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Abstract—The concept of Multi-access Edge Computing (MEC) has been recently introduced to supplement cloud computing by
deploying MEC servers to the network edge so as to reduce the network delay and alleviate the load on cloud data centers. However,
compared to the resourceful cloud, MEC server has limited resources. When each MEC server operates independently, it cannot handle
all computational and big data demands stemming from users devices. Consequently, the MEC server cannot provide significant gains in
overhead reduction of data exchange between users devices and remote cloud. Therefore, joint Computing, Caching, Communication,
and Control (4C) at the edge with MEC server collaboration is needed. To address these challenges, in this paper, the problem of joint 4C in
big data MEC is formulated as an optimization problem whose goal is to jointly optimize a linear combination of the bandwidth consumption
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and network latency. However, the formulated problem is shown to be non-convex. As a result, a proximal upper bound problem of the
original formulated problem is proposed. To solve the proximal upper bound problem, the block successive upper bound minimization
method is applied. Simulation results show that the proposed approach satisfies computation deadlines and minimizes bandwidth

consumption and network latency.

Index Terms—Communication, computation, caching, distributed control, multi-access edge computing, 5G network

1 INTRODUCTION

1.1 Background and Motivations
N recent years, wireless users have become producers and
consumers of contents as their devices are now embedded
with various sensors [1], which help in creating and
collecting various types of data from different domains such
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as energy, agriculture, healthcare, transport, security, and
smart homes, among others. Indeed, by the year 2020, it is
anticipated that 50 billion things will be connected to the Inter-
net, which is equivalent to 6 devices per person on the planet
[2]. Therefore, the devices of wireless users will be anywhere,
anytime, and connected to anything [3]. With large-scale inter-
connection of people and things, there will be a tremendous
growth of data traffic with different characteristics (unstruc-
tured, quasi-structured, and semi-structured) whose scale, dis-
tribution, diversity, and velocity fall into a big data framework
that requires big data infrastructure and analytics. Since the
resources (e.g., battery power, CPU cycles, memory, and 1/O
data rate) of edge user devices are limited, edge user devices
must offload computational tasks and big data to the cloud
[4]. However, for effective big data analytics of delay sensitive
and context-aware applications, there is a strong need for low-
latency and reliable computation. As such, reliance on a cloud
can hinder the performance of big data analytics, due to the
associated overhead and end-to-end delays [3], [5].

To reduce end-to-end delay and the need for extensive user-
cloud communication, Multi-access Edge Computing (MEC) has
been introduced by the European Telecommunications Stand-
ards Institute (ETSI) as a supplement to cloud computing
and mobile edge computing [6]. MEC extends cloud comput-
ing capabilities by providing IT-based services and cloud
computing capabilities at the networks edges. In other words,
MEC pushes 4C to the edge of the network [7]. Typically, MEC
servers are deployed at the Base Stations (BSs) of a wireless
network (e.g., a cellular network) for executing delay sensitive
and context-aware applications in close proximity to the users
(8], [9], [10].
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Data and computational task offloading to nearby MEC
servers can reduce data exchange between users and the
remote cloud. In other words, data will be offloaded, proc-
essed, analyzed, and cached at the edge of the network, at
MEC servers, i.e., at near where data is created. To achieve
this, we need to have caching storage, big data platform, and
analytics software in the MEC server. However, compared to
the remote cloud, an MEC server has limited resources.
Therefore, in order to satisfy the users” demands, MEC serv-
ers (located in the same area) need to collaborate and share
resources. Furthermore, since offloading data for being
processed, analyzed, and cached at the MEC server requires
communication resources, rather than considering each C
(Computing, Caching, Communication, or Control) indepen-
dently, we need to have a joint 4C model that reduces
communication delay, computational delay, and backhaul
bandwidth consumption.

1.2 MEC Challenges for Dealing with Big Data

The most important challenges that MEC is still facing when
dealing with big data and edge analytics are:

e Users offload tasks and corresponding data with
varying rates. In other words, data from multiple
users may reach MEC servers too rapidly with a finite
or infinite flow (e.g., streaming data), and this data
needs to be processed immediately (e.g., live stream
computation and caching, real-time analytics) [11].
An MEC server will find it challenging to deal with
such data due to its scale, diversity, and timeliness.
Therefore, for fast, parallel, and distributed process-
ing, MEC servers must have big data platform and
analytics applications for splitting data volume, dis-
tributing computations to multiple computing nodes,
replicating data partitions, and recovering data when
needed.

e MEC server resources are limited compared to the
remote cloud [12]. Therefore, when each MEC server
operates independently, it cannot efficiently handle
big data stemming from users devices and signifi-
cantly relieve the data exchange between users devi-
ces and the remote cloud. Therefore, to reduce the
delay, cooperation among MEC servers for resource
sharing and optimization of the resource utilization
are needed.

e The integration of MEC with a mobile network envi-
ronments raises a number of challenges related to the
coordination of both MEC server and mobile network
services. Therefore, we need joint 4C for big data
MEC is needed.

1.3 Contributions

In this work, we address these challenges of joint 4C for big
data processing in MEC. The main contributions of this
paper are summarized as follows:

e We propose a framework for joint 4C for big data
MEC, where big data computation and caching func-
tions are performed at an MEC server instead of being
sent to a remote cloud. This allows the reduction of
the end-to-end delay and data exchange between
users and a remote cloud.
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e For satisfying users demand and efficiently executing
computational tasks and data caching in big data
MEC, we introduce an MEC-based collaboration
space or cluster, where MEC servers located in the
same cluster collaborate with each other. The aim of
the collaboration in MEC is to reduce the backhaul
network traffic, minimize delay in coupled 4C, and
maximize resource utilization.

e Inorder to minimize the communication delay among
MEC servers and allow collaboration, inspired by the
unsupervised machine learning algorithm called the
Overlapping k-Means Method (OKM) [13], we pro-
pose OKM for Collaboration Space (OKM-CS), which
is an application of the standard OKM algorithm in
the context of an MEC scenario. The OKM-CS allows
each MEC server to participate in more than one col-
laboration space. A collaboration space enables collab-
oration among MEC servers, which is based on not
only distance measurements but also the available
resources.

e  Within each collaboration space, we formulate a col-
laborative optimization problem which minimizes a
linear combination of bandwidth consumption and
network latency, subject to the local computation
capabilities of the users, computation deadlines, and
MEC resource constraints. The formulated problem
is shown to be non-convex, and hence, in order to
solve it, we propose a proximal upper-bound prob-
lem of the original problem and apply the Block Suc-
cessive Upper-bound Minimization (BSUM) method
since it is considered to be a suitable framework for
big-data optimization [14].

The rest of the paper is organized as follows. In Section 2,
we discuss some related works, while Section 3 presents the
system model. Section 4 discusses in detail our joint 4C for
big data MEC, while Section 5 provides a performance eval-
uation. We conclude the paper in Section 6.

2 LITERATURE REVIEW

The existing, related works can be grouped into four catego-
ries: (i) big data and caching, (ii) joint caching and computa-
tion, (iii) joint caching and communication, and (iv) joint
caching, computation, and communication.

Big Data and Caching. In [15], the authors proposed a big
data framework for mobile network optimization using data
from both network features and user features. Furthermore,
in [16], the authors proposed centrality measures for content
caching in mobile wireless networks. However, implement-
ing the big data framework at the network edge can be chal-
lenging due to the fact that caching spaces at edge nodes are
usually small, which can potentially result in a low hit ratio.
To overcome this challenge, in [9], the authors highlighted
the need of having cooperative caching that allows low
latency content delivery. In addition to caching, in [3], the
authors tried to establish connections between big data and
caching in 5G wireless networks, where statistical machine
learning is applied for estimating content popularity. Other
machine learning approaches are surveyed in [17].

Joint Caching and Computation (2C). In [18], the authors
combined caching and computation at BSs for decre-
asing delays occurring during communication between
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applications running on user devices and a remote cloud.
They developed a resource management algorithm that
guides the BS to jointly schedule computation offloading
and data caching allocation. In [19], the idea of low-latency
computations is explored using the online secretary frame-
work, where the computational tasks are distributed
between the edge networks and cloud. Furthermore, for effi-
cient resource usage at the BS level, in [20], the authors pro-
posed a collaborative video caching and processing scheme
in which MEC servers can assist each other. They formu-
lated the collaborative joint caching and processing problem
as an optimization problem that aims to minimize the back-
haul network cost, subject to cache capacity and processing
capacity constraints. In [21], the authors proposed a joint
mobility aware caching and small cell base station place-
ment framework. Also, the authors discussed the differen-
ces and relationships between caching and computation
offloading. Furthermore, in [22], the authors proposed pre-
fetching caching at WiFi Access Points (APs), where caching
is based on aggregate network-level statistics and network-
level mobility prediction. This helps mobile users to down-
load contents from APs rather than to get contents from the
original content servers. In addition, to address the mobile
flashcrowd demands, the authors in [23] proposed a proac-
tive caching approach for prefetching and caching contents
in small cells based on user mobility prediction.

Joint Caching and Communication (2C). In [24], in order to
significantly reduce redundant data transmissions and
improve content delivery, the authors highlighted the need
of having efficient content caching and distribution techni-
ques. They proposed an optimal cooperative content caching
and delivery policy in which both femtocell BSs and user
equipment participate in content caching. In [25], the authors
studied the problem of resource allocation along with data
caching in radio access networks (RANSs). They proposed
a collaborative framework that leverages device-to-device
(D2D) communication for implementing content caching. In
[26], a communication framework related to cache-enabled
heterogeneous cellular networks with D2D communication
was studied. In order to satisfy quality-of-service (QoS)
requirements for the users, the authors formulated a joint
optimization problem that aims at maximizing the system
capacity in which bandwidth resource allocation was consid-
ered. The problem of joint caching and communication for
drone-enabled systems is also studied in [27].

Joint Caching, Computation, and Communication (3C). In [28],
the authors combined 3C for designing a novel information
centric heterogeneous network framework that enables con-
tent caching and computing in MEC. They considered vir-
tualized resources, where communication, computing and
caching resources can be shared among all users associated
with different virtual service providers. Since MEC can
enhance the computational capabilities of edge nodes, in [29],
the authors formulated a computation offloading decision,
resource allocation and data caching framework as an optimi-
zation problem in which the total revenue of the network is
considered. Furthermore, in [30], the authors proposed an
energy-efficient framework that considers joint networking,
caching, and computing whose goal is to meet the require-
ments of the next generation of green wireless networks.
Moreover, for MEC applications, in [31], the authors explored
the fundamental tradeoffs between caching, computing, and
communication for VR/AR applications. Finally, the work in
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[32] proposed a joint caching and offloading mechanism that
considers task uploading and executing, computation output
downloading, multi-user diversity, and multi-casting.

In [3], [15], [16], [18], [28], [29], [30], and [32], the authors
consider edge caching. However, edge nodes are resources-
limited as compared to the cloud. Therefore, without cooper-
ation among edge nodes, edge caching can result in a low
cache hit ratio. In order to overcome this issue, in [9] and
[20], the authors proposed the idea of a collaboration space
for edge nodes. However, the works in [9] and [20] do not
provide any rigorous framework for analyzing the formation
of collaboration spaces. Furthermore, a user may request a
content format (e.g., avi), which is not available in the cache
storage. Instead, the cache storage may have other content
formats (e.g., mpeg) of the same content which can be con-
verted to the desired format, by using certain computations,
and then transmitted to the requesting user. This process of
serving cached content after computation was not consid-
ered in [21], [24], [25], [26], [27]. Finally, the works in [18],
[28], [29], [30] do not take into account any user deadlines for
performing computations, which can be impractical.

To this end, our proposed approach will have several key
differences from these prior approaches including: (i) while
many related works (e.g.,[28], [29], [30], [31], [32]) focus on
2C and 3C, in our proposed approach, we combine 4C in big
data MEC in which the computation capabilities of the user
devices, computation deadline, size of input data, and MEC
resource constraints are considered, (ii) The proposed coll-
aboration between MEC servers, where MEC servers are
grouped in collaboration spaces via the OKM-CS algorithm,
is new in MEC, and thus is not only based on distance meas-
urements, but also based on the availability of resources, (iii)
Within each collaboration space, for solving the formulated
collaborative optimization problem, we apply the BSUM
method, which is not yet utilized in existing MEC solutions.
The BSUM method is a novel and powerful framework for
big-data optimization [14]. The BSUM method allows the
decomposition of the formulated optimization problem into
small subproblems which can be addressed separately and
computed in parallel.

3 SysTeEm MODEL

As shown in Fig. 1, we consider an MEC network composed
of a set M of MEC servers, each of which is attached to one
BS. Unless stated otherwise, we use the terms MEC server
and BS interchangeably.

Each MEC server collaborates with other MEC servers by
sharing resources. Therefore, we group the BSs into collabora-
tion spaces (i.e., clusters). Unless stated otherwise, we use the
terms collaboration space and cluster interchangeably. In
order to minimize the communication delay among MEC
servers, our clustering process for BSs is based on proximity
(distance) measurements, where BSs that are close enough
will be grouped in the same cluster. Moreover, in our collab-
oration space, we focus on geographic space coverage rather
than geographical space partitioning. As an example, some
MEC servers in the hotspot area may want to collaborate
with MEC servers that are not in the hotspot. To achieve this
objective, we consider an overlapping clustering method
that allows one BS to belong to more than one cluster and to
share resources not only based on distance measurements
but also based on resource availability and utilization.
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Fig. 1. lllustration of our system model.

For creating collaboration spaces, we propose OKM-CS,
which is an application of the standard OKM algorithm [13] in
MEC. The merit of the OKM algorithm lies in its elegant sim-
plicity of implementation over other overlapping methods such
as Weighted OKM (WOKM), Overlapping Partitioning Cluster
(OPC), and Multi-Cluster Overlapping k-Means Extension
(MCOKE) [33]. OKM-CS is described in Section 4, Algorithm 1.

In a collaboration space, each MEC server m has both cach-
ing and computational resources that are divisible. We let C,,,
and P,, be, respectively, the cache capacity and computa-
tional capacity of MEC server m. In any given collaboration
space, MEC servers can exchange data and tasks based on
their available resources. Moreover, we assume that the MEC
servers within a collaboration space belong to the same
Mobile Network Operator (MNO), and this MNO has a total
storage capacity C, and a total computation capacity P. The
total cache storage pool for the MNO in a collaboration space
is given by: C' =3, ., C;,, while the computation pool of
the MNOis givenby: P ="\, P..

We assume that each MEC server m uses a Resource Allo-
cation Table (RAT) for keeping track of the available resour-
ces in the collaboration space, including CPU utilization,
RAM, and storage capacity. In order to facilitate joint 4C in
big data MEC, in collaboration space, MEC servers exchange
RAT updates. However, for the resources that are not avail-
able in a collaboration space, MEC server m forwards the
associated requests to the remote Data Center (DC). There-
fore, for effective resource utilization, resources are sliced for
being allocated to multiple users.

We consider a set K of users, where each user k € K is con-
nected to its nearest BS, referred to as its home BS. The set of
users connected to the same BS m € M is denoted by a subset
K., € K. We assume that the user devices have limited resour-
ces for both computation and caching. Therefore, instead of
sending resource demands to the DC, based on users demand,
MEC servers can provide computation and storage resources
to the users. As an example, drones in professional sports
activities can cover the event scenes and send live stream vid-
eos to their nearest MEC server m for live stream caching,
processing, and distribution. Based on the network conditions,
users demand, and device capabilities, the cached data can be
served as is or after computation (e.g., video transcoding).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

TABLE 1
Summary of Our Notations
Notation Definition
M Set of MEC servers, |M| = M
K Set of users, |K| =
Cn Total cache capacity at MEC server m € M
P, Total computation capacity at MEC server m € M
s(dy) Size of data dj., Vk € £
T Computation deadline, for k € £
Zk Computation workload, Vk €
/\;]/f Request arrival rate for data dj,
at MECm e M
Uy Execution latency, Vk € K
E. Computation energy, Vk € K
E, Available energy in user device k € K
! Computation offloading decision variable,
for k € K, and m € M
" Computation offloading decision variable,
form,n € M
wfn Data caching decision variable, Vk € IC,,, m € M
v Spectrum efficiency, Vk € K,,, and m € M
Ry Instantaneous data rate, Vk € K,,,, and m € M
’Z”"’ Offloading delay, Vk € K, and m € M
Ty Task from user k € C
T, Total executing time of offloaded task,
Vke K, meM
O(z,y) Total delay
V(z,y,w) Alleviated backhaul bandwidth

In our model, each user device k € K has an application
that needs to use computation and caching resources, such
as augmented reality, online gaming, crowdsensing, image
processing, or CCTV video processing.

We consider a binary task offloading model in which a
task is a single entity that is either computed locally at a user
device or offloaded to the MEC server. For each user k, we
define a task 7}, = (s(dx), Tr, Z), Yk € K, where s(dy) is the
size of data dj, from user k in terms of the bits that are needed
as an input of computation, 7y is the task computation dead-
line, and Z; is the computation workload or intensity in terms
of CPU cycles per bit. Furthermore, we assume that the
resource demands of different users are independent.

In order to satisfy users demand, as depicted in Fig. 2, we
consider each MEC server to be a small big data infrastruc-
ture that supports the big data cloud requirements defined in
[34], including (¢) Easy setup of virtual machines, mounting
file systems, and deployment of big data platform and analyt-
ics software such as Hadoop, Spark, Storm, and Splunk; (i)
Dynamic management of computation, storage, and network
resources, either on physical or virtual environments; (i)
Elasticity and scalability in computation, storage and net-
work resources allocation; (iv) Development, deployment
and utilization of big data analytics with fast access to data
and computing resources; and (v) Support for multi-dimen-
sion data handling, where data may reach the MEC server in
different forms and characteristics. The summary of our nota-
tions for this paper is available in Table 1.

4 PROPOSED JOINT COMMUNICATION,
COMPUTATION, CACHING, AND CONTROL

In this section, we describe, in detail, our proposed approach
for joint communication, computation, caching, and distrib-
uted control in big data MEC, where MEC server resources
are virtualized and shared by multiple users. Resource
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NDIKUMANA ET AL.: JOINT COMMUNICATION, COMPUTATION, CACHING, AND CONTROL IN BIG DATA MULTI-ACCESS EDGE COMPUTING

Big Data Analytics Software

Big Data Platform

Fig. 2. lllustration of big data MEC.

demands that are not satisfied at one MEC server can be sat-
isfied by any other MEC server in the same collaboration
space.

4.1 Collaboration Space

For forming collaboration spaces, we propose OKM-CS.
OKM-CS seeks to cluster the BSs into r clusters such that
the below objective function is minimized:

r

TAMY) =D Y llm = ®(m)]?, M

i=1 meM;

where M; C M represents the ith cluster. Furthermore, as
defined in [13], ®(m) defines the average of centroids (m.,)
of the clusters to which the BS m belongs, and is given by:

chl eA” M

®(m) = |ATYL| Y

2

where A" defines multi-assignment for BS m: {m,,|m € M},
which means that A" is a set of all centroids m,, for which
m € M;. In OKM- CS a centroid BS refers to a BS which is at
the center of each cluster, i.e., the centroid BS is unique in
each cluster. Furthermore, each BS m belongs to at least one
cluster, where |J_;M; = M represents the total coverage.
Moreover, BSs are assigned to centroids based on geographi-
cal locations, while the overlapping clusters allow the MEC
servers to participate in different clusters so as to cooperate
and share resources.

The original OKM algorithm randomly chooses r clus-
ters. However, in OKM-CS for 4C, the number of clusters is
chosen based on the network topology, which is known a
priori by the MNO. Furthermore, when the MNO updates
its network topology, OKM-CS needs to update the clusters
and their associated centroids. However, we assume that
the network topology does not change frequently. The
OKM-CS is presented in Algorithm 1.

Algorithm 1 starts with an initial set of r clusters and cen-
troid {m{"’}/_,, and derives new coverage (M7 Then, it
iterates by computing new assignments and new centroids
{m (+1}7 | leading to the new coverage (M 1)}Z 1- The iter-
ative process continues until the convergence criterion on
I({Mgt Y — I({M?H }_1) < e) is satisfied, where € is a
small positive number. Furthermore, since our focus is on
the collaboration among the MEC servers in the same collab-
oration space, for brevity, hereinafter, we omit the subscript
on M; and analyze 4C for one collaboration space.
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Algorithm 1. OKM for Collaboration Space (OKM-CS)

1: Input: M: A set of BSs with their coordinates,
t,n: Maximum number of iterations, ¢ > 0;
: Output: {M?H)}Z:l : Final cluster coverage of BSs;
: Choose r and initial clusters with {m )17_, centroid;
4: For each BS m, compute the a331gnment
A" by a551gn1ng bs m to centroid {m )1, and derive ini-

tial coverage {M'”}7_,, such that M\ e A"y,
5: Initialize t = 0;
6: For each cluster M , compute the new centroid,
m*V by grouping M'";
7: For each BS m and assignment A compute new assign-

ment A" by assigning bs m to centroid {m{*V}_| and
(t+1)
%

@W N

= {m|m{

derive new coverage {M\""V}"_
8: If Equation (1) does not converge or t,,, > torZ ({M } -
TAMY ) > ¢ set t =t + 1, restart from Step 6. Other-
wise, stop and consider {M; (t+1) }i_, as the final clusters.

In a collaboration space, for the MEC resources, each
user k must submit a task demand 7}, to its MEC server
m. Then, the MNO maps the demands into the resource
allocation that each user k requires. Therefore, to help
the users prepare their demands, the MNO advertises
the resources available to them as well as the sum of the
demands placed in the collaboration space. However,
the MNO does not reveal the demands of the users to
each other.

We use v, (Cak, Pim, R]') to represent the resource alloca-
tion function for each user k at MEC server m, where ¢y, is
used to denote the caching resource allocation for user data
of size s(dy) (.e., car = s(di)), prm is used to denote the
computational resource allocation, and R} is used to denote
the communication resource allocation.

The MNO allocates resources based on weighted pro-
portional allocation [35], which is practical in systems
such as 4G and 5G cellular networks [36], [37]. Each user
k receives a fraction of the resources at the MEC server m
based on its demand. Furthermore, when 7, =0 and
Zr, = 0, we consider that the user needs only communica-
tion resources for offloading data dj, and caching resour-
ces for caching its data. Therefore, an MEC server caches
data di, and waits for the data to be requested later,
where d;, can be served as is or after computation. How-
ever, when s(d;) #0, 7, #0, and Z; # 0, the MEC server
computes, caches the output data of dj, and returns the
computation output to user £.

4.2 Communication Model

To offload a task from a user to the MEC server, the network
will incur a communication cost (bandwidth). Therefore, the
communication scenarios for task offloading are shown in
Fig. 3 and explained next.

Scenario (a). For the resources available at BS m € M,
user k € K obtains resources from its MEC server over a
wireless channel. We define z}* € {0,1} as a computation
offloading decision variable, Wthh indicates whether or not
user k offloads a task to its home MEC server m via a wire-
less channel (denoted by W. channel in Fig. 3).

1, if T}, is offloaded from user k to BS m,

m o__
Tk = {O, otherwise. @)
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Fig. 3. Collaboration space for MEC with three typical scenarios (a), (b),
and (c), which are explained in Section 4.2.

Therefore, the spectrum efficiency [28] for user device &k will
be given by:

|Gy
)/Zl—logQ(l—Q—M)?VkGIC, m e M, 4)
Ok

where p, is the transmission power of user device k, |G}'|” is
the channel gain between user device k and BS m, and o7 is
the power of the Gaussian noise at user k.

The instantaneous data rate for user device k is given by:

R = a"a)" B,y Vk € K, m € M, ()

where each user k of BS m is allocated a fraction a}' (0 <
ap* < 1) of bandwidth B,,. We assume that the spectrum of
the MNO is orthogonal so that there is no interference among
the users. Furthermore, we assume that user demand for off-
loading will only be accepted if there is enough spectrum
resources to satisfy its demand.

Based on the instantaneous data rate, as defined in [38],
the transmission delay for offloading a task from user k to
the MEC server m is expressed as:

1
phom _ TS e 6)
Rl
where IC,, is a set of users served by BS m.

Scenario (b). When the MEC server m has insufficient
resources to satisfy the user demand, after checking its RAT,
BS m forwards a request to another BS n via an X2 link [39],
in the collaboration space, which has enough resources.
Therefore, users can get the resources from different MEC
servers with different delay costs.

We define y;'~" as a decision variable, which indicates
whether or not the task of user & is offloaded from BS m, as
follows:

1, if T} of user k is offloaded from BS m
to a neighbor BS n,
0, otherwise.

m—n __

(7)
We denote by 7'~ the offloading delay between BS m
and BS n, which is given as follows:

N — ZkEIC,,,, yzzans(dk)
k - ™

m

,Vm, neM, (®)

where I'? is the X2 link capacity between BS m and BS n.

m
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Scenario (c). When the resources are not available in the
whole collaboration space, BS m forwards the request to the
remote cloud through a wired backhaul link.

We define y" "¢ as a decision variable that indicates

whether or not the task of user k is offloaded by BS m to the
DC, as follows:

m—pc _ | 1, if T}, is offloaded from BS m to the DC,
Yr 1 0, otherwise.

(9)

We define 7}"~PC as the offloading delay between BS m
and DC [, where 77"~ is given by:

—DC
n=DC Dkerc, ViP5 (dn)

QDC (10)

, Vm, ne M,

where Q7 is the link capacity between MEC server m and
remote DC.

4.3 Computation Model
4.3.1 Local Computation at User Device

In our model, we assume that each user device k € K has a
task 7}, that needs to use the local computation resource P; of
device k. Therefore, the computation of task 7, requires CPU
energy Ej, where the energy consumption of CPU computa-
tion at user k, as defined in [38], is expressed as:

By = s(dp)vi P2, k€ K, (11)
where v is a constant parameter that is related to the CPU
hardware architecture.

In addition to the CPU energy consumption, the computa-
tion of task 7} requires execution time [;. Therefore, as
defined in [38], the execution latency for task 7} at user device
kis given by:

I — S(dk)gk
=
Py

However, when [, > %, 2 > P, or E;, > Ej, where E;,
is the actual available energy at user device k € K, device k
does not have enough energy or computation resources to
meet the computation deadline, and thus, user k£ can keep
the computational task until the resources become available
for local computation via its device. Therefore, we define
oy, € {0,1} as a user device status parameter for computing
task T}, where the value of o}, can be set as follows:

(12)

(13)

o = 4 00 2 > Py ol > %y, or By > Ej,
g 1, otherwise.

From the value of «;, the total local execution time rfc of
task 7). at user device k is given by:

lp ,if ap =1, and 23" =0,
lk+(pk 7lf ap = 07 and x}rcn, =0,

m

0, if ¢ =0, and 2}’ =1,

loc

¢ = (14)

where ¢, is the average waiting time of task 7}, until it is
locally executed by device .

Each user k € K can compute its task 7} locally on its
device, when the device has enough resources, in terms of
the CPU cycles, energy, or memory, whenever the user
device status parameter is «;, = 1. However, if user k decides
not to offload its task to an MEC server, it will experience a
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computational delay 7). Therefore, if user k cannot keep a

given computational task for the future and I, > 7, Z1. >
P, E; > Ej (), = 0), then this user k can offload the task to
MEC server m.

4.3.2 Computation at MEC Server

In our model, an offloaded task T}, has to be executed at the
first encountered MEC server m if it has enough resource.
We consider P,, as the available computational resources at
MEC server m € M. Furthermore, we define y~™ € {0,1}
as a decision variable, which indicates whether or not MEC
server m has to compute the task 7}, offloaded by user £,
where y} "™ is given by:

1, if T}, offloaded by user k
is computed at BS m,
0, otherwise.

k—m

(15)

The computation allocation py,, at BS m can be calculated as
follows:

21
2 VkeK,, me M.
delcm 2y

At each MEC server m, the total computation allocations
must satisfy:

L k
Z -Trknpkmka

kem

Pkm = Pm (16)

"< By, Ym e M. an)

The execution latency [}, for task T}, at MEC server m is
given by:
s(dy) %k

Lo = . (18)
DPkm

Therefore, the total execution time for task 7}, that was off-
loaded by user k at MEC server m is given by:
Ty, = rllzﬁ’” + lim, Yk € Ky m € M. (19)
However, if Z; > py, or tf,, > 7 (ie., MEC server m
does not have enough computational resources to meet the
computation deadline), MEC server m checks its RAT and
offloads the task to any MEC server n that has enough
resources to satisfy the demand. Here, [}, is the execution
latency for task 7} at MEC server n and can be calculated
based on (18). Therefore, the total execution time for a task
offloaded by user k to MEC server n becomes:

o =T " T + Uy, V€ Kiyy, and m,n € M.
(20)
When there are no available resources in a collaboration
space, MEC server m offloads the task to the DC. Therefore,
the total execution time for task 7 offloaded by user k at
DC becomes:

Trnpe = rﬁﬂm + ‘cZHDC + lype, Yk € IC,py, and m € M,

(21)
where [.pc can be calculated from (18). Furthermore, we
find the total offloading and computation latency 7 for
task 7}, offloaded by user £ as follows:
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off __ k~>m e § m—n_e m—DC _e
Ty = Yk Tkm + Yk Tkmn + Yk TkemDC»
nem

Vk € K, and m € M.
(22)

In order to ensure that task 7}, is executed at only one
location, i.e., computed locally at a user device, at one of the
MEC servers, or at the remote cloud, we impose the follow-
ing constraints, Vm € M:

(1 _ ‘rk ) ]\—)777 + Z ymﬂn ’;{n—)DC) _ 17 (23)
neM
k—m ,m—n , m—DC m
max{y; ",y " YL n} <), Vk e K,,. (24)

4.4 Caching Model

For an offloaded task T},, MEC server m caches data d;.. Based
on the demand X,Zn"f for data dj, that reaches each MEC server
m, dj, can be retrieved from the cache storage. Here, using the
idea of a cacheable task defined in [40], we assume that input
data of T}, is cacheable. However, due to the limited cache
capacity, the MNO needs to evict from the cache the least fre-
quently reused data in order to make room for new incoming
data that needs to be cached. During data replacement, the
MEC server starts replacing the least frequently reused data
based on the number of requests /\7;’{' satisfied, i.e., the num-
ber of cache hits. Here, the well-known Least Frequently
Used (LFU) Cache replacement policy [41], [42] is utilized.

We let w¥, € {0,1} be the decision variable that indicates
whether or not MEC server m has to cache data d. of user k,
where w” is given by:

o — { 1, if MEC server m € M caches the data dy,

mn 0, otherwise.

(25)
Here, w” is a cache decision policy which is essentially a rule
of choosing which data dj, to cache in the storage. On the
other hand, LFU is a cache replacement policy. When the
cache storage is full, in order to accommodate new incoming
data in the cache storage, the cache replacement policy iden-
tifies the data to replace in Cache storage [43]. Therefore, in
LFU, the number of requests A% satistied by the MEC servers
must be counted for identifying the least frequently reused
data.

We let C,, be the cache capacity available at any MEC
server m. Therefore, the total allocation of caching resources
at MEC server m must satisfy:

(Z IalED DY W) () < G

kekm n#FmeM keklp,
Ym e M.

When MEC server m does not have enough cache storage to
cache data dj,, MEC server m checks its RAT, and offloads d.
to MEC server n in the collaboration space (if MEC server n
has enough cache storage to satisfy the demand) or forwards
the request to the DC. When data dj, is requested at MEC
server m, it will either be served from a cache in the collabo-
ration space or forwarded to the DC if dj, is not cached in the
collaboration space.
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4.5 Distributed Optimization Control
Next, we propose a distributed optimization control model
that coordinates and integrates the communication, compu-
tation, and caching models defined in the previous sections.
In the distributed control model, we maximize the back-
haul bandwidth saving (minimize the backhaul bandwidth
consumption) by reducing the data exchange between MEC
servers and remote DC, i.e., increasing the cache hits. There-
fore, we adopt the caching reward defined in [29] as the
amount of saved backhaul bandwidth given by:

1B Y, W Z Z dk )\mxk yllz_}mu%
memM kE/C/m ” (27)
+ )y,
neM

where the requests for data dj, arrive at BS m with arrival
rate Ak,

Here, we consider the total delay as the total amount of
time that task 7}, takes to be completely computed (offload-
ing delay included). For the computation cost, if user k£ com-
putes its task locally, then the computational delay cost of
r}f" is incurred. On the other hand, when user k decides to
offload the computational task to an MEC server, a total off-
loadmg and computation delay of 79 is incurred. In order to
minimize both computation delay costs (t¢ and ), we for-
mulate the total delay O(z, y) for the tasks computed locally
at user devices, or in the MEC collaboration space, or at the
remote cloud as follows:

§ 2 m 10(

meM kElCm

m __off

O(z,y) . (28)

4.5.1 Problem Formulation

We formulate the joint 4C in big data MEC as an optimiza-
tion problem that jointly minimizes both bandwidth con-
sumption and network latency as follows:

min O(z,y) — V¥ (z,y,w) (29)
T,yw
subject to: Z zap <1, Vm e M, (29a)
keKm
> W Dy < P, ¥m € M, (29b)
keKm
CIPOTETID b o) IRV
keKm n#meM kekl,
(1 _ ,L_m) + 'TZL k—wz + Z ym—m ZL—»DC) =1, (29d)
neM
max{ykﬂm,yznﬂn, y}fHDC,Vn} <z, (29¢)

where n > 0 is the weight parameter.

The constraint in (29a) guarantees that the sum of spectrum
allocation to all users has to be less than or equal to the total
available spectrum at each BS m. The constraints in (29b) and
(29¢) guarantee that the computation and cache resources
allocated to users at each MEC server m do not exceed the
computation and caching resources. The constraints in (29d)
and (29e) ensure that the task 7}, has to be executed at only
one location, i.e., no duplication. Furthermore, in order to sim-
plify the notation, we define the new objective function:
w) = O(z,y) — n¥(z,y,w).

B(z,y, (30)
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The above optimization problem in (30) is difficult to solve
due to its non-convex structure. Therefore, to make it convex,
we use the BSUM method described in below Section 4.5.2.

4.5.2 Overview of BSUM Method

BSUM is a distributed algorithm that allows parallel comput-
ing. The advantages of BSUM over centralized algorithms
reside in both solution speed and problem decomposability
[14]. Therefore, for introducing BSUM [44] in its standard
form, we consider the following function as a block-struc-
tured optimization problem:

), stx; € Z;,Vjed, j=1,...,J,

(31)
where Z := 21 x Zy x --- Z;, g(.) is a continuous function,
and J is the set of indexes. For j =1,...,J, we consider Z;
as a closed convex set, and z; as a block of variables. By
applying BCD, at each iteration ¢, a single block of variables
is optimized by solving the following problem:

mxin g(x1,22,..., 2y

x € argmin g(z;, 3]1), (32)
zj€Z,
-1 ._ -1 —1 f—1 _ 1
where z'! = (27!, .. 2l 2l 2l 1), zf =z for j £ k.

Both problems in (31) and (32) are difficult to solve, espe-
cially when (31) is a non-convex function, and block coordi-
nate descent (BCD) does not always guarantee convergence.
Therefore, with BSUM, at a given feasible point y € Z, we
can introduce the proximal upper-bound function h(z;, y) of
g(zj,y_;). The most commonly used schemes for choosing
the proximal upper-bound function are quadratic upper-
bound, linear upper-bound, and Jensen’s upper-bound [44].
The proximal upper-bound function h(z;,y) must satisfy
following Assumption 1:

Assumption 1. We make the following assumptions:

D) hlzjy) = 9(y),
i) hxjy) > g(2),y-5),
i) h(Z) Y 4))lemy, = 9 (W3 0) y; + 45 € 25

Assumptions 1(i) and 1(ii) guarantee that the proximal
upper-bound function h must be a global upper-bound func-
tion of the objective function g. Furthermore, Assumption 1
(iii) guarantees that h(z;,y) takes steps proportional to the
negative of the gradient of the objective function g(z;,y_;) in
the direction ¢, i.e., the existence of first-order derivative
behavior.

For ease of presentation, we use the following proximal
upper-bound, where the upper-bound is constructed by
adding quadratic penalization to the objective function:

hzj,y) = 9(xj,y-;) + g (2~ y,)", (33)
where o is a positive penalty parameter. At each iteration ¢,
the BSUM solves the proximal upper-bound function via
the following update:

) € argmin h(a:j,a:j_l)7 Ve J,
Tj€Z; (34)
z ==z, Vk¢ T.

There are many selection rules that can be used for select-
ing each coordinate j € J. Next, we describe the most com-
monly used selection rules [44]:
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e BSUM for 4C with a Cyclic rule: In this selection rule,
coordinates are selected in a cyclic order, ie., 1,2,
3,...,J,1,2,3,....

e BSUM for 4C with a Gauss-Southwell rule: At each
iteration ¢, the Gauss-Southwell rule selects J that has
a single index j* € J such that the following condi-
tion is satisfied: j* € {j|||(z! — «{")|| > ¢ max ||(z}—

||}, where j, k € J and ¢ € [0, 1] is a constant.

e BSUM for 4C with a Randomized rule: At each itera-
tion ¢, the Randomized rule defines a constant ¢;,;;, €
[0,1] and a probability vector p' = (p!...p};) that satis-
fies 3°,c;pj =1 and pj > g3, from which we can
obtain a random index j* € J by calculating Pr(j €
Tt a2 a2 = ph).

Algorithm 2. BSUM Algorithm in its Standard form [44]
: Input: z;

: Output: z*;

: Initializet = 0,¢ > 0;

: Find a feasible point z° € Z;

Repeat;

Choose index set J;
Let x € argmin h(z;, z"
: Setzk —.'Ek L Vk¢ T;
t=t+1;

G ,y<t+1>

: Until || k

) Vie J;

—_
o

[<e

7
t+1
: Then, consider z* = 1:5 )

—_
—_

as solution.

The complete structure of the BSUM algorithm is descri-
bed in Algorithm 2. Algorithm 2 (BSUM) can be considered
as a generalized form of BCD that optimizes block by block
the upper-bound function of the original objective function.
BSUM can be used for solving separable smooth or non-
smooth convex optimization problems that have linear
coupling constraints. To solve the family of such problems,
the BSUM updates each block of variables iteratively through
minimizing the proximal upper-bound function until it con-
verges to both a coordinate-wise minimum and a stationary
solution. We consider the stationary solution to be a coordi-
nate-wise minimum, when a block of variables reaches the

. . o (tL .
minimum point z* = z; . In other words, at stationary
points, the entire vector of points cannot find a better mini-
mum direction [44], [45], [46]. Based on [44] and [47], we can
make the following remark:

Remark 1 (Convergence). BSUM algorithm takes O(log (1/e))
to converge to an e-optimal solution, which is sub-linear
convergence.

The e- optlmal solution z§ € Z; is defined as z € {z;|z; €
Zj, h(zj,z',y') — h(z},z',y')} < ¢, where h(z], x ,y') is the
optimal value of h(mj, y) with respect to z;.

4.5.3 Distributed Optimization Control Algorithm

Our optimization problem in (30) is difficult to solve due to
the presence of decision variables used at different locations.
Therefore, we consider BSUM as a suitable candidate
method for solving it in a distributed way by focusing on
solving per-block subproblems. In order to apply BSUM in
our distributed optimization control model, we define X' &

{x : ZmEM ZkEICm mzn = 17 352" € [O’ 1]}/ yé {y : Zme/\/l Zk‘elcm
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yé;ﬂm_’_ y’lrcnﬂ'n + yZLHDC — 17 yllz‘ﬂrr%yiﬁﬂn’ y;anDC c [O, 1]}’ and

WE{w: 3 m Dker,, Wh + Wy + whe = 1w, wy, whe € [0,1]}
as the feasible sets of z, y, and w, respectively. In addition, in
BSUM, to solve our optimization problem in (30), we need
two steps:

e In the first step, we introduce a proximal function
which is a convex optimization problem and an upper
bound of (30) by adding quadratic penalization.

e In the second step, instead of minimizing (30) which
is intractable, we minimize the proximal upper-
bound function and ensure that the upper-bound
function takes steps proportional to the negative of
the gradient.

At each iteration t, Vj € J, we define the proximal upper-
bound function B;, which is convex and the proximal upper-
bound of the objective function defined in (30). In order to
guarantee that the proximal upper-bound function B; is con-
vex, we add to the objective function in (30) a quadratic
penalization, as follows:

U 0j ~
20,y ) = By, 5,5, 9) + 2 (z; — )|

Bj(z;,
(35)
(35) is the proximal upper-bound function of (30), and it can
be applied to other vectors of variables y; and w;, respec-
tively, where g, > 0 is the positive penalty parameter. Fur-
thermore, the proximal upper-bound function in (35) is a
convex optnmzatlon problem due to its quadratic term
% Sz — #)||*. In other words, with respect to zj, y;, and wy, it
has minimizers vector %, ¢, and w at each iteration ¢, which
are considered to be the solution of the previous step (¢t — 1).
At each iteration ¢ + 1, the solution is updated by solving the
following optimization problems:

(TH) € mlalg Bj(zj,x 2y "), (36)

€
y“+ ) ¢ mln Bi(y;,y ®, (Hl),w(t)), 37)
w;-tﬂ) € min Bj(wj,w(t),w(tH),y<t+1>). (38)

’ll)jEW

Furthermore, (36), (37), and (38) can be solved through the use
of our proposed distributed optimization control presented in
Algorithm 3 for 4C, which is a modified version of the stan-
dard BSUM (Algorithm 2). For solving (36), (37), and (38), we
relax the vectors of variables x;, y;, and w; taking values in
the closed interval between 0 and 1. Then, we use a threshold
rounding technique described in [48] in Algorithm 3 to enforce
the relaxed x;, y;, and w; to be vectors of binary variables.
As an example, in the rounding technique, for 2} € :1:( U
" > 6, where 0 € (0, 1) is a positive rounding threshold we
set 2™ as follows:

me _ J 1, A 2™ >0,
Tk = { 0, otherwise. (39)
The above rounding technique can be applied to other vec-
tors of variables y; and wj, respectively. However, the binary
solution obtained from the rounding technique may violate
communication, computational, and caching resource con-
straints. Therefore, as described in [49], to overcome this issue
after rounding, we solve the problem (35) in the form of
B; + £€A, where constraints (29a), (29b), and (29¢) are modified
as follows:
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> afal <14 A, Vm e M, (40)
kelm
D a Pty ™ < P+ Ay, Ym € M, (1)
ke
2(S e X S <oean,
keKm n#meM keky,
(42)

where A, is the maximum violation of communication
resources constraint, A, is the maximum violation of compu-
tational resources constraint, 4,, is the maximum violation
of caching resources constraint, A = A, + A, + A, and £ is
the weight of A. Moreover, A,, A,, and A, are given by:

A, = max{ Z xypay — 1}, Vm € M, (43)
ke,
A, = maX{O, Z lepkmylzﬂm — Pm}, VYm € M, (44)
kEKTH

Am _ max{ zm ( Z ykﬂm + Z Z yn~>1n>u} s dk) Cm}‘

kekm n#meM keky,

(45)
Furthermore, if there are no violations of communication,
computational, and caching resources constraints (A, =0,
A, =0,and A,, = 0), the feasible solution of (35) is obtained.
Given problem B; and its rounded problem B; +¢A, a
most important measurement of the quality of rounding
technique is the integrality gap which measures the ratio
between the feasible solutions of B; and B; + £A. Therefore,
based on definition and proof of integrality gap in [48], we
can make the following definition:

Definition 1 (Integrality gap). Given problem B; (35) and its
rounded problem B; + £A, the integrality gap is given by:
(46)

B = min
T,yw

B;
Bj+ €A ’
where the solution of B; is obtained through relaxation of varia-
bles x;, y;, and wj, while the solution of B; + £A is obtained
after rounding the relaxed variables. We consider that the best
rounding is achieved, when B (B < 1) is closer to 1 [48]. In other
words, =1, when A, =0,A, =0,and A, = 0.

In Algorithm 3 for 4C, each user device k € K chooses the
offloading decision x}". If 2}’ = 1, the user sends its demands
to the nearest BS. For each demand T}, received, the BS checks
its RAT for its own and collaboration space resource availabil-
ities. Algorithm 3 starts by initializing ¢ = 0, and setting ¢
equal to a small positive number, where € is used to guarantee
the e-optimal solution defined in [44]. Algorithm 3 then finds
the initial feasible points (z?), y), w(?)). Subsequently, our
algorithm starts an iterative process and chooses the index
set. At each iteration ¢ + 1, the solution is updated by solv-

ing the optimization problems (36), (37), and (38) until
Bl gty
—L—+#— < ¢, ie, it converges to an e-optimal solution. Algo-

(®)
B,
rithm 3 generates a binary solution of xgtﬂ Yy, and w;

and obtains ¢, p, and R by using the roundmg techruque (39)
and solving B; + £A. Algorithm 3 also guarantees that B; +

(t+1) (t+1)
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&A converges to an e-optimal solution. Then, after solving
B; + €A, Algorithm 3 calculates B, where the best rounding is

achieved, when B < 1. Furthermore, we consider z* = PR

7 4
Y= ygtH) ,and w* = wy’ﬂ) to be stationary solution that satis-
fies coordinate-wise minimum. Finally, Algorithm 3 updates
its RAT and sends the RAT update in its collaboration space.
The difference between the BSUM (Algorithm 2) in its
standard form and the BSUM for 4C in big data MEC (Algo-
rithm 3) resides in their implementations, where BSUM
Algorithm in its standard form is based on distributed con-
trol. On the other hand, Algorithm 3 is based on both the
hierarchical and distributed control models defined in [50].
In the hierarchical control model, edge devices decide on x
first. Then, each MEC server m acts as a controller for the
users’ offloaded tasks and, thus, it solves (36), (37), and (38).
In the distributed control model, each MEC server
exchanges small information with other MEC servers in
order to update the RAT, solve the optimization problem,
and maintain the resource allocation within a tight range of
available computational resources P and caching resources
C. However, in a collaboration space, there is no centralized
controller that controls all MEC servers, i.e., each MEC server
runs distributed optimization control algorithm (BSUM-
based) for 4C. This distributed control is modeled as a
dynamic feedback control model based on [51], where the
RAT update at each MEC server acts as feedback with state
(2!, y w®) at iteration ¢, which is used to determine the
new state (z(+1) y+1) (+1) at the next iteration ¢+ 1.
Furthermore, the optimal value (z}, y}, wj}) is considered to
be a network equilibrium or a stability point, which is the sta-
tionary solution that satisfies a coordinate-wise minimum.

Algorithm 3. Distributed Optimization Control Algorithm
(BSUM-based) for 4C in big Data MEC

1: Input: T: A vector of demands; B,,, P, and C),: communi-
cation, computational and caching resources;

2: Output: z*, y*, w*, ¢: A vector of cache allocation, p: A vec-
tor of computation allocation, and R: A vector of communi-
cation resources allocation;

3: Each user device k € K chooses the offloading
decision z}";

4: If 23" =1, user device k € K sends its demand 7}, to BS
m e M;

5: For each T}, received at BS m € M, check RAT update;

6: Initializet =0,¢ > 0;

7: Find initial feasible points (2, y¥), w(");

8

9

0

. repeat

Choose index set J;
(t+1)

Letz; ) 4O w®);

S mir/\lf Bj(z;,
;€
11:  Setxi™ =gl Vk¢ J;

12:  Go to Step 4, find y t“ ;Hl) by solving (37) and (38);

13: t=t+1,;
B0 _pl+D
14: until || L—/— o) I<e
J
15: Generate a binary solution of z JHU, y(Hl) (1) and obtain

¢, p, and R by using rounding techmque (39) and solving
Bj+&A;

16: Then calculate B. If B < 1, consider z* :1:5-”1) *
and w* = w'"™ asa solution;

17: Update RAT, and send RAT update in collaboration space.

f41
=y,
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TABLE 2
Formation of Collaboration Spaces
Number of BSs r =100 r =500 r = 1000 r = 2000
Maximum 1299 374 200 143
Minimum 12 1 1 1
Average 128 25 13 6

5 SIMULATION RESULTS AND ANALYSIS

In this section, we present the performance evaluation of the
proposed joint 4C in big data MEC, where we use Python
[52] for numerical analysis.

5.1 Simulation Setup

For forming collaboration spaces, we use the Sitefinder data-
set (BSs dataset) from Edinburgh DataShare [53]. In this data-
set, we randomly select one MNO, which has 12777 BSs,
through the use of the OKM-CS algorithm, we group these
BSs into 1000 collaboration spaces. This clustering process
requires 385.075 seconds. The choice of  depends on the size
of the dataset and, for our chosen dataset, we find that
r = 1000 is the best choice as it yields a reasonable number of
BSs per cluster. In other words, the MNO has to choose r
based on the size of its network since different network sizes
need different values for r. As described in Table 2, first, we
use the elbow method [54] to determine the number of clusters
r, where r = 100 is optimal and the clustering process takes
343.76 seconds. However, when r = 100, we have many clus-
ters that have many BSs and, this increases the communi-
cation delay among MEC servers belonging to the same
collaboration space. To overcome this challenge, we increase
the value of r to 500 which still leads to many clusters that
have many BSs. Subsequently, as shown in Fig. 4, we
increase r to 1000, at which point the average number of BSs
per one collaboration space becomes 13 BSs. However, for
values of r larger than 1000, e.g., for r = 2000, the system has
many small clusters (e.g., with only one BS). Among 1000 col-
laboration spaces, we randomly select one collaboration
space, which has 12 BSs, and we associate each BS with 1
MEC server. Furthermore, we consider the initial number of
users to be K =100 at each BS, and we exponentially
increase the number of users to K = 3200. In our setup, each
user sends one task at each time slot. The path loss factor is
set to 4 and the transmission power is set to p, = 27.0 dBm
[28], while the channel bandwidth is set to be in the range
from B,, = 25 MHz to B,, = 32 MHz [53]. Furthermore, we
consider the bandwidth between each pair of BSs to be
randomly selected in the range from I, =20 MHz to

m

I'" = 25 MHz, while the bandwidth between each BS and

m

DC is selected in the range from Q”¢ =50 to QP =120
Mbps. The cache storage of each MEC server m is in the
range from 100 to 500 TB, while computation resources are in
the range from 2 GHz to 2.5 GHz[55].

For a task T}, of a given user k, we generate synthetic data.
The size of the data s(d;) is randomly generated within a
range of 2 to 7 GB, while the task computation deadline 7} is
randomly generated within a range of 7, = 0.02 second to
7. = 12 seconds. The workload z;, of each user device k is ran-
domly generated and uniformly distributed in the range
from z;, = 452.5 cycles/bit to z; = 737.5 cycles/bit [55]. For
each user device, the computation resource is in range from
0.5GHz to 1.0 GHz [56].
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Fig. 4. Collaboration space formation (r = 1000).

The number of requests for contents ranges from )\m =
578 to Ayt = 3200. The demand and popularity of the con-
tent follow Zipf distributions described in [57], [58].

5.2 Performance Metrics
5.2.1 Throughput

For effective resource utilization, we evaluate the network
and computation throughputs of the proposed algorithms.
We consider the network throughput as a measurement of
how many data units the network can handle within a given
period of time [59], [60]. Meanwhile, the computation
throughput is defined as a measurement of how many task
units the MEC server can compute within a given period of
time. Here, the network throughput is measured in terms of
Mbps, while the computation throughput is measured in
terms of million instructions per second (MIPS).

5.2.2 Delay

In a collaboration space, each task 7}, offloaded by the user
device ends its journey at the server which has resources
that can fulfill user demand. Then, the MEC server com-
putes, caches, and returns the output of the computation
to the user. Therefore, we consider the total delay as the
time period between offloading task 7}, and receiving the
corresponding computation output. Thus, the total delay
does not allow to visualize offloading delay and computa-
tion delay separately, we use transmission delay and
computation/executing delay described in Section 4 as
delay metrics.

5.2.3 Cache Hit Ratio and Bandwidth-Saving

We also evaluate the number of cache hits and misses. A
cache hit, denoted h‘,’;ﬁ‘f € {0,1}, occurs when the requested
content dj, is retrieved from the cache storage available in a
collaboration space at any BS m. Cache hit contributes to
bandwidth saving defined in (27) as it reduces the data
exchange between the collaboration space and the DC. On
the other hand, a cache miss occurs when the requested con-
tent dj, is not available in any cache storage in the collabora-
tion space. The probability of a cache hit for content dj, is
expressed as follows:

d
2ok 2ome M

dk 1— hdk ’ (47)
ZkEK ZmGM ( ( m ))

dp =
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Fig. 5. Optimal value of B; (35) with different coordinate selection rules
(without rounding).

where Y, >y hik is the total number of cache hits, and

D kek Dome M(hﬁ’{ + (1 —h%)) is the total number of cache
hits plus the total number of cache misses.

5.3 Simulation Results

Fig. 5 combines both delay viewed as cost and bandwidth sav-
ing in one optimization problem in (35). We solve the proximal
upper-bound problem through the use of distributed optimiza-
tion control algorithm for 4C (Algorithm 3). Furthermore, we
compare the solution of our distributed optimization control
algorithm with the solution computed via Douglas-Rachford
Splitting (D-R-S) [61] without applying a rounding technique.
Thus, our formulated problem in (35) is decomposable. The
Douglas-Rachford splitting method is used to decompose our
problem into small subproblems, and address each subprob-
lem separately. For any given two functions f and g, the D-R-S
method minimizes f(z) + g(z) by using the following process:
At the first iteration ¢ = 0, it starts at an initial feasible y*) and
keeps updating = and y such that z() = prox,;(y*~") and
y! =y + prox, (22— y=V) — 2(=D, where prox; and
prox,, are proximal functions of f and g [61], respectively.

Fig. 5 shows the convergence of our optimization prob-
lem. In this figure, we use the Douglas-Rachford Splitting
method [61] and our distributed control algorithm (Algo-
rithm 3) for solving (35). In our distributed control algorithm,
for choosing indexes in (35), we use three coordinate selec-
tion rules: Cyclic, Gauss-Southwell, and Randomized [44].
Furthermore, for the quadratic term in (35), we adjust the pos-
itive penalty parameter p; within the range 0.2 to 100. From
this figure, we can see that the performance of our distributed
control algorithm and Douglas-Rachford splitting method is
almost the same. Therefore, the proximal upper-bound prob-
lem in (35) converges to both a coordinate-wise minimum
and a stationary point, which is considered as a solution of
(35). In other words, we consider this minimum point as an
optimal value and equilibrium /stability point of B; (35).

In Fig. 6, we apply the rounding technique to the results of
Fig. 5 and solve B; + £A, where we consider the positive
rounding threshold to be & = 7 and the weight parameter £ of
A is within the range 0.02 to 2.0. The simulation results in Fig. 6
ensure that the relaxed z;, Yjs and w; to be vectors of binary
variables, and the rounding technique does not violate the
computational and caching resource constraints while solving
Bj 4 £A. Furthermore, the difference between Figs. 5 and 6
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Fig. 6. Optimal value of B; + ¢A with different coordinate selection rules
(after rounding).

resides in the sizes of the problems (B; and B; + £{A) and the
step sizes needed for reaching the minimum point. However,
in both Figs. 5 and 6, both problems B; and B; + £A converge
to the same stability point. In other words, with and without
applying rounding technique, (35) converges to a minimum
point that guarantees 8 = 1 ( no violations of communication,
computational, and caching resources constraints).

In terms of network throughput, Fig. 7 shows that the
throughput increases up to 35 Mbps. In this figure, the coor-
dinate selection rules (Cyclic, Gauss-Southwell, Random-
ized) in our distributed optimization control algorithm and
the Douglas-Rachford splitting method have almost the
same performance.

Fig. 8 shows the cumulative distribution function (CDF) of
the computational throughput. The simulation results show
that the Cyclic selection rule in our distributed optimization
control algorithm, as well as the Douglas-Rachford splitting
(D-R-S) method, require high computational resources, as the
computational throughput for each MEC server can reach
2.55 x 103 MIPS. On the other hand, the Gauss-Southwell
and Randomized selection rules use less computational
resources, as the computational throughput for each MEC
server can reach 1.48 x 10° MIPS. The advantage of the
Gauss-Southwell selection rule compared to other coordinate
selection rules lies in choosing the index. In the Gauss-South-
well selection rule, instead of choosing the index randomly or
cyclically, at each iteration, an index that maximizes the utili-
zation of the computational resource is chosen.

We next examine the total delay between offloading task
T}, and receiving the corresponding computation output.
Fig. 9 shows the transmission delay, where the solid blue
lines represent the median and the dashed black lines repre-
sent the arithmetic mean. In this figure, Cyc stands for Cyclic,
G-S stands for Gauss-Southwell, Ran stands for Random-
ized, and D-R-S stands for Douglas-Rachford splitting. The
results in this figure show that the mean of the transmission
delay varies from 0.0078 (G-S) to 0.092 (Cyc) seconds. In
addition, Fig. 10 shows computation delay, where the mean
of the computation delay varies from 0.008 (G-S) to 0.142
(D-R-S) seconds. The total delay, i.e., the sum of computation
and transmission delays, fulfills the task computation
deadline described in the simulation setup. However, Cyclic
and Douglas-Rachford splitting yield higher delay than
others due to index selection (for Cyclic) and splitting
(for Douglas-Rachford splitting), which require more time
and computation resources. Furthermore, Douglas-Rachford
splitting has a higher delay than BSUM coordinate selection
rules.
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Furthermore, in Figs. 5, 6, 8, 9, and 10, the only difference
between D-R-S and other techniques is the computational
resource utilization and computation delay. Therefore, since
computational resources are limited and each offloaded task
T}, has computation deadline, these results clearly demon-
strate that the proposed distributed optimization control algo-
rithm (BSUM-based) for 4C is more suitable than D-R-S.

Fig. 11 shows the normalized cache hits, where cache hit
ratio Py, is computed from (47). From Fig. 11, we can see that
the cache hit ratio increases with the Zipf exponent parameter
a. When a = 2.0, due to the increase in the number of demands
for contents, many contents become popular, which results in a
high cache hit ratio of 0.03 percent of the total demands Ak
from users. In the case of cache misses in collaboration space,
the demands for contents need to be forwarded to the DC.
Therefore, cache hits contribute to reducing the number of

S S
non
>Ce9
o N O

0.0

0 1 2 3
Bandwidth saving (GB) Te7

IS

Fig. 12. Bandwidth saving due to caching.

demands A for contents that need to be forwarded to the DC.
Furthermore, using the number of demands A% and the size of
cached contents dj, in collaboration space, we compute band-
width-saving through the use of (27).

Fig. 12 shows the simulation results for bandwidth-saving
in terms of Gigabytes (GB). In this figure, from the beginning,
bandwidth-saving is nearly zero, and thus MEC server has to
cache the contents first. In other words, MEC caching is based
on content prefetching. Therefore, due to the increase in the
number of cached contents and demands, the maximum
bandwidth-saving of 4.74 x 107 GB is observed when a = 2.0
and n = 1. Furthermore, the increase in the demands is accom-
panied by an increase in network throughput, cache storage,
computational resource utilization, and delay.
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Fig. 13 shows the total cache storage utilization in the col-
laboration space of 12 MEC servers, where the cache storage
utilization depends on the sizes of offloaded data and cache
capacity constraints. In Fig. 13, we can see that the cache
resources utilization increases with the number of demands
until it reaches to 1.15 x 10° GB (when a = 1.0). The increase
of cache storage utilization results in the increase of cache
hits in Fig. 11 and bandwidth saving in Fig. 12.

In this work, our approach focuses on intra-cooperation
between MEC servers that belong to one collaboration
space. One interesting future work is to extend our frame-
work to account for inter-cooperation between MEC servers
that belong to different collaboration spaces.

6 CONCLUSION

In this paper, we have proposed a joint communication,
Communication, Computation, Caching, and Control (4C)
framework for big data MEC. In this framework, MEC serv-
ers collaborate to satisfy users’” demand. We have formu-
lated the problem as a joint optimization problem that aims
to minimize a linear combination of bandwidth consumed
and network latency. Therefore, for solving the formulated
optimization problem, we have proposed a distributed opti-
mization control algorithm for 4C, which is a modified ver-
sion of the BSUM method. We have compared the results
from the distributed optimization control algorithm with
the results computed via the Douglas-Rachford splitting
method. Simulation results from both methods have shown
that our approach can be efficiently implemented.
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