indeed
doesn’t work well as we show empirically in §6). This is because
the direction of the strongest reflection may not coincide with the
heart’s apex but rather a different location on the chest.

Instead, RF-SCG must identify the direction that has the strongest
heart signal. The challenge in doing so is that it does not know
exactly how the heart’s reflection looks like in the first place; plus,
this reflection is likely to change depending on the user, how they are
sitting, and their heart rate. Moreover, the heartbeat signal itself is
masked by motion due to breathing, whose magnitude is significantly
larger than the micro-vibrations of cardiac movements.

To overcome this challenge, RF-SCG exploits the fact that the
heartbeat signal is periodic, and it leverages this periodicity in order
to identify the best direction of obtaining the corresponding periodic

4We refer the interested reader to the radar literature [31] for more details on FMCW
processing.

Figure 2—4D Cardiac Beamformer. The 4D cardiac beamformer consists of two
parallel signal-processing chains. The first chain extracts a heart rate, and the second
chain project eight channel signals into possible directions. Then, it calculates the
highest cardiac power ratio with the help of both chains.

signal. Specifically, it decomposes the task of identifying the best
beam with the heart rate into two subtasks. The overall architecture
of its 4D Cardiac Beamformer is shown in Fig. 2 and consists of
two main processing chains:
• The top chain is used to robustly extract the heart rate. It does so

by formulating the task as a 1D CNN-assisted template matching
problem.5

• The bottom chain combines beamforming and FFT (via 4D pro-
jections)6 in order to identify the spectral features coming from
each point in 3D space. It then uses the estimated heart rate from
the top chain in order to identify the correct 3D spatial beam and
extract its phase.
These subproblems can be solved sequentially, as we demonstrate

in the next two subsections.

3.2.1 CNN-assisted Template Matching
To robustly extract the heart rate from the reflected millimeter-wave
signal, RF-SCG formulates the estimation problem as a 1D matching
problem. Below, we describe how it solves this problem and why
this solution is more robust than simply taking an FFT.

In template matching, the goal is to extract the best template 𝑇
that matches a repetitive sequence. In our scenario, the template of
interest corresponds to a single heartbeat interval and the sequence is
a filtered time series of phase data obtained from the millimeter wave
reflection. Formally, our goal is to minimize the error 𝑒 (𝑖) between
the template 𝑇 and repeating segments of the input Data 𝐷:

𝑒 (𝑖) = |𝐷𝑖 −𝑇 |2 = |𝐷𝑖 |2 + |𝑇 |2 − 2|𝐷𝑖 ∗𝑇 | (1)

where 𝐷𝑖 is the 𝑖𝑡ℎ segment of the input time-series data which has
the same size as 𝑇 , and ∗ denotes the cross-correlation operation. By
minimizing the above error function, we can recover the template 𝑇 ,
thus learning the heartbeat template as well as the heartbeat period.

The above optimization problem can be solved using stochastic
gradient descent (SGD). To efficiently solve SGD using modern
computing tools, we formulate it as a convolutional neural network
(CNN). Specifically, according to Eq. 1, we can minimize 𝑒 (𝑖) by
maximizing the convolution |𝐷𝑖 ∗𝑇 | while minimizing𝑇 . Intuitively,
we can solve this by learning the optimal convolution filter 𝑇 while
training the neural network to minimize an appropriate loss function
that reflects minimizing the error of Eq. 1.
5As we show in the next section, this approach is much more robust than simply taking
an FFT.
6The four dimensions are: 2D beamforming, FMCW, and FFT.
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Figure 3—CNN-assisted Template Matching. The figure shows the different stages
of RF-SCG’s segmentation algorithm. After the CNN and Maxpool layers, each segment
between neighboring 𝑀’s is a candidate for the hearbeat period (or heart rate). The final
stage involves heart rate estimation using a histogram.

Formally, we can represent this problem using the architecture
shown in Fig. 3:
• The architecture has a 1D CNN that must learn a template 𝑇 as

its convolution filter.
• The CNN layer is followed by a Maxpool layer, which tries to find

the peaks at the output of the CNN layer (i.e., the convolution).
Since the peaks arise whenever the template is aligned with a
single heartbeat, the number of peaks is indicative of the number
of heartbeats.

• The loss function can be formulated as:
Loss = L2 (𝑇 ) + 𝜆

1
𝑀

where L2 is L2-norm, 𝑀 is the value of each Maxpool output
element, and 𝜆 is a tuning parameter. Mathematically, the first
term corresponds to a regularization term for penalizing the loss
function to prevent overfitting.

Exploiting the 1D CNN architecture to extract the heart rate.
Upon convergence, the above architecture would result in minimiz-
ing the template matching error (as per Eq. 1). It would also result
in a segmentation of the time domain series into individual heart-
beats. This can be seen by the peaks (labeled in red) in the CNN
output in Fig. 3 as well as in the Maxpool estimates (𝑀0,𝑀1,...,𝑀6).
Moreover, the individual heartbeat period may be derived by tak-
ing the difference between any two neighboring Maxpool outputs
(𝑀𝑛-𝑀𝑛−1).

The last row of Fig. 3 plots the histogram of the maxpool dif-
ferences. Recall that these histograms correspond to the estimated
heartbeat period across all individually measured heartbeats. Inter-
estingly, the histogram has two peaks; these two peaks correspond
to both the fundamental and the second harmonic of the heartbeat
frequency. Thus, we can use this histogram in order for us to estimate
the heartbeat by performing a simple cross-correlation between the
histogram and the harmonic impulse function [17].

Few points are worth noting about RF-SCG’s approach for ex-
tracting the heartbeat period:

• While the method uses standard machine learning techniques to
estimate the heartbeat period, it does not need to be pre-trained
since the training process itself can be used to extract the heart
rate as described above.

• Naturally, a much simpler approach to extract the heart rate is
to use an FFT and identify the peak frequency. In practice, how-
ever, this wouldn’t result in an accurate estimate as demonstrated
by past work [71]. This is because the heartbeat changes from
interval-to-interval, making it infeasible to robustly obtain a sharp
peak at the heartbeat frequency. In contrast, since the template
matching method relies on the local maximum of the CNN output
in Fig. 3, it does not require the response to be perfectly periodic.

• The histogram-based method for extracting heartbeats is highly
robust to noise or random sources of error since these would not
contribute to or distort the dominant period/frequency.

• In principle, it may be possible to replace RF-SCG’s template
matching component by other template matching schemes [62,
71]. In developing RF-SCG, we experimented with various
schemes but found the CNN-based approach to be more desir-
able for three reasons: first, it can be easily implemented using
highly optimized machine learning frameworks (e.g., Tensorflow,
PyTorch); second, it is linear time; and third, it achieves high
robustness and accuracy with minimal parameterization.7

3.2.2 Beamforming-based SNR Improvement
Now that we have a reliable algorithm to obtain heart rates from
periodic signals, we can employ an algorithm that exploits this
periodicity in order to extract an optimal steering direction. Fig. 2
shows the overall flow to identify the optimal projection. The input
to this architecture are eight channels from our mmWave device. The
signals received on each of these channels may be expressed as:

𝑚𝑛 = 𝐴𝑛 × 𝑒 𝑗𝜙𝑛 (𝑡 ) (2)

where 𝐴𝑛 denotes the amplitude, and 𝜙𝑛 (𝑡) denotes the phase of 𝑛𝑡ℎ
channel signal. The signals are fed to two different signal-processing
chains: the CNN-assisted Template Matching chain and the beam-
forming chain.

In the first chain, RF-SCG extracts the phase 𝜙𝑛 (𝑡) from all the
channels, then applies a differentiator filter to each of them. The
filter serves two main purposes: first, it suppresses low-frequency
respiration signals and boosts the high-frequency heart rate, thus
accentuating the feature points related to micro-cardiac movements;
the second purpose of this filter is to transform the phased-based
distance estimate (as per Eq. 3.1) to an acceleration by designing the
filter to operate as a second derivative. Thanks to the differentiator
filter, the CNN-assisted Template Matching stage can easily extract
histogram from all the channels and obtain a representative heart
rate as described earlier.

The second chain of RF-SCG’s 4D Cardiac Beamformer applies
a standard beamforming method. Specifically, the signals received
on all eight channel are combined using the following equation:

BF(x,y) =
8∑

𝑛=1
exp

(
− 𝑗2𝜋
𝜆

[𝑥𝑑,𝑛 · 𝑥 + 𝑦𝑑,𝑛 · 𝑦]
)
×𝑚𝑛 (3)

7The only hyper-parameters we needed to set were the learning rate, 𝜆, and a layer size
of Maxpool and CNN. The main constraint we needed to account for was to ensure that
the Maxpool and CNN layers larger than one heartbeat interval, which can be easily
addressed by choosing a sufficiently large number.
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Figure 4—Translation Filter. The figure plots the different layers of RF-SCG’s RF-to-SCG Translator. 𝑁 is the batch size of data set. While the length of one frame is fixed, the
number of channels is different across the layers. To translate the mmWave reflection to SCG recordings, every convolution layer functions as an FIR filter. The coefficients of every
CNN layer are updated based on the calculated 𝐿2 − 𝑛𝑜𝑟𝑚 between the ground truth and translated results.

where 𝜆 is the wavelength of transmitted RF signal, 𝑥𝑑,𝑛, 𝑦𝑑,𝑛 are the
coordinates of 𝑛𝑡ℎ antenna array, 𝑥,𝑦 are projected coordinates, and
𝑚𝑛 is received signal from 𝑛𝑡ℎ antenna array. After applying this
beamforming, we perform an FMCW projection (by taking an FFT)
in order to isolate reflections coming from different distances into
different frequency buckets (as described in §3.1).

To sum up, the second chain obtains projections in a 3D coor-
dinate system (𝑥 , 𝑦, and intermediate frequency buckets). Each of
these projections is a time-domain signal. It is possible to verify the
quality of each projected time-domain signal by plotting it on a com-
plex plane. To demonstrate this visually, Fig. 2 plots two potential
outcomes of the projection with different projection qualities. The
left plot shows messy circles around the origin without a hole at the
center; this indicates destructive interference (i.e., the projection did
not constructively combine the channels). The right plot shows thick
concentric circle, demonstrating that the projection is close to ideal
(as per Eq. 2). Subsequently, the projected signals are fed to the next
stage which extracts the phase and applies a differentiator filter.8

Now that each of the two chains is completed, it is time to combine
their outputs. To do this, our beamformer takes the FFT of the
projected time-domain signals and computes the power ratio of the
heartbeat power to the overall power across coordinates and buckets.
Specifically, recall that each time-domain signal (at the output of the
second chain) is parameterized by 3 coordinates. Thus, by taking the
FFT of each of these signals, we obtain their time-domain spectral
properties. Knowing the heart rate estimate from the output of the
CNN-based template matching (as per §3.2.1), we can compute the
ratio of the heartbeat power to the overall power across coordinates
and buckets. This provides us with a 4D heatmap (𝑥 , 𝑦, frequency
buckets, and power ratio), a sample of which is visualized to the right
of Fig. 2. Using this 4D output, we can now identify the optimal 3D
location as the one having the highest power ratio (i.e., where the
heartbeat’s periodicity is most pronounced).

To demonstrate the value of this projection, Fig. 2 shows the
time-domain phase extracted from two different locations in this
projection (the two plots at the bottom right of the figure). The phase
from a random coordinate in the projection (without loss of gen-
erality, the origin) barely shows any periodicity. However, the one
obtained from the projection’s peak (rightmost plot) clearly shows
periodic signals. This demonstrates the ability of RF-SCG’s 4D car-
diac beamformer to focus on and accentuate the heart’s reflections.

8The differentiator filter is trained together with the following stages which will be
discussed in §3.3. The differentiator filter is initialized with a conventional differentiator
filter coefficients and will be trained to maintain its symmetry.

Dealing with Outliers and Extraneous Movements. After the
beamforming stage, we still need to filter out corrupted data. In
particular, various environmental factors (such as a subject’s exces-
sive movement or another object coming in the way between device
and subject) may cause sudden peaks or distort the received signal.
Not accounting for such factors would degrade the performance of
the overall system.

To identify and eliminate such outliers, RF-SCG leverages a statis-
tical analysis called Tukey’s fence. The method identifies thresholds
for rejecting outliers based on the quartiles of the time series. To
implement this method, the system divides the obtained time series
projections into two-second windows. Then, it can calculates the
power distribution across all unit windows and extracts the first quar-
tile (𝑄1) and third quartile (𝑄3). Based on these values, it defines a
threshold 𝑃𝑡ℎ as follows:

𝑃𝑡ℎ = 𝑄3 + 1.5 × (𝑄3 −𝑄1) (4)
Then, if the power of any unit exceeds this threshold, it is discarded.9

3.3 RF-to-SCG Translator
The goal of the translation filter is to translate the wireless reflections
into meaningful clinical parameters, more specifically, to translate
mmWave reflections to SCG waveforms. The easiest way to do this
would be to implement an FIR filter that performs such conversion.
In principle, this should be possible since both modalities are based
on mechanical movements of the human heart. However, in practice,
this is challenging because mmWave reflections and accelerometers
are fundamentally different acquisition mechanisms, with different
properties, front-ends, and channel characteristics. This makes it
difficult to derive a closed-form signal transformation from one
modality to the other.

To overcome this challenge, RF-SCG learns the translation filter,
which we call an RF-to-SCG Translator. In particular, the translator
learns the filter’s coefficients from mmWave and SCG data pairs.
Since an FIR filter and 1-dimensional convolutional neural network
(1D-CNN) have the same mathematical representation, we can think
of multiple 1D-CNN layers as multiple FIR filters. This enables us to
represent fine-grained cardiovascular movements by the combination
of various frequency components from mmWave signals.

Fig. 4 shows the overall architecture of RF-SCG’s translation fil-
ter. The input to this filter is the millimeter-wave time-series obtained

9In our evaluation, we also applied this same method to reject outliers from the ground-
truth time series obtained from an on-body accelerometer. Moreover, if a unit is deter-
mined to be an outlier in either RF-SCG or the on-body accelerometer, we eliminated it
from both of them for fairness.
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Figure 5—Automatic Labeling. The figure shows the network used for automatic labeling. Each box corresponds to a multi-channel feature map. The arrows denote the different
operations. The number of channels is denoted on top of each box. The length of each layer is provided at the left edge of the box. White boxes represent copied feature maps.

from the output of the 4D Cardiac Beamformer. The input is orga-
nized into N batch samples, 512 sample points, and 1 channel. Each
CNN layer (Conv) is grouped with a rectified linear unit (ReLU)
function, batch normalization (BN), and dropout layers (Dropout).
ReLU functions allow the nodes to learn more complex features in
the data by adding nonlinearity. Batch normalization and dropout
layers help the networks generalize to diverse input patterns and pre-
vent overfitting. Every CNN layer has the same length but different
channels. To update the coefficients of CNN layers, the network uses
the L2-norm between the final output and actual SCG measurement
(obtained from on-body accelerometer during training phase). It is
important to note that during testing phase, RF-SCG does not require
the on-body accelerometer as it has already learned the translation
function during training. Thus, the RF-to-SCG Translator enables it
to reconstruct the SCG waveform from millimeter-wave reflections.

3.4 SCG Automatic Labeling
So far, we have described how RF-SCG can reconstruct SCG wave-
forms from RF reflections; such waveforms are useful for assessment
and monitoring by expert clinicians. Next, we describe how RF-SCG
goes beyond reconstructing the waveform to timing the micro-
cardiac events in these waveforms. To do so, it implements an auto-
matic labeling function for SCG recordings. It is worth noting that
past work has made efforts to automatically label SCG recordings
(albeit those obtained from on-body accelerometers) [25, 29]; how-
ever, these past methods require additional on-body ECGs leads [25]
or have demonstrated high error margins [29], making them undesir-
able for practical/medical use.

In order to achieve high accuracy in labeling wirelessly captured
SCG recordings, RF-SCG builds on recent advances in deep learning
models. Specifically, it adapts the well-known Unet architecture [42]
which is typically used in Computer Vision problems to identify
salient features in images, and it modifies this architecture to operate
with 1D SCG signals.

RF-SCG’s modified Unet architecture is shown in Fig. 5, demon-
strating how the architecture’s parameters have been optimized for
SCG labeling. Here, the height of each rectangle is the number of
sample points, and the width is the number of channels for each
layer. The output has 5 channels which represent probabilities of
the fiducial points at each sample point. The five fiducial points of
interest are: aortic valve opening (AO), aortic valve closing (AC),
mitral valve opening (MO), mitral valve closing (MC), and isovolu-
metric contraction (IM). If the probability has higher than a certain

threshold value, RF-SCG determines that the point is determined to
be the corresponding micro-cardiac event.

Intuitively, the left layers of the network are encoders and the
right layers are decoders. By forward feeding features of each layer
directly into subsequent ones (the blue dotted line), the network
enables us to annotate fiducial points on the input data. For training,
we manually labeled each fiducial point of every SCG data. We refer
the reader to [42] for a detailed description of such methods and
summarize below the basic information relevant to this paper.

(1) The first 4 floors on the left side includes two CNNs with
Batch-Norm and ReLU functions. These blocks are connected
sequentially with MaxPooling layers which extract the maxi-
mum value.

(2) The maximum value is fed to the input of lower floor block
containing two CNNs with batch normalization and ReLU
function.

(3) The output from the previous layer through the deconvolution
and zero padding layers are concatenated with the output
from the layer from the same floor on the left side and is fed
to the input of the block that includes CNNs each with the
Batch-Norm and the ReLU.

(4) The output from the previous layer through the deconvolution
and zero padding layers is sequentially fed to the input of
another 4 floors containing two CNNs each with Batch-Norm
and ReLU.

(5) The output from the previous layer is fed to the input of
another CNN with the size of the kind of fiducial points.

As mentioned earlier, the output of this architecture are the prob-
abilities of the fiducial points for each of the samples. Using this
probability, RF-SCG can automatically label the SCG waveforms.

3.5 Putting It Together
To demonstrate how the entire system fits together, Fig. 6 plots the
time-series outputs at different stages of RF-SCG’s overall archi-
tecture for a sample experimental trial. The topmost plot shows the
phase obtained from the that corresponds to the human location (i.e.,
this is the output of the FMCW processing). The plot contains dif-
ferent sources of noise and interference, especially from breathing.
Specifically, the baseline fluctuation (trend) is due to the breathing
signal. Thus, after applying a differentiator filter, the breathing sig-
nal is removed as shown in the second plot from the top. This plot
shows finer variations, but remains quite noisy. The plot below it
(i.e., third from the top) is obtained at the output of the 4D cardiac
beamformer. Notice that this plot is much cleaner and has sharper
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Figure 6—Overall Signal Processing Flow. The figure plots the waveforms at dif-
ferent stages of RF-SCG’s pipeline, chronologically from top to bottom. Before the
differentiator filter, the signal looks irrelevant to SCG recordings. After the differentiator
filter and the beamforming stage, its trend starts showing some micro-cardiac events.
The figure then plots one of the channels of the RF-to-SCG translator. Then, it plots the
combination of all the translator’s channels, demonstrating the ability to successfully
translate the millimeter-wave reflection into SCG recordings. Finally, the five fiducial
points are extracted through the automatic labeling function.

peaks and troughs with better SNR. Recall that his signal is fed
to the RF-to-SCG translator which performs waveform conversion.
The two plots below it show the output at an intermediate stage and
the final stage of the translator. Note that the intermediate stage is
difficult to interpret, as in most neural networks, but it is interesting
to see that it identifies some of the sharp peaks. The plot obtained at
the output of the translator (second from the bottom) is very similar
to the ground-truth SCG recording (bottom plot). Moreover, the
plot shows that RF-SCG is able to correctly label the fiducial points
corresponding to the five micro-cardiac events of interest.

4 IMPLEMENTATION
Hardware. Architecturally, our system combines a mmWave sensor
with a real-time data-capture adapter for radar sensing as shown
in Fig. 7. The mmWave sensor is an IWR1443BOOST board [4]
that operates at 77 GHz. The radar front-end transmits an FMCW
signal (with 4 GHz of bandwidth) and consists of two linear array:
horizontal (with 3-dB beamwidth of ±28◦) and vertical/elevation
(with 3dB-beamwidth of ±14◦). The board incorporates a monolithic
implementation of a 3Tx, 4Rx system. In order to maintain high
temporal resolution for SCG recordings, we only used 2Tx and 4Rx.
The board uses switched transmissions, which enables isolating the
received signals. The acquired data is sent to a host PC with the help
of a capturing software, mmWave Studios [3].

Software. RF-SCG’s software package was implemented in MAT-
LAB R2019b and Python 3.7. Aside from standard FMCW pre-
processing and filtering, all of RF-SCG’s software components (§3.2-
§3.3) were implemented in Python. mmWave Studio was used to
configure parameters of IWR1443BOOST. To enable flexibility in

Figure 7—Experimental Environment. The figure shows a subject sitting about 30cm
away from the TI IWR1443 mmWave board’s antennas. The subject also wears a chest
strap and SCG sensor under their T-shirt.

signal processing and acquisition, we wrote a packet sniffing pro-
gram that captures packets received over Ethernet from the mmWave
board in real-time. The extracted phase signals are preprocessed in
MATLAB using a bandpass FIR filter (0.2-50 Hz) to mitigate the
impact of breathing and high frequency noise.

CNN-assisted Template Matching. We set the following hyper-
parameters for training the CNN: size=600, stride=1, zero-
padding=300, and Maxpooling layer size=800, stride=100. We
used SGD (Stochastic Gradient Descent) optimizer with learning
rate=1e-3. The processing time of the module is 0.4 sec for 3 min-
utes data set on a machine with an i7-9700 (3.60GHz) processor,
16GB RAM, RTX 2080.

Beamforming. We performed beamforming in post-processing after
extracting the individual channels from the radar. The 4D Beam-
former identifies the optimal projection vector. Specifically, in the
beamforming function, we extracted the power ratio from a 40 × 40
grid representing the (𝑥,𝑦) 2D space, and four range buckets (i.e.,
FMCW frequency buckets) centered around a region of 30 cm from
the sensor. The spectral density of the heart reflection is estimated in
the frequency domain with a resolution of 5 beats/min.

RF-to-SCG Translator. We adopted three data augmentation meth-
ods (overlapping, stretching, noising) from few-shot learning ma-
chine learning models [10, 28, 60, 70]. First, we used a sliding
window function to divide the input measurements into frames. The
window consisted of 512 samples and was shifted by 32 samples
to extract overlapping frames. Second, each frame was stretched
or squeezed to represent a large number of heart rates (50-140bpm,
at 10bpm intervals) using the cubic spline data interpolation [13].
Third, each frame was replicated 10 times, each with different power
of random noise. This allowed us to generate more than 1,000 times
the original dataset and provided additional resilience to overfitting.
To maintain the width of each layer, we used the Adam optimizer
and set CNN parameters size=[101, 101, 101], stride=[50, 50, 50],
batch size = 64, learning rate=1e-5, stride=1, dropout rate=0.2.

SCG Automatic Labeling. As described in §3.4, we adapted the
Unet architecture for automatic labeling of SCG fiducial points,
and modified the size of the layers as well as the cropping and
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Figure 8—Accuracy in Reconstructing the SCG Waveform. The figure plots the correlation coefficient between the measured radar reflection and the ground truth across different
subjects. It compares the median correlation of RF-SCG (in blue) and the baseline (in green), demonstrating that RF-SCG significantly outperforms the baseline.

concatenation functions. If an output value has a score larger than 0.5,
it is marked as a valid fiducial point. We used the Adam optimizer
and set learning rate =1e-5, beta1=0.9, beta2=0.999

Ground Truth. Following the standard approach for collecting
ground truth measurements [52], our setup employs an on-body
accelerometer (KXR94-2283 [2]) connected to a customized pro-
cessing module (ADS1299EEGFE [1]). The sampling rate is set
to 500 samples per second. To synchronize the ADS1299 with the
mmWave sensor, we used the DRDY pin of the ADS1299 as a ticker
to clock the SYNC_IN pin of the mmWave sensor. The SCG record-
ing device was only used for training the network. In a real-world
use case, the user does not need to wear the device.

5 EXPERIMENTAL EVALUATION
Participants. To evaluate RF-SCG’s performance, we recruited 21
participants (5 females) between the ages of 21 and 35. None of the
participants had reported known pre-existing cardiovascular condi-
tions. Participants wore their daily attire such as T-shirts, blouses,
and button downs with different fabric materials. This research pro-
tocol has been approved by our IRB.

Experimental Environment. We performed our experiments in an
open office environment in an office building with standard furniture
and in co-existence with other wireless technologies (WiFi, LTE,
Bluetooth, etc.). Throughout our experimental trials, other people
were walking around in the environment.

During the data collection process, subjects were asked to sit in
a chair within 25-50 cm from the sensor as shown in Fig. 7. The
mmWave sensors were placed in front of the subjects and aimed
at the sternum. The ground truth was collected by attaching an
accelerometer to the subject’s chest, slightly to the left of their
sternum. The attachment was done using either adhesive tape or an
elastic string wrapped around the person’s chest.

We conducted 169 experimental trials, each lasting for around 3
minutes. During these experiments, subjects were asked to breath
normally, but remain quasi-static otherwise (i.e., avoid moving their
arms and legs). Subjects could sit relatively comfortably and blink
or swallow regularly. We collected around 40,000 heartbeats in total.
Subject heart rates varied from 55-110bpm. Each heartbeat was
manually labeled to time each of the 5 fiducial points of interest.
The heartbeat labels were inspected multiple times by different
individuals to ensure abidance to standard labeling protocols from
the SCG medical literature [7, 12, 44, 48].

6 PERFORMANCE RESULTS
6.1 Results across Subjects
6.1.1 Reconstructing the SCG Waveform
First, we would like to understand RF-SCG’s ability to recon-
struct the SCG waveform from radar reflections. Specifically, we
are interested in evaluating its ability to translate these reflec-
tions into recordings that are typically obtained from on-body ac-
celerometers and which have been used previously in medical stud-
ies [7, 12, 22, 44, 48]. Moreover, we are interested in evaluating
how well it generalizes for unseen subjects. To do so, we divided
our dataset into a training set and testing set. For each subject (e.g.,
subject 1), the model is trained on twenty other subjects (e.g., sub-
jects 2-21) and evaluated on the untrained subject. This 21-fold cross
validation ensures that the training and testing are mutually exclusive
and that the model is evaluated on subjects it hasn’t been trained on.
For each subject, RF-SCG remotely captures the SCG recording and
automatically extracts the five fiducial points of interest.

To quantify the similarity between RF-SCG’s continuous wave-
form output and the ground truth, we computed the Pearson Corre-
lation Coefficient. This coefficient represents how closely two vari-
ables move together [39]. We also compared RF-SCG to a baseline
implementation that performs standard beamforming and bandpass
filtering (detailed in §4), similar to state-of-the-art prior work on
contactless cardiac sensing [32, 64]. For each subject, we divided
the time series into 1 second intervals and computed the correlation
coefficient for each of these intervals.

Fig. 8 plots the median values of the correlation coefficients
across subjects for both RF-SCG’s output (in blue) and the baseline
(in green). The figure shows that RF-SCG’s correlation coefficient
is higher than that of the baseline across all subjects. Moreover,
while the conventional method’s highest correlation is 0.66, every
subject with RF-SCG has more than 0.72 correlation coefficient.
Additionally, for 7 out of 21 subjects, RF-SCG achieves a very
high positive correlation (> 0.9) according to [35]. It is also worth
noting that other state-of-the-art work [61] has focused on recovering
portions of the PCG waveform (specifically, those corresponding to
two of the micro-cardiac events) and demonstrated correlations of
0.80-0.82. This shows that RF-SCG significantly outperforms state-
of-the-art work and that RF-SCG’s beamformer and RF-to-SCG
Translator enable it to learn representative transformations between
the reflected signals and the on-body accelerations. In turn, these
results demonstrate that RF-SCG is capable of reconstructing the
entire SCG waveform.
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Figure 9—RF-SCG’s Overall Accuracy. The figure plots RF-SCG’s median error in timing each of the five micro-cardiac events of interest for 21 human subjects. The dashed yellow
line denotes the the best-case accuracy achievable using a gold standard cardiac ultrasound (due to its higher quantization error).

6.1.2 Timing Micro-Cardiac Events
Next, we would like to evaluate RF-SCG’s ability to precisely time
micro-cardiac events from the extracted SCG signals, and how its
accuracy varies across subjects. Thus, using the same protocol de-
scribed above, we divide our measurement dataset into training and
testing. This time, instead of using the continuous time-domain
waveform obtained at the output of the RF-to-SCG translator, we
are interested in evaluating the entire pipeline, including final stage
of RF-SCG (i.e., the Automatic Labeling stage). For each detected
fiducial point, we computed the error as the time difference between
the RF-SCG-estimated timing and the ground truth timing, then
normalized by the heartbeat period, as per the following equation:

𝐸𝑟𝑟𝑜𝑟 = 100 ×
(

RF-SCG Estimated Time − Ground Truth Time
Heartbeat Period

)
(5)

Fig. 9 shows RF-SCG’s error across all 21 subjects. Each cluster
represents a single subject and the corresponding median accuracy
of each fiducial point. We also compared RF-SCG’s accuracy to the
accuracy of a cardiac ultrasound device that is typically used as a
gold standard for timing micro-cardiac events [41].10 Specifically,
the best-case accuracy is limited by the quantization error of the
device which results from its sampling period (around 20 ms) and
is computed similarly as per the above equation and denoted by the
dashed led line in Fig. 9.11 We make following remarks:
• Overall, RF-SCG can maintains low error (below 2.5%) across

almost all subjects and all fiducial points.
• RF-SCG matches or exceeds the performance of the best-case

accuracy for the cardiac ultrasound (dashed yellow line) for all
fiducial points in seven out of the ten subjects. Moreover, if one
considers only the systolic micro-cardiac movements (MC, IM,
and AO), RF-SCG’s accuracy matches or exceeds the gold stan-
dard device for all subjects. The higher accuracy for systolic
micro-cardiac events over the diastolic movements (AC, MO)
is expected since the systolic movements are stronger (they cor-
respond to heart contraction, while the diastolic fiducial points
correspond to relaxation which is a weaker movement). This is
the same reason why the stronger (lub) sound of the heartbeat
comes from the systolic movements and why the corresponding
peaks are larger in the SCG shown in Fig. 1 and Fig. 6.

• In some scenarios, RF-SCG’s median accuracy exceeds that best-
case accuracy of the gold standard. This is because RF-SCG’s

10Note that there are cardiac ultrasounds that have higher sampling rates; however, we
take the lowest sampling rate available as it remains to be part of the accepted gold
standards.
11For the gold standard, the heartbeat period is taken as an average for simplicity.

(a) CDF of Accuracies for Systolic Fiducial Points.

(b) CDF of Accuracies for Diastolic Fiducial Points.

Figure 10—CDF of Accuracies for Micro-Cardiac Events. The figure plots the CDF
of RF-SCG’s accuracy in timing (a) systolic and (b) diastolic micro-cardiac events. The
solid line represents RF-SCG and the dotted line corresponds to the stretched template
method.

sampling rate is much higher than that of standard cardiac ultra-
sound devices.

• The MO of the second subject has the highest error (around 4%).
The corresponding error accounts for only two sampling periods
in cardiac ultrasound.
Next, we would like to quantify the benefits of RF-SCG’s timing

accuracy against a simpler baseline that learns an “average” hu-
man heartbeat template. Since state-of-the-art systems can extract
at most two fiducial points (as discussed in §2), we developed a
new “stretched template” baseline, which operates as follows. After
segmenting the recorded signals into individual heartbeats (as per
RF-SCG’s beamformer), we stretch each individual heartbeat cycle
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Figure 11—Partial Implementations. The figure plots the accuracy of various partial
implementations of RF-SCG for each of the five fiducial points of interest.

to fit in one second. Then, each subject’s fiducial points are estimated
using the remaining subjects’ averaged SCG signals. Even though
this baseline is already given the advantage of RF-SCG’s segmenta-
tion algorithm, it allows us to investigate the value of the remaining
stages in recovering meaningful variations across heartbeats.

Fig. 10 plots the CDF of the error for RF-SCG and the baseline
for each of the 5 fiducial points. Each of the CDFs in this figure
corresponds to the combined error across all subjects. The plot shows
both the absolute error (bottom x-axis) and relative error (top x-axis).
We make the following remarks:

• RF-SCG outperforms the baseline across all fiducial points. The
median improvement varies from around 3× for MO up to 12× for
AO. This demonstrates that RF-SCG significantly outperforms
the stretched template method and that the system has sufficient
accuracy to capture the variability across individuals.

• The median errors in timing the fiducial points (reported as
absolute error/percentage per Eq. 5) are: 2 ms/0.26% (MC),
4 ms/0.52% (IM), 4 ms/0.52% (AO), 12 ms/1.55% (AC),
10 ms/1.29% (MO). These errors are 3 − 12× smaller than the
variability of individual heartbeats even for healthy individuals
(as reported in the appendix).

• Similar to our earlier results, RF-SCG has higher accuracy in
timing systolic (MC, IM, AO) than diastolic (AC, MO) fiducial
points. This is due to the stronger SNR of systolic vibration
(stronger sound of the heartbeat) than diastolic one.

6.2 Micro-benchmarks
6.2.1 Decomposing RF-SCG’s Gains
Next, we would like to quantify the accuracy gains arising from each
of RF-SCG’s subcomponents. To do so, we evaluated the accuracy
of partial implementations of the overall system: (1) conventional
beamforming (Conventional BF) that extracts coordinates at the
highest power and a differentiator filter, (2) with translation filter,
(3) RF-SCG’s full architecture with its 4D Cardiac Beamforming
method and translation filter. RF-SCG’s automatic labeling is applied
to all three cases.

Fig. 11 plots the accuracy for each of the above partial implemen-
tations. For simplicity, the figure only plots the results for a single
subject. Similar to our evaluation in §6.1, the models were trained
on all other subjects (i.e., aside from the one used in evaluation).

We make the following remarks:

• Both partial implementation achieve significantly higher errors
than RF-SCG’s full implementation. Specifically, the absence of
the 4D Cardiac Beamformer increases the sensor’s error to 15%-
27% across all fiducial points; and the absence of the RF-to-SCG

Figure 12—Precision and Recall. The figure plots the precision and recall of
RF-SCG’s automatic labeling component for each of the five micro-cardiac events
of interest.

translator further increases its error up to 32%. This demonstrates
the importance of each of the sub-components in the system’s
overall performance.

• One might wonder why the partial implementations achieve any
level of accuracy in timing (i.e., less than 35% error). The reason
here is that even the minimally-processed wireless reflection (i.e.,
upon FMCW and differentiation) has some resemblance to the
accelerometer-based SCG.

• Interestingly, the MO fiducial point has almost the same median
error for both partial implementations. This shows that when the
beamforming is extremely problematic (i.e., produces a very low
SNR), the translator cannot help in reducing the error as it cannot
learn a meaningful translation.

6.2.2 Precision & Recall of Automatic Labeling
So far, our evaluation has focused on measuring the correlation of the
waveform and the temporal errors between an RF-SCG-determined
fiducial point and the ground-truth time of the corresponding cardiac
movement. Next, we would like to gain more insight into RF-SCG’s
ability to detect these fiducial points. We used the same dataset
as §6.1 (i.e., testing and training is mutually exclusive on all sub-
jects), and we computed precision and recall metrics as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# Correct Detections

# of Reported Detections

𝑅𝑒𝑐𝑎𝑙𝑙 =
# Correct Detections

# of Ground Truth Instances
Here, we define a detection to be correct if the error between the

detected time by RF-SCG and the ground-truth time according to
the ground truth (from accelerometer) is within a sampling error of
the gold standard cardiac ultrasound. Intuitively, the precision metric
scores how well the detected points match the manually labeled
points, while the recall metric scores the systems ability to detect all
the manually labeled points in the SCG.

Fig. 12 shows the precision and recall metrics for each fidu-
cial points across all the subjects. (Recall that these metrics differ
from the accuracy metric reported earlier). The figure shows that
RF-SCG’s precision is around or above 90% across all the fiducial
points. However, only three of the fiducial points have recall scores
higher than 90%. For diastolic fiducial points, the recall is lower than
precision by 20.2 %. Intuitively, this means that RF-SCG cannot
detect all the manually-labeled points; however, once it detects a
point, it is highly likely to be correct. It is possible to make the
automatic labeling component more aggressive by adjusting the loss
function of the training regime and threshold of score value to favor
recall. However, since the goal of RF-SCG is to sense fiducial points
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(a) Standard Case (b) Subject Moves

(c) Nearby Object Moves (d) Accelerometer Attachment Problem

Figure 13—Modality Performance and Environmental Problems. The figure plots the output of RF-SCG and an accelerometer-based SCG when there are environmental problems
during the measurement.

within a heartbeat, it may not be necessary to extract all fiducial
points from each the heartbeats since the heartbeats repeat over time.
This is why we consider precision to be a better metric to evaluate
the performance of the labeling function. In that sense, RF-SCG’s
labeling component shows very good accuracy. Nonetheless, as the
research evolves, it may be desirable to adjust the training parame-
ters differently depending on the cardiovascular condition of interest.

6.2.3 Modality Performance and Environmental Problems
In our final micro-benchmark, we are interested in understanding
various sources of error for both RF-SCG and the standard method
for obtaining SCG recordings (i.e., using a chest-attached accelerom-
eter). It is important to note that since RF-SCG implements outlier
rejection, it is able to eliminate most of the corrupted regions in these
scenarios. Thus, we turned off the outlier rejection component of
our system here in order to demonstrate the impact of such problems
on the recordings.

Fig. 13 shows the output signal for both of these modalities when
there are different environmental problems. Fig. 13(a) shows the stan-
dard and most common case. Here, the subject remains quasi-static,
and there is no interference from surrounding objects. Fig. 13(b)
shows the case when the subject rotates their body during the experi-
ment. During the movement, both modalities experience a corrupted
region, then go back to the standard case when the subject becomes
quasi-static again. Fig. 13(c) shows the signals obtained when there
is interference from a nearby object. Here, as the subject was sitting,
another user swung their hand between the subject and the mmWave
sensor to create interference. Even though RF-SCG’s signal is par-
tially distorted, it still exhibits some of its fiducial points during
the period; on the other hand, the on-body accelerometer is not af-
fected at all by this kind of interference. Finally, Fig. 13(d) shows
the case when there is an attachment problem in the conventional
SCG modality. Since this modality requires the accelerometer to be
firmly affixed to subject’s chest (to maintain high SNR), it suffers

when the attachment becomes loose. In contrast, RF-SCG shows
very clean signals since it is based on contactless sensing.

7 DISCUSSION & CONCLUSION
By enabling contactless cardiovascular recording, RF-SCG marks
an important step toward continuous health monitoring. A key bene-
fit of RF-SCG is that it can work with off-the-shelf devices, using
millimeter wave radars similar to those already present in millions
of phones. Such a system may be incorporated into a desk screen or
smartphone (e..g, Pixel 4) to enable continuous opportunistic moni-
toring. The system also has applications for patients with sensitive
skin (e.g., burn patients).

Our evaluation in this paper has focused on healthy individu-
als. As the reseach evolves, it would be very interesting to eval-
uate the system’s accuracy in medical applications, which have
already been verified with on-body SCG recordings. Such applica-
tions include detecting cardiovascular diseases (such coronary artery
disease, ischemia, valvular or structural heart diseases, heart fail-
ure) [21, 24, 45, 46, 67] as well as long-term monitoring of patients
with cardiovascular conditions (such as arrythmia) [20, 38]. It would
also be interesting to expand the system’s capabilities so that it can
capture SCG recordings from further away subjects as well as those
who are moving around in their everyday environments.

More generally, we hope that as this line of work evolves, it
will help bring passive, long-term cardiovascular monitoring to our
everyday environments.
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A SUBJECT VARIABILITY
We extracted the standard deviation of each fiducial point from each subject,
and added it to Table 1. Note that this is after normalization by stretching,
demonstrating that even for individual subjects, there is sufficient variation
in the fiducial points.

MC(ms) IM(ms) AO(ms) AC(ms) MO(ms)
S1 20.05 27.95 25.35 41.55 35.2
S2 20.55 27.9 30.6 33.75 36.25
S3 19.15 25.75 27.45 40.25 32.95
S4 25.05 31.25 26.95 40.8 35.15
S5 22.3 28.15 32.35 36.2 37.1
S6 19.05 28.95 29 34.15 38.4
S7 22 23.55 24.75 40.2 32.45
S8 26.55 24.75 27.3 34.4 38.5
S9 22.65 29.35 25.75 38.2 39.35
S10 23.75 28.45 28.7 37.05 32.3
S11 20.05 28.6 23.9 33 37.2
S12 22.6 25.15 30.8 41.95 33.75
S13 26.9 23.95 23.85 36.15 36.1
S14 28.1 26.1 29.15 33.25 40.65
S15 21.1 31.7 23.95 37.1 39.45
S16 26.75 26.15 25.9 42.3 37.55
S17 20.15 31.35 26.45 34.75 35.6
S18 28.7 30.5 23.65 34.15 32
S19 20.75 27 24.65 34.5 32.8
S20 26.4 30.75 29 40.3 34.2
S21 19.45 24.9 23 38.65 38.35

Table 1—Standard deviation of each fiducial point from each subject
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