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Abstract—The concept of Multi-access EdgeComputing (MEC) has been recently introduced to supplement cloud computing by

deployingMEC servers to the network edge so as to reduce the network delay and alleviate the load on cloud data centers. However,

compared to the resourceful cloud,MEC server has limited resources.When eachMEC server operates independently, it cannot handle

all computational and big data demands stemming from users devices. Consequently, theMEC server cannot provide significant gains in

overhead reduction of data exchange between users devices and remote cloud. Therefore, joint Computing, Caching, Communication,

andControl (4C) at the edgewithMEC server collaboration is needed. To address these challenges, in this paper, the problemof joint 4C in

big dataMEC is formulated as an optimization problemwhose goal is to jointly optimize a linear combination of the bandwidth consumption

and network latency. However, the formulated problem is shown to be non-convex. As a result, a proximal upper bound problem of the

original formulated problem is proposed. To solve the proximal upper bound problem, the block successive upper boundminimization

method is applied. Simulation results show that the proposed approach satisfies computation deadlines andminimizes bandwidth

consumption and network latency.

Index Terms—Communication, computation, caching, distributed control, multi-access edge computing, 5G network
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1 INTRODUCTION

1.1 Background and Motivations

IN recent years, wireless users have become producers and
consumers of contents as their devices are now embedded

with various sensors [1], which help in creating and
collecting various types of data from different domains such

as energy, agriculture, healthcare, transport, security, and
smart homes, among others. Indeed, by the year 2020, it is
anticipated that 50 billion things will be connected to the Inter-
net, which is equivalent to 6 devices per person on the planet
[2]. Therefore, the devices of wireless users will be anywhere,
anytime, and connected to anything [3]. With large-scale inter-
connection of people and things, there will be a tremendous
growth of data traffic with different characteristics (unstruc-
tured, quasi-structured, and semi-structured) whose scale, dis-
tribution, diversity, and velocity fall into a big data framework
that requires big data infrastructure and analytics. Since the
resources (e.g., battery power, CPU cycles, memory, and I/O
data rate) of edge user devices are limited, edge user devices
must offload computational tasks and big data to the cloud
[4]. However, for effective big data analytics of delay sensitive
and context-aware applications, there is a strong need for low-
latency and reliable computation. As such, reliance on a cloud
can hinder the performance of big data analytics, due to the
associated overhead and end-to-end delays [3], [5].

To reduce end-to-end delay and the need for extensive user-
cloud communication, Multi-access Edge Computing (MEC) has
been introduced by the European Telecommunications Stand-
ards Institute (ETSI) as a supplement to cloud computing
and mobile edge computing [6]. MEC extends cloud comput-
ing capabilities by providing IT-based services and cloud
computing capabilities at the networks edges. In other words,
MEC pushes 4C to the edge of the network [7]. Typically, MEC
servers are deployed at the Base Stations (BSs) of a wireless
network (e.g., a cellular network) for executing delay sensitive
and context-aware applications in close proximity to the users
[8], [9], [10].
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Data and computational task offloading to nearby MEC
servers can reduce data exchange between users and the
remote cloud. In other words, data will be offloaded, proc-
essed, analyzed, and cached at the edge of the network, at
MEC servers, i.e., at near where data is created. To achieve
this, we need to have caching storage, big data platform, and
analytics software in theMEC server. However, compared to
the remote cloud, an MEC server has limited resources.
Therefore, in order to satisfy the users’ demands, MEC serv-
ers (located in the same area) need to collaborate and share
resources. Furthermore, since offloading data for being
processed, analyzed, and cached at the MEC server requires
communication resources, rather than considering each C
(Computing, Caching, Communication, or Control) indepen-
dently, we need to have a joint 4C model that reduces
communication delay, computational delay, and backhaul
bandwidth consumption.

1.2 MEC Challenges for Dealing with Big Data
The most important challenges that MEC is still facing when
dealing with big data and edge analytics are:

� Users offload tasks and corresponding data with
varying rates. In other words, data from multiple
users may reachMEC servers too rapidly with a finite
or infinite flow (e.g., streaming data), and this data
needs to be processed immediately (e.g., live stream
computation and caching, real-time analytics) [11].
An MEC server will find it challenging to deal with
such data due to its scale, diversity, and timeliness.
Therefore, for fast, parallel, and distributed process-
ing, MEC servers must have big data platform and
analytics applications for splitting data volume, dis-
tributing computations to multiple computing nodes,
replicating data partitions, and recovering data when
needed.

� MEC server resources are limited compared to the
remote cloud [12]. Therefore, when each MEC server
operates independently, it cannot efficiently handle
big data stemming from users devices and signifi-
cantly relieve the data exchange between users devi-
ces and the remote cloud. Therefore, to reduce the
delay, cooperation among MEC servers for resource
sharing and optimization of the resource utilization
are needed.

� The integration of MEC with a mobile network envi-
ronments raises a number of challenges related to the
coordination of bothMEC server andmobile network
services. Therefore, we need joint 4C for big data
MEC is needed.

1.3 Contributions
In this work, we address these challenges of joint 4C for big
data processing in MEC. The main contributions of this
paper are summarized as follows:

� We propose a framework for joint 4C for big data
MEC, where big data computation and caching func-
tions are performed at anMEC server instead of being
sent to a remote cloud. This allows the reduction of
the end-to-end delay and data exchange between
users and a remote cloud.

� For satisfying users demand and efficiently executing
computational tasks and data caching in big data
MEC, we introduce an MEC-based collaboration
space or cluster, where MEC servers located in the
same cluster collaborate with each other. The aim of
the collaboration in MEC is to reduce the backhaul
network traffic, minimize delay in coupled 4C, and
maximize resource utilization.

� In order tominimize the communication delay among
MEC servers and allow collaboration, inspired by the
unsupervised machine learning algorithm called the
Overlapping k-Means Method (OKM) [13], we pro-
pose OKM for Collaboration Space (OKM-CS), which
is an application of the standard OKM algorithm in
the context of an MEC scenario. The OKM-CS allows
each MEC server to participate in more than one col-
laboration space. A collaboration space enables collab-
oration among MEC servers, which is based on not
only distance measurements but also the available
resources.

� Within each collaboration space, we formulate a col-
laborative optimization problem which minimizes a
linear combination of bandwidth consumption and
network latency, subject to the local computation
capabilities of the users, computation deadlines, and
MEC resource constraints. The formulated problem
is shown to be non-convex, and hence, in order to
solve it, we propose a proximal upper-bound prob-
lem of the original problem and apply the Block Suc-
cessive Upper-bound Minimization (BSUM) method
since it is considered to be a suitable framework for
big-data optimization [14].

The rest of the paper is organized as follows. In Section 2,
we discuss some related works, while Section 3 presents the
system model. Section 4 discusses in detail our joint 4C for
big data MEC, while Section 5 provides a performance eval-
uation. We conclude the paper in Section 6.

2 LITERATURE REVIEW

The existing, related works can be grouped into four catego-
ries: (i) big data and caching, (ii) joint caching and computa-
tion, (iii) joint caching and communication, and (iv) joint
caching, computation, and communication.

Big Data and Caching. In [15], the authors proposed a big
data framework for mobile network optimization using data
from both network features and user features. Furthermore,
in [16], the authors proposed centrality measures for content
caching in mobile wireless networks. However, implement-
ing the big data framework at the network edge can be chal-
lenging due to the fact that caching spaces at edge nodes are
usually small, which can potentially result in a low hit ratio.
To overcome this challenge, in [9], the authors highlighted
the need of having cooperative caching that allows low
latency content delivery. In addition to caching, in [3], the
authors tried to establish connections between big data and
caching in 5G wireless networks, where statistical machine
learning is applied for estimating content popularity. Other
machine learning approaches are surveyed in [17].

Joint Caching and Computation (2C). In [18], the authors
combined caching and computation at BSs for decre-
asing delays occurring during communication between

1360 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 00:52:30 UTC from IEEE Xplore.  Restrictions apply. 



applications running on user devices and a remote cloud.
They developed a resource management algorithm that
guides the BS to jointly schedule computation offloading
and data caching allocation. In [19], the idea of low-latency
computations is explored using the online secretary frame-
work, where the computational tasks are distributed
between the edge networks and cloud. Furthermore, for effi-
cient resource usage at the BS level, in [20], the authors pro-
posed a collaborative video caching and processing scheme
in which MEC servers can assist each other. They formu-
lated the collaborative joint caching and processing problem
as an optimization problem that aims to minimize the back-
haul network cost, subject to cache capacity and processing
capacity constraints. In [21], the authors proposed a joint
mobility aware caching and small cell base station place-
ment framework. Also, the authors discussed the differen-
ces and relationships between caching and computation
offloading. Furthermore, in [22], the authors proposed pre-
fetching caching at WiFi Access Points (APs), where caching
is based on aggregate network-level statistics and network-
level mobility prediction. This helps mobile users to down-
load contents from APs rather than to get contents from the
original content servers. In addition, to address the mobile
flashcrowd demands, the authors in [23] proposed a proac-
tive caching approach for prefetching and caching contents
in small cells based on user mobility prediction.

Joint Caching and Communication (2C). In [24], in order to
significantly reduce redundant data transmissions and
improve content delivery, the authors highlighted the need
of having efficient content caching and distribution techni-
ques. They proposed an optimal cooperative content caching
and delivery policy in which both femtocell BSs and user
equipment participate in content caching. In [25], the authors
studied the problem of resource allocation along with data
caching in radio access networks (RANs). They proposed
a collaborative framework that leverages device-to-device
(D2D) communication for implementing content caching. In
[26], a communication framework related to cache-enabled
heterogeneous cellular networks with D2D communication
was studied. In order to satisfy quality-of-service (QoS)
requirements for the users, the authors formulated a joint
optimization problem that aims at maximizing the system
capacity inwhich bandwidth resource allocationwas consid-
ered. The problem of joint caching and communication for
drone-enabled systems is also studied in [27].

Joint Caching, Computation, and Communication (3C). In [28],
the authors combined 3C for designing a novel information
centric heterogeneous network framework that enables con-
tent caching and computing in MEC. They considered vir-
tualized resources, where communication, computing and
caching resources can be shared among all users associated
with different virtual service providers. Since MEC can
enhance the computational capabilities of edge nodes, in [29],
the authors formulated a computation offloading decision,
resource allocation anddata caching framework as an optimi-
zation problem in which the total revenue of the network is
considered. Furthermore, in [30], the authors proposed an
energy-efficient framework that considers joint networking,
caching, and computing whose goal is to meet the require-
ments of the next generation of green wireless networks.
Moreover, forMECapplications, in [31], the authors explored
the fundamental tradeoffs between caching, computing, and
communication for VR/AR applications. Finally, the work in

[32] proposed a joint caching and offloading mechanism that
considers task uploading and executing, computation output
downloading, multi-user diversity, and multi-casting.

In [3], [15], [16], [18], [28], [29], [30], and [32], the authors
consider edge caching. However, edge nodes are resources-
limited as compared to the cloud. Therefore, without cooper-
ation among edge nodes, edge caching can result in a low
cache hit ratio. In order to overcome this issue, in [9] and
[20], the authors proposed the idea of a collaboration space
for edge nodes. However, the works in [9] and [20] do not
provide any rigorous framework for analyzing the formation
of collaboration spaces. Furthermore, a user may request a
content format (e.g., avi), which is not available in the cache
storage. Instead, the cache storage may have other content
formats (e.g., mpeg) of the same content which can be con-
verted to the desired format, by using certain computations,
and then transmitted to the requesting user. This process of
serving cached content after computation was not consid-
ered in [21], [24], [25], [26], [27]. Finally, the works in [18],
[28], [29], [30] do not take into account any user deadlines for
performing computations, which can be impractical.

To this end, our proposed approach will have several key
differences from these prior approaches including: (i) while
many related works (e.g.,[28], [29], [30], [31], [32]) focus on
2C and 3C, in our proposed approach, we combine 4C in big
data MEC in which the computation capabilities of the user
devices, computation deadline, size of input data, and MEC
resource constraints are considered, (ii) The proposed coll-
aboration between MEC servers, where MEC servers are
grouped in collaboration spaces via the OKM-CS algorithm,
is new in MEC, and thus is not only based on distance meas-
urements, but also based on the availability of resources, (iii)
Within each collaboration space, for solving the formulated
collaborative optimization problem, we apply the BSUM
method, which is not yet utilized in existing MEC solutions.
The BSUM method is a novel and powerful framework for
big-data optimization [14]. The BSUM method allows the
decomposition of the formulated optimization problem into
small subproblems which can be addressed separately and
computed in parallel.

3 SYSTEM MODEL

As shown in Fig. 1, we consider an MEC network composed
of a set M of MEC servers, each of which is attached to one
BS. Unless stated otherwise, we use the terms MEC server
and BS interchangeably.

Each MEC server collaborates with other MEC servers by
sharing resources. Therefore, we group the BSs into collabora-
tion spaces (i.e., clusters). Unless stated otherwise, we use the
terms collaboration space and cluster interchangeably. In
order to minimize the communication delay among MEC
servers, our clustering process for BSs is based on proximity
(distance) measurements, where BSs that are close enough
will be grouped in the same cluster. Moreover, in our collab-
oration space, we focus on geographic space coverage rather
than geographical space partitioning. As an example, some
MEC servers in the hotspot area may want to collaborate
with MEC servers that are not in the hotspot. To achieve this
objective, we consider an overlapping clustering method
that allows one BS to belong to more than one cluster and to
share resources not only based on distance measurements
but also based on resource availability and utilization.
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For creating collaboration spaces, we propose OKM-CS,
which is an application of the standard OKM algorithm [13] in
MEC. The merit of the OKM algorithm lies in its elegant sim-
plicity of implementation over other overlapping methods such
as Weighted OKM (WOKM), Overlapping Partitioning Cluster
(OPC), and Multi-Cluster Overlapping k-Means Extension
(MCOKE) [33]. OKM-CS is described in Section 4, Algorithm 1.

In a collaboration space, eachMEC serverm has both cach-
ing and computational resources that are divisible. We letCm

and Pm be, respectively, the cache capacity and computa-
tional capacity of MEC server m. In any given collaboration
space, MEC servers can exchange data and tasks based on
their available resources. Moreover, we assume that theMEC
servers within a collaboration space belong to the same
Mobile Network Operator (MNO), and this MNO has a total
storage capacity C, and a total computation capacity P . The
total cache storage pool for the MNO in a collaboration space
is given by: C ¼Pm2M Cm, while the computation pool of
theMNO is given by: P ¼Pm2M Pm:

We assume that eachMEC serverm uses a Resource Allo-
cation Table (RAT) for keeping track of the available resour-
ces in the collaboration space, including CPU utilization,
RAM, and storage capacity. In order to facilitate joint 4C in
big data MEC, in collaboration space, MEC servers exchange
RAT updates. However, for the resources that are not avail-
able in a collaboration space, MEC server m forwards the
associated requests to the remote Data Center (DC). There-
fore, for effective resource utilization, resources are sliced for
being allocated tomultiple users.

We consider a set K of users, where each user k 2 K is con-
nected to its nearest BS, referred to as its home BS. The set of
users connected to the same BS m 2 M is denoted by a subset
Km � K. We assume that the user devices have limited resour-
ces for both computation and caching. Therefore, instead of
sending resource demands to the DC, based on users demand,
MEC servers can provide computation and storage resources
to the users. As an example, drones in professional sports
activities can cover the event scenes and send live stream vid-
eos to their nearest MEC server m for live stream caching,
processing, and distribution. Based on the network conditions,
users demand, and device capabilities, the cached data can be
served as is or after computation (e.g., video transcoding).

In our model, each user device k 2 K has an application
that needs to use computation and caching resources, such
as augmented reality, online gaming, crowdsensing, image
processing, or CCTV video processing.

We consider a binary task offloading model in which a
task is a single entity that is either computed locally at a user
device or offloaded to the MEC server. For each user k, we
define a task Tk ¼ ðsðdkÞ; ~tk; ~zkÞ; 8k 2 K, where sðdkÞ is the
size of data dk from user k in terms of the bits that are needed
as an input of computation, ~tk is the task computation dead-
line, and ~zk is the computationworkload or intensity in terms
of CPU cycles per bit. Furthermore, we assume that the
resource demands of different users are independent.

In order to satisfy users demand, as depicted in Fig. 2, we
consider each MEC server to be a small big data infrastruc-
ture that supports the big data cloud requirements defined in
[34], including (i) Easy setup of virtual machines, mounting
file systems, and deployment of big data platform and analyt-
ics software such as Hadoop, Spark, Storm, and Splunk; (ii)
Dynamic management of computation, storage, and network
resources, either on physical or virtual environments; (iii)
Elasticity and scalability in computation, storage and net-
work resources allocation; (iv) Development, deployment
and utilization of big data analytics with fast access to data
and computing resources; and (v) Support for multi-dimen-
sion data handling, where data may reach the MEC server in
different forms and characteristics. The summary of our nota-
tions for this paper is available in Table 1.

4 PROPOSED JOINT COMMUNICATION,
COMPUTATION, CACHING, AND CONTROL

In this section, we describe, in detail, our proposed approach
for joint communication, computation, caching, and distrib-
uted control in big data MEC, where MEC server resources
are virtualized and shared by multiple users. Resource

TABLE 1
Summary of Our Notations

Notation Definition

M Set of MEC servers, jMj ¼ M
K Set of users, jKj ¼ K
Cm Total cache capacity at MEC serverm 2 M
Pm Total computation capacity at MEC serverm 2 M
sðdkÞ Size of data dk, 8k 2 K
~tk Computation deadline, for k 2 K
~zk Computation workload, 8k 2 K
�
dk
m Request arrival rate for data dk

at MECm 2 M
lk Execution latency, 8k 2 K
Ek Computation energy, 8k 2 K
~Ek Available energy in user device k 2 K
xmk Computation offloading decision variable,

for k 2 K, andm 2 M
ym!n
k Computation offloading decision variable,

form;n 2 M
wk

m Data caching decision variable, 8k 2 Km; m 2 M
gmk Spectrum efficiency, 8k 2 Km, andm 2 M
Rm

k Instantaneous data rate, 8k 2 Km, andm 2 M
tk!m
k Offloading delay, 8k 2 Km, andm 2 M
Tk Task from user k 2 K
tekm Total executing time of offloaded task,

8k 2 Km,m 2 M
Qðxx; yyÞ Total delay
Cðxx; yy; wwÞ Alleviated backhaul bandwidth

Fig. 1. Illustration of our system model.
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demands that are not satisfied at one MEC server can be sat-
isfied by any other MEC server in the same collaboration
space.

4.1 Collaboration Space
For forming collaboration spaces, we propose OKM-CS.
OKM-CS seeks to cluster the BSs into r clusters such that
the below objective function is minimized:

IðfMigri¼1Þ ¼
Xr
i¼1

X
m2Mi

km�FðmÞk2; (1)

where Mi � M represents the ith cluster. Furthermore, as
defined in [13], FðmÞ defines the average of centroids (mci )
of the clusters to which the BSm belongs, and is given by:

FðmÞ ¼
P

mci2Am
i
mci

jAm
i j

; (2)

whereAm
i definesmulti-assignment for BSm: fmci jm 2Mig,

which means that Am
i is a set of all centroids mci for which

m 2 Mi. In OKM-CS, a centroid BS refers to a BS which is at
the center of each cluster, i.e., the centroid BS is unique in
each cluster. Furthermore, each BS m belongs to at least one
cluster, where

S r
i¼1Mi ¼ M represents the total coverage.

Moreover, BSs are assigned to centroids based on geographi-
cal locations, while the overlapping clusters allow the MEC
servers to participate in different clusters so as to cooperate
and share resources.

The original OKM algorithm randomly chooses r clus-
ters. However, in OKM-CS for 4C, the number of clusters is
chosen based on the network topology, which is known a
priori by the MNO. Furthermore, when the MNO updates
its network topology, OKM-CS needs to update the clusters
and their associated centroids. However, we assume that
the network topology does not change frequently. The
OKM-CS is presented in Algorithm 1.

Algorithm 1 starts with an initial set of r clusters and cen-
troid fmð0Þ

ci
gri¼1, and derives new coverage fMð0Þ

i gri¼1. Then, it
iterates by computing new assignments and new centroids
fmðtþ1Þ

ci
gri¼1 leading to the new coverage fMðtþ1Þ

i gri¼1. The iter-
ative process continues until the convergence criterion on

IðfMðtÞ
i gri¼1Þ � IðfMðtþ1Þ

i gri¼1Þ < �) is satisfied, where � is a
small positive number. Furthermore, since our focus is on
the collaboration among theMEC servers in the same collab-
oration space, for brevity, hereinafter, we omit the subscript
onMi and analyze 4C for one collaboration space.

Algorithm 1. OKM for Collaboration Space (OKM-CS)

1: Input:M: A set of BSs with their coordinates,
tm: Maximum number of iterations, � > 0;

2: Output: fMðtþ1Þ
i gri¼1 : Final cluster coverage of BSs;

3: Choose r and initial clusters with fmð0Þ
ci
gri¼1 centroid;

4: For each BSm, compute the assignment
Amð0Þ

i by assigning bsm to centroid fmð0Þ
ci
gri¼1; and derive ini-

tial coverage fMð0Þ
i gri¼1, such thatMð0Þ

i ¼ fmjmð0Þ
ci

2 Amð0Þ
i g;

5: Initialize t ¼ 0;
6: For each clusterMðtÞ

i , compute the new centroid,
mðtþ1Þ

ci
by groupingMðtÞ

i ;
7: For each BS m and assignment AmðtÞ

i , compute new assign-
ment Amðtþ1Þ

i by assigning bs m to centroid fmðtþ1Þ
ci

gri¼1 and

derive new coverage fMðtþ1Þ
i gri¼1;

8: If Equation (1) does not converge or tm > t or IðfMðtÞ
i gri¼1Þ�

IðfMðtþ1Þ
i gri¼1Þ > �, set t ¼ tþ 1, restart from Step 6. Other-

wise, stop and consider fMðtþ1Þ
i gri¼1 as the final clusters.

In a collaboration space, for the MEC resources, each
user k must submit a task demand Tk to its MEC server
m. Then, the MNO maps the demands into the resource
allocation that each user k requires. Therefore, to help
the users prepare their demands, the MNO advertises
the resources available to them as well as the sum of the
demands placed in the collaboration space. However,
the MNO does not reveal the demands of the users to
each other.

We use vkmðcdk; pkm;Rm
k Þ to represent the resource alloca-

tion function for each user k at MEC server m, where cdk is
used to denote the caching resource allocation for user data
of size sðdkÞ (i.e., cdk ¼ sðdkÞ), pkm is used to denote the
computational resource allocation, and Rm

k is used to denote
the communication resource allocation.

The MNO allocates resources based on weighted pro-
portional allocation [35], which is practical in systems
such as 4G and 5G cellular networks [36], [37]. Each user
k receives a fraction of the resources at the MEC server m
based on its demand. Furthermore, when ~tk ¼ 0 and
~zk ¼ 0, we consider that the user needs only communica-
tion resources for offloading data dk and caching resour-
ces for caching its data. Therefore, an MEC server caches
data dk, and waits for the data to be requested later,
where dk can be served as is or after computation. How-
ever, when sðdkÞ 6¼ 0, ~tk 6¼ 0, and ~zk 6¼ 0, the MEC server
computes, caches the output data of dk, and returns the
computation output to user k.

4.2 Communication Model
To offload a task from a user to the MEC server, the network
will incur a communication cost (bandwidth). Therefore, the
communication scenarios for task offloading are shown in
Fig. 3 and explained next.

Scenario (a). For the resources available at BS m 2 M,
user k 2 K obtains resources from its MEC server over a
wireless channel. We define xm

k 2 f0; 1g as a computation
offloading decision variable, which indicates whether or not
user k offloads a task to its home MEC server m via a wire-
less channel (denoted by W. channel in Fig. 3).

xm
k ¼ 1; if Tk is offloaded from user k to BS m;

0; otherwise.

�
(3)

Fig. 2. Illustration of big data MEC.
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Therefore, the spectrum efficiency [28] for user device k will
be given by:

gmk ¼ log 2 1þ rkjGm
k j2

s2
k

 !
; 8k 2 K; m 2 M; (4)

where rk is the transmission power of user device k, jGm
k j2 is

the channel gain between user device k and BS m, and s2
k is

the power of the Gaussian noise at user k.
The instantaneous data rate for user device k is given by:

Rm
k ¼ xm

k a
m
k Bmg

m
k ; 8k 2 K; m 2 M; (5)

where each user k of BS m is allocated a fraction amk (0 �
amk � 1) of bandwidth Bm. We assume that the spectrum of
theMNO is orthogonal so that there is no interference among
the users. Furthermore, we assume that user demand for off-
loading will only be accepted if there is enough spectrum
resources to satisfy its demand.

Based on the instantaneous data rate, as defined in [38],
the transmission delay for offloading a task from user k to
the MEC serverm is expressed as:

tk!m
k ¼ xm

k sðdkÞ
Rm

k

; 8k 2 Km; (6)

where Km is a set of users served by BSm.
Scenario (b). When the MEC server m has insufficient

resources to satisfy the user demand, after checking its RAT,
BS m forwards a request to another BS n via an X2 link [39],
in the collaboration space, which has enough resources.
Therefore, users can get the resources from different MEC
servers with different delay costs.

We define ym!n
k as a decision variable, which indicates

whether or not the task of user k is offloaded from BS m, as
follows:

ym!n
k ¼

1; if Tk of user k is offloaded from BS m
to a neighbor BS n,

0; otherwise.

8<
:

(7)

We denote by tm!n
k the offloading delay between BS m

and BS n, which is given as follows:

tm!n
k ¼

P
k2Km

ym!n
k sðdkÞ

Gn
m

; 8m; n 2 M; (8)

where Gn
m is the X2 link capacity between BSm and BS n.

Scenario (c). When the resources are not available in the
whole collaboration space, BS m forwards the request to the
remote cloud through a wired backhaul link.

We define ym!DC
k as a decision variable that indicates

whether or not the task of user k is offloaded by BS m to the
DC, as follows:

ym!DC
k ¼ 1; if Tk is offloaded from BS m to the DC;

0; otherwise.

�
(9)

We define tm!DC
k as the offloading delay between BS m

and DC l, where tm!DC
k is given by:

tm!DC
k ¼

P
k2Km

ym!DC
k sðdkÞ

VDC
m

; 8m; n 2 M; (10)

where VDC
m is the link capacity between MEC server m and

remote DC.

4.3 Computation Model

4.3.1 Local Computation at User Device

In our model, we assume that each user device k 2 K has a
task Tk that needs to use the local computation resource Pk of
device k. Therefore, the computation of task Tk requires CPU
energy Ek, where the energy consumption of CPU computa-
tion at user k, as defined in [38], is expressed as:

Ek ¼ sðdkÞn~zkP 2
k ; k 2 K; (11)

where n is a constant parameter that is related to the CPU
hardware architecture.

In addition to the CPU energy consumption, the computa-
tion of task Tk requires execution time lk. Therefore, as
defined in [38], the execution latency for task Tk at user device
k is given by:

lk ¼ sðdkÞ~zk
Pk

: (12)

However, when lk > ~tk, ~zk > Pk, or Ek > ~Ek, where ~Ek

is the actual available energy at user device k 2 K, device k
does not have enough energy or computation resources to
meet the computation deadline, and thus, user k can keep
the computational task until the resources become available
for local computation via its device. Therefore, we define
ak 2 f0; 1g as a user device status parameter for computing
task Tk, where the value of ak can be set as follows:

ak ¼ 0; if ~zk > Pk, or lk > ~tk, or Ek > ~Ek;
1; otherwise.

�
(13)

From the value of ak, the total local execution time tlock of
task Tk at user device k is given by:

tlock ¼
lk ; if ak ¼ 1, and xm

k ¼ 0;
lk þ ’k ; if ak ¼ 0, and xm

k ¼ 0;
0; if ak ¼ 0, and xm

k ¼ 1;

8<
: (14)

where ’k is the average waiting time of task Tk until it is
locally executed by device k.

Each user k 2 K can compute its task Tk locally on its
device, when the device has enough resources, in terms of
the CPU cycles, energy, or memory, whenever the user
device status parameter is ak ¼ 1. However, if user k decides
not to offload its task to an MEC server, it will experience a

Fig. 3. Collaboration space for MEC with three typical scenarios (a), (b),
and (c), which are explained in Section 4.2.
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computational delay tlock . Therefore, if user k cannot keep a
given computational task for the future and lk > ~tk, ~zk >

Pk, Ek > ~Ek (ak ¼ 0), then this user k can offload the task to

MEC serverm.

4.3.2 Computation at MEC Server

In our model, an offloaded task Tk has to be executed at the
first encountered MEC server m if it has enough resource.
We consider Pm as the available computational resources at
MEC server m 2 M. Furthermore, we define yk!m

k 2 f0; 1g
as a decision variable, which indicates whether or not MEC
server m has to compute the task Tk offloaded by user k,
where yk!m

k is given by:

yk!m
k ¼

1; if Tk offloaded by user k
is computed at BS m;

0; otherwise.

8<
: (15)

The computation allocation pkm at BS m can be calculated as
follows:

pkm ¼ Pm
~zkP

g2Km
~zg
; 8k 2 Km; m 2 M: (16)

At each MEC server m, the total computation allocations
must satisfy:X

k2Km

xm
k pkmy

k!m
k � Pm; 8m 2 M: (17)

The execution latency lkm for task Tk at MEC server m is
given by:

lkm ¼ sðdkÞ~zk
pkm

: (18)

Therefore, the total execution time for task Tk that was off-
loaded by user k at MEC serverm is given by:

tekm ¼ tk!m
k þ lkm; 8k 2 Km; m 2 M: (19)

However, if ~zk > pkm or tekm > ~tk (i.e., MEC server m
does not have enough computational resources to meet the
computation deadline), MEC server m checks its RAT and
offloads the task to any MEC server n that has enough
resources to satisfy the demand. Here, lkn is the execution
latency for task Tk at MEC server n and can be calculated
based on (18). Therefore, the total execution time for a task
offloaded by user k toMEC server n becomes:

tekmn ¼ tk!m
k þ tm!n

k þ lkn; 8k 2 Km; and m;n 2 M:

(20)
When there are no available resources in a collaboration

space, MEC server m offloads the task to the DC. Therefore,
the total execution time for task Tk offloaded by user k at
DC becomes:

tekmDC ¼ tk!m
k þ tm!DC

k þ lkDC; 8k 2 Km; and m 2 M;

(21)
where lkDC can be calculated from (18). Furthermore, we
find the total offloading and computation latency toffk for
task Tk offloaded by user k as follows:

toffk ¼ yk!m
k tekm þ

X
n2M

ym!n
k tekmn þ ym!DC

k tekmDC;

8k 2 Km; and m 2 M:

(22)

In order to ensure that task Tk is executed at only one
location, i.e., computed locally at a user device, at one of the
MEC servers, or at the remote cloud, we impose the follow-
ing constraints, 8m 2 M:

ð1� xm
k Þ þ xm

k ðyk!m
k þ

X
n2M

ym!n
k þ ym!DC

k Þ ¼ 1; (23)

maxfyk!m
k ; ym!n

k ; ym!DC
k ; 8ng � xmk ; 8k 2 Km: (24)

4.4 Caching Model
For an offloaded task Tk, MEC serverm caches data dk. Based
on the demand �

dk
m for data dk that reaches each MEC server

m, dk can be retrieved from the cache storage. Here, using the
idea of a cacheable task defined in [40], we assume that input
data of Tk is cacheable. However, due to the limited cache
capacity, theMNOneeds to evict from the cache the least fre-
quently reused data in order tomake room for new incoming
data that needs to be cached. During data replacement, the
MEC server starts replacing the least frequently reused data
based on the number of requests �

dk
m satisfied, i.e., the num-

ber of cache hits. Here, the well-known Least Frequently
Used (LFU) cache replacement policy [41], [42] is utilized.

We let wk
m 2 f0; 1g be the decision variable that indicates

whether or not MEC server m has to cache data dk of user k,
where wk

m is given by:

wk
m ¼ 1; if MEC server m 2 M caches the data dk;

0; otherwise.

�
(25)

Here,wk
m is a cache decision policy which is essentially a rule

of choosing which data dk to cache in the storage. On the
other hand, LFU is a cache replacement policy. When the
cache storage is full, in order to accommodate new incoming
data in the cache storage, the cache replacement policy iden-
tifies the data to replace in cache storage [43]. Therefore, in
LFU, the number of requests �

dk
m satisfied by theMEC servers

must be counted for identifying the least frequently reused
data.

We let Cm be the cache capacity available at any MEC
serverm. Therefore, the total allocation of caching resources
at MEC servermmust satisfy:

X
k2Km

yk!m
k þ

X
n6¼m2M

X
k2Kn

yn!m
k

 !
wk

msðdkÞ � Cm;

8m 2 M:

(26)

When MEC server m does not have enough cache storage to
cache data dk, MEC serverm checks its RAT, and offloads dk
to MEC server n in the collaboration space (if MEC server n
has enough cache storage to satisfy the demand) or forwards
the request to the DC. When data dk is requested at MEC
serverm, it will either be served from a cache in the collabo-
ration space or forwarded to the DC if dk is not cached in the
collaboration space.
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4.5 Distributed Optimization Control
Next, we propose a distributed optimization control model
that coordinates and integrates the communication, compu-
tation, and caching models defined in the previous sections.

In the distributed control model, we maximize the back-
haul bandwidth saving (minimize the backhaul bandwidth
consumption) by reducing the data exchange between MEC
servers and remote DC, i.e., increasing the cache hits. There-
fore, we adopt the caching reward defined in [29] as the
amount of saved backhaul bandwidth given by:

Cðxx; yy; wwÞ ¼
X
m2M

X
k2Km

sðdkÞ�dk
mxm

k ðyk!m
k wk

m

þ
X
n2M

ym!n
k wk

nÞ;
(27)

where the requests for data dk arrive at BS m with arrival
rate �

dk
m .

Here, we consider the total delay as the total amount of
time that task Tk takes to be completely computed (offload-
ing delay included). For the computation cost, if user k com-
putes its task locally, then the computational delay cost of
tlock is incurred. On the other hand, when user k decides to
offload the computational task to an MEC server, a total off-
loading and computation delay of toffk is incurred. In order to
minimize both computation delay costs (tlock and toffk ), we for-
mulate the total delay Qðxx; yyÞ for the tasks computed locally
at user devices, or in the MEC collaboration space, or at the
remote cloud as follows:

Qðxx; yyÞ ¼
X
m2M

X
k2Km

ð1� xm
k Þtlock þ xmk t

off
k : (28)

4.5.1 Problem Formulation

We formulate the joint 4C in big data MEC as an optimiza-
tion problem that jointly minimizes both bandwidth con-
sumption and network latency as follows:

min
xx;yy;ww

Qðxx; yyÞ � hCðxx; yy; wwÞ (29)

subject to:
X
k2Km

xm
k a

m
k � 1; 8m 2 M; (29a)X

k2Km

xm
k pkmy

k!m
k � Pm; 8m 2 M; (29b)

xmk
X
k2Km

yk!m þ
X

n6¼m2M

X
k2Kn

yn!m
k

 !
wk

msðdkÞ � Cm; (29c)

ð1� xm
k Þ þ xm

k ðyk!m
k þ

X
n2M

ym!n
k þ ym!DC

k Þ ¼ 1; (29d)

maxfyk!m
k ; ym!n

k ; ym!DC
k ; 8ng � xm

k ; (29e)

where h > 0 is the weight parameter.
The constraint in (29a) guarantees that the sumof spectrum

allocation to all users has to be less than or equal to the total
available spectrum at each BSm. The constraints in (29b) and
(29c) guarantee that the computation and cache resources
allocated to users at each MEC server m do not exceed the
computation and caching resources. The constraints in (29d)
and (29e) ensure that the task Tk has to be executed at only
one location, i.e., no duplication. Furthermore, in order to sim-
plify the notation, we define the new objective function:

Bðxx; yy; wwÞ :¼ Qðxx; yyÞ � hCðxx; yy; wwÞ: (30)

The above optimization problem in (30) is difficult to solve
due to its non-convex structure. Therefore, to make it convex,
we use the BSUMmethod described in below Section 4.5.2.

4.5.2 Overview of BSUM Method

BSUM is a distributed algorithm that allows parallel comput-
ing. The advantages of BSUM over centralized algorithms
reside in both solution speed and problem decomposability
[14]. Therefore, for introducing BSUM [44] in its standard
form, we consider the following function as a block-struc-
tured optimization problem:

min
xx

gðxx1; xx2; . . . ; xxJÞ; s:t: xxj 2 Zj; 8j 2 J ; j ¼ 1; . . . ; J;

(31)

where Z :¼ Z1 �Z2 � � � � ZJ , gð:Þ is a continuous function,
and J is the set of indexes. For j ¼ 1; . . . ; J , we consider Zj

as a closed convex set, and xxj as a block of variables. By
applying BCD, at each iteration t, a single block of variables
is optimized by solving the following problem:

xxt
j 2 argmin

xxj2Zj

gðxxj; xx
t�1
�j Þ; (32)

where xxt�1
�j :¼ ðxt�1

1 ; . . . ; xt�1
j�1; x

t�1
jþ1; . . . ; x

t�1
j ), xxtk ¼ xxt�1

k for j 6¼ k.

Both problems in (31) and (32) are difficult to solve, espe-
cially when (31) is a non-convex function, and block coordi-
nate descent (BCD) does not always guarantee convergence.
Therefore, with BSUM, at a given feasible point yy 2 Z, we
can introduce the proximal upper-bound function hðxxj; yyÞ of
gðxxj; yy�jÞ. The most commonly used schemes for choosing
the proximal upper-bound function are quadratic upper-
bound, linear upper-bound, and Jensen’s upper-bound [44].
The proximal upper-bound function hðxxj; yyÞ must satisfy
followingAssumption 1:

Assumption 1.We make the following assumptions:

i) hðxxj; yyÞ ¼ gðyyÞ,
ii) hðxxj; yyÞ > gðxxj; yy�jÞ,
iii) h0ðxxj; yy; qqjÞjxxj¼yjyj

¼ g0ðyy; qqÞ; yyj þ qqj 2 Zj.

Assumptions 1(i) and 1(ii) guarantee that the proximal
upper-bound function hmust be a global upper-bound func-
tion of the objective function g. Furthermore, Assumption 1
(iii) guarantees that hðxxj; yyÞ takes steps proportional to the
negative of the gradient of the objective function gðxxj; yy�jÞ in
the direction qq, i.e., the existence of first-order derivative
behavior.

For ease of presentation, we use the following proximal
upper-bound, where the upper-bound is constructed by
adding quadratic penalization to the objective function:

hðxjxj; yyÞ ¼ gðxxj; yy�jÞ þ
%

2
ðxxj � yyjÞ2; (33)

where % is a positive penalty parameter. At each iteration t,
the BSUM solves the proximal upper-bound function via
the following update:

xxtj 2 argmin
xxj2Zj

hðxxj; xx
t�1
j Þ; 8j 2 J ;

xxtk ¼ xxt�1
k ; 8k =2 J :

8<
: (34)

There are many selection rules that can be used for select-
ing each coordinate j 2 J . Next, we describe the most com-
monly used selection rules [44]:
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� BSUM for 4C with a Cyclic rule: In this selection rule,
coordinates are selected in a cyclic order, i.e., 1; 2;
3; . . . ; J; 1; 2; 3; . . . .

� BSUM for 4C with a Gauss-Southwell rule: At each
iteration t, the Gauss-Southwell rule selects J that has
a single index j� 2 J such that the following condi-
tion is satisfied: j� 2 fj j kðxxt

j � xxt�1
j Þk 	 q max

kk
kðxxt

k�
xxt�1
k Þkg, where j; k 2 J and q 2 ½0; 1
 is a constant.

� BSUM for 4C with a Randomized rule: At each itera-
tion t, the Randomized rule defines a constant qmin 2
½0; 1
 and a probability vector ppt ¼ ðpt1. . .ptJÞ that satis-
fies

P
j2J ptj ¼ 1 and ptj 	 qmin from which we can

obtain a random index j� 2 J by calculating Prðj 2
J jxxt�1; xxt�2; . . .; xx0 ¼ ptjÞ.

Algorithm 2. BSUM Algorithm in its Standard form [44]

1: Input: xx;
2: Output: xx�;
3: Initialize t ¼ 0, � > 0;
4: Find a feasible point xx0 2 Z;
5: Repeat;
6: Choose index set J ;
7: Let xxt

j 2 argmin hðxxj; xx
t�1
�j Þ; 8j 2 J ;

8: Set xxt
k ¼ xxt�1

k ; 8k =2 J ;
9: t ¼ tþ 1;

10: Until k h
ðtÞ
j

�h
ðtþ1Þ
j

h
ðtÞ
j

k � �;

11: Then, consider xx� ¼ xx
ðtþ1Þ
j as solution.

The complete structure of the BSUM algorithm is descri-
bed in Algorithm 2. Algorithm 2 (BSUM) can be considered
as a generalized form of BCD that optimizes block by block
the upper-bound function of the original objective function.
BSUM can be used for solving separable smooth or non-
smooth convex optimization problems that have linear
coupling constraints. To solve the family of such problems,
the BSUMupdates each block of variables iteratively through
minimizing the proximal upper-bound function until it con-
verges to both a coordinate-wise minimum and a stationary
solution. We consider the stationary solution to be a coordi-
nate-wise minimum, when a block of variables reaches the
minimum point xx� ¼ xx

ðtþ1Þ
j . In other words, at stationary

points, the entire vector of points cannot find a better mini-
mum direction [44], [45], [46]. Based on [44] and [47], we can
make the following remark:

Remark 1 (Convergence). BSUM algorithm takesO log ð1=�Þð Þ
to converge to an �-optimal solution, which is sub-linear
convergence.

The �-optimal solution xx�
j 2 Zj is defined as xx�j 2 fxxjjxxj 2

Zj; hðxxj; xx
t; yytÞ � hðxx�

j ; xx
t; yytÞg � �, where hðxx�

j ; xx
t; yytÞ is the

optimal value of hðxxj; yyÞwith respect to xxj.

4.5.3 Distributed Optimization Control Algorithm

Our optimization problem in (30) is difficult to solve due to
the presence of decision variables used at different locations.
Therefore, we consider BSUM as a suitable candidate
method for solving it in a distributed way by focusing on
solving per-block subproblems. In order to apply BSUM in
our distributed optimization control model, we define X ,
fxx :

P
m2M

P
k2Km

xm
k ¼ 1; xm

k 2 ½0; 1
g, Y , fyy :
P

m2M
P

k2Km

yk!m
k þ ym!n

k þ ym!DC
k ¼ 1; yk!m

k ; ym!n
k ; ym!DC

k 2 ½0; 1
g, and
W , fww :

P
m2M

P
k2Km

wk
m þ wk

n þ wk
DC ¼ 1; wk

m; w
k
n; w

k
DC 2 ½0; 1
g

as the feasible sets of xx, yy, and ww, respectively. In addition, in
BSUM, to solve our optimization problem in (30), we need
two steps:

� In the first step, we introduce a proximal function
which is a convex optimization problem and an upper
bound of (30) by adding quadratic penalization.

� In the second step, instead of minimizing (30) which
is intractable, we minimize the proximal upper-
bound function and ensure that the upper-bound
function takes steps proportional to the negative of
the gradient.

At each iteration t, 8j 2 J , we define the proximal upper-
bound function Bj, which is convex and the proximal upper-
bound of the objective function defined in (30). In order to
guarantee that the proximal upper-bound function Bj is con-
vex, we add to the objective function in (30) a quadratic
penalization, as follows:

Bjðxxj; xx
ðtÞ; yyðtÞ; wwðtÞÞ :¼ Bðxxj; ~x~x; ~y~y; ~w~wÞ þ %j

2
kðxxj � ~x~xÞk2:

(35)
(35) is the proximal upper-bound function of (30), and it can
be applied to other vectors of variables yyj and wwj, respec-
tively, where %t > 0 is the positive penalty parameter. Fur-
thermore, the proximal upper-bound function in (35) is a
convex optimization problem due to its quadratic term
%j
2 kðxxj � ~x~xÞk2. In other words, with respect to xxj, yyj, andwwj, it
has minimizers vector ~x~x, ~y~y, and ~w~w at each iteration t, which
are considered to be the solution of the previous step (t� 1).
At each iteration tþ 1, the solution is updated by solving the
following optimization problems:

xx
ðtþ1Þ
j 2 min

xxj2X
Bjðxxj; xx

ðtÞ; yyðtÞ; wwðtÞÞ; (36)

yy
ðtþ1Þ
j 2 min

yyj2Y
Bjðyyj; yyðtÞ; xxðtþ1Þ; wwðtÞÞ; (37)

ww
ðtþ1Þ
j 2 min

wwj2W
Bjðwwj; ww

ðtÞ; xxðtþ1Þ; yyðtþ1ÞÞ: (38)

Furthermore, (36), (37), and (38) can be solved through the use
of our proposed distributed optimization control presented in
Algorithm 3 for 4C, which is a modified version of the stan-
dard BSUM (Algorithm 2). For solving (36), (37), and (38), we
relax the vectors of variables xxj, yyj, and wwj taking values in
the closed interval between 0 and 1. Then, we use a threshold
rounding technique described in [48] in Algorithm 3 to enforce
the relaxed xxj, yyj, and wwj to be vectors of binary variables.

As an example, in the rounding technique, for xm�
k 2 xx

ðtþ1Þ
j ,

xm�
k 	 u, where u 2 ð0; 1Þ is a positive rounding threshold, we

set xm�
k as follows:

xm�
k ¼ 1; if xm�

k 	 u;
0; otherwise.

�
(39)

The above rounding technique can be applied to other vec-
tors of variables yyj and wwj, respectively. However, the binary
solution obtained from the rounding technique may violate
communication, computational, and caching resource con-
straints. Therefore, as described in [49], to overcome this issue
after rounding, we solve the problem (35) in the form of
Bj þ �D, where constraints (29a), (29b), and (29c) aremodified
as follows:
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X
k2Km

xm
k a

m
k � 1þ Da; 8m 2 M; (40)

X
k2Km

xm
k pkmy

k!m
k � Pm þ Dp; 8m 2 M; (41)

xmk
X
k2Km

yk!m þ
X

n 6¼m2M

X
k2Kn

yn!m
k

 !
wk

msðdkÞ � Cm þ Dm;

(42)
where Da is the maximum violation of communication
resources constraint, Dp is the maximum violation of compu-
tational resources constraint, Dm is the maximum violation
of caching resources constraint, D ¼ Da þ Dp þ Dm, and � is
the weight ofD. Moreover,Da,Dp, andDm are given by:

Da ¼ max 0;
X
k2Km

xm
k a

m
k � 1

( )
; 8m 2 M; (43)

Dp ¼ max 0;
X
k2Km

xm
k pkmy

k!m
k � Pm

( )
; 8m 2 M; (44)

Dm ¼ max 0; xmk
X
k2Km

yk!m þ
X

n 6¼m2M

X
k2Kn

yn!m
k

 !
wk

msðdkÞ � Cm

( )
:

(45)
Furthermore, if there are no violations of communication,
computational, and caching resources constraints (Da ¼ 0,
Dp ¼ 0, and Dm ¼ 0), the feasible solution of (35) is obtained.

Given problem Bj and its rounded problem Bj þ �D, a
most important measurement of the quality of rounding
technique is the integrality gap which measures the ratio
between the feasible solutions of Bj and Bj þ �D. Therefore,
based on definition and proof of integrality gap in [48], we
can make the following definition:

Definition 1 (Integrality gap). Given problem Bj (35) and its
rounded problem Bj þ �D, the integrality gap is given by:

b ¼ min
xx;yy;ww

Bj

Bj þ �D
; (46)

where the solution of Bj is obtained through relaxation of varia-
bles xxj, yyj, and wwj, while the solution of Bj þ �D is obtained
after rounding the relaxed variables. We consider that the best
rounding is achieved, when b (b � 1) is closer to 1 [48]. In other
words, b ¼ 1, whenDa ¼ 0,Dp ¼ 0, andDm ¼ 0.

In Algorithm 3 for 4C, each user device k 2 K chooses the
offloading decision xm

k . If x
m
k ¼ 1, the user sends its demands

to the nearest BS. For each demand Tk received, the BS checks
its RAT for its own and collaboration space resource availabil-
ities. Algorithm 3 starts by initializing t ¼ 0, and setting �
equal to a small positive number, where � is used to guarantee
the �-optimal solution defined in [44]. Algorithm 3 then finds
the initial feasible points (xxð0Þ, yyð0Þ, wwð0Þ). Subsequently, our
algorithm starts an iterative process and chooses the index
set. At each iteration tþ 1, the solution is updated by solv-
ing the optimization problems (36), (37), and (38) until

BðtÞ
j

�Bðtþ1Þ
j

BðtÞ
j

� �, i.e., it converges to an �-optimal solution. Algo-

rithm 3 generates a binary solution of xx
ðtþ1Þ
j , yy

ðtþ1Þ
j , and ww

ðtþ1Þ
j

and obtains cc, pp, and RR by using the rounding technique (39)
and solving Bj þ �D. Algorithm 3 also guarantees that Bj þ

�D converges to an �-optimal solution. Then, after solving
Bj þ �D, Algorithm 3 calculates b, where the best rounding is

achieved, when b � 1. Furthermore, we consider xx� ¼ xx
ðtþ1Þ
j ,

yy� ¼ yy
ðtþ1Þ
j , andww� ¼ ww

ðtþ1Þ
j to be stationary solution that satis-

fies coordinate-wise minimum. Finally, Algorithm 3 updates
its RAT and sends the RAT update in its collaboration space.

The difference between the BSUM (Algorithm 2) in its
standard form and the BSUM for 4C in big data MEC (Algo-
rithm 3) resides in their implementations, where BSUM
Algorithm in its standard form is based on distributed con-
trol. On the other hand, Algorithm 3 is based on both the
hierarchical and distributed control models defined in [50].
In the hierarchical control model, edge devices decide on xx
first. Then, each MEC server m acts as a controller for the
users’ offloaded tasks and, thus, it solves (36), (37), and (38).

In the distributed control model, each MEC server
exchanges small information with other MEC servers in
order to update the RAT, solve the optimization problem,
and maintain the resource allocation within a tight range of
available computational resources P and caching resources
C. However, in a collaboration space, there is no centralized
controller that controls allMEC servers, i.e., eachMEC server
runs distributed optimization control algorithm (BSUM-
based) for 4C. This distributed control is modeled as a
dynamic feedback control model based on [51], where the
RAT update at each MEC server acts as feedback with state
ðxxðtÞ; yyðtÞ; wwðtÞÞ at iteration t, which is used to determine the
new state ðxxðtþ1Þ; yyðtþ1Þ; wwðtþ1ÞÞ at the next iteration tþ 1.
Furthermore, the optimal value (xx�j ; yy

�
j ; ww

�
j ) is considered to

be a network equilibriumor a stability point, which is the sta-
tionary solution that satisfies a coordinate-wise minimum.

Algorithm3.Distributed Optimization Control Algorithm
(BSUM-based) for 4C in big Data MEC

1: Input: TT : A vector of demands; Bm, Pm, and Cm: communi-
cation, computational and caching resources;

2: Output: xx�; yy�; ww�, cc : A vector of cache allocation, pp: A vec-
tor of computation allocation, and RR: A vector of communi-
cation resources allocation;

3: Each user device k 2 K chooses the offloading
decision xm

k ;
4: If xmk ¼ 1, user device k 2 K sends its demand Tk to BS

m 2 M;
5: For each Tk received at BSm 2 M, check RAT update;
6: Initialize t ¼ 0, � > 0;
7: Find initial feasible points (xxð0Þ, yyð0Þ, wwð0Þ);
8: repeat
9: Choose index set J ;
10: Let xx

ðtþ1Þ
j 2 min

xxj2X
Bjðxxj; xx

ðtÞ; yyðtÞ; wwðtÞÞ;
11: Set xxtþ1

k ¼ xxt
k; 8k =2 J ;

12: Go to Step 4, find yy
ðtþ1Þ
j , ww

ðtþ1Þ
j by solving (37) and (38);

13: t ¼ tþ 1;

14: until k BðtÞ
j

�Bðtþ1Þ
j

BðtÞ
j

k � �;

15: Generate a binary solution of xx
ðtþ1Þ
j , yy

ðtþ1Þ
j , ww

ðtþ1Þ
j and obtain

cc, pp, and RR by using rounding technique (39) and solving
Bj þ �D ;

16: Then, calculate b. If b � 1, consider xx� ¼ xx
ðtþ1Þ
j , yy� ¼ yy

ðtþ1Þ
j ,

and ww� ¼ ww
ðtþ1Þ
j as a solution;

17: Update RAT, and send RAT update in collaboration space.
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5 SIMULATION RESULTS AND ANALYSIS

In this section, we present the performance evaluation of the
proposed joint 4C in big data MEC, where we use Python
[52] for numerical analysis.

5.1 Simulation Setup
For forming collaboration spaces, we use the Sitefinder data-
set (BSs dataset) fromEdinburghDataShare [53]. In this data-
set, we randomly select one MNO, which has 12777 BSs,
through the use of the OKM-CS algorithm, we group these
BSs into 1000 collaboration spaces. This clustering process
requires 385.075 seconds. The choice of r depends on the size
of the dataset and, for our chosen dataset, we find that
r ¼ 1000 is the best choice as it yields a reasonable number of
BSs per cluster. In other words, the MNO has to choose r
based on the size of its network since different network sizes
need different values for r. As described in Table 2, first, we
use the elbow method [54] to determine the number of clusters
r, where r ¼ 100 is optimal and the clustering process takes
343.76 seconds. However, when r ¼ 100, we havemany clus-
ters that have many BSs and, this increases the communi-
cation delay among MEC servers belonging to the same
collaboration space. To overcome this challenge, we increase
the value of r to 500 which still leads to many clusters that
have many BSs. Subsequently, as shown in Fig. 4, we
increase r to 1000, at which point the average number of BSs
per one collaboration space becomes 13 BSs. However, for
values of r larger than 1000, e.g., for r ¼ 2000, the system has
many small clusters (e.g., with only one BS). Among 1000 col-
laboration spaces, we randomly select one collaboration
space, which has 12 BSs, and we associate each BS with 1
MEC server. Furthermore, we consider the initial number of
users to be K ¼ 100 at each BS, and we exponentially
increase the number of users toK ¼ 3200. In our setup, each
user sends one task at each time slot. The path loss factor is
set to 4 and the transmission power is set to rk ¼ 27:0 dBm
[28], while the channel bandwidth is set to be in the range
from Bm ¼ 25 MHz to Bm ¼ 32 MHz [53]. Furthermore, we
consider the bandwidth between each pair of BSs to be
randomly selected in the range from Gn

m ¼ 20 MHz to
Gn
m ¼ 25 MHz, while the bandwidth between each BS and

DC is selected in the range from VDC
m ¼ 50 to VDC

m ¼ 120
Mbps. The cache storage of each MEC server m is in the
range from 100 to 500 TB, while computation resources are in
the range from 2GHz to 2.5 GHz[55].

For a task Tk of a given user k, we generate synthetic data.
The size of the data sðdkÞ is randomly generated within a
range of 2 to 7 GB, while the task computation deadline ~tk is
randomly generated within a range of ~tk ¼ 0:02 second to
~tk ¼ 12 seconds. Theworkload zk of each user device k is ran-
domly generated and uniformly distributed in the range
from zk ¼ 452:5 cycles/bit to zk ¼ 737:5 cycles/bit [55]. For
each user device, the computation resource is in range from
0.5 GHz to 1.0 GHz [56].

The number of requests for contents ranges from �
dk
m ¼

578 to �
dk
m ¼ 3200. The demand and popularity of the con-

tent follow Zipf distributions described in [57], [58].

5.2 Performance Metrics

5.2.1 Throughput

For effective resource utilization, we evaluate the network
and computation throughputs of the proposed algorithms.
We consider the network throughput as a measurement of
howmany data units the network can handle within a given
period of time [59], [60]. Meanwhile, the computation
throughput is defined as a measurement of how many task
units the MEC server can compute within a given period of
time. Here, the network throughput is measured in terms of
Mbps, while the computation throughput is measured in
terms of million instructions per second (MIPS).

5.2.2 Delay

In a collaboration space, each task Tk offloaded by the user
device ends its journey at the server which has resources
that can fulfill user demand. Then, the MEC server com-
putes, caches, and returns the output of the computation
to the user. Therefore, we consider the total delay as the
time period between offloading task Tk and receiving the
corresponding computation output. Thus, the total delay
does not allow to visualize offloading delay and computa-
tion delay separately, we use transmission delay and
computation/executing delay described in Section 4 as
delay metrics.

5.2.3 Cache Hit Ratio and Bandwidth-Saving

We also evaluate the number of cache hits and misses. A
cache hit, denoted h

dk
m 2 f0; 1g, occurs when the requested

content dk is retrieved from the cache storage available in a
collaboration space at any BS m. Cache hit contributes to
bandwidth saving defined in (27) as it reduces the data
exchange between the collaboration space and the DC. On
the other hand, a cache miss occurs when the requested con-
tent dk is not available in any cache storage in the collabora-
tion space. The probability of a cache hit for content dk is
expressed as follows:

Pdk ¼
P

k2K
P

m2M h
dk
mP

k2K
P

m2Mðhdk
m þ ð1� h

dk
m ÞÞ

; (47)

TABLE 2
Formation of Collaboration Spaces

Number of BSs r ¼ 100 r ¼ 500 r ¼ 1000 r ¼ 2000

Maximum 1299 374 200 143
Minimum 12 1 1 1
Average 128 25 13 6

Fig. 4. Collaboration space formation (r ¼ 1000).

NDIKUMANA ET AL.: JOINT COMMUNICATION, COMPUTATION, CACHING, AND CONTROL IN BIG DATA MULTI-ACCESS EDGE COMPUTING 1369

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 00:52:30 UTC from IEEE Xplore.  Restrictions apply. 



where
P

k2K
P

m2M h
dk
m is the total number of cache hits, andP

k2K
P

m2Mðhdk
m þ ð1� h

dk
m ÞÞ is the total number of cache

hits plus the total number of cachemisses.

5.3 Simulation Results
Fig. 5 combines both delay viewed as cost and bandwidth sav-
ing in one optimization problem in (35). We solve the proximal
upper-bound problem through the use of distributed optimiza-
tion control algorithm for 4C (Algorithm 3). Furthermore, we
compare the solution of our distributed optimization control
algorithm with the solution computed via Douglas-Rachford
Splitting (D-R-S) [61] without applying a rounding technique.
Thus, our formulated problem in (35) is decomposable. The
Douglas-Rachford splitting method is used to decompose our
problem into small subproblems, and address each subprob-
lem separately. For any given two functions f and g, the D-R-S
method minimizes fðxÞ þ gðxÞ by using the following process:
At the first iteration t ¼ 0, it starts at an initial feasible yð0Þ and
keeps updating x and y such that xðtÞ ¼ proxfðyðt�1ÞÞ and

yðtÞ ¼ yðt�1Þ þ proxgð2xðtÞ� yðt�1ÞÞ � xðt�1Þ, where proxf and

proxg are proximal functions of f and g [61], respectively.
Fig. 5 shows the convergence of our optimization prob-

lem. In this figure, we use the Douglas-Rachford Splitting
method [61] and our distributed control algorithm (Algo-
rithm 3) for solving (35). In our distributed control algorithm,
for choosing indexes in ð35Þ, we use three coordinate selec-
tion rules: Cyclic, Gauss-Southwell, and Randomized [44].
Furthermore, for the quadratic term in (35), we adjust the pos-
itive penalty parameter %j within the range 0.2 to 100. From
this figure, we can see that the performance of our distributed
control algorithm and Douglas-Rachford splitting method is
almost the same. Therefore, the proximal upper-bound prob-
lem in ð35Þ converges to both a coordinate-wise minimum
and a stationary point, which is considered as a solution of
ð35Þ. In other words, we consider this minimum point as an
optimal value and equilibrium/stability point ofBj (35).

In Fig. 6, we apply the rounding technique to the results of
Fig. 5 and solve Bj þ �D, where we consider the positive
rounding threshold to be u ¼ 7 and the weight parameter � of
D is within the range 0.02 to 2.0. The simulation results in Fig. 6
ensure that the relaxed xxj, yyj, and wwj to be vectors of binary
variables, and the rounding technique does not violate the
computational and caching resource constraints while solving
Bj þ �D. Furthermore, the difference between Figs. 5 and 6

resides in the sizes of the problems (Bj and Bj þ �D) and the
step sizes needed for reaching the minimum point. However,
in both Figs. 5 and 6, both problems Bj and Bj þ �D converge
to the same stability point. In other words, with and without
applying rounding technique, ð35Þ converges to a minimum
point that guarantees b ¼ 1 ( no violations of communication,
computational, and caching resources constraints).

In terms of network throughput, Fig. 7 shows that the
throughput increases up to 35 Mbps. In this figure, the coor-
dinate selection rules (Cyclic, Gauss-Southwell, Random-
ized) in our distributed optimization control algorithm and
the Douglas-Rachford splitting method have almost the
same performance.

Fig. 8 shows the cumulative distribution function (CDF) of
the computational throughput. The simulation results show
that the Cyclic selection rule in our distributed optimization
control algorithm, as well as the Douglas-Rachford splitting
(D-R-S) method, require high computational resources, as the
computational throughput for each MEC server can reach
2:55� 108 MIPS. On the other hand, the Gauss-Southwell
and Randomized selection rules use less computational
resources, as the computational throughput for each MEC
server can reach 1:48� 108 MIPS. The advantage of the
Gauss-Southwell selection rule compared to other coordinate
selection rules lies in choosing the index. In the Gauss-South-
well selection rule, instead of choosing the index randomly or
cyclically, at each iteration, an index that maximizes the utili-
zation of the computational resource is chosen.

We next examine the total delay between offloading task
Tk and receiving the corresponding computation output.
Fig. 9 shows the transmission delay, where the solid blue
lines represent the median and the dashed black lines repre-
sent the arithmeticmean. In this figure, Cyc stands for Cyclic,
G-S stands for Gauss-Southwell, Ran stands for Random-
ized, and D-R-S stands for Douglas-Rachford splitting. The
results in this figure show that the mean of the transmission
delay varies from 0.0078 (G-S) to 0.092 (Cyc) seconds. In
addition, Fig. 10 shows computation delay, where the mean
of the computation delay varies from 0.008 (G-S) to 0.142
(D-R-S) seconds. The total delay, i.e., the sum of computation
and transmission delays, fulfills the task computation
deadline described in the simulation setup. However, Cyclic
and Douglas-Rachford splitting yield higher delay than
others due to index selection (for Cyclic) and splitting
(for Douglas-Rachford splitting), which require more time
and computation resources. Furthermore, Douglas-Rachford
splitting has a higher delay than BSUM coordinate selection
rules.

Fig. 5. Optimal value of Bj (35) with different coordinate selection rules
(without rounding).

Fig. 6. Optimal value of Bj þ �D with different coordinate selection rules
(after rounding).
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Furthermore, in Figs. 5, 6, 8, 9, and 10, the only difference
between D-R-S and other techniques is the computational
resource utilization and computation delay. Therefore, since
computational resources are limited and each offloaded task
Tk has computation deadline, these results clearly demon-
strate that the proposed distributed optimization control algo-
rithm (BSUM-based) for 4C is more suitable than D-R-S.

Fig. 11 shows the normalized cache hits, where cache hit
ratio Pdk is computed from (47). From Fig. 11, we can see that
the cache hit ratio increases with the Zipf exponent parameter
a. When a ¼ 2:0, due to the increase in the number of demands
for contents, many contents become popular, which results in a
high cache hit ratio of 0.03 percent of the total demands �

dk
m

from users. In the case of cache misses in collaboration space,
the demands for contents need to be forwarded to the DC.
Therefore, cache hits contribute to reducing the number of

demands �
dk
m for contents that need to be forwarded to the DC.

Furthermore, using the number of demands �
dk
m and the size of

cached contents dk in collaboration space, we compute band-
width-saving through the use of (27).

Fig. 12 shows the simulation results for bandwidth-saving
in terms of Gigabytes (GB). In this figure, from the beginning,
bandwidth-saving is nearly zero, and thus MEC server has to
cache the contents first. In other words, MEC caching is based
on content prefetching. Therefore, due to the increase in the
number of cached contents and demands, the maximum
bandwidth-saving of 4:74� 107 GB is observed when a ¼ 2:0
and h ¼ 1. Furthermore, the increase in the demands is accom-
panied by an increase in network throughput, cache storage,
computational resource utilization, and delay.

Fig. 7. Network throughput within a collaboration space.

Fig. 8. CDF of computation throughput.

Fig. 9. Transmission delay.

Fig. 10. Computation delay.

Fig. 11. Normalized cache hits in collaboration space.

Fig. 12. Bandwidth saving due to caching.
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Fig. 13 shows the total cache storage utilization in the col-
laboration space of 12 MEC servers, where the cache storage
utilization depends on the sizes of offloaded data and cache
capacity constraints. In Fig. 13, we can see that the cache
resources utilization increases with the number of demands
until it reaches to 1:15� 105 GB (when a ¼ 1:0). The increase
of cache storage utilization results in the increase of cache
hits in Fig. 11 and bandwidth saving in Fig. 12.

In this work, our approach focuses on intra-cooperation
between MEC servers that belong to one collaboration
space. One interesting future work is to extend our frame-
work to account for inter-cooperation between MEC servers
that belong to different collaboration spaces.

6 CONCLUSION

In this paper, we have proposed a joint communication,
Communication, Computation, Caching, and Control (4C)
framework for big data MEC. In this framework, MEC serv-
ers collaborate to satisfy users’ demand. We have formu-
lated the problem as a joint optimization problem that aims
to minimize a linear combination of bandwidth consumed
and network latency. Therefore, for solving the formulated
optimization problem, we have proposed a distributed opti-
mization control algorithm for 4C, which is a modified ver-
sion of the BSUM method. We have compared the results
from the distributed optimization control algorithm with
the results computed via the Douglas-Rachford splitting
method. Simulation results from both methods have shown
that our approach can be efficiently implemented.

ACKNOWLEDGMENTS

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (NRF-2017R1A2A2A05000995).

REFERENCES

[1] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality of informa-
tion aware incentive mechanisms for mobile crowd sensing sys-
tems,” in Proc. 16th ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,
Jun. 22–25, 2015, pp. 167–176.

[2] E. Dave, “The internet of things: How the next evolution of the inter-
net is changing everything.,” CISCO white paper 1, no. 2011, Apr.
2011, pp. 1–11. [Online]. Available: https://www.cisco.com/c/
dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[3] E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe,
A. S. Er, and M. Debbah, “Big data caching for networking: Mov-
ing from cloud to edge,” IEEE Commun. Mag., vol. 54, no. 9, pp.
36–42, Sep. 16, 2016.

[4] S. Ranadheera, S. Maghsudi, and E. Hossain, “Computation offloading
and activation of mobile edge computing servers: A minority game,”
IEEEWireless Commun. Lett., vol. 7, no. 5, pp. 688–691, Oct. 2018.

[5] A. Ferdowsi, U. Challita, and W. Saad, “Deep learning for reliable
mobile edge analytics in intelligent transportation systems,”
CoRR, Dec. 2017. [Online]. Available: https://arxiv.org/pdf/
1712.04135.pdf.

[6] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing a key technology towards 5G,” ETSI White Paper,
vol. 11, no. 11, pp. 1–16, 5 Sep. 2015.

[7] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et
al., “Mobile-edge computing introductory technical white paper,”
White Paper, Mobile-edge Computing (MEC) Industry Initiative,
Sep. 2014.

[8] O. Semiari, W. Saad, S. Valentin, M. Bennis, and H. V. Poor,
“Context-aware small cell networks: How social metrics improve
wireless resource allocation,” IEEE Trans. Wireless Commun., vol. 14,
no. 11, pp. 5927–5940, Jul. 13, 2015.

[9] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenar-
ios, and challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61,
Apr. 14, 2017.

[10] A. Ndikumana, S. Ullah, T. LeAnh, N. H. Tran, and C. S. Hong,
“Collaborative cache allocation and computation offloading in
mobile edge computing,” in Proc. 19th IEEE Asia-Pacific Netw. Opera-
tionsManag. Symp., Sep. 27–29, 2017, pp. 366–369.

[11] K. Dutta and M. Jayapal, “Big data analytics for real time systems,”
in Proc. BigDataAnalytics Seminar, Nov. 11, 2015, pp. 1–13.

[12] E. Ahmed and M. H. Rehmani, “Mobile edge computing: Opportu-
nities, solutions, and challenges,” Future Generation Comput. Syst.,
vol. 70,May 2017, pp. 59–63.

[13] G. Cleuziou, “An extended version of the K-meansmethod for over-
lapping clustering,” in Proc. 19th IEEE Int. Conf. Pattern Recognit.,
Dec. 08–11, 2008, pp. 1–4.

[14] Z. Han, M. Hong, and D. Wang, Signal Processing and Network-
ing for Big Data Applications. Cambridge, U.K.: Cambridge
Univ. Press, 2017.
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