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Abstract

Fog computing is considered to be a key 
enabling technology for future networks. By 
broadening the cloud computing services to 
the network edge, fog computing can support 
various emerging applications such as IoT, big 
data, and blockchain with low latency and low 
bandwidth consumption cost. To achieve the 
full potential of fog computing, it is essential to 
design an incentive mechanism for fog com-
puting service providers. Auction is a promising 
solution for the incentive mechanism design. 
However, it is challenging to design an optimal 
auction that maximizes the revenue for the pro-
viders while holding important properties: IR and 
IC. Therefore, this article introduces the design 
of an optimal auction based on deep learning 
for the resource allocation in fog computing. The 
proposed optimal auction is developed specifical-
ly to support blockchain applications. In particu-
lar, we first discuss resource management issues 
in fog computing. Second, we review economic 
and pricing models for resource management in 
fog computing. Third, we introduce fog comput-
ing and blockchain. Fourth, we present how to 
design the optimal auction by using deep learn-
ing for the fog resource allocation in the block-
chain network. Simulation results demonstrate 
that the proposed scheme outperforms the base-
line scheme (i.e., the greedy algorithm) in terms 
of revenue, and IC and IR violations. Thus, the 
proposed scheme can be used as a useful tool 
for the optimal resource allocation in general fog 
networks.

Introduction
Cloud computing is becoming a choice for a 
number of applications [1] due to the advantag-
es of high computing power and flexible on-de-
mand services. However, it has a shortcoming 
in supporting emerging applications that require 
low latency and mobility support. A new para-
digm, called fog computing [2], has been intro-
duced to meet the requirements. Fog computing 
leverages resources of fog nodes at the edge of 
the network to provide computing, storage, and 
offloading services. Since fog nodes are locat-
ed closer to end users, fog computing is able to 
achieve low latency, low bandwidth cost, flexibil-
ity, and mobility. It is thus expected to support 

various real-time applications such as the Inter-
net of Things (IoT), big data, and blockchain [3]. 
Among emerging applications, the mobile block-
chain network is the most promising. Indeed, 
blockchain has gained enormous popularity in 
business, government, and academia. However, 
deploying blockchain in mobile environments 
faces critical challenges due to the mining pro-
cess, that is, solving the proof-of-work (PoW) puz-
zle, which requires high computing power and 
energy. Fog computing appears to be a suitable 
solution that enables the mining tasks to be off-
loaded to fog providers.

However, resource management in fog com-
puting has many challenges. In particular, fog 
computing is offered or sold by a rational service 
provider that aims to maximize its own revenue. 
Thus, one critical issue is how to incentivize the 
provider to sell fog resources while guaranteeing 
the user quality of service (QoS). Moreover, the 
fog computing capacity is limited, and how to 
efficiently allocate the limited fog resources to 
the users (i.e., miners in blockchain) is another 
important issue.

To address the above issues, forward auc-
tion is considered to be an efficient solution 
that guarantees a revenue gain for the provider 
by allocating resources to the users who value 
the resources most [3]. In traditional auctions, 
bidders compete for resource units by submit-
ting their prices (i.e., bids) to the provider (i.e., 
the seller). Given the bids, the provider selects 
the bidders with the highest bids as the win-
ners, and determines the prices that the win-
ners pay. However, the existing auctions are not 
optimal in terms of maximizing the revenue for 
the provider and ensuring desired economic 
properties, that is, incentive compatibility (IC) 
and individual rationality (IR). In particular, IR 
guarantees that participants have a non-negative 
utility when participating in the auction, and IC 
ensures that a participant receives the highest 
utility by submitting its truthful bid or ask. The 
optimal auction is actually a constrained opti-
mization problem that is difficult to solve with 
traditional algorithms.

In recent years, machine learning has gained 
considerable attention. Machine learning using 
stochastic gradient descent can successfully find 
globally optimal solutions for complex problems 
(e.g., the constrained optimization problem). 
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Therefore, machine learning is employed to 
derive the optimal auction, as proposed in [4].

In this article, we thus use the machine learn-
ing approach in [4] for the fog resource alloca-
tion. We fi rst overview fog computing and review 
the literature on fog resource management with 
a special focus on economic approaches. Then 
we present a brief background of blockchain. 
Next, we propose an auction-based mechanism 
for fog resource allocation. We also incorporate 
specifi c requirements of blockchain applications 
in the auction mechanism design in which the 
solution can be obtained from a deep learn-
ing model. The performance evaluation clearly 
shows the merit of the auction and its applica-
bility to fog resource allocation with blockchain 
applications.

EconomIc And PrIcIng modEls In 
fog comPutIng

In this section, we fi rst introduce fog computing. 
Then we discuss its resource management issues, 
and review economic and pricing models for the 
resource management.

fog comPutIng And APPlIcAtIons

Fog computing is an extension of cloud comput-
ing that broadens the scope of cloud computing 
services to the edge of networks by deploying 
fog nodes between the cloud and users (Fig. 
1). A fog node is a small to medium-sized com-
puting unit (e.g., an embedded server), which 
includes computing, storage, and networking 
elements. Fog nodes are located close to users 
and can be connected to a central cloud. When 
resources at the fog layer are not enough for a 
redundancy deployment, redundancy off loading 
to the cloud is used to enhance service reliabili-
ty. Fog computing keeps computing resource at 
the edge of the network to support latency-sen-
sitive applications and services. It also supports 
edge analytics and stream mining by processing 
data volume at a very early stage, which reduc-
es delay and saves bandwidth signifi cantly. Fur-

thermore, fog computing supports mobility well 
since the geo-distributed fog node is able to infer 
its own location and track end users. To provide 
computing services, fog resources are deployed 
on top of fog nodes and accessed by users over 
networks. Fog computing can support emerging 
applications:
• Big data analytics: Fog computing provides

an eff ective solution to real-time data analyt-
ics.

• Content delivery and caching: Fog nodes
cache web and video contents from the
cloud and then deliver replicas of the con-
tents to users with shorter response time.

• Blockchain networks: Fog nodes can off load
computing tasks from low-computation
devices in blockchain networks and guar-
antee lower delay in the communication
between the devices and fog nodes.

rEsourcE mAnAgEmEnt In fog comPutIng

Due to being located at the edge of the network, 
fog computing changes the way we deliver ser-
vices to users and inspires new business models. 
For service delivery, fog computing reduces the 
service latency due to the use of local fog nodes. 
Also, without consuming the backbone band-
width, offloading to fog nodes is much cheaper 
than that to the cloud. Moreover, fog computing 
enhances data security for users since data does 
not go out of local  networks. For business mod-
els, fog computing liberates the cloud market by 
introducing more providers. However, this makes 
the resource management in fog computing chal-
lenging. As fog providers are rational, the criti-
cal issue is how to incentivize them to contribute 
fog resources and cooperate with each other to 
guarantee the users’ quality of service (QoS). Tra-
ditional approaches (e.g.,, optimization methods 
[5]) can be used. However, they are not suitable 
for fog computing with multiple stakeholders in 
the networks. Incentive mechanisms using eco-
nomic and pricing models should be adopted to 
guarantee a stable scale of participants and the 
users’ QoS.
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Figure 1. Fog computing environment. The dashed arrow indicates layers closer to users. 
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Economic and Pricing Models for  
Resource Management in Fog Computing

Profit Maximization: This approach aims at 
determining resource prices that lead to the 
greatest profit for sellers. It can be used to 
motivate providers and intermediate agents 
(i.e., brokers [1]) to participate in the fog 
resource market. Such an approach is found 
in [6], where the agent rents fog resources 
from the providers to serve computing service 
requests from the users (i.e., the buyers). The 
optimization problem for the agent is formulat-
ed to determine renting prices paid to the pro-
viders and service prices offered to the users 
to maximize the agent’s profit. The profit is 
defined based on probability distributions of 
service price acceptance by users and those 
of renting price acceptance by providers. The 
problem is then solved by a sequential optimi-
zation algorithm.

Combinatorial Auction: The approach pro-
posed in [6] aims to maximize the profit of the 
agent, but it does not guarantee IR, which may 
discourage users from participating in the mar-
ket. To guarantee IR, the authors in [7] intro-
duced the use of the combinatorial auction for 
the fog resource trading. The model consists 
of one provider (ie., the auctioneer) and mul-
tiple mobile users (bidders) as the miners in a 
blockchain mobile network. The provider pro-
vides fog resource units to the miners to offload 
their mining tasks. The miners submit their bids 
to the provider. The problem is to determine 
the winners of the fog resources and the prices 
that the winners need to pay the provider. The 
objective is to maximize social welfare while 
guaranteeing IR and IC. The social welfare is 
defined as the sum of utilities of the users. The 
definition aims to motivate users to participate 
in the market. The greedy algorithm and the 
payment policy of the Vicrkey-Clarke-Goves 
(VCG) mechanism are adopted to solve the 
problem. However, improving the revenue of 
the provider is not considered in the proposed 
approach.

Optimal Auction: To maximize the revenue 
of the provider while guaranteeing IR and IC, the 
authors in [3] designed an optimal auction based 
on deep learning. The model in [3] is similar to 
that in [7], but there is only a single fog resource 
unit. The miners submit bids to the provider. The 
provider determines the winning probabilities of 
the miners and the payments for the miners. The 
allocation and payment rules are implemented by 
using neural networks. The neural networks are 
constructed based on an analytical solution of the 
optimal auction [4]. Therefore, the proposed auc-
tion is optimal in terms of maximizing the revenue 
while ensuring IR and IC. However, the proposed 
auction is constrained to a single fog unit. More-
over, the characterization results of the analytical 
solution are required to construct the neural net-
works.

The approaches proposed in [3, 4] motivate us 
to investigate an optimal auction by using deep 
learning for trading multiple fog resource units in 
the mobile blockchain network. The deep learn-
ing is constructed without using any characteriza-
tion results.

Fog Computing for Blockchain 
Decentralized applications (DApps) based on the 
blockchain network have emerged explosively 
in recent years [8]. Some examples are seen in 
crowdfunding and sharing economy. The success 
of DApps contributes to the distinct advantages 
of blockchain: 
•	 Decentralization: Without a trusted third 

party or intermediary, blockchain ensures 
the validity of recorded transactions. This 
also largely reduces overhead and cost.

• 	Immutability: By using sophisticated cryp-
tographical methods, it is almost impossible 
or too costly to tamper with the transactional 
data in blockchain. 

•	 Transparency and trust: Public blockchains 
can offer full transparency of transactions 
while guaranteeing each user node’s privacy 
through pseudonymity. 
In the form of a chain of blocks, blockchain 

is actually a tamper-proof, distributed database 
or ledger that records transactional data in a 
decentralized peer-to-peer (P2P) network. The 
above advantages stem from a consensus pro-
cess, which is the core part of the blockchain 
technology. We discuss a blockchain network 
that operates with the PoW protocol [8]. There 
are two types of member nodes that jointly use 
and maintain the distributed database according 
to the PoW protocol: consensus nodes or min-
ers, and user nodes. The miners are required to 
complete the transaction validation and the block 
mining task. Specifically, each miner first collects 
new transactions received from user nodes and 
broadcasts the transactions to the other miners. 
Each miner aggregates a set of transactions into 
a block. Then the miners find a nonce value and 
add it into the block such that the hash value of 
the block is below a preset threshold. The pro-
cess is known as mining. Once the nonce value 
is found, the corresponding miner broadcasts its 
successfully mined block to the whole network. 
The miners that receive the block verify the block. 
If the majority of the miners agree that all trans-
actions in the block are valid, the block is linked 
to their chains. Every miner must have the same 
chain. The consistency of the transactions and the 
chains among the miners is guaranteed by using 
data synchronization protocols, for example, Bit-
coin Developer application programming interfac-
es (APIs). The miner that finds the block obtains a 
reward including a fixed bonus and a transaction 
fee. When the difficulty of mining increases, the 
miners can pool their resources to find the block. 
The mining in this case is considered to be parallel 
processing in which each miner in the pool uses 
its computing resources to find the nonce. 

Finding the PoW solution to complete the con-
sensus process is critical to guarantee the security 
and trustworthiness of the blockchain network 
(i.e., to prevent Sybil attacks). In general, the 
mining task is computing-ntensive, and computa-
tionally lightweight nodes (e.g., IoT devices) can-
not directly participate in the consensus process. 
However, the nodes can share the mining task 
with fog nodes in fog computing. As such, more 
nodes can easily join the consensus process as 
miners, which significantly improves the robust-
ness of the blockchain network. To a great extent, 
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fog computing popularizes blockchain and wid-
ens the scope of blockchain-based applications. 

oPtImAl AuctIon usIng dEEP lEArnIng 
for fog rEsourcE mArkEt 

Auction, that is, a centralized approach, can be 
applied since we only consider a local fog net-
work that guarantees a low delay of the con-
sensus process in the blockchain network (Fig. 
2) to support proximity-based mobile services. 
The objective is to guarantee that the auction can 
optimize the revenue for the provider while guar-
anteeing IR and IC [4]. First, we introduce the fog 
resource market and auction. Second, we present 
two neural networks used for the assignment and 
payment decisions. Third, we discuss the training 
of these neural networks. Finally, we present the 
numerical results. 

fog comPutIng rEsourcE mArkEt

The fog resource market consists of one provider 
and multiple miners. The miners are assumed to 
be lightweight devices, and the provider deploys 
fog nodes across the blockchain network to 
provide nearby computing resource units to the 
miners. Each miner purchases one or multiple 
computing resource units at the fog nodes to sup-
port solving PoW puzzles. Here, solving the PoW 
has to calculate a value that makes the header 
hash value lower than a given “diffi  culty target.” 
Note that each fog node has a limited number 
of computing resource units. In the case where 
the resource demand exceeds the resource avail-
ability, the fog node can share its mining task to 
the cloud to offload the PoW puzzle. Optimal 
links are used between the fog computing and 
the cloud to minimize the off loading service laten-
cy. The provider conducts a multi-item forward 
auction for trading resource units. The auction 
model is illustrated in Fig. 2 in which the provider 
is the auctioneer, and the miners are the bidders. 
Each miner submits bids, that is, the prices that 
the miner is willing to pay the provider for the 
resource units. The provider chooses a fog node 
to maintain the blockchain if the fog node has 

sufficient computing resource units and is locat-
ed close to the winner. Without exact knowl-
edge about miners, the provider resorts to deep 
learning to determine the winners and prices to 
maximize the revenue and guarantee the IR and 
IC. For this purpose, the deep learning system is 
trained based on training data that is constructed 
from valuations of fog resource units to the min-
ers. The provider estimates the valuation of a fog 
unit to each miner by using [7, Eq. 1]. The valua-
tion is proportional to the fi xed reward for mining 
a new block, the transaction fee, the size of the 
block, and the factor that reflects the impact of 
the size of block on the miner’s block propaga-
tion time, and inversely proportional to the aver-
age time of mining a block. Note that the size of 
the block is privately chosen by the miners, but 
the provider can know its probability distribution, 
for example, by observation. Other parameters 
are public on the network. 

nEurAl nEtWorks for AuctIon 
This section discusses the use of feed-forward 
neural networks (FFNs) to derive the optimal auc-
tion. The FFN fits for our setting since it is able 
to map in only one direction from the input (the 
miners’ valuations) to the output (the assignment 
and price decisions) [4]. As shown in Fig. 2, the 
NN includes one input layer, multiple hidden 
layers, and one output layer. Each layer consists 
of a number of neural nodes that use activation 
functions (e.g., sigmoid) to capture the potential 
relations among input variables. The neural nodes 
are connected with each other through weights, 
which are interpreted as the strength of connec-
tions among the neural nodes. The weights imply 
how much the output changes as the input var-
ies. Since the output in our setting is either the 
assignment probabilities or price decisions, there 
are two corresponding deep learning systems: the 
assignment and payment systems. 

The assignment system uses an FFN to select 
the winners for fog resource units. In Fig. 2, the 
input layer receives valuations of the miners. The 
hidden layers use sigmoid activation functions 
that transform the valuations of the input to the 

Figure 2. Fog computing for blockchain networks. 
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output layer. There may be multiple miners com-
peting for each resource unit. Thus, the output 
layer uses softmax functions to produce the win-
ning probabilities of the miners. The output of the 
assignment system is a vector in which each ele-
ment refers to the probability that a miner wins a 
resource unit. Note that each miner can win more 
than one computing resource unit. 

Similar to the assignment system, the payment 
system also uses an FFN. However, the output 
layer includes the prices that each miner pays the 
provider if it wins resource units. The prices must 
be non-negative, that is, zero or positive, real 
numbers, and thus the output layer uses rectifi er 
activation functions.

Note that two FNNs in the assignment and 
payment systems use the common input, that is, 
the valuations of the miners. The outputs of the 
FNNs are used to calculate a common loss func-
tion. The loss function is constructed with the fol-
lowing components [4]: 
• Expected revenue: The expected revenue is 

the sum of prices that the miners pay the 
provider. 

• IR violation: An IR violation happens if the 
auction results in negative utility for any 
miner (i.e., the end user). The utility of each 
miner is proportional to probabilities that 
the miner wins fog units and the valuations 
of the fog units, and inversely proportional 
to the total price that the miner pays the 
provider. We want to design the auction 
with the smallest, preferably zero, IR viola-
tion. 

• IC violation: IC of the auction guarantees that 
every bidder achieves the highest utility just 
by submitting its truthful bid. Then the IC 
violation is defi ned as the maximum gain in 
utility that the miner can receive if the miner 
submits an untruthful bid knowing the bids 
of others [4]. Thus, the IC violation is expect-
ed to be zero such that the miner has no 
incentive to submit a non-truthful bid. 

nEurAl nEtWork trAInIng 
Loss Function: We need to define a common 
loss function for the assignment and payment sys-
tems. In the optimal auction design, the revenue 
function is the objective function, and the IR and 
IC violations are the constraints. The augment-
ed Lagrangian method [9] is used to formulate 
the common loss function since it allows the con-
straints to be enforced through weighted terms in 
the objective. Since the training process aims to 
maximize the revenue and minimize the IR and 
IC violations, the common loss function is pro-
portional to the IR and IC violations and inversely 
proportional to the expected revenue. Denote 
Ĵ(v, wg, wp) as the common loss function, where 
v is the vector including valuations of the miners, 
and wg and wp are the matrices that contain all 
weights of the NN in the assignment system and 
the payment system, respectively. Also, let i and 
’i denote the Lagrange multipliers associated with 
the corresponding constraints. Note that the loss 
function is defi ned as a function of the input (i.e., 
the valuations of the miners) without the learning 
target. Thus, the learning algorithm is unsuper-
vised learning. 

Training Phase: The training phase uses a data-
set to fi nd weights (wg, wp) that minimize loss func-
tion Ĵ(v, wg, wp). The dataset of both NNs includes 
bidder valuation profi les of the miners. Each pro-
fi le is a vector of valuations of fog resource units 
to the miners. Given each valuation profile, the 
assignment system and payment system calculate 
the winning probabilities and corresponding prices 
of the miners, respectively. Then the training algo-
rithm determines the expected revenue, the IR 
and IC violations, and the loss function. The train-
ing algorithm adjusts the weights of the systems 
until the loss function converges. 

numErIcAl EXAmPlEs 
In this section, we provide experimental results 
to demonstrate that deep learning can be used 
for the optimal auction in fog computing to sup-
port blockchain networks. For convenience, the 
proposed scheme is named deep learning (DL)-
based auction. The baseline scheme is the greedy 
algorithm [10] in which the provider lists the min-
ers in descending order of their bids, and itera-
tively selects the miners with the highest bids as 
the winners. The greedy algorithm is used since it 
aims to improve the provider’s revenue. It is espe-
cially suitable to the scenario with multiple fog 
resource units, while well-known auctions such as 
the fi rst-price sealed-bid auction is not. 

The DL-based auction is implemented by using 
the TensorFlow library [3]. The DL model has 2 
hidden layers, and the number of neural nodes 
in each hidden layer is 20 [4]. To ensure that the 
training phase does not miss local minima, the 
learning rate is set low: 0.001. However, this may 

Figure 3. Revenue comparison. 
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Figure 4. IC violation comparison.
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slow down the training progress. To achieve fast 
and smooth convergence, we use the Adam opti-
mizer in the training. The training data consists of 
5000 valuation profi les of the miners. For ease of 
presenting the fi ndings, we consider a blockchain 
network with fi ve miners and three resource units 
in the fog computing system. The valuations of 
fog resource units to each miner are determined 
depending on the blockchain parameters, which 
are set as follows. The average time of mining the 
block is 600 s, and the fixed reward for mining 
the block is 2. The transaction fee is 0.007. The 
size of the block is assumed to follow a uniform 
distribution between 0 and 500. The factor that 
reflects the impact of the size of block on the 
miner’s block propagation time is set to 1. Note 
that the Lagrange multipliers, i and ’i, are con-
sidered to be trade-off  parameters in the loss func-
tion. To enable the fairness between the IR and IC 
constraints, we set i = ’i = . 

We compare the performance between the 
DL-based auction and the greedy scheme in 
terms of expected revenue, and IR and IC viola-
tions. The simulation results for the revenue vs. 
iterations are shown in Fig. 3, and those for the 
IC and IR violations vs. iterations are illustrated in 
Figs. 4 and 5, respectively. 

As shown in Fig 3, the DL-based auction is 
able to converge quickly to the revenue value 
which is higher than that obtained by the greedy 
scheme. In particular, for  = 1.005, the revenue 
obtained by the DL-based auction is 5.75, while 
that obtained by the greedy scheme is 5.58. 
Note that as the value of  is set to be higher, 
= 1.1, the revenue obtained by the DL-based auc-
tion decreases. The reason is that the value of 
refl ects the trade-off  between the revenue objec-
tive and the IC and IR violations. By increasing , 
minimizing the IC and IR violations is prioritized 
over  improving the revenue. 

Next, we evaluate the performance in terms of 
IC violation. As shown in Fig. 4, the IC violation of 
the greedy scheme is around 0.77, while those of 
the DL-based auction are close to zero regardless 
of the values of . Clearly, the IC violation of the 
DL-based auction is much lower than that of the 
greedy scheme. Recall that the IC violation close 
to zero means that the truthfulness is guaranteed. 
Therefore, the DL-based auction outperforms the 
greedy scheme in terms of guaranteeing the truth-
fulness. 

Finally, we evaluate the performance in terms 
of IR violation. As shown in Fig. 5, the IR violation 
of the greedy scheme is around 3.2, while those 
of the DL-based auction reach 0.09 and 0.3 for 
 = 1.1 and  = 1.005, respectively. Apparently, 
the IR violation of our proposed scheme is much 
lower than that of the greedy scheme. Note that 
the small value of IR violation means that the util-
ities of the miners have a lower chance of being 
negative, and thus the miners have more incen-
tive to participate in the auction (i.e., the IR is 
guaranteed). 

From Figs. 4 and 5, it is also worth noting that 
the IR violation of the DL-based auction is more 
sensitive to the change of trade-off parameter 
compared to the IC violation. The reason is the 
definitions of the revenue and the IR violation. 
Both revenue and IR violation are proportional 
to the prices that the provider receives from the 

miners. While we change the trade-off  parameter 
to increase the prices (improving the revenue), 
the IR violation also increases. This may off er the 
miners less incentive to participate in the auction. 
Therefore, choosing the trade-off parameter to 
guarantee an acceptable IR violation is important.

conclusIon And futurE dIrEctIons 
In this article, we have developed an optimal auc-
tion using deep learning for fog resource alloca-
tion in blockchain networks. We have constructed 
assignment and payment systems for the auction 
using neural networks. The assignment system out-
puts assignment probabilities of miners, and the 
payment system outputs corresponding prices. We 
have presented how to formulate the loss func-
tion for the neural networks and to train the neural 
networks. The simulation results demonstrate the 
effectiveness of our proposal, which clearly out-
performs the baseline approach. The proposal is 
scalable when the number of miners increases. 
One future research direction can be designing 
the optimal auction in terms of maximizing social 
welfare and guaranteeing the IR, IC, and fairness. 
Also, the general scenario of multiple providers 
needs to be investigated. Moreover, the dynamics 
of the fog system, that is, the arrival and departure 
of the devices as well as the appearance and dis-
appearance of resources, should be studied. 
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Figure 5. IR violation comparison. 
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