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ABSTRACT: Reduced-scaling methods are needed to make accurate and systematically
improvable coupled cluster linear response methods for the calculation of molecular properties
tractable for large molecules. In this paper, we examine the perturbed pair natural orbital-based
PNO++ approach that creates an orbital space optimized for response properties derived from a
lower-cost field-perturbed density matrix. We analyze truncation errors in correlation energies,
dynamic polarizabilities, and specific rotations from a coupled cluster singles and doubles
(CCSD) reference. We find that incorporating a fixed number of orbitals from the pair natural
orbital (PNO) space into the PNO++ methoda new method presented here, the “combined
PNO++” approachrecovers accuracy in the CCSD correlation energy while preserving the
well-behaved convergence behavior of the PNO++ method for linear response properties.

1. INTRODUCTION

For molecules and materials subjected to weak electromagnetic
fields, key molecular properties may be defined via time-
dependent perturbation theory, response theory, by orders of
their component multipole operators.1−3 Beyond “zeroth
order” properties such as dipole or magnetic moments, linear,
quadratic, and higher-order dynamic response functions
provide computational routes to frequency-dependent polar-
izabilities/magnetizabilities, hyperpolarizabilities, and other
mixed electric-/magnetic-field properties.4−7 The ultimate
accuracy of such computations depends critically on the
choice of the quantum chemical model.
Among the simplest such models is time-dependent

Hartree−Fock (TDHF) (also known as the random-phase
approximation (RPA)),8,9 whose modest computational cost is
offset by its lack of treatment of dynamic electron correlation
effects, leading to, for example, its overestimation of electronic
excitation energies. More sophisticated methods that include at
least some approximation of electron correlation can provide
significantly improved predictions of molecular response
properties, including time-dependent density-functional theory
(TDDFT),10,11 the second-order polarization propagator
(SOPPA),12,13 the algebraic diagrammatic construction
(ADC),14−16 etc. One of the most robust quantum chemical
models is coupled cluster (CC) theory,17−20 which relies on an
exponential expansion of the multideterminant wave function
not only to recover electron correlation effects systematically
but also to ensure the correct (intensive or extensive) scaling
of response properties with respect to the size of the molecular
system.

The principal disadvantage of coupled cluster theory lies in
its high-order polynomial scaling with system size, due to the
combination of delocalized canonical molecular orbitals and
electron correlation effects, which are local in nature.21 Efforts
to reduce the cost of coupled cluster calculations have resulted
in the development of several reduced-scaling methods based
on orbital localization,22−26 tensor decompositions,27−32 and
fragmentation schemes,33−36 among others. The aim of orbital
localization schemes in particular is to utilize the intrinsic
sparsity in correlated wave functions to reduce the scaling of
ground- and excited-state property calculations. Local
correlation methods such as projected atomic orbitals
(PAOs) introduced by Pulay and Saebo21,22 and extended to
coupled cluster theory by Hampel and Werner,23 pair natural
orbitals (PNOs) first pioneered by Meyer,37 Edmiston and
Krauss,38,39 as well as Ahlrichs and co-workers,40 and
resurrected by Neese and co-workers,24,41 and orbital-specific
virtuals (OSVs) created more recently by Yang et al.26

introduce controllable sparsity into the wave function via
orbital localization and have been successfully applied to the
computation of properties related to ground-state energies
without significant loss of accuracy. Though a number of local
correlation schemes have been introduced for properties such
as excitation energies,42−48 due to the complexity of
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calculations of higher-order response properties, the applica-
tion of localization methods to such properties has been
limited so far.49−54

In a first application of the PNO and OSV approaches to
CCSD linear response properties, McAlexander and Crawford
compared the performance of three local correlation
approaches (PAO, PNO, and OSV) in the calculation of
response properties55 and found that the system showed
reduced sparsity in the wave function when perturbed by an
external field. This resulted in increased sensitivity of the
response properties to truncation of the wave function,
particularly the mixed electric dipole−magnetic dipole
property of specific rotation. Kumar and Crawford further
explored the effects of truncation of a virtual natural orbital
(NO) space on linear response properties56 and concluded
that the virtual NO space did not preserve accuracy in those
properties following aggressive truncation. It was seen that the
truncation of NOs contributing little to electron correlation
effects corresponded to the truncation of those that were most
diffuse and therefore essential for the description of field-
response properties. A natural alternative is to build an orbital
space optimized for those properties sought. Transition-
specific virtual spaces have been built by utilizing correlated
natural transition orbitals, first introduced by Høyvik, Myhre,
and Koch for use with the multilevel coupled cluster scheme,57

and later used by Baudin and Kristensen in combination with
their local framework to reduce the scaling of excitation-energy
calculations.58,59 Effective natural transition orbitals have also
been constructed by Höfener and Klopper by utilizing both
ground- and excited-state densities.60 Mester, Nagy, and Kaĺlay
have combined MP2 and CIS(D) densities to produce state-
specific natural orbitals and natural auxiliary functions for the
computation of excitation energies.61,62

In this work, we examine the PNO++ approach, which
incorporates the external field perturbation into the density
and thus the orbital space, and uses this perturbed basis
throughout the calculation. We create a union of the PNO and
PNO++ bases, called the “combined PNO++” basis, to
accurately describe both the ground- and excited-state wave
functions. We further explore the PNO++ and combined PNO
++ approaches, examining the sparsity introduced by the use of
the PNO++ basis, followed by the analysis of the truncation
error for both correlation energies and second-order response
properties, i.e., dipole polarizabilties and specific rotations. We
also examine the effect of an MP2-level correction for response
properties, analogous to the MP2-level external space
correction commonly used in PNO-related methods.

2. THEORY AND COMPUTATIONAL DETAILS

2.1. Coupled Cluster Linear Response. Coupled cluster
response theory is an accurate way to simulate the response of
a molecular system to an external electromagnetic field, with
the time-dependent field treated as a perturbation.5,6,63−65 The
coupled cluster linear response function is the first-order term
in the perturbative expansion of the time-independent operator
Â in response to the external field B̂,11 and can be expressed in
terms of perturbed wave function operators, dependent on the
frequency ω of the external field
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where P̂ is a permutation operator that ensures that the
response function is real, A̅ is the similarity-transformed
operator, and Λ̂ are the left-hand coupled cluster amplitudes.
The frequency-dependent perturbed operators X̂ω

B and Ŷω
B are

obtained using sets of perturbed wave function equations for
each of the Cartesian directions
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Second-order properties, such as dynamic polarizabilities and
optical rotations, are then obtained by computing molecular
property tensors as the appropriate linear response functions.
The polarizability tensor α(ω) is computed using the electric
dipole moment operator μ̂, and the Rosenfeld tensor β(ω) is
computed using both the electric and magnetic dipole moment
(m̂) operators3,4,66

( ) ;α ω μ μ= −⟨⟨ ̂ ⟩̂⟩ω (4)

m( ) Im ;β ω μ= ⟨⟨ ̂ ̂ ⟩⟩ω (5)

Coupled cluster linear response involves the solving of first the
coupled-cluster amplitude and lambda equations, followed by
the solving of 12 sets of perturbed amplitude equations for
each wavelength of interest. The main drawback of the coupled
cluster method is the high-degree polynomial scaling with the
system size. Coupled-cluster singles and doubles (CCSD),
used in this work, scales as N( )6 , where N is a measure of the
system size. This necessitates some form of reduced-scaling
method to make coupled cluster viable for larger molecules.

2.2. Local Pair Natural Orbitals. The pair natural orbital
(PNO) approach, resurrected by Neese et al. as local pair
natural orbitals (LPNO),24,41 is a reduced-scaling approach
that relies upon the creation of a more compact virtual-orbital
space using the pair density. In the LPNO-CCSD approach,
the pair density Dij for a given pair of localized occupied
orbitals ij is defined for second-order Møller−Plesset
perturbation theory (MP2)67,68 amplitudes Tij as

D T T T T
2

1
( )ij

ij

ij ij ij ij

δ
=

+
̃ + ̃† †

(6)

with

T T T2ij ij ij̃ = − † (7)

The PNO-basis Qij is obtained by diagonalizing this density:

D Q Q nij ij ij ij= (8)

A truncation is carried out by comparing the set of occupation
numbers {nij} to a predetermined threshold TcutPNO and
discarding any virtual orbitals with occupation numbers below
the threshold. A further truncation is applied by discarding
weakly interacting occupied pairs using a criterion based on the
semicanonical MP2 pair correlation energy for each pair,
defined as

t ij abij
ijab

ij
ab∑ϵ = ⟨ ⟩

(9)

with localized occupied pairs ij and canonical virtual orbitals
ab. The occupied pairs ij are sorted into weak and strong pairs
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based on if ϵij is lesser or greater than another fixed threshold
TcutPairs and weak pairs are then neglected in the calculation.
The occupied space is localized using one of several
mathematical criteria, which form the basis of the Boys−
Foster,69 Pipek−Mezey,70 Edmiston−Ruedenberg,71 Magnas-
co−Perico,72 and von Niessen73 localization schemes. This
localization of the occupied space is important in the
truncation of weak pairs, based on the logic that two-electron
integrals ⟨ij∥ab⟩ remain small if, given that the occupied
orbitals i and j are spatially distant, the overlap between the
occupied−virtual pairs ia and jb is small.
The PNO-basis Qij is much more compact in terms of

contributions to the correlation energy and thus can be
truncated to, e.g., one-tenth of the total virtual space while
preserving 99% of the correlation energy (vide inf ra). This
aggressive truncation is an essential part of the reduced scaling
of the method since a distinct set of virtual orbitals is created
for every pair of occupied orbitals, and thus a large number of
integrals must be constructed and stored, one set for each
occupied pair. The virtual orbitals for a given pair are
orthonormal within a set; however, the sets of virtual orbitals
are nonorthogonal between pairs, and an overlap matrix Sij, kl

between the pairs ij and kl must be constructed and inserted
into the regular coupled cluster equations.
Since its reappearance, the LPNO method has been

extended to include open-shell cases74 as well as explicit
correlation,75 parallelization,76 and other optimizations.77,78

The PNO method has also been applied to the calculation of
excitation energies, ionization potentials, and electron
affinities.42−44,79−82 An application of pair natural orbitals to
linear response theory by Frank and Hattig45 led to state-
specific PNOs being used to obtain excitation energies as the
eigenvalues of the Jacobian. The optimized PNO method has
also been extended to obtain analytic energy derivatives83

leading to first-order molecular properties. McAlexander and
Crawford55 published the first application of the PNO method
to second-order properties, namely dynamic polarizabilities
and specific rotations; however, the three reduced-scaling
methods compared in that work showed oscillations in the
value of the CCSD-level optical rotation with the truncation of
the virtual space and hence could not directly be used in the
same way to compute these more sensitive properties.
2.3. Perturbation-Aware Densities. We see from the

form of the coupled cluster linear response function (eq 1) that
the final value of the response property sought is dependent
not only on the ground state of the system as defined in the
coupled cluster ansatz but also on the external perturbation via
the perturbed wave function amplitudes. Thus, to find a more
effective compact basis in which to compute molecular
properties, we modify the definition of the PNO basis to
include the effect of the perturbation on the system.
As seen from previous work done in our group,84 the PNO+

+ pair density is formulated in an analogous fashion to the
PNO pair density (eq 6), with the first-order perturbed
amplitudes XB

ij, corresponding to the perturbed wave function
operators X̂ω

B seen above, replacing the ground-state
amplitudes Tij

BD X X X X( , )
2

1
( )ij

ij
B
ij

B
ij

B
ij

B
ijω

δ
=

+
̃ + ̃† †

(10)

with X̃B
ij defined similarly to eq 7.

To create a density from MP2-level calculations, first-order
perturbed guess amplitudes must be created using a
perturbation B̅ and Hamiltonian matrix elements H̅pp, both
similarity-transformed

X
B

H H H Hab
ij

aa bb ii jj ω
= ̅

̅ + ̅ − ̅ − ̅ + (11)

This is the usual form of the guess amplitudes in the coupled
cluster linear response equations above (eq 2). The
Hamiltonian matrix elements are given in eqs 12a and 12b
in terms of Fock matrix elements f pq, MP2 amplitudes tab

ij , and
antisymmetrized two-electron integrals ⟨ij∥ab⟩.

H f t in ef
1
2ii ii ef

in̅ = + ⟨ ⟩
(12a)

H f t mn fa
1
2aa aa fa

mn̅ = − ⟨ ⟩
(12b)

Similarity-transformed Hamiltonian matrix elements are found
by applying the Baker−Campbell−Hausdorff expansion to the
second-quantized Hamiltonian85 and setting the terms in the
final expression which contain ta

i to zero. Once the
perturbation-aware pair density Dij(B,ω) is created, it can be
used to create the PNO++ basis in an identical way to the
PNO basis, and thus a similar approach is used to reduce the
scaling of the coupled cluster linear response equations.

2.4. MP2-Level Correction. The MP2-level perturbative
correction added to the LPNO-CCSD correlation energy, as
described in ref 24, constitutes a substantial improvement to
the value of the correlation energy at larger truncations. The
correction is defined as the difference between the MP2-level
correlation energy of the full, untruncated space and the
correlation energy of the truncated space

E EMP2 MP2
full

MP2
PNOΔ = − (13)

This correction is then added to the LPNO-CCSD correlation
energy to obtain corrected energy values. To improve the PNO
++-CCSD property values at large truncations in a similar way,
MP2-level corrections to the PNO++ polarizability and specific
rotation values are defined as

MP2 MP2
full

MP2
PNOα α αΔ = − ++

(14)

MP2 MP2
full

MP2
PNOβ β βΔ = − ++

(15)

However, due to the absence of an MP2-level linear response
analogue to the MP2 correlation energy, MP2-level properties
are defined as the linear response function containing MP2-
level amplitudes, as well as perturbed Xω and Yω amplitudes
derived from these using eqs 12a and 12b.
The linear response function contains a frequency-depend-

ence that is incorporated via the dependence of the perturbed
Xω and Yω amplitudes on the frequency of the external field.
When computing the MP2-level correction in the modified-
velocity gauge, we select the zero-frequency correction, since
the difference in the frequency-dependent and zero-frequency
corrections is minimal.

2.5. Computational Details. To check the accuracy of our
method without a full production-level implementation
involving the creation and storage of PNO-basis integrals
and overlap matrices, a local filter approach was used, as used
previously for PAO calculations,23 and described in ref 55. To
begin, the occupied space was localized using the Pipek−
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Mezey localization criterion,70 due to its relative efficiency and
accuracy. These orbitals were then used to run a canonical
CCSD linear response calculation, with a simulation code
applied at each iteration. The simulation code transforms the
residuals Rij obtained at each iteration of the coupled cluster
amplitude equations to first, the PNO basis, obtained as Qij in
eq 8, and then to the semicanonical basis in which the virtual
block of the Fock matrix is diagonal

R L Q R Q Lij ij ij ij ij ij̅ = † † (16)

where Lij is the result of the diagonalization of the virtual block
of the Fock matrix in the PNO basis, Fij

F L Lij ij ij ijϵ= ̅ (17)

The denominator consisting of diagonal Fock matrix elements
f ii and semicanonical orbital energies ϵa̅ is then applied to
obtain the increment in the local basis, which is then converted
back into the canonical MO basis.

R
f fab

ij ab
ij

ii jj a b
Δ̅ = ̅

+ − ϵ̅ − ϵ̅ (18)

Q L L Qij ij ij ij ij ijΔ Δ= ̅ † † (19)

Thus, the final increment, containing no nonlocal contribu-
tions, is added to the previous iteration’s coupled cluster
amplitudes and the loss in accuracy in the converged energy
values can be obtained with minimal alteration to the existing
coupled cluster response code. A similar procedure is applied
to the Λ̂ and the perturbed wave function equations, to obtain
the loss in accuracy in the converged property values.
The PNO and PNO++ pair densities were created using the

forms from eqs 6 and 10. For the PNO++ density, since the
perturbed wave function depends on the direction of the
external field relative to the molecule, a separate density was
created for each of the Cartesian directions. The densities were
then averaged to obtain a single density for natural orbitals.
This density was then diagonalized to obtain the PNO++ basis,
which was then truncated using a threshold TcutPNO++. To
create a combined space, the PNO and PNO++ spaces were
both created by individually diagonalizing the PNO and PNO+
+ pair density matrices, followed by truncation using two
separate thresholds, TcutPNO and TcutPNO++. The spaces were
then concatenated as in eq 20, and a QR decomposition was
used to orthogonalize the space that remained.

Q Q Qij ij ij
combined PNO PNO= [ ∩ ]++ (20)

A few test systems were used to clearly see the convergence of
the method for both optimally localized and general molecular
systems. (H2)n systems, with n = 4, 5, 6, 7, were used as a best-
case scenario for the MO localization, as well as having large
values of optical rotation in the arrangement chosen (Figure
1). The (H2)n systems were also organized to lie along the Y-
axis, to maximize the directionality of the perturbed wave

function. As more general small-molecule systems, H2O2 and
(P)-1,3-dimethylallene (DMA) were used. The aug-cc-pVDZ
basis set was used for the correlation energy, dynamic
polarizability, and specific rotation calculations.86 Specific
rotations and dynamic polarizabilities were computed at the
sodium D-line wavelength, 589 nm.

3. RESULTS AND DISCUSSION
3.1. Amplitude Sparsity. Figure 2 shows the distribution

of the converged CCSD T2 amplitudes for a linear system, 1-

fluoro-heptane, as well as the converged CCSD perturbed wave
function amplitudes X2

μ that contribute to the linear response
function. The distribution was created by localizing the
occupied space using the Pipek−Mezey localization scheme,
followed by localization of the virtual space into the PNO and
PNO++ spaces. These spaces were not truncated to analyze
the sparsity introduced by each method. We may use the
magnitude distribution of wave function amplitudes as a
measure of the sparsity introduced by the localization of the
virtual space. Such sparsity in the wave function should, in
principle, allow a more aggressive truncation threshold without
a commensurate loss in accuracy. However, we note that our
system of truncation using occupation numbers does not
necessarily imply removal of amplitudes of small magnitudes,
but instead, amplitudes of any magnitude may be removed.
Amplitudes with values below 10−10, the coupled cluster
convergence threshold, are not shown, to focus on the most
significant values.
The sparsity introduced by the PNO approach was

contrasted by McAlexander and Crawford55 with the projected
atomic orbital21−23 (PAO) and orbital-specific virtual26 (OSV)
approaches, and it was concluded that the PNO distribution
contained the most sparsity, especially for the unperturbed

Figure 1. Systems used in this work. (a) (H2)7 helix, (b) H2O2, and (c) (P)-1,3-dimethylallene (DMA).

Figure 2. Fractions of (a) unperturbed and (b) perturbed CCSD
wave function amplitudes for the PNO space (blue) and the PNO++
space (orange) as a function of their magnitude for 1-fluoro-heptane
using the 6-31G basis set.
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amplitudes. Figure 2a shows that the PNO++ method
conserves much of this sparsity, showing an unperturbed
peak within an order of magnitude of the peak for the PNO
method. The perturbed amplitudes that contribute to the
response equation have a right-shifted distribution with larger
magnitudes compared to the unperturbed amplitudes, as seen
in Figure 2b. The PNO and PNO++ spaces have very similar
distributions of perturbed amplitudes and thus could be
expected to show similar truncation errors; however, as seen
later, the PNO++ method allows us to truncate the space more
aggressively than the PNO method.
3.2. Orbital Extent. Accurate calculations of response

properties require more diffuse basis functions;86 thus, to
obtain an idea of the relative diffuseness of the orbital spaces
computed using the natural orbital (NO) and perturbed
natural orbital (NO++) methods, we look at the spatial extent
of the virtual orbitals, defined as ⟨r2⟩, in Figure 3. Plotted

against them are virtual-orbital energies in the case of canonical
molecular orbitals (MOs) and occupation numbers on the log
scale in the case of natural orbitals and perturbed natural
orbitals. The natural orbitals and perturbed natural orbitals are
created by diagonalizing MP2-level densities given by

D t t t2 (2 )ab
ijc

bc
ij

ac
ij

ca
ij∑= −

(21)

and

D B x x x x x( , ) 2 (2 )ab
ijc

bc
ij

ac
ij

ca
ij

i
i
a

i
b∑ ∑ω = − +

(22)

x
B

H H H Hab
ij

aa bb ii jj ω
= ̅

̅ + ̅ − ̅ − ̅ + (23)

x
B

H Hi
a

aa ii ω
= ̅

̅ − ̅ + (24)

The similarity-transformed H̅ and B̅ elements are formed as
described in Section 2.3.
Overall, we see that the canonical MOs follow a trend of the

orbitals with smaller orbital energies having the largest spatial
extent. Comparing the NO space to this, we see that natural
orbitals follow a similar trend, with the orbitals with the
smallest occupation numbers being the most diffuse. In the
usual truncation scheme, this corresponds to the most diffuse
orbitals being the first ones truncated. This can explain the
requirement of a large number of orbitals kept to accurately
compute response properties. On the other hand, while the
perturbed natural orbitals have larger magnitudes of
occupation numbers, their extent lies between 5 and 25, with
just one outlier. We see that these orbitals continue to be at the
same diffuseness even at the larger occupation numbers that
are kept as the space is truncated. This points to a more even

Figure 3. Orbital energies and occupation numbers plotted against
orbital spatial extents for the canonical MO, PNO, and PNO++
spaces for the H2O2 molecule using the 6-31G basis set.

Figure 4. Truncation errors in CCSD correlation energy in Hartree for (a) (H2)4, (b) (H2)7, (c) H2O2, and (d) DMA systems, computed using the
aug-cc-pVDZ basis set.
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distribution of the orbital extents with occupation numbers
and can explain the method’s improved accuracy as seen in
Sections 3.3.2 and 3.3.3.
3.3. PNO++ Results. 3.3.1. Correlation Energies. CCSD

correlation energies were computed for all systems using the
simulation code described in Section 2.5. In Figure 4, errors in
correlation energy values are plotted against the T2 ratio,
defined as the ratio of the number of wave function amplitudes
present in the truncated space to the total number of wave
function amplitudes in the full, untruncated space. The errors
in correlation energy were computed using: ΔE = EPNO/PNO++

− ECCSD. The T2 ratio is used as a measure of the cost of a
production-level calculation, since contractions over doubles
amplitudes and two-electron integrals are the most expensive
portions of a CCSD linear response calculation. Although a
truncation threshold was used to remove orbitals from the
calculation, an analysis using the T2 ratio removes any
ambiguity caused by the differing sparsity of the PNO and
PNO++ spaces and provides a clearer picture of the
computational savings obtained. The relationship between
the T2 ratio and the truncation threshold used for each method
is shown in the Supporting Information (SI).
Figure 4 shows truncation errors for the smallest and largest

(H2)n systems considered, as well as H2O2 and DMA. The
PNO++ method has a more sharply rising error with
truncation as compared to the PNO method, which is seen
most clearly for the larger molecules of H2O2 and DMA. The
PNO density is created using T2 amplitudes, while the PNO++
density is created using X2

B amplitudes, and thus is not
optimized for sparsity in the T2 amplitudes. While the PNO++
method is optimized for response properties, it is desirable for
the method to also describe the ground-state wave function in
an accurate way. One method of recapturing accuracy in the
correlation energy involves including both the PNO and the

PNO++ spaces in the calculation, in a combined PNO++
method as described in Section 2.3.
Figure 4 also reports a comparison of the errors in

correlation energies for the PNO, PNO++, and combined
PNO++ methods as a function of the T2 ratio. The combined
PNO++ method has two distinct truncation thresholds,
TcutPNO for the PNO space and TcutPNO++ for the PNO++
space, and the variation of both these thresholds affects the
accuracy of the method. As seen later, the variation of the
perturbed threshold makes a much larger difference than the
same variation of the unperturbed threshold, and thus we have
selected and fixed a reasonable threshold for the PNO space
(TcutPNO) of 10

−6 while varying the perturbed threshold only.
This combined method introduces only a slight error at the
same T2 ratio or the same fraction of the space as compared to
the original PNO method. We see larger errors for the
combined method for DMA, the largest molecule we examine;
however, we do not see a steep increase in the error at large
truncations, in contrast to the PNO++ method. While the
combined method appears to be simply creating the same
space as the PNO approach, the results for the dipole
polarizabilities and specific rotations in Sections 3.3.2 and 3.3.3
indicate that this is not the case. The combined space created
is optimized for both correlation energies and properties.

3.3.2. Dynamic Polarizabilities. Figure 5 reports dynamic
dipole polarizabilities computed at 589 nm using the PNO,
PNO++, and combined PNO++ approaches as a function of
the T2 ratio. The PNO++ method shows a significant
improvement over the PNO method, obtaining 99% of the
CCSD reference polarizability value for our smallest system,
(H2)4 at a low truncation threshold with a T2 ratio of 0.074. A
similar value requires a T2 ratio above 0.60 when using PNOs.
As the size of the (H2)n systems increases, we see that the
PNO++ method requires smaller fractions of the space to be
kept to obtain 99% of the reference value, with the (H2)7

Figure 5. CCSD linear response dynamic polarizabilities at 589 nm in au for (a) (H2)4, (b) (H2)7, (c) H2O2, and (d) DMA systems, computed
using the aug-cc-pVDZ basis set.
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system requiring only 3.68% of the T2 amplitudes needed in a
conventional CCSD calculation. The data for the H2O2 and
DMA systems also shows the PNO++ method achieving 99%
accuracy at T2 ratios of 0.61 and 0.087, respectively, while the
PNO method required a T2 ratio of 0.70 for the H2O2 system
to achieve similar levels of accuracy and did not obtain 99% of
the CCSD value at the smallest threshold used.

For all systems and methods considered, monotonic
convergence toward the polarizability value was observed;
albeit much more slowly for the PNO method. The combined
PNO++ method, in this case, introduces an error relative to
the PNO++ method alone, but the largest truncation error is
still within 14% of the reference and is traded off by the
improvement seen in the CCSD correlation energy in Section
3.3.1. The TcutPNO thresholds present different T2 ratios at the

Figure 6. CCSD specific rotations in deg dm−1 (gm/mL)−1 at 589 nm for (a) (H2)4, (b) (H2)7, (c) H2O2, and (d) DMA systems, computed using
the aug-cc-pVDZ basis set.

Figure 7. Truncation errors in CCSD correlation energy in Hartree for (a) (H2)4, (b) (H2)7, (c) H2O2, and (d) DMA systems, computed using the
aug-cc-pVDZ basis set for the PNO and PNO++ methods. Inset axes show errors on a logarithmic scale.
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same threshold for the different methods, since the densities
are distinct and thus different numbers of amplitudes are kept.
The combined PNO++ curves begin at a larger T2 ratio due to
the TcutPNO threshold being set to 10−6, with the TcutPNO++

varying.
The dynamic polarizability data suggests that the PNO++

density, created using the X2
B amplitudes, is more efficient than

the PNO density at creating a compact space with which to
approximate external field-dependent properties. Combining
the spaces and orthogonalizing them, as in the combined PNO
++ approach, captures most of the efficiency for properties
seen in the PNO++ method while also describing the ground-
state wave function with higher accuracy.
3.3.3. Specific Rotations. Figure 6 shows specific rotations

using the modified-velocity gauge representation of the electric
dipole moment operator, computed at 589 nm using the PNO
and PNO++ methods. For this and the following graphs, the
electric dipole moment operator was chosen as the
perturbation in the creation of the perturbed density. The
use of the magnetic dipole moment operator in the perturbed
density was considered; however, convergence behavior
suffered (see SI for more details). For the (H2)n systems, the
behavior of the specific rotations is similar to that of the
polarizabilities, in that the PNO++ method converges to within
5% of the reference value at a T2 ratio of 0.68 for (H2)4 and
0.26 for (H2)7, while the PNO method does not seem to
converge even at the fairly large T2 ratios examined here. The
DMA system also follows a similar trend, with the PNO value
unconverged at a T2 ratio of 0.48, the largest T2 ratio
considered, while the PNO++ value converges to within 5% at
a T2 ratio of 0.16. H2O2 exhibits the slowest convergence, with
the PNO rotation value showing slow convergence, while the
PNO++ method oscillates about the reference. However, the
PNO++ method does remain within ±15% of the CCSD value
beginning at the fairly low T2 ratio of 0.34.

Examining Figure 6, we see that similar to the polarizability
data, the combined PNO++ approach introduces an error
relative to the PNO++ approach and begins at a higher T2 ratio
due to the orbitals kept from the PNO space at a TcutPNO

threshold of 10−6. Unlike the polarizability, contributions to
the specific rotation are not always positive but can also be
negative; this means that the truncation error shows itself as an
oscillation instead of approaching the reference value from the
same side. This is most clearly seen in Figure 6d, the DMA
system. The combined PNO++ method continues to show
convergence toward the reference value below a T2 ratio of 0.5,
in contrast to the PNO method for all systems.

3.4. Combined PNO++ Method. To explore the variation
in accuracy of the combined PNO++ method with truncation
of the PNO and PNO++ spaces, we plot the energies and
specific rotations keeping one threshold, either TcutPNO or
TcutPNO++, constant at 10

−6 while varying the other in Figures 7
and 8. We compare the results for correlation energies and
specific rotations, selecting the best result from the previous
section as a standard of comparison for each property. Thus,
we compare CCSD-level correlation energies using the PNO
method and dynamic polarizabilities and specific rotations
using the PNO++ method.
A natural outcome of combining the spaces is that while

fixing the orbitals obtained from one space, the convergence
behavior follows that of the other space. For example, when
keeping a fixed number of orbitals from the PNO space, the
combined PNO++ follows the PNO++ method as we add
orbitals from the PNO++ space. By comparing the leftmost
point in the energy and rotation graphs, we can see that fixing
the PNO++ threshold to 10−6 versus fixing the PNO threshold
to 10−6 results in a larger space to begin with, due to larger
numbers of orbitals being kept at the same threshold; however,
this difference is effectively avoided by plotting against T2

ratios, and the convergence behavior can be fairly compared.

Figure 8. CCSD specific rotations in deg dm−1 (gm/mL)−1 at 589 nm for (a) (H2)4, (b) (H2)7, (c) H2O2, and (d) DMA systems, computed using
the aug-cc-pVDZ basis set.
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When comparing the CCSD correlation energies in Figure 7,
we see that while neither combined method has the quick
convergence of the PNO method, fixing the TcutPNO threshold
brings us closer to the reference value than fixing the TcutPNO++
threshold at a given truncation. The addition of PNO++
orbitals does not improve the correlation energy as efficiently
as the addition of PNO orbitals, causing a crossover point in all
systems. Though the error in the energy computed using a
fixed TcutPNO is not seen to converge for H2O2 and DMA
Figure 7c,d at the largest T2 ratios considered, the energy will
converge to the full CCSD value as either of the thresholds
TcutPNO or TcutPNO++ are tightened.
Figure 8 shows the specific rotations computed using the

same sets of spaces as Figure 7 but compared here to the PNO
++ data, which was seen in the previous section to converge to
a value close to the reference relatively quickly for all systems.
Once again, the combined methods show slower convergence;
however, the combined method with the fixed number of
unperturbed orbitals shows convergence behavior to within
±14% of the reference value at a T2 ratio of 0.4 and higher for
all systems. Thus, the convergence behavior of the method
with the fixed TcutPNO follows the PNO++ behavior, while the
method with the fixed TcutPNO++ follows the nonconverging
PNO behavior seen in Section 3.3.3. Thus, to achieve the well-

behaved convergence of specific rotation seen with the PNO+
+ method, it is preferred to fix TcutPNO, in effect adding a fixed
number of PNO orbitals to the PNO++ space.

3.5. MP2-Level Corrections. MP2-level corrections were
computed for the PNO++ and combined PNO++ methods
using the method described in Section 2.4. The goal of the
MP2-level corrections was to recapture some of the accuracy
lost due to the truncation of the PNO++ space, by adding in
corrections computed as in eqs 14 and 15.
Figure 9 looks at the effect of corrections on the PNO++

and the combined PNO++ methods for the (H2)7 and DMA
systems. As expected, the CCSD correlation energies are
improved by the addition of MP2-level corrections; however,
there is some tendency to overcorrect at very small T2 ratios
Figure 9a,b. The polarizability and rotation data in Figure
9c,d,e,f do not show a substantial improvement in accuracy at a
given T2 ratio on the addition of an MP2-level correction.
Adding corrections computed in this way at the MP2 level

does not improve the description of the system’s response to
an external electromagnetic field. Since one normally computes
coupled cluster linear response properties using converged
coupled cluster amplitudes, and the corrections are computed
using MP2-level amplitudes, it could be argued that simply
adding the external field in the form of a perturbation to MP2-

Figure 9. CCSD correlation energies, dynamic polarizabilties, and specific rotations at 589 nm for (H2)7 ((a), (c), and (e), respectively) and 1,3-
dimethylallene (DMA) ((b), (d), and (f), respectively), computed using the aug-cc-pVDZ basis set.
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level amplitudes does not take into account the sensitive nature
of response properties.

4. CONCLUSIONS

In this work, we have examined a reduced-scaling approach
optimized for response properties, computing truncation errors
in CCSD correlation energies, dynamic polarizabilities, and
specific rotations for a few test systems. This approach, dubbed
PNO++, conserves the sparsity introduced into the wave
function by the PNO approach, while also having a relatively
diffuse orbital space, required for the accurate calculation of
higher-order response properties. The PNO++ method is not,
however, optimized for correlation energies and thus shows
large truncation errors in the CCSD correlation energy at small
fractions of the space. We find that incorporating a fixed
number of orbitals from the PNO space into the PNO++
method recovers accuracy in the CCSD correlation energy.
This combined PNO++ method allows for the truncation of a
large portion of the space, up to a T2 ratio of 0.5, without
sacrificing accuracy in both the response property and the
CCSD correlation energy. MP2-level corrections, while
improving the value of the correlation energy at highly-
truncated system sizes, do not improve the quality of the more
sensitive dynamic polarizabilty and optical rotation at similarly-
truncated sizes. A production-level implementation that
includes screening for weak pairs as well as method-specific
optimizations will be required to estimate the true computa-
tional savings obtained through truncation of the PNO++
space created using this form of perturbation-aware density for
the computation of linear response properties.
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(25) Schütz, M.; Werner, H. J. Low-order scaling local electron
correlation methods. IV. Linear scaling local coupled-cluster
(LCCSD). J. Chem. Phys. 2001, 114, 661−681.
(26) Yang, J.; Chan, G. K.-L.; Manby, F. R.; Schütz, M.; Werner, H.-
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(28) Koch, H.; Sańchez De Meraś, A.; Pedersen, T. B. Reduced
scaling in electronic structure calculations using Cholesky decom-
positions. J. Chem. Phys. 2003, 118, 9481−9484.
(29) Hohenstein, E. G.; Parrish, R. M.; Martínez, T. J. Tensor
hypercontraction density fitting. I. Quartic scaling second- and third-
order Møller-Plesset perturbation theory. J. Chem. Phys. 2012, 137,
1085.
(30) Schutski, R.; Zhao, J.; Henderson, T. M.; Scuseria, G. E.
Tensor-structured coupled cluster theory. J. Chem. Phys. 2017, 147,
No. 184113.
(31) Parrish, R. M.; Zhao, Y.; Hohenstein, E. G.; Martínez, T. J.
Rank reduced coupled cluster theory. I. Ground state energies and
wavefunctions. J. Chem. Phys. 2019, 150, No. 164118.
(32) Pawłowski, F.; Olsen, J.; Jørgensen, P. Cluster perturbation
theory. I. Theoretical foundation for a coupled cluster target state and
ground-state energies. J. Chem. Phys. 2019, 150, No. 134108.
(33) Gordon, M. S.; Fedorov, D. G.; Pruitt, S. R.; Slipchenko, L. V.
Fragmentation methods: A route to accurate calculations on large
systems. Chem. Rev. 2012, 112, 632−672.
(34) Epifanovsky, E.; Zuev, D.; Feng, X.; Khistyaev, K.; Shao, Y.;
Krylov, A. I. General implementation of the resolution-of-the-identity
and Cholesky representations of electron repulsion integrals within
coupled-cluster and equation-of-motion methods: Theory and
benchmarks. J. Chem. Phys. 2013, 139, No. 134105.
(35) Li, W.; Li, S. Divide-and-conquer local correlation approach to
the correlation energy of large molecules. J. Chem. Phys. 2004, 121,
6649−6657.
(36) Li, W.; Piecuch, P.; Gour, J. R.; Li, S. Local correlation
calculations using standard and renormalized coupled-cluster
approaches. J. Chem. Phys. 2009, 131, No. 114109.
(37) Meyer, W. PNO-CI Studies of electron correlation effects. I.
Configuration expansion by means of nonorthogonal orbitals, and
application to the ground state and ionized states of methane. J. Chem.
Phys. 1973, 58, 1017−1035.
(38) Edmiston, C.; Krauss, M. Pseudonatural orbitals as a basis for
the superposition of configurations. I. He2+. J. Chem. Phys. 1966, 45,
1833−1839.
(39) Edmiston, C.; Krauss, M. Pseudonatural Orbitals as a Basis for
the Superposition of Configurations. II. Energy Surface for Linear H
3. J. Chem. Phys. 1968, 49, 192−205.
(40) Ahlrichs, R.; Driessler, F. Direct determination of pair natural
orbitals. Theor. Chim. Acta 1975, 36, 275−287.
(41) Neese, F.; Hansen, A.; Liakos, D. G. Efficient and accurate
approximations to the local coupled cluster singles doubles method
using a truncated pair natural orbital basis. J. Chem. Phys. 2009, 131,
No. 064103.
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excitation energies for large molecules with density fitting. J. Chem.
Phys. 2006, 125, No. 104106.
(49) Gauss, J.; Werner, H. J. NMR chemical shift calculations within
local correlation methods: The GIAO-LMP2 approach. Phys. Chem.
Chem. Phys. 2000, 2, 2083−2090.
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