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Beyond Procrustes: Balancing-Free Gradient Descent

for Asymmetric Low-Rank Matrix Sensing
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Abstract—Low-rank matrix estimation plays a central role in
various applications across science and engineering. Recently, non-
convex formulations based on matrix factorization are provably
solved by simple gradient descent algorithms with strong compu-
tational and statistical guarantees. However, when the low-rank
matrices are asymmetric, existing approaches rely on adding a reg-
ularization term to balance the scale of the two matrix factors which
in practice can be removed safely without hurting the performance
when initialized via the spectral method. In this paper, we provide
a theoretical justification to this for the matrix sensing problem,
which aims to recover a low-rank matrix from a small number
of linear measurements. As long as the measurement ensemble
satisfies the restricted isometry property, gradient descent—in con-
junction with spectral initialization—converges linearly without
the need of explicitly promoting balancedness of the factors; in fact,
the factors stay balanced automatically throughout the execution
of the algorithm. Our analysis is based on analyzing the evolution
of a new distance metric that directly accounts for the ambiguity
due to invertible transforms, and might be of independent interest.

Index Terms—Asymmetric low-rank matrix sensing, nonconvex
optimization, gradient descent.

I. INTRODUCTION

L
OW-RANK matrix estimation plays a central role in many

applications [2]–[4]. Broadly speaking, we are interested in

estimating a rank-r matrixM� = X�Y
�
� ∈ R

n1×n2 by solving

a rank-constrained optimization problem:

min
M∈Rn1×n2

L(M) subject to rank(M) ≤ r, (1)

where L(·) denotes a certain loss function with the rank r
typically much smaller than the dimension of the matrix. To

reduce computational complexity, a common approach, pop-

ularized by the work of Burer and Monteiro [5]–[7], is to

factorize M = XY � with X ∈ R
n1×r and Y ∈ R

n2×r, and

rewrite the above problem (1) into an unconstrained nonconvex
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optimization problem:

min
X∈Rn1×r,Y ∈Rn2×r

f(X,Y ) � L(XY �). (2)

Despite nonconvexity, one might be tempted to estimate the low-

rank factors (X,Y ) via gradient descent, which proceeds via

the following update rule[
Xt+1

Y t+1

]
=

[
Xt

Y t

]
− ηt

[
∇Xf(Xt,Y t)

∇Y f(Xt,Y t)

]
(3)

from (X0,Y 0) some proper initialization. Here, ηt is the step

size, ∇Xf and ∇Y f are the gradients of f w.r.t. X and Y ,

respectively.

Significant progress has been made recently in understanding

the performance of gradient descent for nonconvex matrix esti-

mation. Somewhat surprisingly, most of the existing guarantees

are not directly applicable to the vanilla gradient descent rule (3).

One particular challenge is associated with the identifiability of

the factors (X,Y )—they are indistinguishable as long as their

productXY � is the same. What is worse, if the norms of the fac-

tors become highly unbalanced, gradient descent might diverge

easily. Consequently, it becomes a routine procedure to insert a

regularizer g(X,Y ) that balances the two factors [8]–[10]:

g(X,Y ) � λ‖X�X − Y �Y ‖2F, (4)

where λ > 0 is some regularization parameter, and apply gradi-

ent descent to the regularized loss function instead:

min
X∈Rn1×r,Y ∈Rn2×r

freg(X,Y ) � f(X,Y ) + g(X,Y ). (5)

For a variety of important problems such as low-rank matrix

sensing and matrix completion, it has been established that gra-

dient descent over the regularized loss function, when properly

initialized, achieves compelling statistical and computational

guarantees.

A. Why Balancing is Needed in Prior Work?

Before we investigate the possibility of a balancing-free pro-

cedure (i.e. vanilla gradient descent as in (3)), let us first explain

using a heuristic argument why balancing is needed in the prior

literature.

To handle the asymmetric factorization, it is common to

stack the two factors into one augmented factor Z� � [X�

Y �

] ∈
R

(n1+n2)×r and then seek to estimate Z� directly, by rewrit-

ing the loss function with respect to the lifted low-rank ma-

trix: Z�Z
�
� = [X�X

�
�

X�Y
�
�

Y �X
�
�

Y �Y
�
�

] ∈ R
(n1+n2)×(n1+n2). It is obvi-

ous that the loss function originally with respect to the asym-

metric matrix X�Y
�
� only constrains the off-diagonal blocks
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Fig. 1. Geometry for the scalar case f(x, y) = (xy − 1)2 and g(x, y) =
(x2 − y2)2/8. The regularized loss function is locally strongly convex while the
unregularized one is nonconvex; in particular, the Hessian of the unregularized
loss function is rank deficient on the ambiguity set xy = 1 (colored in red).

of Z�Z
�
� and not the diagonal ones; correspondingly, the loss

function is not (restricted) strongly convex with respect to the

augmented factor, unless we appropriately regularize the diag-

onal blocks. This gives rise to the adoption of the regularization

term in (4).

To develop more intuitions regarding why this regularization

term (4) may help analysis, consider a toy example of fac-

torizing a rank-one matrix x�y
�
� , where f(x,y) and g(x,y)

respectively are f(x,y) = ‖xy� − x�y
�
� ‖2F/2 and g(x,y) =

(‖x‖22 − ‖y‖22)2/8. Figure 1 illustrates the landscape of the

unregularized loss function f(x, y) and the regularized loss

function freg(x, y), respectively, when the arguments are scalar-

valued, i.e.n1 = n2 = 1. One can clearly appreciate the value of

the regularizer: freg(x, y) becomes strongly convex in the local

neighborhood around the global optimum (1,1). In contrast, the

Hessian of the unregularized loss function freg(x, y) remains

rank deficient along the ambiguity set {(x, y) |xy = 1}, making

the analysis less tractable.

B. This Paper: Balancing-Free Procedure?

The goal of this paper is to understand the effectiveness

of vanilla gradient descent (3) when initialized with balanced

factors. Indeed, Figure 2 plots the normalized error ‖XtY
�
t −

M�‖F/‖M�‖F for low-rank matrix completion, which aims to

recover a low-rank matrix from a subset of its observations [11],

with respect to the iteration count, using either a regularized

loss function or an unregularized loss function when initialized

by the spectral method. The two sequences of iterates converge

in almost exactly the same trajectory, suggesting that gradient

descent over the unregularized loss function converges almost

in the same manner as its regularized counterpart, and perhaps

is more natural to use in practice since it eliminates the tuning

of the regularization parameters.

This paper justifies formally that even without explicit bal-

ancing in asymmetric low-rank matrix sensing, gradient descent

converges linearly towards the global optimum, as long as the

initialization is (nearly) balanced and close to the optimum. As

will be detailed later, our analysis is simple and built on a novel

distance metric that directly accounts for the ambiguity due to in-

vertible transformations—in contrast, the ambiguity set reduces

to orthonormal transforms when the balancing regularization is

present. Our key message is this:

Fig. 2. Normalized reconstruction error ‖XtY
�
t −M�‖F/‖M�‖F with

respect to the iteration count, for completing a 1000× 1000 matrix of rank-
10 when each entry is observed independently with probability p = 0.15. The

balancing regularizer is set as g(X,Y ) = 1

64
‖X�

X − Y
�
Y ‖2

F
following

the suggestion in [12].

As long as the factors are (nearly) balanced in a basin of

attraction at the initialization, they will stay approximately

balanced throughout the trajectory of gradient descent, and

therefore no additional regularization is necessary.

C. Notation

We use boldface lowercase (resp. uppercase) letters to rep-

resent vectors (resp. matrices). We denote by ‖x‖2 the �2
norm of a vector x, and X�, X−1, ‖X‖ and ‖X‖F the

transpose, the inverse, the spectral norm and the Frobenius

norm of a matrix X , respectively. Furthermore, we denote

X−� = (X−1)� = (X�)−1 for an invertible matrix X . The

kth largest singular value of a matrix X is denoted by σk(X).
The inner product between two matrices X and Y is defined as

〈X,Y 〉 = Tr(Y �X), where Tr(·) denotes the trace operator.

Denote by Or×r the set of r × r orthonormal matrices. In

addition, we use c and C with different subscripts to represent

positive numerical constants, whose values may change from

line to line.

II. MAIN RESULTS

Let the object of interest M� ∈ R
n1×n2 be a rank-r matrix

whose compact Singular Value Decomposition (SVD) is given

by

M� = U�Σ�V
�
� ,

where U� ∈ R
n1×r, V � ∈ R

n2×r and Σ� ∈ R
r×r correspond

to the left singular vectors, the right singular vectors and the

singular values, respectively. Without loss of generality, we

denote the ground truth factors as

X� � U�Σ
1/2
� , and Y � � V �Σ

1/2
� . (6)

Let σmax � σ1(M�) (resp. σmin � σr(M�)) be the largest

(resp. smallest) nonzero singular value of M�. The condition

number of M� is therefore defined as κ � σmax/σmin.

Since the factors are identifiable up to invertible transforms,

i.e. (X�P )(Y �P
−�)� = X�Y

�
� for any invertible matrix

P ∈ R
r×r, it is natural to measure the distance between two
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Algorithm 1: Gradient Descent With Spectral Initialization

(Unregularized Procrustes Flow).

Input: Measurements y = {yi}1≤i≤m, and sensing

matrices {Ai}1≤i≤m.

Parameters: Step size ηt, rank r, and number of

iterations T .

Initialization: Initialize X0 = UΣ
1/2 and

Y 0 = V Σ
1/2, where UΣV � is the rank-r SVD of the

surrogate matrix K = 1
mA∗(y) = 1

m

∑m
i=1 yiAi.

Gradient loop: For t = 0, 1, . . . , T − 1, do

Xt+1=Xt−
ηt

‖Y 0‖2
·
[

m∑

i=1

(
〈Ai,XtY

�
t 〉 − yi

)
AiY t

]
;

(9a)

Y t+1=Y t−
ηt

‖X0‖2
·
[

m∑

i=1

(
〈Ai,XtY

�
t 〉 − yi

)
A�

i Xt

]
.

(9b)

Output: XT and Y T .

pairs of factors Z = [
X

Y
] ∈ R

(n1+n2)×r and Z� = [
X�

Y �
] ∈

R
(n1+n2)×r via the following function:1

dist (Z,Z�) = min
P∈Rr×r

invertible

√
‖XP −X�‖2F +

∥∥Y P−� − Y �

∥∥2
F
.

A. Low-Rank Matrix Sensing

Low-rank matrix sensing refers to the problem of recovering

a low-rank matrix (i.e. M�) from a small number of linear mea-

surements. Specifically, we are given a set of m measurements

as follows

yi = 〈Ai,M�〉 = 〈Ai,X�Y
�
� 〉, i = 1, . . . ,m, (7)

where Ai ∈ R
n1×n2 is the ith sensing matrix. For convenience,

we define A : Rn1×n2 → R
m as an affine transformation from

R
n1×n2 to R

m, such that A(M) = {〈Ai,M〉}1≤i≤m. Con-

sequently, one can compactly write (7) as y = A(M�). The

adjoint operator A∗ : Rm → R
n1×n2 is defined as A∗(y) =∑m

i=1 yiAi.

To recover the low-rank matrix, a natural choice is to minimize

the least-squares loss function

f (X,Y ) �
1

2

∥∥y −A(XY �)
∥∥2
2
. (8)

Algorithm 1 describes the gradient descent algorithm initialized

by the spectral method [13] for minimizing (8). Compared to

the Procrustes Flow (PF) algorithm in [8], which minimizes

the regularized loss function in (5), the new algorithm does not

include the balancing regularizer g(X,Y ).

1More rigorously, we should write inf instead of min in the definition of
dist(·, ·). However, as we will soon see, in the cases we care about, the minimum
can always be achieved by some invertible matrix P .

B. Theoretical Guarantee for Local Linear Convergence

To understand the performance of Algorithm 1, we adopt

a standard assumption on the sensing operator A, namely the

Restricted Isometry Property (RIP).

Definition 1 (RIP): The operator A(·) is said to satisfy the

rank-r RIP with a constant δr ∈ [0, 1), if

(1− δr) ‖M‖2F ≤ ‖A(M)‖22 ≤ (1 + δr) ‖M‖2F
holds for all matrices M ∈ R

n1×n2 of rank at most r.

It is well-known that many measurement ensembles satisfy

the RIP property [14]. For example, under the Gaussian design

where the entries of Ai’s are composed of i.i.d. Gaussian entries

N (0, 1/m), the RIP is satisfied as long as m is on the order of

(n1 + n2)r/δ
2
r .

Armed with the RIP, we have the following theoretical guar-

antee for the local convergence of Algorithm 1.

Theorem 1: Suppose that A(·) satisfies the RIP with δ2r ≤ c

for some sufficiently small constant c. Let Z0 � [
X0

Y 0
] be any

initialization point that satisfies

min
R∈Or×r

‖Z0R−Z�‖F ≤ c0
1

κ3/2
σ
1/2
min, (10)

for some small enough constant c0 > 0. Then there exist some

constant c1 > 0 such that at as long as ηt = η = c1, the iterates

of unregularized gradient descent (cf. (9)) satisfy

dist (Zt,Z�) ≤
(
1− η

50κ

)t

dist (Z0,Z�) .

In words, Theorem 1 reveals that if the initialization Z0

lands in a basin of attraction given by (10), then Algorithm 1

converges linearly with a constant step size. To reach ε-accuracy,

i.e. dist(Zt,Z�) ≤ ε, it takes an order of κ log(1/ε) iterations,

which is order-wise equivalent to the regularized PF algorithm

proposed in [8]. Comparing to [8], which requires δ6r ≤ c, The-

orem 1 only requires a weaker assumption δ2r ≤ c. However,

the basin of attraction allowed by Theorem 1 is smaller than

that in [8], which is specified by minR∈Or×r ‖Z0R−Z�‖F ≤
c0σ

1/2
min. Compared with prior work that relies on local strong

convexity to establish linear convergence, our result suggests

the benign behavior of gradient descent even in the absence of

local strong convexity.

C. Achieving Global Convergence With a Proper Initialization

We are still in need of finding a good initialization that obeys

(10). In general, one could initialize with the balanced factors

of the output of projected gradient descent (over the low-rank

matrix), i.e.

M τ+1 = Pr

(
M τ − 1

m

m∑

i=1

(〈Ai,M τ 〉 − yi)Ai

)
,

where Pr(·) is the Euclidean projection operator to the set

of rank-r matrices. The spectral initialization specified in

Algorithm 1 can be regarded as the output at the first iteration,

initialized at zero M0 = 0. Based on [8], [15], the balanced

factorization of M τ , denoted by Z̃τ , satisfy

min
R∈Or×r

∥∥Z̃τR−Z�

∥∥
F
≤ c2(2δ4r)

τ ‖M�‖F
σ
1/2
min

(11)
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for some constant c2. Thus, to achieve the required initialization

condition (10) using the spectral method specified in Algo-

rithm 1 (which corresponds to setting Z0 = Z̃1 with τ = 1 in

(11)), we need

δ4r ≤ c2
1

κ3/2
· σmin

‖M�‖F
.

In particular, under Gaussian design, where each measure-

ment matrix Ai has i.i.d. N (0, 1/m) entries, a total of m �
nrκ3‖M�‖2F/σ2

min measurements suffice for the above require-

ment on δ4r. This is worse by a factor of κ3 compared with the

sample complexity guarantee in [8] with the balancing regular-

izer, which is due to the restriction on the basin of attraction, as

we have remarked earlier. Improving the dependence on κ is an

interesting future direction.

In order to alleviate the dependency on the condition number

κ, we can allow a few iterations of (11) and set the initialization

as Z0 = Z̃τ , a procedure suggested by [8]. The advantage of

this hybrid procedure is that the switch to factored gradient

descent allows a smaller per-iteration memory and computa-

tion complexity after the iterates of projected gradient descent

enter the basin of attraction. Consequently, the algorithm is still

guaranteed to succeed when δ4r ≤ δc for a sufficiently small

constant δc (which implies a near-optimal sample complexity of

m � nr under Gaussian design), by running at least

τ ≥ c1 log

(
κ3/2 ‖M�‖F

σmin

)
/ log

(
δ−1
c

)

iterations of projected gradient descent for initialization, which

order-wise matches the requirement in [8].

III. RELATED WORK

Low-rank matrix estimation has been extensively studied in

recent years [3], [4], due to its broad applicability in collaborative

filtering, imaging science, and machine learning, to name a few.

Convex relaxation approaches based on nuclear norm minimiza-

tion are among the first set of algorithms with near-optimal

statistical guarantees, e. g. [2], [14], [16]–[22], however, their

computational costs are often prohibitive in practice.

To cope with the computational challenges, a popular ap-

proach in practice is to invoke low-rank matrix factorization and

then apply first-order methods such as gradient descent directly

over the factors to recover the underlying low-rank structure.

This approach is demonstrated to possess near-optimal statistical

and computational guarantees in a variety of low-rank matrix

recovery problems, including but not limited to [8], [23]–[31].

The readers are referred to the recent overview [32] for additional

references.

To the best of our knowledge, the balancing regularization

term (4) was first introduced in [8] to deal with asymmetric

matrix factorization, and has become a standard approach to

deal with asymmetric low-rank matrix estimation [9], [10], [12],

[33]–[35]. A major benefit of adding the regularization term is

to reduce the ambiguity set from invertible transforms to or-

thonormal transforms. For the special rank-one matrix recovery

problem, there are some evidence in the prior literature that a

balancing regularization is not needed, for example, Ma et al.

[27] established that vanilla gradient descent works for blind

deconvolution at a near-optimal sample complexity with spectral

initialization. In [36], the trajectory of gradient descent is studied

for asymmetric matrix factorization with an infinitesimal and

diminishing step size; in contrast, we consider the case when

the step size is constant for low-rank matrix estimation with

incomplete observations. Finally, very recently, [37] also studied

low-rank matrix sensing using a nonsmooth formulation without

the balancing regularization via subgradient descent.

Complementary to the algorithmic analysis, we remark that

a similar regularization term (4) is also adopted when analyz-

ing the optimization landscape of low-rank matrix estimation,

e.g. [38]–[42]. It is worth mentioning that when converting a

nuclear-norm regularized problem into a nonconvex formula-

tion, [43] demonstrated that the nonconvex problem has benign

geometry without adding the balancing regularization, since the

nuclear norm regularization induces a term 1
2 (‖X‖2F + ‖Y ‖2F)

which ensures both factors have similar sizes. Very recently, [44]

showed that the balancing regularizer is unnecessary from the

landscape analysis perspective.

After the initial version of the current paper, several other

works have further examined the balancing-free low-rank matrix

optimization problem. In particular, Tian, Ma and Chi developed

a scaled gradient descent algorithm [45] that achieves a faster

convergence rate independent of the condition numberκwithout

imposing the balancing regularization for a variety of low-rank

matrix estimation problems, which are further extended in [46]

to achieve robustness to adversarial outliers.

IV. PROOF OF THEOREM 1

In this section, we provide the proof of Theorem 1. We first

discuss some basic properties of aligning two low-rank factors

via an invertible transformation. Then we prove a similar result

for a warm-up case of low-rank matrix factorization. In the end,

viewing matrix sensing as a perturbed version of low-rank matrix

factorization helps us finish the proof of Theorem 1.

A. Alignment Via Invertible Transformations

We begin with introducing the alignment matrix will play a

key role in the subsequent analysis.

Definition 2: Fix a matrix Z = [
X

Y
] ∈ R

(n1+n2)×r. We de-

fine the optimal alignment matrix Q between Z and Z� as

Q � argmin
P∈Rr×r

invertible

‖XP −X�‖2F +
∥∥Y P−� − Y �

∥∥2
F
,

whenever the minimum is attained.

As we will soon see, for the iterates {Zt}t≥0 generated by Al-

gorithm 1, the optimal alignment matrix is always well-defined.

Furthermore, we call Z and Z� aligned if the corresponding

optimal alignment matrix is just the identity matrix Ir. Below

we provide some basic understandings of this alignment matrix.

The following lemma provides a sufficient condition for the

existence of the optimal alignment matrix.

Lemma 1: Fix some matrix Z = [
X

Y
] ∈ R

(n1+n2)×r. Sup-

pose that there exists a matrix P ∈ R
r×r with 1/2 ≤ σr(P ) ≤
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σ1(P ) ≤ 3/2 such that

max
{
‖XP −X�‖F ,

∥∥Y P−� − Y �

∥∥
F

}
≤ δ ≤ σr (X�)

80
.

(12)

Then the optimal alignment matrix Q ∈ R
r×r between Z and

Z� exists. In addition, the matrix Q satisfies

‖P −Q‖ ≤ ‖P −Q‖F ≤ 5δ

σr (X�)
.

Next, the lemma below presents a necessary condition for Q

to be the optimal alignment matrix between Z and Z�.

Lemma 2: Let Z and Z� be any two matrices. Suppose that

the optimal alignment matrix Q between Z and Z� exists. Then

we have

X̃
�
(X̃ −X�) = (Ỹ − Y �)

�Ỹ ,

where X̃ = XQ and Ỹ = Y Q−� are two matrices after the

alignment.

Both lemmas provide basic understandings of the solution to

the alignment problem with invertible transformations, which

can be regarded as a generalization of the classical orthogonal

Procrustes problem that only considers orthonormal transforma-

tions. Clearly, this generalized problem is more involved and our

work provides some basic understandings.

B. A Warm-Up: Low-Rank Matrix Factorization

We consider the following minimization problem for low-rank

matrix factorization

fMF (X,Y ) =
1

2

∥∥XY � −M�

∥∥2
F
, (13)

where X ∈ R
n1×r and Y ∈ R

n2×r. The gradient descent up-

dates with an initialization (X0,Y 0) can be written as

Xt+1 = Xt −
η

σmax
∇XfMF (Xt,Y t)

= Xt −
η

σmax
(XtY

�
t −M�)Y t;

Y t+1 = Y t −
η

σmax
∇Y fMF (Xt,Y t)

= Y t −
η

σmax
(XtY

�
t −M�)

�Xt.

(14)

Here, η > 0 stands for the step size. We have the following

theorem regarding the performance of (14), which parallels

Theorem 1.

Theorem 2: Let Z0 = [
X0

Y 0
] ∈ R

(n1+n2)×r be any initializa-

tion point that satisfies

min
R∈Or×r

‖Z0R−Z�‖F ≤ c0
1

κ3/2
σ
1/2
min (15)

for some sufficiently small constant c0 > 0. Then setting the step

size η > 0 to be some sufficiently small constant, the iterates of

GD (cf. (14)) satisfy

dist (Zt,Z�) ≤
(
1− η

50κ

)t

dist (Z0,Z�) .

To prove Theorem 2, we need the following properties regard-

ing the gradients of fMF(X,Y ); the proofs are deferred to the

appendix.

Lemma 3 (Gradient dominance): Suppose that Z = [
X

Y
] ∈

R
(n1+n2)×r is aligned with Z�, i.e.

Ir = argmin
P∈Rr×r

invertible

‖XP −X�‖2F +
∥∥Y P−� −X�

∥∥2
F
.

Then we have

〈
X −X�,

(
XY � −M�

)
Y
〉

≥
∥∥Y (X −X�)

�∥∥2
F
− 1

4
‖X −X�‖4F ,

and similarly,

〈
Y − Y �,

(
XY � −M�

)�
X
〉

≥
∥∥X(Y − Y �)

�∥∥2
F
− 1

4
‖Y − Y �‖4F .

Lemma 4 (Smoothness): Suppose that ‖Y − Y �‖ ≤
σ1(Y �)/4, then one has

∥∥(XY � −M�

)
Y
∥∥
F

≤ 3

2
σ1(Y �)

(∥∥(X −X�)Y
�∥∥

F
+
∥∥X(Y − Y �)

�∥∥
F

+ ‖X −X�‖F ‖Y − Y �‖F) .
Similarly, with the proviso that ‖X −X�‖ ≤ σ1(X�)/4, one

has
∥∥∥
(
XY � −M�

)�
X

∥∥∥
F

≤ 3

2
σ1(X�)

(∥∥(X −X�)Y
�∥∥

F
+
∥∥X(Y − Y �)

�∥∥
F

+ ‖X −X�‖F ‖Y − Y �‖F) .

C. Proof of Theorem 2

With the help of Lemmas 1–4, we are in a position to estab-

lish Theorem 2. Denote by R̂ ∈ R
r×r the best rotation matrix

between Z0 and Z�, that is

R̂ � argmin
R∈Or×r

‖Z0R−Z�‖F .

Combine the assumption of initialization (cf. (15)) and Lemma 1

to see that

Q0 � argmin
P∈Rr×r

invertible

‖X0P −X�‖2F +
∥∥Y 0P

−� − Y �

∥∥2
F

exists and in addition, one has

‖Q0 − R̂‖ ≤ 5c0
κ3/2

≤ 1

400
√
κ

as long as c0 > 0 is sufficiently small.

The remaining proof is inductive in nature. In particular, we

aim at proving the following induction hypotheses.

1) The optimal alignment matrix Qt between Zt and Z�

exists.

2) The distance between Zt and Z� obeys

dist (Zt,Z�) ≤
(
1− η

50κ

)t

dist (Z0,Z�) .
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3) The optimal alignment matrix Qt is nearly a rotation

matrix in the sense that

‖Qt − R̂‖ ≤ 1

400
√
κ
.

It is straightforward to check that these three claims hold

for t = 0. In what follows, we shall assume that the induction

hypotheses hold for all iterations up to the tth iteration and intend

to establish that they continue to hold for the (t+ 1)th iteration.

a) Verifying the first induction hypothesis: We begin with

demonstrating the existence of Qt+1. In view of the gradient

update rule (14), we have

Xt+1Qt = XtQt −
η

σmax

(
XtY

�
t −M�

)
Y tQt

= X̃t −
η

σmax

(
X̃tỸ

�
t −M�

)
Ỹ t

(
Q�

t Qt

)
,

Y t+1Q
−�
t = Y tQ

−�
t − η

σmax

(
XtY

�
t −M�

)�
XtQ

−�
t

= Ỹ t −
η

σmax

(
XtY

�
t −M�

)�
X̃t

(
Q�

t Qt

)−1
,

where we denote

X̃t � XtQt and Ỹ t � Y tQ
−�
t .

As a result, one has the following equality

‖Xt+1Qt −X�‖2F +
∥∥Y t+1Q

−�
t − Y �

∥∥2
F

=

∥∥∥∥X̃t −X� −
η

σmax

(
X̃tỸ

�
t −M�

)
Ỹ tΛt

∥∥∥∥
2

F︸ ︷︷ ︸
:=α1

+

∥∥∥∥Ỹ t − Y � −
η

σmax

(
X̃tỸ

�
t −M�

)�
X̃tΛ

−1
t

∥∥∥∥
2

F︸ ︷︷ ︸
:=α2

,

where we have denoted Λt � Q�
t Qt. By virtue of the third

induction hypothesis, namely ‖Qt − R̂‖ ≤ 1/(400
√
κ), it is

easy to check that ‖Λt − Ir‖ ≤ 1/(180
√
κ) � ζ. Let

ẼXt
� X̃t −X� and ẼY t

� Ỹ t − Y �.

Expand α1 to obtain

α1 =
∥∥ẼXt

∥∥2
F
+

(
η

σmax

)2 ∥∥∥
(
X̃tỸ

�
t −M�

)
Ỹ tΛt

∥∥∥
2

F︸ ︷︷ ︸
:=β1

− 2
η

σmax

〈
ẼXt

,
(
X̃tỸ

�
t −M�

)
Ỹ tΛt

〉

︸ ︷︷ ︸
:=γ1

.

Similarly, we can decompose α2 into

α2 =
∥∥ẼY t

∥∥2
F
+

(
η

σmax

)2 ∥∥∥∥
(
X̃tỸ

�
t −M�

)�
X̃tΛ

−1
t

∥∥∥∥
2

F︸ ︷︷ ︸
:=β2

− 2
η

σmax

〈
ẼY t

,
(
X̃tỸ

�
t −M�

)�
X̃tΛ

−1
t

〉

︸ ︷︷ ︸
:=γ2

.

We intend to apply Lemma 3 to lower bound the terms γ1 and

γ2 and apply Lemma 4 to upper bound β1 and β2. First, since

(X̃t, Ỹ t) is aligned with (X�,Y �), we can invoke Lemma 3

to see that

γ1 ≥
〈
ẼXt

,
(
X̃tỸ

�
t −M�

)
Ỹ t

〉

−
∣∣∣
〈
ẼXt

,
(
X̃tỸ

�
t −M�

)
Ỹ t (Λt − Ir)

〉∣∣∣

≥
∥∥Ỹ tẼ

�
Xt

∥∥2
F
− 1

4

∥∥ẼXt

∥∥4
F

− ‖Λt − Ir‖ ·
∥∥∥
(
X̃tỸ

�
t −M�

)
Ỹ t

∥∥∥
F

∥∥ẼXt

∥∥
F

≥
∥∥Ỹ tẼ

�
Xt

∥∥2
F
− 1

400
σmin

∥∥ẼXt

∥∥2
F

− ζ
∥∥∥
(
X̃tỸ

�
t −M�

)
Ỹ t

∥∥∥
F

∥∥ẼXt

∥∥
F
. (16)

Here the last line follows from the bound ‖Λt − Ir‖ ≤ ζ and

the second induction hypothesis, i.e.

∥∥ẼXt

∥∥2
F
≤ dist2 (Zt,Z�) ≤ dist2 (Z0,Z�) ≤

1

100
σmin.

The last term in (16) can be further bounded via Lemma 4 as

ζ
∥∥∥
(
X̃tỸ

�
t −M�

)
Ỹ t

∥∥∥
F

∥∥ẼXt

∥∥
F
≤ 3ζ

2

√
σmax·

(∥∥ẼXt
Ỹ

�
t

∥∥
F
+
∥∥X̃tẼ

�
Y t

∥∥
F

+
∥∥ẼXt

∥∥
F

∥∥ẼY t

∥∥
F

)∥∥ẼXt

∥∥
F

=
9ζ

√
κ

2

∥∥ẼXt
Ỹ

�
t

∥∥
F
·
√
σmin

3

∥∥ẼXt

∥∥
F

+
9ζ

√
κ

2

∥∥X̃tẼ
�
Y t

∥∥
F
·
√
σmin

3

∥∥ẼXt

∥∥
F

+
3ζ

2

√
σmax

∥∥ẼY t

∥∥
F

∥∥ẼXt

∥∥2
F

≤ 81ζ2κ

8

∥∥ẼXt
Ỹ

�
t

∥∥2
F
+

81ζ2κ

8

∥∥X̃tẼ
�
Y t

∥∥2
F

+
σmin

8

∥∥ẼXt

∥∥2
F
,

where the last inequality arises since ab ≤ (a2 + b2)/2 and

3ζ

2

√
σmax

∥∥ẼY t

∥∥
F
≤ 3ζ

2

√
σmax dist (Z0,Z�)

≤ 3ζ

2

√
σmaxc0

1

κ3/2

√
σmin ≤ σmin

72

as long as c0 is sufficiently small. Combine the above two bounds

to reach

γ1 ≥
(
1− 81ζ2κ

8

)∥∥Ỹ tẼ
�
Xt

∥∥2
F

− 81ζ2κ

8

∥∥X̃tẼ
�
Y t

∥∥2
F
− σmin

7

∥∥ẼXt

∥∥2
F
.

Similarly, γ2 can be lower bounded as

γ2 ≥
(
1− 81ζ2κ

8

)∥∥X̃tẼ
�
Y t

∥∥2
F

− 81ζ2κ

8

∥∥Ỹ tẼ
�
Xt

∥∥2
F
− σmin

7

∥∥ẼY t

∥∥2
F
,
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which together with the bound on γ1 implies

γ1 + γ2

≥
(
1− 81ζ2κ

4

)(∥∥Ỹ tẼ
�
Xt

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

− σmin

7
dist2 (Zt,Z�)

≥ 3

4

(∥∥Ỹ tẼ
�
Xt

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)
− σmin

7
dist2 (Zt,Z�) ,

where we plug in the definition of ζ = 1/(180
√
κ).

Now we move on to controlling β1 and β2. Recognizing that

‖Λt‖ ≤ 2, one has

β1 ≤ 4
∥∥∥
(
X̃tỸ

�
t −M�

)
Ỹ t

∥∥∥
2

F

≤ 9σmax

(∥∥ẼXt
Ỹ

�
t

∥∥
F
+
∥∥X̃tẼ

�
Y t

∥∥
F

+
∥∥ẼXt

∥∥
F

∥∥ẼY t

∥∥
F

)2

, (17)

where the second line follows from Lemma 4. Apply the ele-

mentary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) to see that

β1 ≤ 27σmax

(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

+
∥∥ẼXt

∥∥2
F

∥∥ẼY t

∥∥2
F

)

≤ 27σmax

(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

+ 27c20
σmaxσmin

κ3

∥∥ẼXt

∥∥2
F
.

Here the second line relies on the fact that ‖ẼY t
‖2F ≤

dist2(Z0,Z�) ≤ c20σmin/κ
3. Similarly, one can bound β2 as

β2 ≤ 27σmax

(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

+ 27c20
σmaxσmin

κ3

∥∥ẼY t

∥∥2
F
,

which in conjunction with the bound on β1 yields

β1 + β2 ≤ 54σmax

(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

+ 27c20
σmaxσmin

κ3
dist2 (Zt,Z�) .

Collect all the bounds on α1 and α2 to arrive at

‖Xt+1Qt −X�‖2F +
∥∥Y t+1Q

−�
t − Y �

∥∥2
F

≤
(
1 +

27c20η
2

κ4

)
dist2 (Zt,Z�)

+

(
54η2

σmax

)(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

− 2
η

σmax

[
3

4

(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

− σmin

7
dist2 (Zt,Z�)

]

=

(
1 +

27c20η
2

κ4
+

η

3.5κ

)
dist2 (Zt,Z�)

+

(
54η2

σmax
− 3η

2σmax

)
·
(
‖ẼXt

Ỹ
�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

≤
(
1 +

η

3κ

)
dist2 (Zt,Z�)

− 3η

4σmax

(
σ2
r(Ỹ t)

∥∥ẼXt

∥∥2
F
+ σ2

r(X̃t)
∥∥ẼY t

∥∥2
F

)
,

where the last line follows as long as η ≤ 1/24. Furthermore,

since σ2
r(Ỹ t) ≥ σmin/2 and σ2

r(X̃t) ≥ σmin/2, we have

‖Xt+1Qt −X�‖2F +
∥∥Y t+1Q

−�
t − Y �

∥∥2
F

≤
(
1− η

24κ

)
dist2 (Zt,Z�) . (18)

Lemma 1 then ensures the existence of Qt+1.

b) Verifying the second induction hypothesis. The second

induction hypothesis for the (t+ 1)th iteration follows imme-

diately from the above proof. Since Qt+1 exists, by definition,

one has

dist (Zt+1,Z�)

=

√∥∥Xt+1Qt+1 −X�

∥∥2
F
+
∥∥Y t+1Q

−�
t+1 −X�

∥∥2
F

≤
√

‖Xt+1Qt −X�‖2F +
∥∥Y t+1Q

−�
t −X�

∥∥2
F

≤
(
1− η

50κ

)
dist (Zt,Z�) .

c) Verifying the third induction hypothesis. It remains to

show the last induction hypothesis, namely ‖Qt+1 − R̂‖ ≤
1/(400

√
κ). In view of (18), one has max{‖Xt+1Qt −

X�‖F, ‖Y t+1Q
−�
t − Y �‖F} ≤ dist(Zt,Z�). Invoke

Lemma 1 again to arrive at

∥∥Qt+1 −Qt

∥∥ ≤ 5

σr (X�)
dist (Zt,Z�)

≤ 5

σr (X�)

(
1− η

50κ

)t

c0
1

κ3/2
σr (X�)

≤ 5c0

(
1− η

50κ

)t 1

κ3/2
.

Hence, by the triangle inequality and the telescoping sum, we

obtain

∥∥Qt+1 − R̂
∥∥ ≤

t∑

s=0

∥∥Qs+1 −Qs

∥∥+
∥∥Q0 − R̂

∥∥

≤ 5c0

t∑

s=0

(
1− η

50κ

)s 1

κ3/2
+ 5c0

1

κ3/2

< 5c0

∞∑

s=0

(
1− η

50κ

)s 1

κ3/2
+ 5c0

1

κ3/2

= 5c0
50κ

η

1

κ3/2
+ 5c0

1

κ3/2

≤ 1

400
√
κ
,

as long as c0 is small enough and η is some constant.

Putting everything together, we finish the induction step and

the proof is then completed.
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D. Analysis for Matrix Sensing

We now extend the techniques used in the proof of Theorem 2

to the matrix sensing case by leveraging the RIP. Suppose that

the initialization Z0 satisfies the condition (10). By a standard

argument as in [8], [9], [33],2 it is sufficient to consider the

following update rule:

Xt+1 = Xt −
η

σmax

[
A∗A(XtY

�
t −M�)

]
Y t;

Y t+1 = Y t −
η

σmax

[
A∗A(XtY

�
t −M�)

]�
Xt.

(19)

Compared with the update rule (14) for low-rank matrix factor-

ization, the update rule for matrix sensing differs by the operation

of A∗A when forming the gradient. Therefore, we expect that

GD has similar behaviors as earlier as long as the operator A∗A
behaves as a near isometry on low-rank matrices. This can be

supplied by the following consequence of the RIP.

Lemma 5: Suppose that A satisfies 2r-RIP with a constant

δ2r. Then, for all matrices M1 and M2 of rank at most r, we

have

|〈A(M1),A(M2)〉 − 〈M1,M2〉| ≤ δ2r ‖M1‖F ‖M2‖F .

Equivalently, we can write this as∣∣Tr
[
(A∗A− I) (M1)M

�
2

]∣∣ ≤ δ2r ‖M1‖F ‖M2‖F .

A simple consequence is that for any A ∈ R
n2×r

‖(A∗A− I) (M1)A‖F ≤ δ2r ‖M1‖F ‖A‖ .
Similar to before, we denote X̃t = XtQt and Ỹ t =

Y tQ
−�
t , which are aligned with (X�,Y �). With this notation

in place, we can rewrite the update rule as

Xt+1Qt = X̃t −
η

σmax

[
A∗A(XtY

�
t −M�)

]
Ỹ tΛt,

Y t+1Q
−�
t = Ỹ t −

η

σmax

[
A∗A(XtY

�
t −M�)

]�
X̃tΛ

−1
t .

where we recall Λt = Q�
t Qt. By the definition of the distance

function, we further obtain

dist2(Zt+1,Z�)

≤ ‖Xt+1Qt −X�‖2F +
∥∥Y t+1Q

−�
t − Y �

∥∥2
F

=

∥∥∥∥X̃t −
η

σmax

[
A∗A(XtY

�
t −M�)

]
Ỹ tΛt −X�

∥∥∥∥
2

F

+

∥∥∥∥Ỹ t −
η

σmax

[
A∗A(XtY

�
t −M�)

]�
X̃tΛ

−1
t − Y �

∥∥∥∥
2

F

=
∥∥ẼXt

∥∥2
F
+
∥∥ẼY t

∥∥2
F

+

(
η

σmax

)2

⎛
⎜⎜⎜⎝
∥∥∥
[
A∗A(XtY

�
t −M�)

]
Ỹ tΛt

∥∥∥
2

F︸ ︷︷ ︸
:=β̃1

2Since (i) the initialization Z0 is close to the ground truth Z�, (ii) X0 and
Y 0 are balanced, it is obvious that the operator norm ‖X0‖2 = ‖Y 0‖2 is
orderwise equivalent to σmax. Therefore, all the convergence claims on using
σmax can be translated to those on using ‖X0‖2 and ‖Y 0‖2 by adjusting η up
to some absolute constant.

+
∥∥∥
[
A∗A(XtY

�
t −M�)

]�
X̃tΛ

−1
t

∥∥∥
2

F︸ ︷︷ ︸
:=β̃2

⎞
⎟⎟⎟⎠

− 2η

σmax

⎛
⎜⎜⎝
〈
ẼXt

,
[
A∗A(XtY

�
t −M�)

]
Ỹ tΛt

〉

︸ ︷︷ ︸
:=γ̃1

+
〈
ẼY t

,
[
A∗A(XtY

�
t −M�)

]�
X̃tΛ

−1
t

〉

︸ ︷︷ ︸
:=γ̃2

⎞
⎟⎟⎠ , (20)

where ẼXt
� X̃t −X� and ẼY t

� Ỹ t − Y �. From the high

level, the four terms β̃1, β̃2, γ̃1 and γ̃2 are the perturbed versions

of β1, β2, γ1 and γ2 in Section IV-C, respectively.

For the first term, we have
√
β̃1 −

√
β1

(i)

≤
∥∥∥
[
A∗A

(
XtY

�
t −M�

)]
Ỹ tΛt

−
(
XtY

�
t −M�

)
Ỹ tΛt

∥∥∥
F

=
∥∥∥
[
(A∗A− I)

(
XtY

�
t −M�

)]
Ỹ tΛt

∥∥∥
F

(ii)

≤
∥∥∥
[
(A∗A− I) ẼXt

Ỹ
�
t

]
Ỹ tΛt

∥∥∥
F

+
∥∥∥
[
(A∗A− I) X̃tẼ

�
Y t

]
Ỹ tΛt

∥∥∥
F

+
∥∥∥
[
(A∗A− I) ẼXt

Ẽ
�
Y t

]
Ỹ tΛt

∥∥∥
F

(iii)

≤ δ2r

(∥∥ẼXt
Ỹ

�
t

∥∥
F
+
∥∥X̃tẼ

�
Y t

∥∥
F
+
∥∥ẼXt

Ẽ
�
Y t

∥∥
F

)∥∥Ỹ tΛt

∥∥

(iv)

≤ 4δ2r
√
σmax

(∥∥ẼXt
Ỹ

�
t

∥∥
F
+
∥∥X̃tẼ

�
Y t

∥∥
F
+
∥∥ẼXt

Ẽ
�
Y t

∥∥
F

)
.

(21)

Here, the first (i) and second (ii) inequalities follow from the

triangle inequality. The third one (iii) uses Lemma 5 and the

last relation (iv) depends on ‖Λt‖ ≤ 2 and ‖Ỹ t‖ ≤ 2
√
σmax.

Comparing (21) with (17) reveals that β̃1 − β1 constitutes a

small perturbation to β1 when δ2r is small. Similar bounds hold

for

√
β̃2 −

√
β2. As a result, when δ2r is sufficiently small, we

have

β̃1 + β̃2 ≤ 108σmax

(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

+ 54c20
σmaxσmin

κ3
dist2 (Zt,Z�) .

We now proceed to γ̃1, for which we have

|γ̃1 − γ1|

=
∣∣∣
〈
ẼXt

,
[
A∗A

(
XtY

�
t −M�

)]
Ỹ tΛt

〉
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−
〈
ẼXt

,
(
XtY

�
t −M�

)
Ỹ tΛt

〉 ∣∣∣

=
∣∣∣
〈
ẼXt

,
[
(A∗A− I)

(
XtY

�
t −M�

)]
Ỹ tΛt

〉∣∣∣

=
∣∣∣Tr

([
(A∗A− I)

(
XtY

�
t −M�

)]
Ỹ tΛtẼ

�
Xt

)∣∣∣

≤
∣∣∣Tr

([
(A∗A− I)

(
ẼXt

Ỹ
�
t

)]
Ỹ tΛtẼ

�
Xt

)∣∣∣

+
∣∣∣Tr

([
(A∗A− I)

(
X̃tẼ

�
Y t

)]
Ỹ tΛtẼ

�
Xt

)∣∣∣

+
∣∣∣Tr

([
(A∗A− I)

(
ẼXt

Ẽ
�
Y t

)]
Ỹ tΛtẼ

�
Xt

)∣∣∣

≤ δ2r

(∥∥ẼXt
Ỹ

�
t

∥∥
F
+
∥∥X̃tẼ

�
Y t

∥∥
F
+
∥∥ẼXt

Ẽ
�
Y t

∥∥
F

)
·

∥∥Ỹ tΛtẼ
�
Xt

∥∥
F
.

Here once again, we utilize the triangle inequality and Lemma 5.

Noticing that ‖Λt − I‖ is small, we further have
∥∥Ỹ tΛtẼ

�
Xt

∥∥
F
≤

∥∥Ỹ tẼ
�
Xt

∥∥
F
+
∥∥Ỹ t (Λt − Ir) Ẽ

�
Xt

∥∥
F

≤
∥∥ẼXt

Ỹ
�
t

∥∥
F
+ 2σ1/2

maxζ
∥∥ẼXt

∥∥
F
,

where we use ‖Λt − Ir‖ ≤ ζ and ‖Ỹ t‖ ≤ 2
√
σmax. Combine

the previous two bounds and apply the basic inequality 2ab ≤
a2 + b2 to see

|γ̃1 − γ1|

≤ δ2r
∥∥ẼXt

Ỹ
�
t

∥∥2
F
+ 2σ1/2

maxζδ2r
∥∥ẼXt

Ỹ
�
t

∥∥
F

∥∥ẼXt

∥∥
F

+ δ2r
∥∥X̃tẼ

�
Y t

∥∥
F

∥∥ẼXt
Ỹ

�
t

∥∥
F

+ 2σ1/2
maxζδ2r

∥∥X̃tẼ
�
Y t

∥∥
F

∥∥ẼXt

∥∥
F

+ δ2r
∥∥ẼXt

Ẽ
�
Y t

∥∥
F

∥∥ẼXt
Ỹ

�
t

∥∥
F

+ 2σ1/2
maxζδ2r

∥∥ẼXt
Ẽ

�
Y t

∥∥
F

∥∥ẼXt

∥∥
F

� δ2r

(∥∥ẼXt
Ỹ

�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F
+ σmindist (Zt,Z�)

)
,

�
∥∥ẼXt

Ỹ
�
t

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F
+ σmindist (Zt,Z�)

as long as δ2r is sufficiently small. The same bound applies to

|γ̃2 − γ2|. As a result, as long as δ2r is small enough, γ̃1 + γ̃2 is

lower bounded on the same order as γ1 + γ2, say

γ̃1 + γ̃2 ≥ 1

2

(∥∥Ỹ tẼ
�
Xt

∥∥2
F
+
∥∥X̃tẼ

�
Y t

∥∥2
F

)

− σmin

6
dist2 (Zt,Z�) .

One can then repeat the same arguments for the matrix factor-

ization case to obtain the linear convergence. For the sake of

space, we omit it.

V. CONCLUSION

This paper establishes the local linear convergence of gradient

descent for asymmetric low-rank matrix sensing without explicit

regularization of factor balancedness under the standard RIP

assumption, as long as a balanced initialization is provided

in the basin of attraction. Coupled with the standard spectral

initialization, this leads to the global convergence guarantee of

the balancing-free gradient descent algorithm for asymmetric

low-rank matrix sensing. Different from previous work, we

analyzed a new error metric that takes into account the ambiguity

due to invertible transforms, and showed that it contracts linearly

even without local restricted strong convexity. We believe that

our technique can be used for other low-rank matrix estimation

problems. To conclude, we outline a few future research direc-

tions.
� Low-rank matrix completion: We believe it is possible to

extend our analysis to study rectangular matrix completion

without regularization, by combining the leave-one-out

technique in [27], [35] to carefully bound the incoherence

of the iterates for both factors even without explicit bal-

ancing.
� Improving dependence on κ and r: The current paper does

not try to optimize the dependence with respect to κ and r
in terms of sample complexity and the size of the basin of

attraction, which are slightly worse than their regularized

counterparts. A finer analysis will likely lead to better

dependencies, which we leave to the future work.

APPENDIX A

A. Proof of Lemma 1

For notational convenience, we define the following function

g (Q) � ‖XQ−X�‖2F +
∥∥Y Q−� − Y �

∥∥2
F
. (22)

Clearly, the optimal alignment matrix, if exists, must be

argmin g(P ). With this notation in place, we consider the

following constrained minimization problem:

min
Q∈Rr×r :Q is invertible

g (Q)

subject to ‖Q− P ‖F ≤ 5δ

σmin (X�)
.

In view of Weyl’s inequality, we obtain that for any feasible Q,

σmin (Q) ≥ σmin (P )− 5δ

σmin (X�)
≥ 1

2
− 1

4
=

1

4

as long as δ ≤ σmin(X�)/80. As a result, one sees that g(Q) is

a continuous function over {Q : ‖Q− P ‖ ≤ 5δ/σmin(X�)},

which is a compact set over invertible matrices. Applying the

Weierstrass extreme value theorem yields the claim that the

minimizer of the constrained problem exists. Denote this min-

imizer by Q1. In what follows, we intend to show that Q1 is

also the minimizer of the unconstrained problem. Letting Q be

an arbitrary matrix with g(Q) ≤ 2δ2 (the existence is assured

since g(Q1) ≤ g(P ) ≤ 2δ2), we have√
2δ ≥ ‖XQ−X�‖F ≥ ‖XQ−XP ‖F − ‖XP −X�‖F,

which in conjunction with (12) implies

(1 +
√
2)δ ≥ ‖X(Q− P )‖F ≥ σmin (X) ‖Q1 − P ‖F .

(23)

We now turn to investigatingσmin(X). Weyl’s inequality tells

us that

|σmin (XP )− σmin (X�)| ≤ ‖XP −X�‖F

≤ δ ≤ 1

4
σmin (X�) ,
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which further implies

3

4
σmin (X�) ≤ σmin (XP )

≤ σmin (X)σmax (P ) ≤ 3

2
σmin (X) .

Therefore we arrive at σmin(X) ≥ σmin(X�)/2. Putting this

back to (23) yields which finally gives

‖Q− P ‖F ≤ 2(1 +
√
2)

δ

σmin(X�)
<

5δ

σmin(X�)
.

In all, the above arguments reveal that any matrix Q such that

g(Q) ≤ 2δ2 must obey the above bound. Therefore the mini-

mizer of the constrained problem and that of the unconstrained

one coincide with each other. This finished the proof.

B. Proof of Lemma 2

Recall the function g(P ) defined in (22) as

g (P ) = ‖XP −X�‖2F +
∥∥Y P−� − Y �

∥∥2
F

= Tr
(
XPP�X�)− 2Tr

(
P�X�X�

)

+Tr
(
X�

�X�

)
+Tr

(
P−1Y �Y P−�)

− 2Tr
(
P−1Y �Y �

)
+Tr

(
Y �

�Y �

)
.

The gradient is given by

∇g (P ) = 2X�XP − 2X�X�

− 2
(
PP�)−1

Y �Y
(
PP�)−1

P + 2P−�Y �
�Y P−�.

Since Q minimizes g(P ), it must satisfy the first-order optimal-

ity condition, i.e.

∇g (Q) = 0.

Identify X̃ = XQ and Ỹ = Y Q−� to yield the condition

X̃
�
X̃ − X̃

�
X� = Ỹ

�
Ỹ − Y �

� Ỹ .

C. Proof of Lemma 3

We prove the first part and the second part follows by sym-

metry. Denote Ex = X −X� and Ey = Y − Y �. We have

XY � −M� = ExY
� +X�E

�
y .

Since Z is aligned with Z�, Lemma 2 tells us that

X�Ex = E�
yY .

As a result, one has〈
X −X�,

(
XY � −M�

)
Y
〉

= Tr
(
E�

x

(
ExY

� +X�E
�
y

)
Y
)

= Tr
(
E�

xExY
�Y

)
+Tr

(
E�

xX�E
�
yY

)

=
∥∥Y E�

x

∥∥2
F
+Tr

(
E�

yY E�
xX

)
− Tr

(
E�

yY E�
xEx

)

=
∥∥Y E�

x

∥∥2
F
+ ‖X�Ex‖2F − Tr

(
X�ExE

�
xEx

)
. (24)

Complete the squares to see that

‖X�Ex‖2F − Tr
(
X�ExE

�
xEx

)

=
∥∥E�

xX − 1

2
E�

xEx

∥∥2
F
− 1

4
‖Ex‖4F .

Combine the previous two bounds to yield the desired result.

D. Proof of Lemma 4

Again, we demonstrate the claim on X and the claim on Y

follows by symmetry. Given the decomposition

XY � −M� = (X −X�)Y
� +X(Y − Y �)

�

+ (X� −X)(Y − Y �)
�,

we obtain∥∥(XY � −M�

)
Y
∥∥
F
≤ σ1(Y )

∥∥XY � −M�

∥∥
F

≤ 3

2
σ1(Y �)

(∥∥(X −X�)Y
�∥∥

F

+
∥∥X(Y − Y �)

�∥∥
F
+
∥∥(X� −X)(Y − Y �)

�∥∥
F

)
,

where the last line combines the triangle inequality and Weyl’s

inequality

σ1 (Y ) ≤ σ1(Y �) + ‖Y − Y �‖ ≤ 3

2
σ1 (Y �) .

The proof is then finished.
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