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Abstract

Two main approaches for evaluating the qual-

ity of machine-generated rationales are: 1) us-

ing human rationales as a gold standard; and

2) automated metrics based on how rationales

affect model behavior. An open question, how-

ever, is how human rationales fare with these

automatic metrics. Analyzing a variety of

datasets and models, we find that human ra-

tionales do not necessarily perform well on

these metrics. To unpack this finding, we pro-

pose improved metrics to account for model-

dependent baseline performance. We then pro-

pose two methods to further characterize ra-

tionale quality, one based on model retraining

and one on using “fidelity curves” to reveal

properties such as irrelevance and redundancy.

Our work leads to actionable suggestions for

evaluating and characterizing rationales.

1 Introduction

Explanations in NLP often take the form of ra-

tionales, subsets of input tokens that are consid-

ered important to the model’s decision (DeYoung

et al., 2020). As interest in explainable AI has in-

creased, so has interest in evaluating the quality of

explanatory rationales. However, this is a challeng-

ing task because it can be difficult to pin down ex-

actly what constitutes “good” rationales for model

predictions (Jain and Wallace, 2019; Wiegreffe and

Pinter, 2019; Serrano and Smith, 2019).

Two main strategies that have been proposed

in recent work are: 1) to view human-generated

rationales as a gold standard and evaluate model-

generated rationales in comparison to them; and 2)

to assess the “fidelity” of a rationale to a prediction

using automatic metrics.

The human-gold-standard approach views ratio-

nales as an additional form of label that can be col-

lected alongside document-level labels. Because
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NLP tasks tend to involve human-generated labels,

it makes intuitive sense that human-generated ra-

tionales might be considered authoritative.

When human rationales are not available, eval-

uations of machine rationales turn to automatic

metrics. These metrics divorce rationale evaluation

from an external standard, seeking instead to judge

whether rationales are coherent relative to model

behavior. Popular recent metrics are sufficiency

and comprehensiveness (i.e., necessity), which as-

sess whether a rationale is sufficient/necessary for a

model prediction by comparing the model’s behav-

ior on the full input to its behavior on input masked

according to the rationale or its complement. We

use the term fidelity to refer jointly to sufficiency

and comprehensiveness.

To the best of our knowledge, no existing work

has systematically examined human rationales us-

ing these automatic metrics. However, this is an

important step towards evaluating rationales be-

cause it helps characterize the disparities between

the two types of approach. Are human rationales

sufficient to allow models to predict human labels?

Are they comprehensive? And what other insights

can we gain about human rationales and fidelity

metrics by performing this assessment?

In practice, both human rationales and automatic

metrics can fail to work as intended (Table 1). For

instance, human rationales may be insufficient be-

cause they fail to include needed information (e.g.,

the album title in Table 1.1), or non-comprehensive

because they miss redundant-yet-relevant informa-

tion (e.g., the second personal attack in Table 1.2).

By contrast, a truly sufficient rationale can be

deemed insufficient due to a model not learning

expected classification rules (e.g., “sits” ∼ “lay-

ing” in Table 1.3). While this type of failure is

inevitable in machine learning, more avoidable are

cases where model bias causes rationales to be eval-

uated incorrectly or inconsistently. For instance,
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Human rationale Sufficiency Comprehen-
siveness

Failure
type

Dataset

1. No Way Out is the debut studio album by ... Puff Daddy .
It was released on July 1 , 1997 , by his Bad Boy record label
. ... [SEP] 1997 was the year No Way Out was released.

0.005 0.224 Human FEVER

2. == what the f*** is your problem , b**** !!!!!!!!!!! == why
the f*** did you delete the dreamtime festival page , s******

1.0 0.001 Human WikiAttack

3. A man sits on a couch beside a colorful cushion with a pencil
in his hand. [SEP] The man is laying down on the couch.

0.002 0.999 Metric E-SNLI

4. :: makes sense . have a good one . 0.971 0.0 Metric WikiAttack

Table 1: Example rationales drawn from various datasets. Underlined tokens are rationales provided by humans.

Human annotators can fail to produce faithful rationales (row 1 and 2), and fidelity metrics themselves can be

misleading (row 3 and 4).

in Table 1.4, the model has learned a heavy bias

toward the no-attack class (i.e., the model predicts

no-attack for the empty input), so an empty ratio-

nale for a no-attack prediction is deemed perfectly

sufficient yet entirely noncomprehensive.

To investigate the empirical properties of human

rationales and automatic metrics, we analyze the

fidelity of human rationales across six datasets. We

show that human rationales do not necessarily have

high sufficiency or comprehensiveness based on

automatic metrics, and their fidelity varies greatly

from model to model and class to class.

We propose extensions to existing fidelity met-

rics and develop novel methods to further character-

ize the quality of human rationales. First, we note

that fidelity is highly model-dependent, and that

model behavior can result in misleading fidelity

results. We propose a normalization procedure to

allow for fair comparison of these metrics across

models, classes, and datasets. We show that this

normalization helps contextualize fidelity results

by accounting for baseline model behavior.

Second, we evaluate model accuracy on

full vs. rationale-only data, linking typical

output-sufficiency to performance outcomes (i.e.,

accuracy-sufficiency). We examine the effect of

allowing models to adapt to rationale-only data

during training, drawing a distinction between a

rationale’s “incidental” fidelity and its “potential”

fidelity to a model. We analyze the effect of these

two interventions and discuss their implications for

evaluation of (and learning from) human rationales.

Finally, we introduce the idea of “fidelity

curves”, which examine how sufficiency and com-

prehensiveness degrade as tokens are randomly oc-

cluded from a rationale. We discuss how the shapes

of these curves can be used to infer fine-grained

attributes about rationales, such as the extent to

which they contain redundant or highly interdepen-

dent tokens. We find that rationales in our datasets

vary greatly in their level of irrelevancy, redun-

dancy, and mutual dependence. We find that our

three classification tasks exhibit less dependence

and more redundancy in their rationales than our

three document/query-style tasks.

Evaluating rationales is a significant challenge.

We argue that in order to be confident in either

human rationales or automatic fidelity metrics,

we have to understand how these two evaluation

approaches interact with one another, and what

caveats they can reveal about each other. Our anal-

yses lead to the following actionable implications:

• Fidelity metrics are highly model-dependent and

should be normalized to assist interpretation.

• Models trained on rationale-only data can pro-

vide accuracy-based metrics to complement the

“incidental” metrics.

• “Fidelity curves” provide a novel way to infer

fine-grained qualities about rationales, such as

irrelevance and redundancy.

2 Datasets

The goal of this paper is to evaluate and charac-

terize human rationales. We analyze six datasets,

four drawn from the ERASER collection (DeYoung

et al., 2020), and two from other sources. They con-

sist of three single-text classification tasks and three

document/query-style tasks where it is important

to understand the relations between texts.

For each dataset, the human rationales have a

qualitative expected comprehensiveness based on

whether, by construction or design, they are in-

tended to contain all pertinent information for their

respective prediction task. Four of our six datasets

are expected to have comprehensive rationales.

• WikiAttack (Carton et al., 2018). A classifica-

tion dataset of 115,859 Wikipedia revision com-
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ployed in the ERASER benchmark (DeYoung et al.,

2020). Sufficiency measures how well rationales

can provide the same prediction as using full in-

formation, while comprehensiveness measures how

well rationales include all relevant information.

It remains an open question whether human-

generated rationales have good sufficiency and

comprehensiveness. We find that this is in fact

not necessarily the case. This result reveals a con-

tradiction in the evaluation of machine-generated

rationales: human-generated rationales are used

as a gold standard, but being similar to human-

generated rationales may not lead to high suffi-

ciency and comprehensiveness. Another impor-

tant observation from our experiments is that there

exists significant variation between datasets and

classes within the same dataset.

3.1 Formal Definitions & Experiment Setup

A rationale is sufficient if it contains enough infor-

mation to allow the model to make a prediction

close to what it would make with full information.

Formally, we represent rationales as a binary mask

α over the input x that indicates whether each to-

ken belongs to the rationale or not (1 to include,

0 to exclude). The sufficiency of rationales for a

given prediction ŷ is based on the difference in

class probability between using full information

and using only the rationale:

Suff(x, ŷ,α) = 1−max(0, p(ŷ|x)− p(ŷ|x,α)), (1)

where ŷ = argmax
y
p(y|x). Note that we use the

reverse of the difference so that higher sufficiency

indicates faithful rationales. We also enforce the

difference in class probability to be above 0, which

differs from DeYoung et al. (2020).1 This operation

bounds sufficiency to between 0 and 1.

Comprehensiveness (i.e., necessity) captures the

extent to which a rationale is needed for a predic-

tion, by assessing the model’s prediction on the

complement of the rationale (1−α). For a highly

comprehensive explanation, the model’s prediction

on its complement should differ greatly from its

prediction on the full information. As above, we

enforce this value to be bounded between 0 and 1:

Comp(x, ŷ,α) = max(0, p(ŷ|x)− p(ŷ|x,1−α)). (2)

Our definitions entail that a faithful rationale should

have both high sufficiency and comprehensiveness.

1Arguably, the sufficiency metric should not go above 1
no matter how good the rationales are. That said, our results
demonstrate similar qualitative trends from the definitions
without the max operation. See the appendix.

Implicit in the definition of sufficiency and com-

prehensiveness is a dependence on the properties

of the underlying model. To study the relation-

ship between model property and human rationale

fidelity, we experiment with a range of models: lo-

gistic regression, random forests, LSTM (Hochre-

iter and Schmidhuber, 1997) and RoBERTa (Liu

et al., 2019). We use the same train/dev/test splits

as in the original datasets. We report the result-

ing model with the best validation accuracy in

the main paper. To apply rationale masking, we

simply remove the tokens which correspond with

0s in the rationale mask. See the supplementary

material for implementation details. Our code

is available at https://github.com/BoulderDS/

evaluating-human-rationales.

3.2 Overall Results

Fig. 2a shows the accuracy of our models on each

dataset. As expected, RoBERTa shows the best

performance followed generally by LSTM, then

random forest and logistic regression. The only

exception is Movie, where LSTM models struggle

with the long texts (774 tokens on average) due to

the limited dataset size and vanishing gradients.

We find that human rationales do not neces-

sarily have high sufficiency and comprehensive-

ness. Moreover, human-generated rationales ob-

tain weaker sufficiency in highly accurate models

(Fig. 2b). In fact, human rationales have lower

sufficiency in RoBERTa than logistic regression or

random forest in five of six datasets. This finding

demonstrates that the sufficiency of an explana-

tion can be inversely correlated with model perfor-

mance, which is a problem for comparing explana-

tion methods across different models.

By contrast, strong models show better compre-

hensiveness scores for human rationales (Fig. 2c),

with values ranging from 0.3 to 0.5 for RoBERTa.

E-SNLI demonstrates the highest comprehensive-

ness in this model while Movie and MultiRC, both

expected to be non-comprehensive, respectively

achieve the 2nd and 4th highest comprehensive-

ness, in defiance of our expectations.

Moving forward, we focus on RoBERTa as it

is the most accurate and represents the industry

standard for general NLP.

Classes matter. Breaking down fidelity by class

reveals further nuances. Fig. 3b shows that suf-

ficiency is mostly even between classes, though

significant differences exist for E-SNLI. Surpris-









9301

Sufficiency Comprehensiveness

brevity fast drop fast drop
redundancy slow drop fast drop
irrelevance slow drop slow drop
dependency fast drop slow drop

Table 4: Implications of irrelevance and redundancy on

sufficiency and comprehensiveness.

ple, human rationales in MultiRC has lower (nor-

malized) sufficiency based on output probability

than SST but provide better accuracy sufficiency.

5.2 Fidelity Curves

Sufficiency and comprehensiveness struggle to con-

vey more fine-grained qualities of human rationales.

One problem that is not revealed by these measures

is irrelevance. A rationale can be crammed with

tokens that are not pertinent to prediction and still

have high sufficiency and comprehensiveness, the

most extreme example being a rationale that com-

prises the entire text.

We propose to assess rationale irrelevancy by

looking at how sufficiency and comprehensiveness

degrade as tokens are removed from the rationale.

A rationale bloated with many irrelevant tokens

should demonstrate a slow dropoff in sufficiency

as tokens are removed, since many of these tokens

will not be contributory. A rationale with more

informational brevity should show a faster drop,

as tokens are removed which were needed for pre-

diction. We assess this by creating a “sufficiency

curve” which traces this degradation at higher and

higher occlusion rates.

In general, we suggest that a slow drop in suffi-

ciency can be attributed to irrelevant or redundant

tokens, while a fast drop in sufficiency can be due

to dropping tokens that are either individually pre-

dictive or pieces of dependencies where multiple

tokens are required to make a prediction. We can

tell the difference by looking at the comprehensive-

ness curve — if individually predictive tokens are

leaked into the rationale complement, the compre-

hensiveness should fall quickly, while if pieces of

dependencies are, it should fall slowly. Table 4

summarizes our expectations.

We construct these fidelity curves as follows: For

a given rationale α and each of a series of replace-

ment rates R = 0, 0.05, 0.1, ..., 1.0, we generate a

reduced mask αr by randomly setting r fraction of

tokens to 0 from the rationale. By calculating the

mean normalized sufficiency and comprehensive-

ness over several trials for each replacement rate,

we can draw a “sufficiency curve” (Fig. 7a) and a

“comprehensiveness curve” (Fig. 7b).

Movie, WikiAttack, and SST exhibit slow drops

in their sufficiency curves, showing that rationales

in these datasets contain relatively many irrelevant

or redundant tokens, and therefore remain sufficient

even as some of their tokens are removed. Their

comprehensiveness curves complete the story. The

curves for all three datasets show relatively fast

drops, implying redundancy rather than irrelevancy.

In comparison, E-SNLI, FEVER, and MultiRC

all display relatively fast drops in sufficiency, im-

plying fewer irrelevant or redundant tokens. They

demonstrate generally higher comprehensiveness

but somewhat different shapes (E-SNLI and Mul-

tiRC mostly show a slow drop, indicating depen-

dence, while FEVER shows a fast drop, indicating

irrelevance). The difference here between FEVER

and MultiRC is interesting as they are similar in

task, text, and rationale properties (Table 2). A pos-

sible explanation is that rationales in MultiRC are

designed to consist of multiple mutually-dependent

sentences whereas those of FEVER are single con-

tiguous snippets of the text. This greater level of

dependency is thus reflected in the slow-dropping

comprehensiveness curve of MultiRC.

Hence, we find that human rationales for the

three classification tasks are characterized by re-

dundancy in human rationales, particularly Movie.

The three document/query-style datasets, by con-

trast, are characterized by a relatively high degree

of token dependency, explaining their relatively

high comprehensiveness in Fig. 4c. While this ob-

servation is intuitive given the semantics of these

tasks, it demonstrates the effectiveness of the pro-

posed fidelity curves.

6 Related Work

We summarize additional related work in the fol-

lowing three areas.

Feature attribution. Feature attribution seeks to

explain model behavior by attributing model predic-

tions to specific inputs. Popular techniques include

LIME (Ribeiro et al., 2016), integrated gradients

(Sundararajan et al., 2017), SHAP (Lundberg and

Lee, 2017), and attention mechanisms (Lei et al.,

2016; Paranjape et al., 2020).

Human rationales. Many recent datasets in NLP

have been released with rationales accompanying

the document-level labels. ERASER (DeYoung

et al., 2020) includes three additional datasets: CoS-
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A Derivation of Rationales for SST

The Stanford Sentiment Treebank (SST) consists

of 9,620 short movie review snippets formatted

as syntactic trees with a sentiment label in [-2,2]

for each node, ranging from the single-token leaf

nodes to the top-level node corresponding to the

whole snippet.

We use a heuristic algorithm for flattening this

representation into a 1-dimensional rationale for

each document: beginning with the top node and

traversing the tree in a breadth-first manner, we

consider a node to be part of the rationale if the

magnitude of its sentiment is greater than that of

any of its descendants. That is, if the sentiment of

a node cannot be explained by any of its syntactic

constituents, then we consider it to be explanatory

and include it in the top-level rationale.

Practically speaking, this results in a rationale

dataset that is comprehensive by design, including

all high-sentiment words and phrases that could

explain the overall sentiment of each snippet. Table

5 shows a few examples of the resultant rationales.

B Model Implementation Details

We consider the following models:

• Logistic regression. We use the scikit-

Learn implementation of logistic re-

gression (Pedregosa et al., 2011), scan-

ning across regularization constant

(C = {0.001, 0.01, 0.1, 1, 10, 100, 1000}).

• Random forest. We use the scikit-

Learn implementation of random forests,

scanning across number of estimators

({16, 32, 64, 128, 256, 512}).

• LSTM (Hochreiter and Schmidhuber, 1997). We

use the Pytorch (Paszke et al., 2017) implementa-

tion of a 1-layer BiLSTM, tuning across hidden

layer size ({100, 200, 300}) and learning rate

({5e−4, 1e−3, 2e−3}).

• RoBERTA (Liu et al., 2019). We use the Hug-

gingFace (Wolf et al., 2020) pretrained distri-

bution of this model with roughly 117m pa-

rameters. We tune the learning rate across val-

ues {5e−6, 1e−5, 2e−5}, with 50 linear warmup

steps.

We train all LSTM models for 10 epochs and

RoBERTa models for 5 epochs, tuning on devel-

opment set accuracy. All neural network training

was done on two 24G Nvidia Titan RTX GPUs.

Training time varied from dataset to dataset, from

minutes for SST to roughly 6 hours per model for

E-SNLI.

To apply masking, we simply remove the tokens

corresponding with 0s in the rationale mask. We al-

ways keep special tokens such as [CLS] and [SEP].

Following DeYoung et al. (2020), we flatten the

three document/query-style datasets to single docu-

ments by simply appending the query to the docu-

ment with a “[SEP]” token.








