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Beyond Procrustes: Balancing-Free Gradient Descent
for Asymmetric Low-Rank Matrix Sensing

Cong Ma

Abstract—Low-rank matrix estimation plays a central role in
various applications across science and engineering. Recently, non-
convex formulations based on matrix factorization are provably
solved by simple gradient descent algorithms with strong compu-
tational and statistical guarantees. However, when the low-rank
matrices are asymmetric, existing approaches rely on adding a reg-
ularization term to balance the scale of the two matrix factors which
in practice can be removed safely without hurting the performance
when initialized via the spectral method. In this paper, we provide
a theoretical justification to this for the matrix sensing problem,
which aims to recover a low-rank matrix from a small number
of linear measurements. As long as the measurement ensemble
satisfies the restricted isometry property, gradient descent—in con-
junction with spectral initialization—converges linearly without
the need of explicitly promoting balancedness of the factors; in fact,
the factors stay balanced automatically throughout the execution
of the algorithm. Our analysis is based on analyzing the evolution
of a new distance metric that directly accounts for the ambiguity
due to invertible transforms, and might be of independent interest.

Index Terms—Asymmetric low-rank matrix sensing, nonconvex
optimization, gradient descent.

I. INTRODUCTION

OW-RANK matrix estimation plays a central role in many
L applications [2]-[4]. Broadly speaking, we are interested in
estimating a rank-r matrix M, = X,Y | € R™*"2 by solving
a rank-constrained optimization problem:

min  L£(M) subjectto rank(M) <r, (1)
MERm17*"2

where L£(-) denotes a certain loss function with the rank r
typically much smaller than the dimension of the matrix. To
reduce computational complexity, a common approach, pop-
ularized by the work of Burer and Monteiro [5]-[7], is to
factorize M = XY ' with X € R"*" and Y € R"2*", and
rewrite the above problem (1) into an unconstrained nonconvex
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optimization problem:
i X, Y)£L(XY"). 2
xern 8 e (XY) S LXY ) @
Despite nonconvexity, one might be tempted to estimate the low-
rank factors (X,Y’) via gradient descent, which proceeds via
the following update rule

Xiv1| | X Vxf(X:,Y4)
- — I
Yin

Y, Vy [(X1,Y)

from (X, Y o) some proper initialization. Here, 7, is the step
size, Vx f and Vy f are the gradients of f w.rt. X and Y,
respectively.

Significant progress has been made recently in understanding
the performance of gradient descent for nonconvex matrix esti-
mation. Somewhat surprisingly, most of the existing guarantees
are not directly applicable to the vanilla gradient descent rule (3).
One particular challenge is associated with the identifiability of
the factors (X, Y )—they are indistinguishable as long as their
product X Y T is the same. What is worse, if the norms of the fac-
tors become highly unbalanced, gradient descent might diverge
easily. Consequently, it becomes a routine procedure to insert a
regularizer g(X,Y") that balances the two factors [8]-[10]:

9(X,Y) £ANXTX -Y'Y |, @
where A > 0 is some regularization parameter, and apply gradi-
ent descent to the regularized loss function instead:
freg(X,Y) £ f(X,Y) +9(X,Y). (5

3

min
XeRm1*m Y eRm2%"
For a variety of important problems such as low-rank matrix
sensing and matrix completion, it has been established that gra-
dient descent over the regularized loss function, when properly
initialized, achieves compelling statistical and computational
guarantees.

A. Why Balancing is Needed in Prior Work?

Before we investigate the possibility of a balancing-free pro-
cedure (i.e. vanilla gradient descent as in (3)), let us first explain
using a heuristic argument why balancing is needed in the prior
literature.

To handle the asymmetric factorization, it is common to

stack the two factors into one augmented factor Z, = [if:] €

R(m1+72)x7 and then seek to estimate Z + directly, by rewrit-
ing the loss function with respect to the lifted low-rank ma-

. X, X x, vl . .
trix: Z*ZI = [Y*X¥ Y*Y;] c R(n1+n2)><(n1+n2)_ It is obvi-

ous that the loss function originally with respect to the asym-
metric matrix X, Y| only constrains the off-diagonal blocks
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(a) unregularized loss f (b) regularized 10ss freg

Fig. 1. Geometry for the scalar case f(x,y) = (zy — 1)2 and g(z,y) =
(2 — y?)? /8. The regularized loss function is locally strongly convex while the
unregularized one is nonconvex; in particular, the Hessian of the unregularized
loss function is rank deficient on the ambiguity set zy = 1 (colored in red).

of Z,Z I and not the diagonal ones; correspondingly, the loss
function is not (restricted) strongly convex with respect to the
augmented factor, unless we appropriately regularize the diag-
onal blocks. This gives rise to the adoption of the regularization
term in (4).

To develop more intuitions regarding why this regularization
term (4) may help analysis, consider a toy example of fac-
torizing a rank-one matrix x,y,, where f(z,y) and g(x,y)
respectively are f(z,y) = ||lzy" — z,y]|%/2 and g(z,y) =
(llz]|3 — |lyl|3)?/8. Figure 1 illustrates the landscape of the
unregularized loss function f(x,y) and the regularized loss
function freg(, v), respectively, when the arguments are scalar-
valued, i.e.n; = ny = 1. One can clearly appreciate the value of
the regularizer: fioq(2,y) becomes strongly convex in the local
neighborhood around the global optimum (1,1). In contrast, the
Hessian of the unregularized loss function f,eq(x,y) remains
rank deficient along the ambiguity set {(x, y) | zy = 1}, making
the analysis less tractable.

B. This Paper: Balancing-Free Procedure?

The goal of this paper is to understand the effectiveness
of vanilla gradient descent (3) when initialized with balanced
factors. Indeed, Figure 2 plots the normalized error || X thT —
M., ||z /|| M| for low-rank matrix completion, which aims to
recover a low-rank matrix from a subset of its observations [11],
with respect to the iteration count, using either a regularized
loss function or an unregularized loss function when initialized
by the spectral method. The two sequences of iterates converge
in almost exactly the same trajectory, suggesting that gradient
descent over the unregularized loss function converges almost
in the same manner as its regularized counterpart, and perhaps
is more natural to use in practice since it eliminates the tuning
of the regularization parameters.

This paper justifies formally that even without explicit bal-
ancing in asymmetric low-rank matrix sensing, gradient descent
converges linearly towards the global optimum, as long as the
initialization is (nearly) balanced and close to the optimum. As
will be detailed later, our analysis is simple and built on a novel
distance metric that directly accounts for the ambiguity due to in-
vertible transformations—in contrast, the ambiguity set reduces
to orthonormal transforms when the balancing regularization is
present. Our key message is this:
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Fig. 2. Normalized reconstruction error | X ;Y| — M, |p/|M,|r with
respect to the iteration count, for completing a 1000 x 1000 matrix of rank-
10 when each entry is observed independently with probability p = 0.15. The
balancing regularizer is set as g(X,Y) = & [XTX — YTYH% following
the suggestion in [12].

As long as the factors are (nearly) balanced in a basin of
attraction at the initialization, they will stay approximately
balancedthroughout the trajectory of gradient descent, and
therefore no additional regularization is necessary.

C. Notation

We use boldface lowercase (resp. uppercase) letters to rep-
resent vectors (resp. matrices). We denote by ||z|2 the ¢
norm of a vector @, and X', X ', || X|| and || X|r the
transpose, the inverse, the spectral norm and the Frobenius
norm of a matrix X, respectively. Furthermore, we denote
X "=(X"1T"=(X")"" for an invertible matrix X. The
Kth largest singular value of a matrix X is denoted by o (X).
The inner product between two matrices X and Y is defined as
(X,Y) = Tr(Y " X), where Tr(-) denotes the trace operator.
Denote by O™" the set of r x r orthonormal matrices. In
addition, we use ¢ and C with different subscripts to represent
positive numerical constants, whose values may change from
line to line.

II. MAIN RESULTS

Let the object of interest M, € R™**™2 be a rank-r matrix
whose compact Singular Value Decomposition (SVD) is given
by

M,=U/3X,V],

where U, € R™*", V, € R"*" and X, € R™*" correspond
to the left singular vectors, the right singular vectors and the
singular values, respectively. Without loss of generality, we
denote the ground truth factors as

X, 2U.5, Y.2Vv.m/2 0
Let 0max = 01(M,) (1eSp. Omin = o.(M,)) be the largest
(resp. smallest) nonzero singular value of M ,. The condition
number of M, is therefore defined as k = Omax,/Omin-

Since the factors are identifiable up to invertible transforms,
ie. (X,P)(Y,P ")' =X,Y ] for any invertible matrix
P ¢ R"™ ", it is natural to measure the distance between two

and
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Algorithm 1: Gradient Descent With Spectral Initialization
(Unregularized Procrustes Flow).

Input: Measurements y = {y; }1<i<m, and sensing
matrices {A; }1<i<m.

Parameters: Step size 1, rank r, and number of
iterations 7.

Initialization: Initialize X, = UX'/? and

Y, = VX2 where ULV is the rank-r SVD of the
surrogate matrix K = L A*(y) = 237" 1, A
Gradient loop: Fort =0,1,...,7 — 1, do
Xip1=Xi— L 7" Z (A, X1 Y) —ys) Ath] ;
HYOH li=1
(%a)
Yia=Yio—2 S (AL X YT) — i) A] Xt] .
1Xol™ [i=
(9b)
Output: X7 and Y 7.
X X
: _ (n14+mng2)xr _ *
pairs of factors Z [Y]ER 1412)X7 and Z, [Y | €

*

R("1+72)<7 via the following function:'

dist (Z,Z,) = min
PecR™"
invertible

A. Low-Rank Matrix Sensing

Low-rank matrix sensing refers to the problem of recovering
a low-rank matrix (i.e. M ,) from a small number of linear mea-
surements. Specifically, we are given a set of /m measurements
as follows

yi= (A, M,)=(A;, X Y], i=1,....m, (7

where A; € R™*"2 is the ith sensing matrix. For convenience,
we define A : R™1*"2 — R™ as an affine transformation from
R™*"2 to R™, such that A(M) = {(A;, M)}1<i<m. Con-
sequently, one can compactly write (7) as y = A(M,). The
adjoint operator A* : R"™ — R™1*"2 js defined as A*(y) =
>oiny Vi

To recover the low-rank matrix, a natural choice is to minimize
the least-squares loss function

f(X,Y) *ny AXY )2 ®)

Algorithm 1 describes the gradient descent algorithm initialized
by the spectral method [13] for minimizing (8). Compared to
the Procrustes Flow (PF) algorithm in [8], which minimizes
the regularized loss function in (5), the new algorithm does not
include the balancing regularizer g(X,Y").

"More rigorously, we should write inf instead of min in the definition of
dist (-, -). However, as we will soon see, in the cases we care about, the minimum
can always be achieved by some invertible matrix P.

\/||XP - X, p+|YP T - Y*Hi.

B. Theoretical Guarantee for Local Linear Convergence

To understand the performance of Algorithm 1, we adopt
a standard assumption on the sensing operator A, namely the
Restricted Isometry Property (RIP).

Definition 1 (RIP): The operator A(-) is said to satisfy the
rank-r RIP with a constant ¢, € [0, 1), if

(1—=06,) Mz < Al < (1+6,) | M]|
holds for all matrices M &€ R"™ *"? of rank at most r.

It is well-known that many measurement ensembles satisfy
the RIP property [14]. For example, under the Gaussian design
where the entries of A;’s are composed of i.i.d. Gaussian entries
N(0,1/m), the RIP is satisfied as long as m is on the order of
(n1 + ng)r/52.

Armed with the RIP, we have the following theoretical guar-
antee for the local convergence of Algorithm 1.

Theorem 1: Suppose that A(-) satisfies the RIP with da, < ¢

for some sufficiently small constant c. Let Z = [XO

Y, ] be any
initialization point that satisfies
. 1T 9
phin [ZoR — Z,|p < €0~-373 Tmin’ (10)

for some small enough constant ¢y > 0. Then there exist some
constant ¢; > 0 such that at as long as n; = 1 = ¢y, the iterates
of unregularized gradient descent (cf. (9)) satisfy

. 7\t .
dist (Z, Z,) < (1 - @) dist (Zo, Z.,) -

In words, Theorem 1 reveals that if the initialization Z
lands in a basin of attraction given by (10), then Algorithm 1
converges linearly with a constant step size. To reach e-accuracy,
ie. dist(Zy, Z,) < ¢, it takes an order of x log(1/¢) iterations,
which is order-wise equivalent to the regularized PF algorithm
proposed in [8]. Comparing to [8], which requires dg, < ¢, The-
orem 1 only requires a weaker assumption d,, < c. However,
the basin of attraction allowed by Theorem 1 is smaller than
that in [8], which is specified by mingepr«r || ZoR — Z4|r <
coorlmn Compared with prior work that relies on local strong
convexity to establish linear convergence, our result suggests
the benign behavior of gradient descent even in the absence of
local strong convexity.

C. Achieving Global Convergence With a Proper Initialization

We are still in need of finding a good initialization that obeys
(10). In general, one could initialize with the balanced factors
of the output of projected gradient descent (over the low-rank
matrix), i.e.

1 m
M, =P | M; - — AivM'r — Y Az ’

I G YRRy
where P,.(-) is the Euclidean projection operator to the set
of rank-r matrices. The spectral initialization specified in
Algorithm 1 can be regarded as the output at the first iteration,
initialized at zero M = 0. Based on [8], [15], the balanced
factorization of M ., denoted by Z ,, satisfy
M, |

7 (11

min

min
REOTX’V‘

Z.R- Z,||p < c2(204)" ”
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for some constant c,. Thus, to achieve the required initialization
condition (10) using the spectral method specified in Algo-
rithm 1 (which corresponds to setting Zg = Z; with 7 =1 in
(11)), we need
L _owm

K32 || Mg
In particular, under Gaussian design, where each measure-
ment matrix A; has i.i.d. N(0,1/m) entries, a total of m 2>
nri3||M,||% /o2, measurements suffice for the above require-
ment on d4,.. This is worse by a factor of x® compared with the
sample complexity guarantee in [8] with the balancing regular-
izer, which is due to the restriction on the basin of attraction, as
we have remarked earlier. Improving the dependence on « is an
interesting future direction.

In order to alleviate the dependency on the condition number
K, we can allow a few iterations of (11) and set the initialization
as Zy = Z,, a procedure suggested by [8]. The advantage of
this hybrid procedure is that the switch to factored gradient
descent allows a smaller per-iteration memory and computa-
tion complexity after the iterates of projected gradient descent
enter the basin of attraction. Consequently, the algorithm is still
guaranteed to succeed when 44, < §. for a sufficiently small
constant . (which implies a near-optimal sample complexity of
m 2 nr under Gaussian design), by running at least

7> ¢ log (/@3/2 ”M*”F>/log (6;1)

Omin

547’ S

iterations of projected gradient descent for initialization, which
order-wise matches the requirement in [8].

III. RELATED WORK

Low-rank matrix estimation has been extensively studied in
recent years [3], [4], due toits broad applicability in collaborative
filtering, imaging science, and machine learning, to name a few.
Convex relaxation approaches based on nuclear norm minimiza-
tion are among the first set of algorithms with near-optimal
statistical guarantees, e. g. [2], [14], [16]-[22], however, their
computational costs are often prohibitive in practice.

To cope with the computational challenges, a popular ap-
proach in practice is to invoke low-rank matrix factorization and
then apply first-order methods such as gradient descent directly
over the factors to recover the underlying low-rank structure.
This approach is demonstrated to possess near-optimal statistical
and computational guarantees in a variety of low-rank matrix
recovery problems, including but not limited to [8], [23]-[31].
The readers are referred to the recent overview [32] for additional
references.

To the best of our knowledge, the balancing regularization
term (4) was first introduced in [8] to deal with asymmetric
matrix factorization, and has become a standard approach to
deal with asymmetric low-rank matrix estimation [9], [10], [12],
[33]-[35]. A major benefit of adding the regularization term is
to reduce the ambiguity set from invertible transforms to or-
thonormal transforms. For the special rank-one matrix recovery
problem, there are some evidence in the prior literature that a
balancing regularization is not needed, for example, Ma et al.
[27] established that vanilla gradient descent works for blind
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deconvolution at a near-optimal sample complexity with spectral
initialization. In [36], the trajectory of gradient descent is studied
for asymmetric matrix factorization with an infinitesimal and
diminishing step size; in contrast, we consider the case when
the step size is constant for low-rank matrix estimation with
incomplete observations. Finally, very recently, [37] also studied
low-rank matrix sensing using a nonsmooth formulation without
the balancing regularization via subgradient descent.

Complementary to the algorithmic analysis, we remark that
a similar regularization term (4) is also adopted when analyz-
ing the optimization landscape of low-rank matrix estimation,
e.g. [38]-[42]. It is worth mentioning that when converting a
nuclear-norm regularized problem into a nonconvex formula-
tion, [43] demonstrated that the nonconvex problem has benign
geometry without adding the balancing regularization, since the
nuclear norm regularization induces a term % (|| X||Z + [|Y[|3)
which ensures both factors have similar sizes. Very recently, [44]
showed that the balancing regularizer is unnecessary from the
landscape analysis perspective.

After the initial version of the current paper, several other
works have further examined the balancing-free low-rank matrix
optimization problem. In particular, Tian, Ma and Chi developed
a scaled gradient descent algorithm [45] that achieves a faster
convergence rate independent of the condition number x without
imposing the balancing regularization for a variety of low-rank
matrix estimation problems, which are further extended in [46]
to achieve robustness to adversarial outliers.

IV. PROOF OF THEOREM 1

In this section, we provide the proof of Theorem 1. We first
discuss some basic properties of aligning two low-rank factors
via an invertible transformation. Then we prove a similar result
for a warm-up case of low-rank matrix factorization. In the end,
viewing matrix sensing as a perturbed version of low-rank matrix
factorization helps us finish the proof of Theorem 1.

A. Alignment Via Invertible Transformations

We begin with introducing the alignment matrix will play a
key role in the subsequent analysis.

Definition 2: Fix a matrix Z = [X] € R(m+m2)xr We de-

Y
fine the optimal alignment matrix @ between Z and Z, as

. _ 2
Q £ argmin | XP — X, |3+ |[YP " —Y.|;.
POR™RT
invertible

whenever the minimum is attained.

As we will soon see, for the iterates { Z; }+>( generated by Al-
gorithm 1, the optimal alignment matrix is always well-defined.
Furthermore, we call Z and Z, aligned if the corresponding
optimal alignment matrix is just the identity matrix I,.. Below
we provide some basic understandings of this alignment matrix.

The following lemma provides a sufficient condition for the

existence of the optimal alignment matrix.
Lemma I: Fix some matrix Z = [‘;{] € R(m+n2)xr gyp.

pose that there exists a matrix P € R™" with 1/2 < ¢,.(P) <
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01(P) < 3/2 such that

I X*

max {|XP — X, |||y P —v.|,} <5< )
(12)

Then the optimal alignment matrix Q € R™*" between Z and

Z . exists. In addition, the matrix @ satisfies

50
1P —-Ql <[P QMSUNXJ
Next, the lemma below presents a necessary condition for @
to be the optimal alignment matrix between Z and Z,.
Lemma 2: Let Z and Z, be any two matrices. Suppose that
the optimal alignment matrix @ between Z and Z , exists. Then
we have

X (X-X,)=(Y-Y,)7Y,
where X = XQ and Y = YQ '
alignment.

Both lemmas provide basic understandings of the solution to
the alignment problem with invertible transformations, which
can be regarded as a generalization of the classical orthogonal
Procrustes problem that only considers orthonormal transforma-
tions. Clearly, this generalized problem is more involved and our
work provides some basic understandings.

are two matrices after the

B. A Warm-Up: Low-Rank Matrix Factorization

We consider the following minimization problem for low-rank
matrix factorization

fur (X,Y) = f||XYT M.}, (13)

where X € R™*" and Y € R"™2*". The gradient descent up-
dates with an initialization (X, Y () can be written as

Xt+1:Xt_ vaMF(XhYt)
max
=X, — (XY — M,)Y;
Umax
(14)
Y. n=Y,- . Vy fur (X, Y1)
=Y, - (X, Y] -M,)"X,.
Umax

Here, n > 0 stands for the step size. We have the following
theorem regarding the performance of (14), which parallels
Theorem 1.

Theorem 2: Let Zy = ] € R("+72)X7 be any initializa-

v,
tion point that satisfies

ol/2 (15)

1min min

ReO™r
for some sufficiently small constant ¢y > 0. Then setting the step
size 7 > 0 to be some sufficiently small constant, the iterates of

GD (cf. (14)) satisfy

1
ZyR — Z*Hp < Com

. 7\t .
dist (Z1,Z,) < (1 - W) dist (Zo, Z.,) .
K

To prove Theorem 2, we need the following properties regard-
ing the gradients of fyvp(X,Y); the proofs are deferred to the
appendix.

Lemma 3 (Gradient dominance): Suppose that Z = [‘;,(] €
R(m1+72)x7 ig aligned with Z,, i.e.
I, = argmin | XP — X*||% + ||YP’T - X*Hi .

PeR™*"
invertible

Then we have

(X -X.,(XY'-M,)Y)

1
> Y (X =X~ 71X - Xl

and similarly,
(Y -v.,(xy -Mm) X)

2 1
> XY =Y |- 7 1Y - Y.l

I

Lemma 4 (Smoothness): Suppose that ||Y —Y,| <

o1(Y'4)/4, then one has
H(XYT - M.)Y|,
3
< 5oV (X = XY o+ [ X (¥ =¥V |5

H X = Xullp 1Y = Yillp) -

Similarly, with the proviso that || X — X, || < 01(X)/4, one

has

o o,

<

l\D\OJ

X)) (X =X)Y o + [ XY =Y |

F X = Xullp 1Y = Yillg) -

C. Proof of Theorem 2

With the help of Lemmas 1-4, we are in a position to estab-
lish Theorem 2. Denote by R € R"*" the best rotation matrix
between Z and Z,, that is

R 2 argmin||ZyR — /|
ReO™r
Combine the assumption of initialization (cf. (15)) and Lemma 1
to see that

Q, = argmlnHXOP X*HF + HYOP T

PcR
mvemble

2
~Yo;

exists and in addition, one has
500 1

R <2 <«

as long as ¢p > 0 is sufficiently small.
The remaining proof is inductive in nature. In particular, we
aim at proving the following induction hypotheses.
1) The optimal alignment matrix @, between Z; and Z,
exists.
2) The distance between Z; and Z, obeys

. 7\t .
dist (Z,, Z,) < (1 - W) dist (Zo, Z.,) -
K
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3) The optimal alignment matrix @, is nearly a rotation
matrix in the sense that

= 1
1Q: — R|| < 10075

It is straightforward to check that these three claims hold
for ¢ = 0. In what follows, we shall assume that the induction
hypotheses hold for all iterations up to the tth iteration and intend
to establish that they continue to hold for the (¢ + 1)th iteration.

a) Verifying the first induction hypothesis: We begin with
demonstrating the existence of Q; ;. In view of the gradient
update rule (14), we have

XinQ, = XQ — (XY -M,)Y.Q,
— —~ ~T ~ T
=X, - (XY, - M) Y1 (Q]Q).
_ _ T _
Vi@ =YQ, - — (XY, - M,) X.Q'
= T+ -1
=Y, - (XY, -M,) X.(Q[Q,) .
where we denote
X:2X,Q ad Y,2Y,Q;"

As a result, one has the following equality

_ 2
1X11Q, — Xollp + [[Yer1@Q: " = Y&
2
- th X, - (XthT - M*) YA,
Omax F
=
~ ~ ~T T~ 1 2
vy, -y, - (Xth - M*) XA
Omax F

=2
= QZQt. By virtue of the third
R| < 1/(400\/E), it is
C. Let
Y,-Y,.

where we have denoted A;

induction hypothesis, namely ||Q, —
easy to check that || A; — I.|| < 1/(180y/k) £

Ex, 2 X t— X, Eyt
Expand o to obtain

o= ||Ext||§+< .

Um ax

and

) |(®¥! - an) Pa]

=P

n /e~ — =T
_9 <EXt, (Xth .

Umax

M.) YA

=7
Similarly, we can decompose as into

2
or = |Bv i+ (72)

Umax

2

~ ~T T
(Xth —M*> XA

F

=02

-2

<EY“ (’X}?Z - M*>T ftAt1> .

Um ax

=72
We intend to apply Lemma 3 to lower bound the terms ~; and
72 and apply Lemma 4 to upper bound /3; and 5. First, since
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(3(1, Y,) is aligned with (X,,Y,), we can invoke Lemma 3

to see that
~ ~ ~T —~
1= (Bx,, (XY, - M.)Y,)

~|(Bx. (X¥. - M) V(A - 1))

~ ~T 1, ~
> |V Ex, [p — 11Ex. e
—lA- L) |[(X ¥, - M) Y| Bl
~ ~T 1 ~
> |V Ex, [z~ g5l Ex. &
Here the last line follows from the bound [|A; — I,.|| < ¢ and
the second induction hypothesis, i.e.
~ 1
1B, |[f < dist® (20, Z.) < dist® (Zo, Z.) < J550umin-
The last term in (16) can be further bounded via Lemma 4 as
— T 3
(Zew) )V Bl < 2
~ =T ~ =T
(1Bx. Y [lp+ [ X By, [l
+ | Ex.[lp [ Bv. 1) [ Ex.[Ie
UVE > T w/Jmm
== 1BEx.Y: |- 1Ex
9(\/E ~ ~T A/ Omin || =
+ ==X By [lp - == Ex. s
3¢ ~ = 2
+ 5 Voma| By || Bx. |le
81( K 81( J5aN
< |Bx. Y [z + X By, |
Unlln
+ THEXtHF’
where the last inequality arises since ab < (a? + b?)/2 and

3 ~ 3
?C\/ UmaxHEYt ||F S ?C\/ Omax dist (Zo, Z*)

3¢ 1 Omin
S ?\/ Umaxcom Omin S 79

aslong as ¢ is sufficiently small. Combine the above two bounds

to reach
81(/{ =T 2
2 (1- 555 ) |7
81( K

Similarly, 2 can be lower bounded as
812K\ = =T 2
ez (1- 250 X

81( K

| Xy, |7 -

a' B ~
| B

~ ~T
1V eEx [l —

| By, 2.
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which together with the bound on 7; implies
7+ 72

81¢2 — -
> (1-557) (9B + 1K By )

O-IIIIII d

(Zt7Z )

3 ~ ~ — ~
> (1Y Ex, 7+ X By, |17) -

where we plug in the definition of ¢ = 1/(180v/k).
Now we move on to controlling 31 and 5. Recognizing that
[|A]] < 2, one has

b1 §4H<3{/tif

(’?i“ dist? (2, Z..)

T ~ 2
)|
F

~ ~ T ~ ~T
< 90 (| B, Y [ + [ X By

~ ~ 2
B e By e)

where the second line follows from Lemma 4. Apply the ele-
mentary inequality (a + b+ ¢)? < 3(a? + b2 + ¢?) to see that

a7

~ =T

61 < 27Umax<||EXtY ||F + ||XtEYtHF
+ |1 Ex. I3 Bv. It

< 270 max (HEXti;:Hi‘ + H/X/tE;tHi‘)

ag Omi ~ 2
2 Umax®min
+27COT EXfHF'

Here the second line relies on the fact that HEYt”% <
dist*(Zg, Z,) < 20 min/K>. Similarly, one can bound f3; as

B < M0 ([ B Y [+ [ X By, |}
b 27 menin B 12
which in conjunction with the bound on f3; yields
B+ B2 < 40ma (| Bx, ¥, [[7 + 1K By [17)
+ 2703%&%2 (Z.,Z.,).

Collect all the bounds on «; and « to arrive at

||Xt+1Qt - X*H% + ||Yt+1Qt:r - Y*”i
2,2
< (1 n 27691’7 ) dist? (Z,, Z.,)
KR
54
o (20 (1, + X B )
3 m of < =7
2L 2 (1B + X B )

- Tdist” (2, 2. )

27cgn” n c 42
:(1+ e +ﬁ dist® (Z, Z,)

54772 377 ~ ~T.2 ~ ~T 9
i (adx N 2omax> (1B, Y [+ [ X eBy[17)
< (1+55) dist* (2, 2.)

3n ~
L 1B 2.

where the last line follows as long as 7 < 1/24. Furthermore,
since 02(Y ) > omin/2 and 02(X ;) > omin/2, we have

1 X 41Q; — Xz + ||Yt+1Q;T - Y*Hi

< (1 - ﬁ) dist? (Z,, Z.) .

(o2(¥ )| Ex, |+ 02X,

(18)

Lemma 1 then ensures the existence of Q) ;.

b) Verifying the second induction hypothesis. The second
induction hypothesis for the (¢ + 1)th iteration follows imme-
diately from the above proof. Since @, exists, by definition,
one has

dist (Zt+1, Z*)

X1 Qe — X2+ Y Qi - X

AIX1Q = X+ Y@ — X[

(1 - W) dist (Z4, Z.).

c) Verifying the third induction hypothesis. It remains to
show the last induction hypothesis, namely Q. R|| <
1/(400y/k). In view of (18), one has max{||X:11Q; —

X, e, 1Y e Q; ' — Y. |r} < dist(Zy, Z,). Invoke
Lemma [ again to arrive at
||Qt+1 Qt” < )dlst (Zt,Z )
5 n \?! 1
<2 1f—) — o (X,
=0, (X*)( 50r) 00 (X)

< 5eg (1 _ L)t b

- 50K/ K3/2°

Hence, by the triangle inequality and the telescoping sum, we
obtain

Qe — B < Q. +llQo - |

Z ||Qs+1

n 1 1
< 5002 (1 50,{> 3/2 +5¢co 3/2
s=0
50k 1 1
= 500 500
n K32 3/2
- 1
= 400y/k’

as long as ¢ is small enough and 7 is some constant.
Putting everything together, we finish the induction step and
the proof is then completed.
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D. Analysis for Matrix Sensing

We now extend the techniques used in the proof of Theorem 2
to the matrix sensing case by leveraging the RIP. Suppose that
the initialization Z satisfies the condition (10). By a standard
argument as in [8], [9], [33],2 it is sufficient to consider the
following update rule:

X1 =X —

[A"AX, Y[ — M) Yy

UII] ax

19)

.
Y=Y, - M| X,

> [A*A(X Y —
Compared with the update rule (14) for low-rank matrix factor-
ization, the update rule for matrix sensing differs by the operation
of A* A when forming the gradient. Therefore, we expect that
GD has similar behaviors as earlier as long as the operator 4* A
behaves as a near isometry on low-rank matrices. This can be
supplied by the following consequence of the RIP.

Lemma 5: Suppose that A satisfies 2r-RIP with a constant
02, Then, for all matrices M ; and M 5 of rank at most 7, we
have

[(A(M1), A(M3)) = (M1, M3)| < 82 || M| || M2]| -
Equivalently, we can write this as
|Tr [(A"A = I) (M1) M3 || < 80 | Mg [ Mg -
A simple consequence is that for any A € R"2*"
(A"A = T) (M) Allp < 020 | M1 ][ || Al -

Similar to before, we denote 3(/,5 = X,Q, and f"t =

Y.Q, T, which are aligned with (X, Y,). With this notation
in place, we can rewrite the update rule as
X1Q, = X, — [AAX, Y, — M,)] YA,
_ S X T .-
Y Q' =Y, - - [ATAX, Y] — M,)] XA

where we recall A; = Q; Q,. By the definition of the distance
function, we further obtain

dist*>(Z41, Z.,)

<X Q — X2+ Y@ T - Yfh
2
- th - [AAX Y] — M) YA — X,
Omax F
T 2
+ ~ [AAX,Y] - M,)] X A'-Y,
max F

= [Bx. Il + | Bv.|I¢

2 _ 2
n (a” ) H[A*A(XthT - MO VA

?:El

2Since (i) the initialization Z is close to the ground truth Z ., (ii) X ¢ and
Yo are balanced, it is obvious that the operator norm || X |2 = || Yol|? is
orderwise equivalent to o ax. Therefore, all the convergence claims on using
Omax can be translated to those on using || X o||2 and || Y o ||? by adjusting 1 up
to some absolute constant.
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v H[A*A(XthT —M*)]TitAng;

1252

2n

Umax

<EX“ [AAX Y] — M,)] f/tAt>

=71

+ <Eyt, [A"A(X, Y] — M*)]T')?tA;1> , (20)

=72

where Ex, £ X, — X, and Ey, £ Y, — Y ,. From the high
level, the four terms 51, 62, ~1 and 5 are the perturbed versions
of 31, B2,v1 and ~y» in Section IV-C, respectively.

For the first term, we have

VB - VA
0 H[A*A (X, Y] - M,)] YA,

— (X Y] —M,) YA, .

- H [(AA-T) (XY~ M.)] YA

? |[(aa-D) Bx, Y, Viri|

+H[A* )XEY]?tAt

+ H [ )EXtEYJ Yo

D 5 (Ex.v: HF+H3(/,5E;HF—i—HEXtEYtH )V

(iv) ~ ~ —~ ~ ~ ~
< 40T (1B Y| +|X By o+ Bx By )

2

Here, the first (i) and second (ii) inequalities follow from the
triangle inequality. The third one (iii) uses Lemma 5 and the
last relation (iv) depends on ||A|| < 2 and ||Y¢]| < 2\/0max-

Comparing (21) with (17) reveals that 51 — 1 constitutes a
small perturbation to 1 when dg,. is small. Similar bounds hold

for Bg — +/B2. As aresult, when 6, is sufficiently small, we
have

Bi+ Ba < 1080 (| Ex, Y, ||} + | X By, |17
+ 54(;3%(1159 (Z.,2.).
We now proceed to 7, for which we have
71— 7l

- ‘ <EX” [AA (X, Y] — M,)] f’tAt>
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—(Ex,, (X,Y] - M) YA
 (Bx, (A A-T) (X,¥] ~ M) VA,
= [Tr ([(AA-T) (X¥] - M.)] ViAEx, )|
< |1 ([(aa-1) (Bx,Y, )| ViMEy, )|

+

Tr ([(aA-17) (XiBy, )| ViriEy, )|

. ‘Tr ({(A*A _ 1) (EXE;)] f’tAtE;t)’
~ =T ~ =T ~ =T
<o (| Bx, Y [l + | X By, |le + | Bx, By, )
~ ~T
1Y A Ex,[|p-
Here once again, we utilize the triangle inequality and Lemma 5.

Noticing that ||A; — I|| is small, we further have

17 8Bl < 1V Bl + [V (A~ 1) B [

< ||Bx, Y, || +2012¢| Ex, 5.

max

where we use ||A; — I,.|| < ¢ and || Y¢]| < 2\/Fmax. Combine
the previous two bounds and apply the basic inequality 2ab <
a® + b? to see

Wl —71|

< S0, ||Bx, Y, |} + 2082000 | Ex, Y, ||| Bx. | s

+ 00 || X By ||| Bx, Y, |

+ 2032000 || X By, ||| Ex,

[

~ =T ~ ~T
+00||Ex, By ||| Ex Y [

+ 2032000 Bx By, || Bx. o

max

< oy (||EX5/Z||; + | X By, |2 + omindist (24, z*>) ,

= STz e w2 :
< B,V |+ KBy [+ ownlist (2, 2.)

as long as d9, is sufficiently small. The same bound applies to

|72 — ¥2|. As aresult, as long as da,. is small enough, 37 + 72 is

lower bounded on the same order as ;1 + 72, say

N X B
T+ > 5 (1Y Ex f; + 1K By |17)

- %disﬁ (24, Z.,).

One can then repeat the same arguments for the matrix factor-
ization case to obtain the linear convergence. For the sake of
space, we omit it.

V. CONCLUSION

This paper establishes the local linear convergence of gradient
descent for asymmetric low-rank matrix sensing without explicit
regularization of factor balancedness under the standard RIP
assumption, as long as a balanced initialization is provided
in the basin of attraction. Coupled with the standard spectral

initialization, this leads to the global convergence guarantee of
the balancing-free gradient descent algorithm for asymmetric
low-rank matrix sensing. Different from previous work, we
analyzed a new error metric that takes into account the ambiguity
due to invertible transforms, and showed that it contracts linearly
even without local restricted strong convexity. We believe that
our technique can be used for other low-rank matrix estimation
problems. To conclude, we outline a few future research direc-
tions.

e Low-rank matrix completion: We believe it is possible to
extend our analysis to study rectangular matrix completion
without regularization, by combining the leave-one-out
technique in [27], [35] to carefully bound the incoherence
of the iterates for both factors even without explicit bal-
ancing.

e Improving dependence on r and r: The current paper does
not try to optimize the dependence with respect to « and r
in terms of sample complexity and the size of the basin of
attraction, which are slightly worse than their regularized
counterparts. A finer analysis will likely lead to better
dependencies, which we leave to the future work.

APPENDIX A
A. Proof of Lemma 1
For notational convenience, we define the following function

9@ 21XQ- X +|yQ T Y. i @
Clearly, the optimal alignment matrix, if exists, must be
argmin g(P). With this notation in place, we consider the
following constrained minimization problem:

9(Q)

min
QEeR™7:Q is invertible

50
— Pl < ———.
||Q ||F — Omin (X*)

In view of Weyl’s inequality, we obtain that for any feasible Q,
56 1 1 1
min Zminp_izf_*:*
onin (@) = omin (B) = ) 257171
aslong as 0 < opin(X,)/80. As aresult, one sees that g(Q) is
a continuous function over {Q : [|Q — P|| < 55/0min(X )},
which is a compact set over invertible matrices. Applying the
Weierstrass extreme value theorem yields the claim that the
minimizer of the constrained problem exists. Denote this min-
imizer by Q. In what follows, we intend to show that @ is
also the minimizer of the unconstrained problem. Letting @ be
an arbitrary matrix with g(Q) < 262 (the existence is assured
since g(Q;) < g(P) < 2§?), we have
V25> | XQ ~ X[y > | XQ — X Pl — | XP — X.|lr,
which in conjunction with (12) implies
(1+v2)8 2 | X(Q = P)llr = owin (X) Q1 — Pl
(23)
We now turn to investigating oy,in (X ). Weyl’s inequality tells
us that

|Umi11 (XP) — Omin (X*)| S HXP—X*”F

1
4

subject to

S 0 S Omin (X*) 9
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which further implies

3
Zamin (X*) S Omin (XP)

3
S Omin (X) Omax (P) S iamin (X) .

Therefore we arrive at opin (X ) > omin(X«)/2. Putting this
back to (23) yields which finally gives

5 56
_ < ’
1Q = Plle < 201+ V2) s < sy

In all, the above arguments reveal that any matrix @ such that
9(Q) < 262 must obey the above bound. Therefore the mini-
mizer of the constrained problem and that of the unconstrained
one coincide with each other. This finished the proof.

B. Proof of Lemma 2
Recall the function g(P) defined in (22) as
g(P) = |XP - X+ [YP -V,
=Tr (XPP'X")-2Tr (P'X'X,)
+Tr (X, X,)+Tr (P'Y'YPT)
—2Tr (P'Y'Y, )+ Tr (Y]Y,).
The gradient is given by
Vg(P)=2X"XP-2X"X,
—2(PP) Y'Y (PP") ' P+2P Y]YP .

Since @ minimizes g(P), it must satisfy the first-order optimal-
ity condition, i.e.

Vg(Q) =0.
Identify X = X @ and Y = Y Q " to yield the condition
~T~  ~T ~T ~ ~
XXX X,=YvY-YY.
C. Proof of Lemma 3

We prove the first part and the second part follows by sym-
metry. Denote £, = X — X, and E, =Y — Y ,. We have

XY'-M,=E,Y' +X,E,.
Since Z is aligned with Z,, Lemma 2 tells us that
X'E,=E,)Y.
As a result, one has
(X -X,,(XY'-M,)Y)

=Tr (E, (E.Y' + X.E,)Y)

=T (E E,Y'Y)+Tr (E,X,E)Y)

— |[YE]|: +Tx (E]YE]X) - Tt (E]YELE,)

— |[YE!|Z + | X E.|} - Tv (X E,ElE,).

Complete the squares to see that

(24)

|X"E,|t —-Tr (X "E,EE,)

1 1
= || B X — SE Eulfy — 1B

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Combine the previous two bounds to yield the desired result.

D. Proof of Lemma 4

Again, we demonstrate the claim on X and the claim on Y
follows by symmetry. Given the decomposition

XY'-M,=(X-X,)Y' +X(Y-Y,)'
+(X, - X)(Y -Y,),

we obtain
|(XYT ~ M) Y, <00 (V) XY - M,

< gol(Y*) (X -X)Y ||,

X =Y )+ (X = X =Y |),
where the last line combines the triangle inequality and Weyl’s
inequality

3
o1 (Y) < o1(Yi) +[IY = Yifl < 5ou (Vo).
The proof is then finished.
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