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To achieve the full poten-
tial of fog computing, it

is essential to design an
incentive mechanism for
fog computing service
providers. Auction is a
promising solution for
the incentive mechanism
design. However, it is
challenging to design an
optimal auction that maxi-
mizes the revenue for the
providers while holding
important properties: IR
and IC.
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ABSTRACT

Fog computing is considered to be a key
enabling technology for future networks. By
broadening the cloud computing services to
the network edge, fog computing can support
various emerging applications such as 10T, big
data, and blockchain with low latency and low
bandwidth consumption cost. To achieve the
full potential of fog computing, it is essential to
design an incentive mechanism for fog com-
puting service providers. Auction is a promising
solution for the incentive mechanism design.
However, it is challenging to design an optimal
auction that maximizes the revenue for the pro-
viders while holding important properties: IR and
IC. Therefore, this article introduces the design
of an optimal auction based on deep learning
for the resource allocation in fog computing. The
proposed optimal auction is developed specifical-
ly to support blockchain applications. In particu-
lar, we first discuss resource management issues
in fog computing. Second, we review economic
and pricing models for resource management in
fog computing. Third, we introduce fog comput-
ing and blockchain. Fourth, we present how to
design the optimal auction by using deep learn-
ing for the fog resource allocation in the block-
chain network. Simulation results demonstrate
that the proposed scheme outperforms the base-
line scheme (i.e., the greedy algorithm) in terms
of revenue, and IC and IR violations. Thus, the
proposed scheme can be used as a useful tool
for the optimal resource allocation in general fog
networks.

INTRODUCTION

Cloud computing is becoming a choice for a
number of applications [1] due to the advantag-
es of high computing power and flexible on-de-
mand services. However, it has a shortcoming
in supporting emerging applications that require
low latency and mobility support. A new para-
digm, called fog computing [21], has been intro-
duced to meet the requirements. Fog computing
leverages resources of fog nodes at the edge of
the network to provide computing, storage, and
offloading services. Since fog nodes are locat-
ed closer to end users, fog computing is able to
achieve low latency, low bandwidth cost, flexibil-
ity, and mobility. It is thus expected to support

various real-time applications such as the Inter-
net of Things (IoT), big data, and blockchain [3].
Among emerging applications, the mobile block-
chain network is the most promising. Indeed,
blockchain has gained enormous popularity in
business, government, and academia. However,
deploying blockchain in mobile environments
faces critical challenges due to the mining pro-
cess, that is, solving the proof-of-work (PoW) puz-
zle, which requires high computing power and
energy. Fog computing appears to be a suitable
solution that enables the mining tasks to be off-
loaded to fog providers.

However, resource management in fog com-
puting has many challenges. In particular, fog
computing is offered or sold by a rational service
provider that aims to maximize its own revenue.
Thus, one critical issue is how to incentivize the
provider to sell fog resources while guaranteeing
the user quality of service (QoS). Moreover, the
fog computing capacity is limited, and how to
efficiently allocate the limited fog resources to
the users (i.e., miners in blockchain) is another
important issue.

To address the above issues, forward auc-
tion is considered to be an efficient solution
that guarantees a revenue gain for the provider
by allocating resources to the users who value
the resources most [3]. In traditional auctions,
bidders compete for resource units by submit-
ting their prices (i.e., bids) to the provider (i.e.,
the seller). Given the bids, the provider selects
the bidders with the highest bids as the win-
ners, and determines the prices that the win-
ners pay. However, the existing auctions are not
optimal in terms of maximizing the revenue for
the provider and ensuring desired economic
properties, that is, incentive compatibility (1C)
and individual rationality (IR). In particular, IR
guarantees that participants have a non-negative
utility when participating in the auction, and IC
ensures that a participant receives the highest
utility by submitting its truthful bid or ask. The
optimal auction is actually a constrained opti-
mization problem that is difficult to solve with
traditional algorithms.

In recent years, machine learning has gained
considerable attention. Machine learning using
stochastic gradient descent can successfully find
globally optimal solutions for complex problems
(e.g., the constrained optimization problem).
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Figure 1. Fog computing environment. The dashed arrow indicates layers closer to users.

Therefore, machine learning is employed to
derive the optimal auction, as proposed in [4].

In this article, we thus use the machine learn-
ing approach in [4] for the fog resource alloca-
tion. We first overview fog computing and review
the literature on fog resource management with
a special focus on economic approaches. Then
we present a brief background of blockchain.
Next, we propose an auction-based mechanism
for fog resource allocation. We also incorporate
specific requirements of blockchain applications
in the auction mechanism design in which the
solution can be obtained from a deep learn-
ing model. The performance evaluation clearly
shows the merit of the auction and its applica-
bility to fog resource allocation with blockchain
applications.

ECONOMIC AND PRICING MODELS IN
FoG COMPUTING

In this section, we first introduce fog computing.
Then we discuss its resource management issues,
and review economic and pricing models for the
resource management.

FoG COMPUTING AND APPLICATIONS

Fog computing is an extension of cloud comput-
ing that broadens the scope of cloud computing
services to the edge of networks by deploying
fog nodes between the cloud and users (Fig.
1). A fog node is a small to medium-sized com-
puting unit (e.g., an embedded server), which
includes computing, storage, and networking
elements. Fog nodes are located close to users
and can be connected to a central cloud. When
resources at the fog layer are not enough for a
redundancy deployment, redundancy offloading
to the cloud is used to enhance service reliabili-
ty. Fog computing keeps computing resource at
the edge of the network to support latency-sen-
sitive applications and services. It also supports
edge analytics and stream mining by processing
data volume at a very early stage, which reduc-
es delay and saves bandwidth significantly. Fur-

thermore, fog computing supports mobility well
since the geo-distributed fog node is able to infer
its own location and track end users. To provide
computing services, fog resources are deployed
on top of fog nodes and accessed by users over
networks. Fog computing can support emerging
applications:

* Big data analytics: Fog computing provides
an effective solution to real-time data analyt-
ics.

+ Content delivery and caching: Fog nodes
cache web and video contents from the
cloud and then deliver replicas of the con-
tents to users with shorter response time.

« Blockchain networks: Fog nodes can offload
computing tasks from low-computation
devices in blockchain networks and guar-
antee lower delay in the communication
between the devices and fog nodes.

RESOURCE MANAGEMENT IN FOG COMPUTING

Due to being located at the edge of the network,
fog computing changes the way we deliver ser-
vices to users and inspires new business models.
For service delivery, fog computing reduces the
service latency due to the use of local fog nodes.
Also, without consuming the backbone band-
width, offloading to fog nodes is much cheaper
than that to the cloud. Moreover, fog computing
enhances data security for users since data does
not go out of local networks. For business mod-
els, fog computing liberates the cloud market by
introducing more providers. However, this makes
the resource management in fog computing chal-
lenging. As fog providers are rational, the criti-
cal issue is how to incentivize them to contribute
fog resources and cooperate with each other to
guarantee the users’ quality of service (QoS). Tra-
ditional approaches (e.g.,, optimization methods
[5]) can be used. However, they are not suitable
for fog computing with multiple stakeholders in
the networks. Incentive mechanisms using eco-
nomic and pricing models should be adopted to
guarantee a stable scale of participants and the
users” QoS.

Due to being located
at the edge of network,
fog computing changes
the way that we deliver

services to users and

inspires new business
models. For the service
delivery, fog computing

reduces the service

latency due to the use
of local fog nodes. Also,
without consuming the

backbone bandwidth,

offloading to the fog
nodes is much cheaper
than that to the cloud.
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The optimization prob-
lem for the agent is
formulated to determine
renting prices paid
to the providers and
service prices offered to
the users to maximize
the agent's profit. The
profit is defined based
on probability distribu-
tions of service price
acceptance by the users
and those of renting
price acceptance by the
providers. The problem
is then solved by a
sequential optimization
algorithm.

EcoNomiIC AND PRICING MODELS FOR
RESOURCE MANAGEMENT IN FOG COMPUTING

Profit Maximization: This approach aims at
determining resource prices that lead to the
greatest profit for sellers. It can be used to
motivate providers and intermediate agents
(i.e., brokers [1]) to participate in the fog
resource market. Such an approach is found
in [6], where the agent rents fog resources
from the providers to serve computing service
requests from the users (i.e., the buyers). The
optimization problem for the agent is formulat-
ed to determine renting prices paid to the pro-
viders and service prices offered to the users
to maximize the agent’s profit. The profit is
defined based on probability distributions of
service price acceptance by users and those
of renting price acceptance by providers. The
problem is then solved by a sequential optimi-
zation algorithm.

Combinatorial Auction: The approach pro-
posed in [6] aims to maximize the profit of the
agent, but it does not guarantee IR, which may
discourage users from participating in the mar-
ket. To guarantee IR, the authors in [7] intro-
duced the use of the combinatorial auction for
the fog resource trading. The model consists
of one provider (ie., the auctioneer) and mul-
tiple mobile users (bidders) as the miners in a
blockchain mobile network. The provider pro-
vides fog resource units to the miners to offload
their mining tasks. The miners submit their bids
to the provider. The problem is to determine
the winners of the fog resources and the prices
that the winners need to pay the provider. The
objective is to maximize social welfare while
guaranteeing IR and IC. The social welfare is
defined as the sum of utilities of the users. The
definition aims to motivate users to participate
in the market. The greedy algorithm and the
payment policy of the Vicrkey-Clarke-Goves
(VCG) mechanism are adopted to solve the
problem. However, improving the revenue of
the provider is not considered in the proposed
approach.

Optimal Auction: To maximize the revenue
of the provider while guaranteeing IR and IC, the
authors in [3] designed an optimal auction based
on deep learning. The model in [3] is similar to
that in [7], but there is only a single fog resource
unit. The miners submit bids to the provider. The
provider determines the winning probabilities of
the miners and the payments for the miners. The
allocation and payment rules are implemented by
using neural networks. The neural networks are
constructed based on an analytical solution of the
optimal auction [4]. Therefore, the proposed auc-
tion is optimal in terms of maximizing the revenue
while ensuring IR and IC. However, the proposed
auction is constrained to a single fog unit. More-
over, the characterization results of the analytical
solution are required to construct the neural net-
works.

The approaches proposed in [3, 4] motivate us
to investigate an optimal auction by using deep
learning for trading multiple fog resource units in
the mobile blockchain network. The deep learn-
ing is constructed without using any characteriza-
tion results.

FoG COMPUTING FOR BLOCKCHAIN

Decentralized applications (DApps) based on the
blockchain network have emerged explosively
in recent years [8]. Some examples are seen in
crowdfunding and sharing economy. The success
of DApps contributes to the distinct advantages
of blockchain:

+ Decentralization: Without a trusted third
party or intermediary, blockchain ensures
the validity of recorded transactions. This
also largely reduces overhead and cost.

« Immutability: By using sophisticated cryp-
tographical methods, it is almost impossible
or too costly to tamper with the transactional
data in blockchain.

« Transparency and trust: Public blockchains
can offer full transparency of transactions
while guaranteeing each user node’s privacy
through pseudonymity.

In the form of a chain of blocks, blockchain
is actually a tamper-proof, distributed database
or ledger that records transactional data in a
decentralized peer-to-peer (P2P) network. The
above advantages stem from a consensus pro-
cess, which is the core part of the blockchain
technology. We discuss a blockchain network
that operates with the PoW protocol [8]. There
are two types of member nodes that jointly use
and maintain the distributed database according
to the PoW protocol: consensus nodes or min-
ers, and user nodes. The miners are required to
complete the transaction validation and the block
mining task. Specifically, each miner first collects
new transactions received from user nodes and
broadcasts the transactions to the other miners.
Each miner aggregates a set of transactions into
a block. Then the miners find a nonce value and
add it into the block such that the hash value of
the block is below a preset threshold. The pro-
cess is known as mining. Once the nonce value
is found, the corresponding miner broadcasts its
successfully mined block to the whole network.
The miners that receive the block verify the block.
If the majority of the miners agree that all trans-
actions in the block are valid, the block is linked
to their chains. Every miner must have the same
chain. The consistency of the transactions and the
chains among the miners is guaranteed by using
data synchronization protocols, for example, Bit-
coin Developer application programming interfac-
es (APIs). The miner that finds the block obtains a
reward including a fixed bonus and a transaction
fee. When the difficulty of mining increases, the
miners can pool their resources to find the block.
The mining in this case is considered to be parallel
processing in which each miner in the pool uses
its computing resources to find the nonce.

Finding the PoW solution to complete the con-
sensus process is critical to guarantee the security
and trustworthiness of the blockchain network
(i.e., to prevent Sybil attacks). In general, the
mining task is computing-ntensive, and computa-
tionally lightweight nodes (e.g., oT devices) can-
not directly participate in the consensus process.
However, the nodes can share the mining task
with fog nodes in fog computing. As such, more
nodes can easily join the consensus process as
miners, which significantly improves the robust-
ness of the blockchain network. To a great extent,
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Figure 2. Fog computing for blockchain networks.

fog computing popularizes blockchain and wid-
ens the scope of blockchain-based applications.

OPTIMAL AUCTION USING DEEP LEARNING
FOR FOG RESOURCE MARKET

Auction, that is, a centralized approach, can be
applied since we only consider a local fog net-
work that guarantees a low delay of the con-
sensus process in the blockchain network (Fig.
2) to support proximity-based mobile services.
The objective is to guarantee that the auction can
optimize the revenue for the provider while guar-
anteeing IR and IC [4]. First, we introduce the fog
resource market and auction. Second, we present
two neural networks used for the assignment and
payment decisions. Third, we discuss the training
of these neural networks. Finally, we present the
numerical results.

FoG COMPUTING RESOURCE MARKET

The fog resource market consists of one provider
and multiple miners. The miners are assumed to
be lightweight devices, and the provider deploys
fog nodes across the blockchain network to
provide nearby computing resource units to the
miners. Each miner purchases one or multiple
computing resource units at the fog nodes to sup-
port solving POW puzzles. Here, solving the PoW
has to calculate a value that makes the header
hash value lower than a given “difficulty target.”
Note that each fog node has a limited number
of computing resource units. In the case where
the resource demand exceeds the resource avail-
ability, the fog node can share its mining task to
the cloud to offload the PoW puzzle. Optimal
links are used between the fog computing and
the cloud to minimize the offloading service laten-
cy. The provider conducts a multi-item forward
auction for trading resource units. The auction
model is illustrated in Fig. 2 in which the provider
is the auctioneer, and the miners are the bidders.
Each miner submits bids, that is, the prices that
the miner is willing to pay the provider for the
resource units. The provider chooses a fog node
to maintain the blockchain if the fog node has

sufficient computing resource units and is locat-
ed close to the winner. Without exact knowl-
edge about miners, the provider resorts to deep
learning to determine the winners and prices to
maximize the revenue and guarantee the IR and
IC. For this purpose, the deep learning system is
trained based on training data that is constructed
from valuations of fog resource units to the min-
ers. The provider estimates the valuation of a fog
unit to each miner by using [7, Eq. 1]. The valua-
tion is proportional to the fixed reward for mining
a new block, the transaction fee, the size of the
block, and the factor that reflects the impact of
the size of block on the miner’s block propaga-
tion time, and inversely proportional to the aver-
age time of mining a block. Note that the size of
the block is privately chosen by the miners, but
the provider can know its probability distribution,
for example, by observation. Other parameters
are public on the network.

NEURAL NETWORKS FOR AUCTION

This section discusses the use of feed-forward
neural networks (FFNs) to derive the optimal auc-
tion. The FFN fits for our setting since it is able
to map in only one direction from the input (the
miners’ valuations) to the output (the assignment
and price decisions) [4]. As shown in Fig. 2, the
NN includes one input layer, multiple hidden
layers, and one output layer. Each layer consists
of a number of neural nodes that use activation
functions (e.g., sigmoid) to capture the potential
relations among input variables. The neural nodes
are connected with each other through weights,
which are interpreted as the strength of connec-
tions among the neural nodes. The weights imply
how much the output changes as the input var-
ies. Since the output in our setting is either the
assignment probabilities or price decisions, there
are two corresponding deep learning systems: the
assignment and payment systems.

The assignment system uses an FFN to select
the winners for fog resource units. In Fig. 2, the
input layer receives valuations of the miners. The
hidden layers use sigmoid activation functions
that transform the valuations of the input to the
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Figure 4. IC violation comparison.

output layer. There may be multiple miners com-

peting for each resource unit. Thus, the output

layer uses softmax functions to produce the win-
ning probabilities of the miners. The output of the
assignment system is a vector in which each ele-

ment refers to the probability that a miner wins a

resource unit. Note that each miner can win more

than one computing resource unit.

Similar to the assignment system, the payment
system also uses an FFN. However, the output
layer includes the prices that each miner pays the
provider if it wins resource units. The prices must
be non-negative, that is, zero or positive, real
numbers, and thus the output layer uses rectifier
activation functions.

Note that two FNNs in the assignment and
payment systems use the common input, that is,
the valuations of the miners. The outputs of the
FNNs are used to calculate a common loss func-
tion. The loss function is constructed with the fol-
lowing components [4]:

* Expected revenue: The expected revenue is
the sum of prices that the miners pay the
provider.

« IR violation: An IR violation happens if the
auction results in negative utility for any
miner (i.e., the end user). The utility of each
miner is proportional to probabilities that
the miner wins fog units and the valuations
of the fog units, and inversely proportional
to the total price that the miner pays the
provider. We want to design the auction
with the smallest, preferably zero, IR viola-
tion.

« IC violation: IC of the auction guarantees that
every bidder achieves the highest utility just
by submitting its truthful bid. Then the IC
violation is defined as the maximum gain in
utility that the miner can receive if the miner
submits an untruthful bid knowing the bids
of others [4]. Thus, the IC violation is expect-
ed to be zero such that the miner has no
incentive to submit a non-truthful bid.

NEURAL NETWORK TRAINING

Loss Function: We need to define a common
loss function for the assignment and payment sys-
tems. In the optimal auction design, the revenue
function is the objective function, and the IR and
IC violations are the constraints. The augment-
ed Lagrangian method [9] is used to formulate
the common loss function since it allows the con-
straints to be enforced through weighted terms in
the objective. Since the training process aims to
maximize the revenue and minimize the IR and
IC violations, the common loss function is pro-
portional to the IR and IC violations and inversely
proportional to the expected revenue. Denote
J(v, w8, wP) as the common loss function, where
v is the vector including valuations of the miners,
and w8 and wP are the matrices that contain all
weights of the NN in the assignment system and
the payment system, respectively. Also, let &; and
)i denote the Lagrange multipliers associated with
the corresponding constraints. Note that the loss
function is defined as a function of the input (i.e.,
the valuations of the miners) without the learning
target. Thus, the learning algorithm is unsuper-
vised learning.

Training Phase: The training phase uses a data-
set tg find weights (w8, wP) that minimize loss func-
tion J(v, w8, wP). The dataset of both NNs includes
bidder valuation profiles of the miners. Each pro-
file is a vector of valuations of fog resource units
to the miners. Given each valuation profile, the
assignment system and payment system calculate
the winning probabilities and corresponding prices
of the miners, respectively. Then the training algo-
rithm determines the expected revenue, the IR
and IC violations, and the loss function. The train-
ing algorithm adjusts the weights of the systems
until the loss function converges.

NUMERICAL EXAMPLES

In this section, we provide experimental results
to demonstrate that deep learning can be used
for the optimal auction in fog computing to sup-
port blockchain networks. For convenience, the
proposed scheme is named deep learning (DL)-
based auction. The baseline scheme is the greedy
algorithm [10] in which the provider lists the min-
ers in descending order of their bids, and itera-
tively selects the miners with the highest bids as
the winners. The greedy algorithm is used since it
aims to improve the provider’s revenue. It is espe-
cially suitable to the scenario with multiple fog
resource units, while well-known auctions such as
the first-price sealed-bid auction is not.

The DL-based auction is implemented by using
the TensorFlow library [3]. The DL model has 2
hidden layers, and the number of neural nodes
in each hidden layer is 20 [4]. To ensure that the
training phase does not miss local minima, the
learning rate is set low: 0.001. However, this may
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slow down the training progress. To achieve fast
and smooth convergence, we use the Adam opti-
mizer in the training. The training data consists of
5000 valuation profiles of the miners. For ease of
presenting the findings, we consider a blockchain
network with five miners and three resource units
in the fog computing system. The valuations of
fog resource units to each miner are determined
depending on the blockchain parameters, which
are set as follows. The average time of mining the
block is 600 s, and the fixed reward for mining
the block is 2. The transaction fee is 0.007. The
size of the block is assumed to follow a uniform
distribution between 0 and 500. The factor that
reflects the impact of the size of block on the
miner’s block propagation time is set to 1. Note
that the Lagrange multipliers, &; and 1}, are con-
sidered to be trade-off parameters in the loss func-
tion. To enable the fairness between the IR and IC
constraints, we set A; = A; = A.

We compare the performance between the
DL-based auction and the greedy scheme in
terms of expected revenue, and IR and IC viola-
tions. The simulation results for the revenue vs.
iterations are shown in Fig. 3, and those for the
IC and IR violations vs. iterations are illustrated in
Figs. 4 and 5, respectively.

As shown in Fig 3, the DL-based auction is
able to converge quickly to the revenue value
which is higher than that obtained by the greedy
scheme. In particular, for & = 1.005, the revenue
obtained by the DL-based auction is 5.75, while
that obtained by the greedy scheme is 5.58.
Note that as the value of A is set to be higher, &
= 1.1, the revenue obtained by the DL-based auc-
tion decreases. The reason is that the value of A
reflects the trade-off between the revenue objec-
tive and the IC and IR violations. By increasing A,
minimizing the IC and IR violations is prioritized
over improving the revenue.

Next, we evaluate the performance in terms of
IC violation. As shown in Fig. 4, the IC violation of
the greedy scheme is around 0.77, while those of
the DL-based auction are close to zero regardless
of the values of A. Clearly, the IC violation of the
DL-based auction is much lower than that of the
greedy scheme. Recall that the IC violation close
to zero means that the truthfulness is guaranteed.
Therefore, the DL-based auction outperforms the
greedy scheme in terms of guaranteeing the truth-
fulness.

Finally, we evaluate the performance in terms
of IR violation. As shown in Fig. 5, the IR violation
of the greedy scheme is around 3.2, while those
of the DL-based auction reach 0.09 and 0.3 for
L =1.1 and L = 1.005, respectively. Apparently,
the IR violation of our proposed scheme is much
lower than that of the greedy scheme. Note that
the small value of IR violation means that the util-
ities of the miners have a lower chance of being
negative, and thus the miners have more incen-
tive to participate in the auction (i.e., the IR is
guaranteed).

From Figs. 4 and 5, it is also worth noting that
the IR violation of the DL-based auction is more
sensitive to the change of trade-off parameter A
compared to the IC violation. The reason is the
definitions of the revenue and the IR violation.
Both revenue and IR violation are proportional
to the prices that the provider receives from the
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Figure 5. IR violation comparison.

miners. While we change the trade-off parameter
to increase the prices (improving the revenue),
the IR violation also increases. This may offer the
miners less incentive to participate in the auction.
Therefore, choosing the trade-off parameter to
guarantee an acceptable IR violation is important.

CONCLUSION AND FUTURE DIRECTIONS

In this article, we have developed an optimal auc-
tion using deep learning for fog resource alloca-
tion in blockchain networks. We have constructed
assignment and payment systems for the auction
using neural networks. The assignment system out-
puts assignment probabilities of miners, and the
payment system outputs corresponding prices. We
have presented how to formulate the loss func-
tion for the neural networks and to train the neural
networks. The simulation results demonstrate the
effectiveness of our proposal, which clearly out-
performs the baseline approach. The proposal is
scalable when the number of miners increases.
One future research direction can be designing
the optimal auction in terms of maximizing social
welfare and guaranteeing the IR, IC, and fairness.
Also, the general scenario of multiple providers
needs to be investigated. Moreover, the dynamics
of the fog system, that is, the arrival and departure
of the devices as well as the appearance and dis-
appearance of resources, should be studied.
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