VLSI Hardware Architecture for Gaussian Process

Chunhua Deng!, Yongbin Gong?, Feng Han?, Siyu Liao', Jingang Yi?, Bo Yuan'
!Department of Electrical and Computer Engineering, Rutgers University
2Department of Mechanical and Aerospace, Rutgers University
{chunhua.deng, siyu.liao, jgyi}@rutgers.edu; {yg283, th233} @scarletmail.rutgers.edu; bo.yuan@soe.rutgers.edu

Abstract—Gaussian process (GP) is a popular machine learn-
ing technique that is widely used in many application domains,
especially in robotics. However, GP is very computation intensive
and time consuming during the inference phase, thereby bringing
severe challenges for its large-scale deployment in real-time
applications. In this paper, we propose two efficient hardware ar-
chitecture for GP accelerator. One architecture targets for general
GP inference, and the other architecture is specifically optimized
for the scenario when the data point is gradually observed.
Evaluation results show that the proposed hardware accelerator
provides significant hardware performance improvement than the
general-purpose computing platform.

Index Terms—Gaussian Process, VLSI

I. INTRODUCTION

Gaussian process (GP) [1]-[3] is a widely used machine
learning approach in many applications, such as robotics,
bioinformatics, finance etc. In the today’s “deep learning era”,
GP, as an elegant kernel method, is still a very important and
useful machine learning technique because of its unique non-
parametric flexibility and inherent interpretability. In particu-
larly, the recent discovery of the inherent equivalence between
GP and infinitely wide fully-connected neural network further
motivates the active research on GP technique.

However, a well-known challenge of GP is the scalability.
Due to the matrix inversion operation in the inference phase,
GP is inherently computation intensive and storage intensive,
which therefore hinders the potential large-scale deployment
of GP in many real-time applications. To date, though many
algorithm-level optimizations have been proposed to accelerate
GP inference and improve its scalability, the hardware acceler-
ation support, which is a key for the current success of neural
network, is still missing for GP.

In order to accelerate GP inference and promote its further
adoption in the wide range of applications, in this paper we
propose to develop customized hardware architecture of GP
accelerator. Considering the matrix inversion is the bottleneck
step in GP inference, we propose two hardware architecture
targeting to two different cases. One architecture, which is
equipped with explicit matrix inversion module, is used for
general scenario. And another architecture, which utilize the
recursive property of covariance matrix, is specifically opti-
mized for the scenario when the data point is observed grad-
ually. Evaluation results show that our proposed accelerator
provides significant hardware performance improvement over
the general-purpose computing platforms.

The rest of this paper is organized as follows. Section II
reviews the overall computing procedure of GP and also de-
scribes the optimization technique for computation saving. The

hardware architecture exploration is presented in Section III.
Section IV shows the evaluation results, and the conclusions
are drawn in Section V.

II. GAUSSIAN PROCESS COMPUTING PROCEDURE
A. Overall Computing Procedure of GP

A typical GP computation procedure consists of covariance
matrix calculation, matrix inversion, and matrix multiplication.
In general, the inputs of GP are a vector x and its correspond-
ing state vector y, and x, as the data point to be interpolated.
In the first step of GP, the covariance matrices K and K, are
calculated as follows:

K(i,j) = ofeamm), (1)
K.(i) = ole mz(@—a)’ 2)

where ¢ and j are within the range of N, which represents
the number of data samples. Notice that here the covariance
matrix K is inherently symmetrical, a useful property that
we will leverage to faciliate hardware design. In addition, o
and [are the hyperparameters that are determined from GP
training phase. Once covariance matrix K is obtained, it will
be used to calculate matrix K, = K+021, where o,, is another
hyperparameter and I is the identity matrix. Finally, the mean
vy« and variance X, of the outputs are estimated as follows

[3]:

Ys =
DI

K."K; 'y, 3)
o3 — Y. 4)

B. Reduced-complexity Matrix Inversion for GP

From Eq. 3 it is seen that the kernel computations of GP
are matrix multiplication, matrix inversion and matrix-vector
multiplication. Among them, matrix inversion is the bottle-
neck since it requires O(n?) computational cost. Therefore, a
reduced-complexity matrix inversion is the key for accelerating
GP and make it more attractive for real-time applications.

To that end, we propose to utilize the inherent characteristic
of the covariance matrix of GP to reduce the computational
cost of matrix inversion. More specifically, for the overall
matrix inversion scheme we adopt the block matrix inversion
algorithm [4]. Assume R is the to-be-inverted matrix that can
be represented in the block format as:

A B
R:[C D]. 5)

Then the inverse of R can be calculated as

A"+ AT'BMCA™' —A'BM

-1 _
R = —MCA! M ’

(6)
where M = (D — CA™'B)~'. As described in Eq. 6, the
inverse of a block matrix R can be expressed with the inverse
of its submatrix A. Such property is especially useful for the
matrix inversion in GP since in some practical applications,
such as robotics, the information involved with the observation
points is added to the covariance matrix gradually. In other
words, the covariance matrix of GP grows from k x k to (k+
1)x (k+1) each time when a new point is observed. Therefore,
in Eq. 5 when the (k+1) x (k+ 1) matrix R is partitioned to
make A as a k x k matrix, A is just the old covariance matrix
before observing the current new data point.

Based on such recursive construction principle, we can
utilize the inverse of A to quickly calculate R via Eq. 6. Notice
in such setting the matrices D, B and C in Eq. 6 are scalar,
column and row vectors, respectively. In addition, since R is
a symmetric matrix, B equals C7, it can be represented as:

A b
R = {bT d’])

where b is the vector and d is the scalar. Therefore, Eq. 6 can
be further simplified as:

1 [ATP AT IAT e AT Dk
R _{ —bTA Tk 1/k } ®
AT ssT /R —s/k
= { T /k 1/k} 7 ©)

where k = d — bTs and s = A~ 'b. Based on Eq. 9, we
can recursively calculate R™! via using A~! without explic-
itly performing matrix inversion for multiple times, thereby
significantly reducing computational costs.

III. HARDWARE ARCHITECTURE EXPLORATION

In this section we explore the efficient hardware architecture
for GP. We first propose a matrix inversion-based hardware
architecture, which is a general solution when the covariance
matrix is not gradually increased. We then propose another
more specialized hardware architecture that is customized
designed for the scenario when the inverse of covariance
matrix can be efficiently calculated as Eq. 9.

A. Matrix Inversion-based Hardware Architecture

Overall Architecture. Fig. 1 shows the overall hardware
architecture of the general GP accelerator, which contains
three major modules corresponding to three major operations
of GP computing procedure. First, the input vector x and
the point to be interpolated z,. are sent to the Covariance
Generation module to calculate the covariance, and the result
is stored in the Covariance SRAM and the K, SRAM. Then,
a matrix inversion unit (MIU) computes the matrix inversion
of the covariance matrix. After that, a post-processing module
is used to calculate y, and X, according to Eq. 3 and Eq. 4,
respectively.

| |
X« X Gaussian Process Hardware Architecture |y
Y

K- K.
SRAM

K+
4
K
Covariance Ky Matrix V'
SRAM Inversion

Fig. 1. The overall hardware architecture of Gaussian Process in general case.

; Q Q' :
: SRAMq rR'Q" i
MGS Matrix
R-l

Covariance
Generation

Post
Processing

Corvariance
=) &
] -1
! R 4 Y
?

'
1
'
i]
'
1

R-l Multiplication

SRAM;

" " Invrse
MGS Matrix Inversion

Fig. 2. Hardware architecture of MGS-based matrix inversion.

Matrix Inversion Module. Considering matrix inversion is
the bottleneck module, in this subsection we focus on this
component. In general, matrix inversion can be performed
using various methods, and one common approach is based
on QR decomposition (QRD), which also can be realized in
many hardware-friendly ways, such as Gram-Schmidt (GS)
[5], Givens rotation (GR) [6], Householder [7], etc. In this
work, we adopt Modified Gram-Schmidt (MGS) [8], [9],
which is proven to be numerically equivalent to GR but needs
less number of operations when the target matrix is square
[10]. Fig. 2 shows the hardware architecture of MGS QRD.
The MGS QRD module performs the QR decomposition and
generates an orthogonal matrix Q and a upper triangular matrix
R. After obtaining these two matrices, the inverse of input
matrix can be calculated as R_lQT, where the inversion of
the triangular matrix is quite straightforward [10]. Algorithm 1
describes the details of MGS algorithm, and its corresponding
hardware architecture is shown in Fig. 3. From Fig. 3, it is seen
that the main computations in MGS QRD are inner product,
W matrix update and norm calculation, which are accelerated
by three corresponding hardware blocks as inner-product unit
(IPU), W matrix update unit (WUU), and norm calculate unit
(NCU), respectively.

IPU: Inner-Product Unit WUU: W Update Unit NCU: Norm Calculate Unit

MGS QRD
W I SRAM,
w Q
Covariance ¥ IPU
sam [T SRAMy I
R
WUU ¢ :‘ SRAMg

Fig. 3. Hardware architecture of MGS-based QR decomposition.

Algorithm 1: Modified Gram-Schmidt QR Decompo-
sition Algorithm

Input : A, «,

Output: Q... Ryxn

1R=0

2 for j =1 tondo

W=A:j

fori=1toj—1do
R;; = (W, Q)
W=W- RZle

g =W/ Wl
Rj; = [WI|,

® N W

B. Matrix Inversion-free Hardware Architecture

Recall that as described in Eq. 9, the inverse of R can be
simply updated using A~!,b, and d when the data points
are gradually increased. Therefore for such special case the
corresponding hardware architecture is significantly simplified.
Fig. 4 shows the overall hardware architecture for this matrix
inversion-free design. Here the data read from the inverse
SRAM and covariance SRAM are used to calculate the vector
s and ssT. These calculated information, together with k,
are used to update the inverse SRAM for the next iteration.
More specifically, Fig. 5 describes the detailed procedure of
this matrix inversion-free operation via a 4-state finite state
machine (FSM) as follows:

1) IDLE state: When a start signal is detected in IDLE
state, the FSM enters into Cal_s state.

2) Cal_s state: The FSM reads the data in the Inverse
SRAM and the data in the Covariance SRAM to cal-
culate vector s, and writes the vector in the SRAMs.

3) Cal_k state: The FSM reads the data in the SRAMs and
data in the Covariance SRAM to get k.

4) Update Inverse SRAM state: Fig. 6 shows the four
regions of the Inverse SRAM (logically). For Update
Region, the data is read from the Inverse SRAM, added
the corresponding element of ss” /k, and then written
back the Inverse SRAM. For the Right Vector Region,
the Bottom Vector Region, and the New Element Re-
gion, the element value is generated according to Eq.
9 and written into their corresponding address of the
Inverse SRAM.

Computational Cost Analysis. The matrix inversion-free
operation brings great benefits of computational costs reduc-
tion. Assume the matrix A~ is of size n x n. First, it takes n?
multiplications to calculate vector s. Then, n multiplications
are needed for calculating k. With s and £, it takes 2n(n + 1)
multiplications to update the inverse matrix R™'. Therefore,
the total number of multiplication operations is 3n(n+1). On
the other hand, following the similar analysis principle, the
number of multiplications for MGS-based matrix inversion
is roughly 2n3 + (3n? + n)/2. Comparing the two roughly
estimated computational costs, it is seen that using recursive

Read,modify,write

Inverse SRAM

i (a?)

A-l

-

Matrix
Update
Unit

LSy SRAMs |5

. Hardware architecture of matrix inversion-free design.

SRAM_update_finish

Update
Inverse

Fig. 5. 4-state FSM for matrix inversion-free operation.

property of R leads to very significant computation saving.
It should be noted that the matrix inversion-free scheme
does not reduce computational cost, but also reduces storage
requirement. In MGS-based solution, besides the inversion
SRAM, two additional SRAMs are needed to store the matrix
Q and matrix R, and one SRAM is needed to store matrix W
in the MGS hardware module. Instead, as shown in Fig. 4 only
one additional SRAM is needed to store the internal vector s
for matrix inversion-free scheme, thereby significantly reduc-
ing SRAM cost and hence improving the energy efficiency.

Inverse SRAM | Read,modify,write Matrix
(A'1) » Update
Unit

[Update Region

[J Direct Write Region
. K
. A =-§
Update Region N
(nxn)
': 7| A\,itH:Au Jl+Sit+1SIt+1',.k
W Txn |1
o
Anj"'= 5"k

Fig. 6. The regions of Inverse SRAM (logically).

250

200

150

100

SRAM Size (KByte)

50

Matrix inversion-based HW Matrix inversion-free HW

Fig. 7. The SRAM size comparison between MGS-based architecture and
matrix inversion-free architecture.

10000

1000

100

10

Number of Kilo Operations

Matrix inversion-based HW Matrix inversion-free HW

Fig. 8. The number of operations comparison between MGS-based architec-
ture and matrix inversion-free architecture.

IV. EVALUATION

Evaluation Setting. In our evaluation the size of on-chip
SRAM is configured to support the number of observation
points as large as 128. For those applications which need more
data samples, external DRAM is necessary. The Inversion
SRAM and SRAMg, in Fig. 2 has the same size to the Covari-
ance SRAM, and SRAMpg, as the memory stores the upper
triangular matrix, only requires half the size of Covariance
SRAM. The detailed SRAM cost is analyzed as follows.

1) For MGS-based matrix inversion, it needs two 16384 x
32 SRAM to store matrix Q, and the final result,
respectively. It also needs a 8256 x 32 SRAM to store
matrix R and a 128 x 32 SRAM to store matrix W.

2) For matrix inversion-free solution, it only needs a
16384 x 32 SRAM to store the final result and a 128 x 32
intermediate SRAM to store vector s.

3) Both of these two architectures need a common Co-
variance SRAM and a K* SRAM, whose sizes are
16384 x 32 and 128 x 32, respectively.

In overall, it is seen that the GP accelerator based on MGS
matrix inversion takes 230654 Bytes SRAM, and the accel-
erator using matrix inversion-frees scheme only takes 99072
Bytes. Fig. 7 and 8 compares the SRAM cost and operation
cost, respectively, according to the evaluation setting. It is seen
that utilizing the matrix inversion-free scheme brings more
than half reduction on SRAM cost and about 85X reduction
on operations.

We further develop the hardware architecture using Verilog
HDL, and syntheis this RTL model using Synopsys Design
Compiler with 28nm CMOS technology. The synthesis result

H Proposed Architecture CPU

10000

1000
100
10

1 I I

Area Power

Normailized Area or Power

Fig. 9. The comparison with CPU.

shows that the entire hardware architecture has an area of 0.47

mm? and consumes 49 mW power. As shown in Fig. 9, the

proposed hardware accelerator achieves 2991x and 1857x
less area and power consumption, respectively, as compared
to conventional software implementation using Intel Core i7-
7700K CPU.

V. CONCLUSION

In this paper we develop two hardware architecture Gaus-
sian Process. One architecture is a general solution and another
one is specifically optimized for the scenario when data
point is gradually observed. Evaluation result shows that the
proposed hardware accelerator provides significant hardware
performance improvement than the general-purpose CPU.

VI. ACKNOWLEDGEMENT

This work is funded by National Science Foundation Award
CNS-1932370.

REFERENCES

[1] J. Quifionero-Candela and C. E. Rasmussen, “A unifying view of sparse
approximate gaussian process regression,” Journal of Machine Learning
Research, vol. 6, no. Dec, pp. 1939-1959, 2005.

[2] R. Urtasun, D. J. Fleet, and P. Fua, “3d people tracking with gaussian
process dynamical models,” in 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), vol. 1. IEEE,
2006, pp. 238-245.

[3] J. Wang, A. Hertzmann, and D. J. Fleet, “Gaussian process dynamical
models,” in Advances in neural information processing systems, 2006,
pp. 1441-1448.

[4] T.-T. Lu and S.-H. Shiou, “Inverses of 2x 2 block matrices,” Computers
& Mathematics with Applications, vol. 43, no. 1-2, pp. 119-129, 2002.

[5] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber,
and W. Fichtner, “Gram-schmidt-based qr decomposition for mimo
detection: Vlsi implementation and comparison,” in APCCAS 2008-2008
IEEE Asia Pacific Conference on Circuits and Systems. 1EEE, 2008,
pp. 830-833.

[6] M. Karkooti, J. R. Cavallaro, and C. Dick, “Fpga implementation of
matrix inversion using qrd-rls algorithm,” in Asilomar Conference on
Signals, Systems, and Computers, 2005, pp. 1625-1629.

[7]1 S. Aslan, E. Oruklu, and J. Saniie, “Realization of area efficient qr factor-
ization using unified division, square root, and inverse square root hard-
ware,” in 2009 IEEE International Conference on Electro/Information

Technology. 1EEE, 2009, pp. 245-250.

[8] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2012, vol. 3.

[91 A. Bjorck, Numerical methods for least squares problems. Siam, 1996,
vol. 51.

[10] C. K. Singh, S. H. Prasad, and P. T. Balsara, “Vlsi architecture for
matrix inversion using modified gram-schmidt based qr decomposition,”
in 20th International Conference on VLSI Design held jointly with 6th
International Conference on Embedded Systems (VLSID’07), 2007, pp.
836-841.

