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Abstract—Computation offloading over fog computing has the potential to improve reliability and reduce latency in future networks. This

paper considers a scenario where roadside units (RSUs) are installed for offloading tasks to the computation nodes including nearby fog

nodes and a cloud center. To guarantee the reliable communication, we formulate the first subproblem of power allocation, and leverage

the conditional value-at-risk approach to analyze the successful transmission probability in theworse-case channel condition. To complete

computation taskswith low latency, we formulate the second subproblem of task allocation into amulti-period generalized assignment

problem (MPGAP), which aims atminimizing the total delay by offloading tasks to the ‘right’ fog nodes at ‘right’ period. Then, we propose a

modified branch-and-bound algorithm to derive the optimal solution and a heuristic greedy algorithm to obtain approximate performance.

In addition, themaster problem is proposed as a non-convex optimization problem, which considers both the reliability-guaranteed and

delay-sensitive requirements.We design the Lagreedy algorithm by combining the subgradient algorithm and the heuristic algorithm.

Comprehensive evaluations demonstrate that the Lagreedy is able to obtain the shortest delay with a high power consumption, while the

branch-and-bound algorithm can achieve both shorter delay and lower power consumptionwith reliability guarantees.

Index Terms—Computation offloading, delay-sensitive, reliability-guaranteed, fog computing

Ç

1 INTRODUCTION

THE upcoming fifth generation (5G) wireless system is
promising to support a wide range of applications. The

strict requirement of low latency and high reliability are
becoming the most appealing features for emerging app-
lications, e.g., virtual reality, intelligent transportation,
real-time control of cyber physical systems and smart fac-
tory, etc [1].

However, the latency and reliability in the cellular net-
work varies with multiple factors, e.g., transmitter-receiver
distance, wireless communication technology, network
architecture, and the number of network users, etc. [2]. New
PHY techniques have been adopted to reduce end-to-end

latency and improve reliability, such as adopting multiple-
input multiple-output (MIMO) antenna schemes, shorter
transmission time interval (TTI), and prioritized scheduling
policy to minimize queuing delay, etc [3]. Some other tech-
niques based on the diverse interfaces and multiple channel
access can also improve reliability and reduce latency [4]. In
addition, mobile edge computing (MEC), fog computing
and device-to-device (D2D) communication [5] are consid-
ered as promising technologies to process computationally
intensive tasks [6]. Among which, fog computing is capable
of providing more usage flexibility by coordinating the use
of geographically distributed network edge devices.
Through offloading tasks to fog network, the long-distance
propagation delay as well as users’ queuing delay at core
networks could be avoided. Thereby, it is promising to
achieve higher reliability and lower latency.

Fog computing was first proposed by Cisco in 2014 to
address the challenges of phenomenal data growth in IoT
applications [7]. Compared with conventional cloud comput-
ing, fog nodes have geo-distribution awareness, fast responses,
and high availability to end users. Numerous work has consid-
ered the tradeoff of workload assignment between fog and
cloud. However, to the best of our knowledge, the majority of
work on computation offloading aimed at achieving energy
efficient offloading strategies [8], and to optimize the energy
consumption and delay performance [9], etc. Fewwork consid-
ered to satisfy the reliability constraint [10], or the latency
and reliability-aware computation offloading strategy [11].
However, the efficient utilizations of communication and com-
putation resource capacities are not discussed.
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In this paper, we consider both the reliability-guaranteed
and delay-sensitive requirements under the computation
offloading scenario with heterogenous fog nodes and a
remote cloud. Our work is distinguished from others in the
following three aspects. First, the usage of communication
and computation resources of fog nodes are modeled as
two dynamic resource queues, with the constraints that the
consumed resources for task transmission and computation
should not exceed the idle resource amount in the queue at
any time. Second, since the available communication and
computation resources of fog nodes are limited and
dynamic, and computation tasks require distinct resources
for different fog nodes, we consider to schedule computa-
tion tasks in a time sequence to improve overall perfor-
mance. Third, we aim to minimize the total delay of all
tasks by satisfying the communication reliability at the
worst-case channel condition. The reliability constraint is
analyzed using a risk theoretical approach. The main contri-
butions of this work are outlined as follows:

� We present a computation offloading architecture con-
sisting of multiple fogs nodes with heterogeneous com-
munication and computation capabilities and a cloud
center. Further, we model the dynamic communication
and computation resources as two dynamic queues
with the purpose of recording the resource availability
and improve resource utilization.

� We formulate the first subproblem of power alloca-
tion for achieving the reliability-guaranteed commu-
nication, and adopt the conditional value-at-risk
approach to compute the required transmission
powers for any pair of task and fog node.

� We formulate the second subproblem of task alloca-
tion into a multi-period generalized assignment
problem (MPGAP), which aims at minimizing the
total delay of all tasks by allocating them to the
‘right’ nodes at ‘right’ periods. MPGAP is an integer
programming problem, and can be considered as a
combination of multi-period knapsack problem
(MPKP) and a GAP. Each of them is NP-hard.

� We propose a modified branch-and-bound algorithm to
derive the optimal solution for MPGAP. The lower
bound at the branch node is first computed by allocat-
ing tasks to the most beneficial computation nodes and
periods without considering resource constraints. Then,
it is refined by checking the feasibility of resource capac-
ities, and solving a sequence of minimization knapsack
problems (minKPs). Moreover, we design a heuristic
greedy algorithm to obtain approximate performance.

� We formulate a non-convex optimization problem
which considers both the reliability-guaranteed and
delay-sensitive requirements. The Lagreedy algo-
rithm is designed by combining the subgradient
algorithm and heuristic greedy algorithm.

� We compare the two-step solution and the Lagreedy
solution. Comprehensive studies show that the
Lagreedy algorithm can obtain the lowest average
delay by setting a larger weight to the delay metric,
and the branch-and-bound algorithm can always
obtain better performance on both the delay and
power consumption.

The reminder of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the systemmodel.
In Section 4, the MPGAP is formulated. In Section 5, we pro-
pose a modified branch-and-bound algorithm and a heuristic
greedy algorithm. The simulation results are given in Section 6.
We conclude the paper in Section 7.

2 RELATED WORK

In order to meet the high-reliability and low-latency require-
ment in future 5G applications, Nielsen et al. [12] used multi-
ple interfaces to achieve ultra-reliable communications. To
reduce latency, an optimization problem as well as the generic
evaluation method are proposed to split the total amount of
information to transmit across different interfaces. Sutton et al.
[13] discussed the multi-channel strategies for achieving low-
latency LTE unlicensed band access, including predicting traf-
fic profiles, implementing request-to-send/clear-to-send
(RTS/CTS), etc. They demonstrate that the transmission
latency can be decreased by allowing a packet to be transmit-
ted on either the unlicensed or the licensed spectrum.

On the other side, fog computing, MEC [14] and D2D com-
munication [15] attract much research attention recently. Yu
et al. [16] considered the power allocation in fog network to
maximize the utility function from the energy efficiency per-
spective. They formulate a mix integer nonlinear program-
ming problem, and adopt the Benders decomposition
algorithm to separate the integer variables and continuous var-
iables. Deng et al. [17] formulated a workload assignment
problem between fog and cloud considering the tradeoff
between power consumption and transmission delay. An
approximate approach is developed to solve the primal prob-
lem throughdecomposing and solving subproblemswith opti-
mization techniques. Zhao et al. [18] aimed to maximize the
probability that the delay bounds of computation tasks are sat-
isfied by designing offloading policy between edge cloud and
remote cloud. They find that the tasks with stringent delay
bounds are offloaded to edge cloud and tasks with loose
bounds aremainly offloaded to remote cloud.

Few works considered both the reliability and latency
requirements. The work in [10] studied the edge computing
and proactive caching problem, where cloudlets exploit
both computing and storage capabilities by proactively
caching popular task computation results to reduce com-
puting delay. The task distribution problem is considered
as a matching game which aims to minimize the computing
delay at a required reliability. The work in [19] analyzed the
tradeoff between latency and reliability when dividing a
large task into sub-tasks and offloaded to multiple nearby
edge nodes. The objective is to minimize the product of
latency and failure probability of offloading links. However,
the resource constraints of edge nodes are not considered.

3 SYSTEM MODEL

3.1 Computation Offloading Scenario

This work considers a typical network service scenario, in
which a set of roadside units (RSUs) can communicate with
various users and heterogenous computation nodes [20]. As
shown in Fig. 1, the computation nodes include heteroge-
nous fog nodes, and a cloud center. Due to the limited com-
putation capabilities and energy budgets, the users (e.g.,
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mobile phone user, roadside camera, nearby laptop user,
etc.) may choose to offload computation tasks to nearby
RSUs. Then, the tasks will be stored in a queue and sched-
uled to the fog nodes based on certain scheduling algo-
rithm. Note that in practical deployment, the edge servers
with powerful computation capacities can be configured at
the RSU side for making scheduling decisions. The potential
fog nodes may consist of the parking lot, smart building and
mobile edge computing server, which have idle computa-
tion resources during their off-peak hours. Fog nodes can
connect with RSUs via various wireless network interfaces.
For example, the cellular base station can communicate
with RSUs via the LTE interface [21], and some smart build-
ings may communicate with RSUs via WiFi. Therefore, the
communication environment changes notably in different
cases. Besides fog nodes, RSU can offload computation tasks
to the remote cloud center via the reliable high-speed wired
fiber system. The cloud is considered to have unlimited
resources, and the total delay to complete any computation
task can be assumed as a constant [22].

3.2 Resource Queue Model

Each fog node has limited communication bandwidth. In
order to enhance the utilization of available bandwidth
resource of fog nodes, we use a dynamic resource queue to
record the usage of communication bandwidth at each period.
Once the current task is completely uploaded to fog node, the
occupied channels will be released to the resource queue, and
the available bandwidth will increase accordingly. Similarly,
each fog node has a dynamic computation resource queue
(e.g., QV1 shows the computation resource queue of fog
node 1). Before a set of tasks being offloaded to these fog nodes,
the resources are gradually increasing in a ‘short duration’
with the completion of current transmission and computation
processes. The length of a ‘short duration’ depends on several
critical factors, such as the task arrival rate, the delay require-
ment and the resource availability of the fog nodes, etc. In this
paper, a ‘short duration’ refers to several to dozens of millisec-
onds. If we divide a short duration intomultiple periods, there
is an increase of resource queues at each period. Assume that
the fog node can predict the incremental resource amount at
each period. At the beginning of a short scheduling duration,
fog nodes inform the RSU about the predicted variety of
resource queues. When the RSU starts to offload tasks, the

resource queueswill be gradually occupied by this set of tasks.
At the beginning of next short scheduling duration, the occu-
pied resources will be gradually released and then, occupied
by newly arrived tasks.

3.3 Task Allocation Model

As described, the available sources of fog nodes are dynamic,
and the tasks may consume different amount of resources
when they are offloaded to different fog nodes. The scheduling
policy for allocating tasks to different computation nodes at dif-
ferent periods will have significant impact on system perfor-
mance. Note that the tasks are not instantly allocated to the
nearest fog node since its communication or computation
resources may be insufficient at the current period. They can
choose to either wait at the task queue, or be offloaded to other
fog nodes. Therefore, we consider the multi-period task alloca-
tion mechanism as follows. Given a period m ¼ 0, RSU has a
non-empty task queue. Within the subsequent periods from
m ¼ 1 to m ¼ t, there is an increment of available resources at
each period due to the completion of ongoing tasks. To mini-
mize the total delay of all tasks, the RSU makes scheduling
decisions by allocating tasks to different fog nodes at different
periods, with the constraint that the occupied communication
and computation resources must not exceed the cumulative
resource amount at the fog node at each periodm 2 1; t½ �.

In addition, it is possible that it may takemultiple time peri-
ods to complete a computation task. The task can occupy the
allocated communication and computation resources from the
offloading period until it is completed.However, the fog nodes
can predict when the task will be completed, which is the time
when the occupied resources will be released. To execute
multi-period task allocation, the fog nodes will inform in
advance the RSU about their current available resources and
the newly available resources during each period.

4 PROBLEM FORMULATION

4.1 Notations

Denote I ¼ 0; . . . ; Ij jf g as the set of computation node indi-
ces. Let i ¼ 0 represent the cloud center, and i 2 I&i > 0
represent the fog nodes. For each fog node i i > 0ð Þ, the total
communication bandwidth (i.e., Hz) is denoted by Wi, and
the maximum computation rate (i.e., the number of cycles per
second) is denoted by Vi. Denote J ¼ 1; . . . ; Jj jf g as the set of
task indices. For task j 2 J , let bj represent the size of input
data, and cj represent the size of computation task. The
measurement of bj is the bit, and the measurement of cj is
the cycle. The allocated communication bandwidth for task j
from fog node i is denoted by wi;j, and the allocated compu-
tation rate is denoted by vi;j. We consider that tasks are off-
loaded in different periods. The set of periods are denoted
by T ¼ 1; . . . ; Tj jf g. Each fog node i has two resource
queues. One is communication resource/bandwidth queue
QWi, and the other is computation resource queue QVi. At
period t, the resource queues may increase due to the com-
pletion of current tasks. The increased communication
bandwidth is denoted by ’i;t. The increased computation
rate is denoted by ni;t. In addition, the maximum available
bandwidth of fog node i at period t is calculated as
Wi;t¼

Pt
m¼1 ’i;m. Vi;t¼

Pt
m¼1 ni;m gives the cumulative

achievable computation rate of fog node i at period t.

Fig. 1. System model.
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Within duration 1; t½ �, the total required communication
bandwidths and computation rates of all tasks offloaded to
i should not exceed the resource amount Wi;t and Vi;t,
respectively. In addition, the cumulative available commu-
nication and computation resources at any period t (i.e.,Wi;t

and Vi;t) can not exceed the total amount of resources (i.e.,
Wi and Vi) for any fog node i. We introduce a binary vari-
able xi;j;t, where xi;j;t ¼ 1 means task j is offloaded to com-
putation node i at period t; otherwise, it is 0. xx includes all
decision variables.

4.2 Problem Formulation

4.2.1 Reliability-Guaranteed Communication

If task j is to be processed at fog node i, the input data will
be transmitted to fog node i before being computed.
Assume that tasks are transmitted in orthogonal channels,
and the bandwidth allocated to task j is wi;j. Denote hi;j as
the channel gain between fog node i and the RSU from
which task j is transmitted. The achievable transmission
rate of task j is [23]:

ri;j ¼ wi;j � log 2 1þ gi;j
� �

; (1)

where gi;j is the received signal-to-noise-ratio (SNR) at fog
node i for task j, and it is computed by [24]:

gi;j ¼
hi;j

�� ��2 �K � s�a
i;j � pi;j

N0
; (2)

where K is a system constant; si;j is the transmission dis-
tance of task j to fog node i and a is the path loss exponent.
pi;j is the transmission power, and N0 is noise power.

Due to the varying wireless communication environ-
ments between RSU and the heterogenous fog nodes, the
channel uncertainty becomes a key factor to hinder the
transmission reliability. To guarantee the reliable com-
munication under the worst-case channel condition, the
assigned transmission power should be sufficient to off-
load tasks to corresponding fog nodes with the fast
changing channel gains. In this paper, we assume that
the channel fading hi;j

�� ��2 follows a class of distribution
with the mean m and variance S. The distribution set is
represented as

~p ¼ P : EP hi;j

�� ��2h i
¼ m;EP hi;j

�� ��2 � m
h i2

¼ S

� �
: (3)

A successful transmission is referred to the event that the
received SNR is above a certain threshold. The transmission
reliability is measured by the possibility that a successful
transmission probability is beyond a reliability threshold.
That is,

Pr P½ � gi;j � g
tgt
i

� � � 1� "; (4)

where g
tgt
i is the target SNR threshold, 1� " represents the

reliability threshold, and " is the maximum tolerant trans-
mission error rate.

The reliability-guaranteed communication focuses on
the transmission reliability under the worst-case distribu-
tion of channel fading. To guarantee the reliable transmis-
sion of task j to fog node i, we compute the minimum

transmission power pi;j by formulating the problem as
follows.

min
pi;j

X
i2I

X
j2J

pi;j;

s:t: inf
P2~p

Pr P½ � gi;j � g
tgt
i

� � � 1� "; 8i 2 I&i 6¼ 0; j 2 J;

P ¼ hi;j

�� ��2 : E hi;j

�� ��2h i
¼ m;E hi;j

�� ��2 � m
h i2

¼ S

� �
:

(5)

The inequality constraint requires that the probability of
successful transmission at the worst-case channel condition
should be larger than the reliability threshold 1� ". The
channel fading hi;j

�� ��2 comes from the distribution set P.

4.2.2 Delay-Sensitive Communication

Since tasks may not be offloaded instantly, they need to wait at
the RSU before being transmitted to corresponding fog nodes.
Therefore, the delay of an offloading operation includes the
waiting delay, transmission delay and computation delay. In
addition, the cloud center is assumed to have unlimited resour-
ces, and the total delay to complete any task is assumed as a
constant t. Therefore, when task j is offloaded to computation
node i at period t, the total delay is computed by:

di;j;t ¼ tj þ t� 1þ bj
�
ri;j þ cj

�
vi;j; i ¼ 1; . . . ; Ij j;

t; i ¼ 0;

�
(6)

where tj is the waiting time of task j before RSU making
scheduling. t� 1 is the waiting time of task j before being
offloaded. Since RSU makes scheduling in each short dura-
tion, the tasks arrived during this short duration will wait
for the next-time scheduling. bj

�
ri;j is the transmission

delay, and cj
�
vi;j is the computation delay.

We assume that all tasks are offloaded with the mini-
mum transmission power computed in (5). To minimize the
total delay of all offloaded computation tasks, we formulate
the multi-period generalized assignment problem (MPGAP)
as follows.

min
xi;j;t

X
i2I

X
j2J

X
t2T

di;j;t � xi;j;t

s:t: C1 :
X

m2 1;t½ �

X
j2J

wi;j � xi;j;m �
X

m2 1;t½ �
’i;m ¼ Wi;t;

8i 2 I&i 6¼ 0; 8t 2 T;

C2 :
X

m2 1;t½ �

X
j2J

vi;j � xi;j;m �
X

m2 1;t½ �
ni;m ¼ Vi;t;

8i 2 I&i 6¼ 0; 8t 2 T;

C3 :
X
i2I

X
t2T

xi;j;t ¼ 1; 8j 2 J;

C4 : xi;j;t 2 0; 1f g; 8i 2 I; 8j 2 J; 8t 2 T:

(7)

The constraint C1 requires that the sum of occupied commu-
nication bandwidth of all tasks offloaded to fog node i from
period 1 to t cannot exceed the cumulative available communi-
cation resources Wi;t for all periods t 2 T . Similarly, C2
requires that the sum of required computation rates of all tasks
for fog node i from period 1 to t cannot exceed the cumulative
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available computation resources Vi;t for all periods t 2 T . C3
states that each task j can be assigned to exactly one fog node i
at only one period t. C4 is the binary variable constraint.

5 PROPOSED ALGORITHM

In Section 5.1, we first introduce the risk theoretical approach,
which computes the minimum transmission power for each
pair of task and fog node under the reliability constraint. The
minimum transmission power is used when allocating tasks to
different computation nodes. Then, to minimize the total delay,
we propose the modified branch-and-bound algorithm in
Section 5.2.1, and the heuristic greedy algorithm in Section 5.2.2
for task allocation. Finally, in Section 5.3, we consider both the
reliability-guaranteed and delay-sensitive requirements by for-
mulating a non-convex problem. The Lagreedy algorithm is
proposed to iteratively adjust the transmission power, as well
as the task allocation decisions to obtain lower delay.

5.1 Risk Theoretical Approach

For the first subproblem in (5), we aim to assign the trans-
mission power for any pair of task j and fog node i while
reducing the risk of violating the reliability constraint. As a
special class of risk measure approach, the conditional
value-at-risk (CVaR) is treated as an alternative for solving
value-at-risk (VaR) problems in financial applications [25],
[26], [27]. Thus, we adopt CVaR to transform the chance
constraint in (5) into a convex approximation. For a random
variable �, its CVaR under distribution P is defined as

P� CVaR" �½ � ¼ inf
b2R

bþ 1

"
EP max � � bð Þ; 0½ �

� �
; (8)

where R denotes the set of all real numbers. According to
[28], for a continuous loss function that is either concave or
quadratic in �, the following equivalence holds,

inf
P2~p

Pr P½ � L �ð Þ � 0½ � � 1� " , sup
P2~p

P� CVaR" L �ð Þ½ � � 0: (9)

In this paper, we define the measurable loss function as:

L hi;j

�� ��2� 	
¼ g

tgt
i � hi;j

�� ��2 �K � s�a
i;j � pi;j

N0
: (10)

Since the expectation in (8) is hard to calculate because of
integration, we use the semi-definite programming (SDP)
[29] to represent the worst-case CVaR. The feasible set of (8)
can be written as

pi;j 2 R :

Mi;jMi;j � 0;bi;j þ 1
" tr VMi;jVMi;j

� � � 0;

Mi;jMi;j �
0 �K�s�a

i;j
�pi;j

2�N0

�K�s�a
i;j

�pi;j
2�N0

g
tgt
i � bi;j

2
4

3
5 � 0

8>><
>>:

9>>=
>>;;

(11)

where tr �ð Þ denotes the matrix trace, and

VV ¼ Sþ m2 m

m 1


 �
: (12)

Then the problem in (5) can be reformulated as the fol-
lowing conic optimization problem

min
bi;j;Mi;jMi;j;pi;j

pi;j;

s:t: C5 : bi;j þ
1

"
tr VMi;jVMi;j

� � � 0;

C6 : Mi;jMi;j � 0;

C7 : Mi;jMi;j �
0 �K�s�a

i;j
�pi;j

2�N0

�K�s�a
i;j

�pi;j
2�N0

g
tgt
i � bi;j

2
64

3
75 � 0;

(13)

where VV is defined in (12), Mi;jMi;j is a combined variable and
Mi;jMi;j 2 S2. The deduction process can be referred to [28].

5.2 Two Solutions for MPGAP

For the second subproblem in (7) which addresses the task
allocation, we consider two strategies. One is the branch-
and-bound algorithm, and the other is the heuristic greedy
algorithm.

5.2.1 Branch-and-Bound Algorithm

As proved in [30], the generalized assignment problem
(GAP) is an NP-hard problem. We obtain the optimal solu-
tion of (7) by modifying a branch-and-bound algorithm,
which was intended for GAP. The lower bound at each
branch node is calculated by solving a set of minimization
0-1 knapsack problems (MinKPs).

First, we consider a relaxed problem (i.e., MPGAP-R) by
removing the capacity constraints of C1 and C2 in (7). Each
task will freely select the computation node and corre-
sponding offloading period on which the total delay of com-
pleting the task itself is the shortest. For example, given a
task j, we find computation node i and offloading period t
such that

dij;j;tj ¼ min
8i;t

di;j;t
� 


: (14)

By setting xij;j;tj ¼ 1 and xi;j;t ¼ 0 for all i 6¼ ij and t 6¼ tj,
we get a loose lower bound as:

Z ¼
X
j2J

dij;j;tj : (15)

Then, the resource capacity constraints of C1 and C2 are
checked for feasibility of the relaxed problem. Denote Ji;t as
the set of tasks which are assigned to computation node i at
period t. We have

Ji;t ¼ 8j xi;j;t ¼ 1
��� 


: (16)

For any fog node i, the resource capacity constraints may
be violated at some periods. Denote Ti as the set of periods
that the allocated tasks to fog node i exceed the resource
capacities at corresponding periods.

Ti ¼ 8t
�����
X
j2Ji;t

wi;j � xi;j;t > Wi;t

�����
X
j2Ji;t

vi;j � xi;j;t > Vi;t

8<
:

9=
; (17)

Let I 0 ¼ T1; . . . ; T Ij j
� 


, the lower bound Z will be
increased by the sum of objective values obtained by solving
for each Ti the problem
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min
yi;j;t

zi;t ¼
X
j2Ji;t

fj � yi;j;t;

s:t:
X
j2Ji;t

wi;j � yi;j;t � W 0
i;t;

X
j2Ji;t

vi;j � yi;j;t � V 0
i;t;

yi;j;t 2 0; 1f g;

(18)

where

fj ¼ min
i02I� ijf g;t02T� tjf g;

di0;j;t0 � dij;j;tj

n o
; (19)

and

W 0
i;t ¼

X
j2Ji;t

wi;j � xi;j;t�Wi;t;

V 0
i;t ¼

X
j2Ji;t

vi;j � xi;j;t�Vi;t: (20)

W 0
i;t and V 0

i;t represent the excess part of communication and
computation resource capacitites. fj represents the mini-
mum penalty caused by the reassignment of task j. The
problem in (18) is an MinKP and can be transformed into a
traditional multi-dimensional KP. The optimal solution can
be obtained by the dynamic programming or the branch-
and-bound algorithm. Denote the optimal solution of (18) as
y	i;j;t, which indicates the reassignment operations that lead
to a minimum increase (i.e., z	i;t) on the initial lower bound
Z. Therefore, the lower bound is revised as:

LB ¼ Z þ
X
Ti2I0

X
t2Ti

z	i;t: (21)

The initial solution is also revised according to the values of
y	i;j;t. If y

	
i;j;t equals zero, the initial assignment xi;j;t keeps one. If

y	i;j;t equals one, it means task j should be removed from fog
node i at period t. Thuswe set xi;j;t to zero, and the correspond-
ing variable xi0;j;t0 whose total delay satisfies fj ¼ di0;j;t0 � dij;j;tj
should be set to one. As proved in [30], the relaxation method
to compute lower bound can be viewed as a special case of the
Lagrange relaxation, by setting di0;j;t0 as the values of relaxation
multipliers. After revising the lower bound, the branch process
is conducted.We compute thematch degree of task jwhen it is
keptwith fog node i at period t:

ui;j;t ¼ fj

.
wi;j

.
W 1

i;t þ vi;j

.
V 1
i;t

� 	
; (22)

where W 1
i;t ¼ Wi;t �

P
j2Fi;t wi;j � xi;j;t and V 1

i;t ¼ Vi;t

�Pj2Fi;t vi;j � xi;j;t. Fi;t represents the set of tasks allocated to
fog node i at period t. Note that Fi;t is the allocation results
after revising. A larger value of ui;j;t indicates that task j is
better kept with fog node i at period t with the consider-
ation of both the penalty for reallocating task j and the
available resources of fog node. We choose the branch vari-
able xi	;j	;t	 such that

ui	;j	;t	 ¼ max ui;j;t 8y	i;j;t ¼ 0
���n o

: (23)

Then, xi	;j	;t	 ¼ 1 is examined, and the above relaxation
method and revising strategy will be proceeded with xi	;j	;t	
being fixed to one. In the procedure of branch-and-bound,

some feasible solutions may be obtained after the revising
operation. Specifically, ifW 1

i;t and V 1
i;t are positive for all i and

t, which means the current solution satisfies the

TABLE 1
The Branch-and-Bound Algorithm
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communication and computation resource constraints of any
fog nodes at any periods, therefore, a feasible solution is
found. As stated in [30], the algorithm will produce multiple
feasible solutions before finding the optimal solution.

Table 1 shows the branch-and-bound algorithm. In Step 2,
all tasks independently select their best assignments of com-
putation nodes and offloading periods. In Step 3, the compu-
tation nodes check the feasibility of task allocation at each
period. The lower bound is revised accordingly. Step 4 checks
the feasibility of produced solution in Step 3. If it is infeasible,
the branch variable is selected which has the highest match
degree being keptwith current computation node and period.
In Step 5, the backtracking procedure is conducted to prune
the unfeasible solutions. After branching, the algorithm goes
to Step 2 for the next allocation and bound procedure.

5.2.2 Heuristic Greedy Algorithm

Abasic greedy idea to solve the knapsack problem is to select
the item with the highest profit weight ratio. The first step of
the proposed greedy algorithm is inspired from this idea.
Denote gi;j;t as the weight of task j being allocated to compu-
tation node i at period t, which is computed by:

gi;j;t ¼ u0
i;t � wi;j þ u1

i;t � vi;j; (24)

where u0
i;t and u1

i;t are the coefficients of communication and
computation resources. We simply set them as the used
resource amount of computation node i at period t. They
equal one if the resources are not yet be occupied. The
greedy algorithm first computes all values of delay-weight-
ratio. Then, it selects the allocation operation xi	;j	;t	 with
the smallest value di	;j	;t	 (As computed in (25)). If the
resource capacity constraints can not be met (i.e.,
wi	;j	 > Wi	;t	 or vi	;j	 > Vi	;t	 ), xi	;j	;t	 is set to zero; Other-
wise, it is set to one. If xi	;j	;t	 ¼ 0, the assignment xi	;j	;t	
will be excluded. If xi	;j	;t	 ¼ 1, which means the assignment
is feasible, all other assignments related to task j will not be
further considered. The cumulative communication and
computation resources will be updated each time when a
feasible assignment is found, and the unallocated tasks will
recompute the delay-weight-ratio accordingly. Since the
cloud center is assumed to have unlimited resources, there
must be a feasible assignment for any task.

di	;j	;t	 ¼ min
8i;j;t

di;j;t
�
gi;j;t

� 

: (25)

The heuristic greedy algorithm is shown in Table 2. From
lines 4 to 15, the cumulative communication and computa-
tion resources (i.e.,Wi;t and Vi;t) are updated. Note that in the
greedy procedure, if the resource capacities at certain peri-
ods (e.g., Vi;t) are partially occupied, and the resource capaci-
ties at early periods (i.e., t	 < t) are larger than Vi;t. Then,
Vi;t	 would be considered as themaximumavailable resource
and it is equal to the resource amount at period t (i.e.,
Vi;t	 ¼ Vi;t). For the first task, the greedy algorithm checks
I � J � T delay-weight-ratio values. For the second task,
I � ðJ � 1Þ � T delay-weight-ratio values are checked. For task
j, I � ðJ � jþ 1Þ � T delay-weight-ratio values are checked.
Finally, the loop will be executed up to I � T � J � J þ 1ð Þ= 2
times. The time complexity will beO J2ð Þ.

5.3 Non-Convex Optimization and Lagreedy
Algorithm

Recall that in Section 5.1, the first subproblem computed the
minimum transmission powers which guarantee the reliable
communication. In Section 5.2, the second subproblem (i.e.,
task offloading problem)minimizes the total delay by allocat-
ing tasks to different fog nodes with the minimum transmis-
sion powers. Apparently, if we use larger transmission
powers, then, the allocation decisions and the corresponding
total delay of the second subproblemwill change accordingly.
It is interesting to explore the influence of different transmis-
sion powers on the reliability probability, and the total delay.
In the following, we formulate the master problem by com-
bining the constraints of the two subproblems and their objec-
tive functions by giving aweight coefficient to each objective.

min
xx;pp;b;MM

X
i2I

X
j2J

X
t2T

u1 � di;j;t þ u2 � pi;j
� � � xi;j;t

s:t: C1 
 C7;
(26)

TABLE 2
The Heuristic Greedy Algorithm
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where u1 and u2 are the weights of the delay metric and the
power consumption metric, and u1 þ u2 ¼ 1. By changing
the weight coefficients in the objective function, we can
trace the relationship between the power consumption, the
reliability and the total delay. For example, by setting an
extremely large weight to the delay metric, the main objec-
tive of the master problem will be to minimize the total
delay. Then, the proposed algorithm may prone to use
larger transmission power to allocate task. On the contrary,
by setting an extremely large weight to the power consump-
tion metric, it will prone to use the minimum transmission
power to allocate task, then, the master problem will
approximate to a combination of the two subproblems.

Since that the objective function contains binary decision
variables and the product of two variables, and that the frac-
tion expression is neither convex or concave, (26) is thus a
non-convex problem. We consider to update the trans-
mission powers using the subgradient descent algorithm.
The lagrange relaxation function of the master problem is
given in (27), where �� ¼ f��0; ��1; ��2; ��3; ��4; ��5g. ��0 2 RI�J , ��1,

��2 2 ~S
I�J

, ��1 � 0 , ��2 � 0, ~S ¼ S2, ��3; ��4 2 RI�T , ��5 2 RJ and

UU ¼ 0 � 1
2 �

K�s�a
i;j

�pi;j
N0

� 1
2 �

K�s�a
i;j

�pi;j
N0

g
tgt
i � bi;j

2
4

3
5; (28)

for all i 2 I, j 2 J , t 2 T .
The lagrange dual function is given as [31]:

g ��ð Þ ¼ inf
xx;pp;b;MM

L xx; pp; b;MM; ��ð Þ: (29)

We consider the lagrange dual problem by maximizing
g ��ð Þwith the domain constraints of dual variables:

max
��

g ��ð Þ ¼ max
��

inf
xx;pp;b;MM

L xx; pp; b;MM; ��ð Þ

s:t: ��0 2 RI�J ; ��1; ��2 2~S
I�J

;~S ¼ S2;

��1 � 0; ��2 � 0; ��3; ��4 2 RI�T ; ��5 2 RJ :

(30)

Then, we propose the Lagreedy algorithm to solve the dual
problem in (30). The algorithm iteratively adopts the subgra-
dient projection and the heuristic greedy algorithm to obtain a
feasible solution. In the subgradient projection, the values of
lagrange multipliers are updated at certain step sizes, and the
transmission powers are also updated according to KKT con-
ditions. Once the transmission powers are updated, the heu-
ristic greedy algorithm solves the integer programming
problem (i.e., task allocation). Then, the obtained solutions are
used to update the values of multipliers in the next iteration.

5.3.1 Inner Minimization Solution

By differentiating L xx; pp;b;MM; ��ð Þ with respect to pp, xx, b

and MM, and let them equal to zero, we have (39), (40), (31)
and (32).

�0
i;j þ �2

i;j 2; 2ð Þ¼ 0 (31)

�0
i;j �

1

"
�V� �1

i;j

� 	T
� �2

i;j

� 	T
¼ 0: (32)

The transmission powers pp can be computed from (39).
Note that the updated transmission power pp in each
iteration must be not lower than the the minimum transmis-
sion power computed in Section 5.1. Therefore, the reliability
constraint in the master problem is definitely guaranteed.
Then,with the updated transmission power, the task offload-
ing solution (i.e., xx) can be obtained by solving the integer
programming problem. Consider the high computation com-
plexity of the branch-and-bound algorithm, we use the heu-
ristic greedy algorithm in Section 5.2.2 to compute xx. The
constraints of communication and computation resources
are also satisfied in the task allocation. That is, the reliability
constraint and the resource constraint are respectively satis-
fied in updating the transmission power, and the task alloca-
tion solution. Therefore, the Lagreedy algorithm obtains a
feasible solution of themaster problem.

5.3.2 Outer Maximization Solution

The subgradient of g ��ð Þ are given as

�0
i;j tþ 1ð Þ ¼ �0

i;j tð Þ � l0i;j � bi;j þ
1

"
tr VMi;jVMi;j

� �� �
 �þ
; (33)

�1
i;j tþ 1ð Þ ¼ �1

i;j tð Þ � l1i;j: 	 �Mi;jMi;j

� �Th iþ
; (34)

�2
i;j tþ 1ð Þ ¼ �2

i;j tð Þ � l2i;j: 	 UU �Mi;jMi;j

� �Th iþ
; (35)

�3
i;t tþ 1ð Þ ¼ �3

i;t tð Þ � l3i;t �
X

m2 1;t½ �

X
j2J

wi;j � xi;j;m �Wi;t

0
@

1
A

2
4

3
5
þ

; (36)

�4
i;t tþ 1ð Þ ¼ �4

i;t tð Þ � l4i;t �
X

m2 1;t½ �

X
j2J

vi;j � xi;j;m � Vi;t

0
@

1
A

2
4

3
5
þ

; (37)

�5
j tþ 1ð Þ ¼ �5

j tð Þ � l5j �
X
i2I

X
t2T

xi;j;t � 1

 !
; (38)

where xi;j;m, Mi;jMi;j, pi;j and b (which are implicitly shown in
UU) are the solutions of inner minimization problem in

L xx; pp;b;MM; ��ð Þ ¼
X
i2I

X
j2J

X
t2T

u1 � di;j;t þ u2 � pi;j
� � � xi;j;t þ

X
j2J

�5
j �

X
i2I

X
t2T

xi;j;t � 1

 ! !

þ
X
i2I

X
j2J

�0
i;j � bi;j þ

1

"
tr VMi;jVMi;j

� �� �
� tr Mi;jMi;j�

1
i;j

� 	
� tr Mi;jMi;j � UU

� �
�2
i;j

� 	� �

þ
X
i2I

X
t2T

�3
i;t �

X
m2 1;t½ �

X
j2J

wi;j � xi;j;m �Wi;t

0
@

1
Aþ �4

i;t �
X

m2 1;t½ �

X
j2J

vi;j � xi;j;m � Vi;t

0
@

1
A

0
@

1
A:

(27)
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current iteration. For real variable p, p½ �þ ¼ max p; 0ð Þ; for a
real matrix pp, pp½ �þ ¼ max pp; 00ð Þ.

t� 1þ cj
vi;j

� �
þ bj

wi;jlog 2 1þ hi;j

�� ��2 �K � s�a
i;j � pi;j

.
N0

� 	� 	þ u � pi;j
0
@

1
A

þ T � tþ 1ð Þ � �3
i;t � wi;j þ �4

i;t � vi;j
� 	

þ �5
j ¼ 0

(40)

The algorithm starts with an initialization of power allo-
cation pp, auxiliary variablesMM and b, as well as the lagrange
multipliers. Then, the decision variable xx is computed using
the heuristic greedy algorithm. In the next iteration, the val-
ues of lagrange multipliers are adjusted with the subgra-
dient process. pp, MM and b are recomputed, based on which,
xx is updated using the heuristic greedy algorithm. The itera-
tion process continues until converging to a preset
threshold.

6 SIMULATIONS

The parameter settings are summarized in Table 3 [18], [24],
[32], [33]. To compare the efficiency of the Lagreedy algo-
rithm, we compute a lower bound of the master problem
using the subgradient descent algorithm. We first relax the
integer constraint C4 in the master problem to the continu-
ous variables. Then we derive the Lagrangian dual problem
and solve it with the subgradient descent algorithm. The
algorithm stops iterating until the terminal condition is met
(i.e., the variation of the multiplier are within a certain
range) [23]. After verifying the effectiveness of the Lagreedy
algorithm, we compare it with the branch-and-bound algo-
rithm and the heuristic greedy algorithm. For the first two
algorithms, we compute the minimum transmission power
for each pair of task and computation node under the reli-
ability constraint. Then, the branch-and-bound algorithm
and the heuristic greedy algorithm solve the task allocation
problem with the assumption that all tasks are offloaded to
computation nodes with the minimum transmission power.
For the Lagreedy algorithm, if we set a relatively larger
value to u1 in (26), the delay metric becomes the main con-
cern in the optimization problem. It means that the
Lagreedy algorithm may tend to use larger transmission
power to get a higher transmission rate, which can shorten
the total delay. If we set a relatively larger value to u2, the
power consumption is seriously considered, which can lead
the Lagreedy algorithm to use lower transmission power
for obtaining a smaller objective value. In the following
experiments, when we set u1 to 0.999, the Lagreedy algo-
rithm can be called as the LaDelay, for differentiating with
the LaPower algorithm which concerns more about the
power consumption and sets u2 to 0.999. In addition, since
the branch-and-bound algorithm has a higher complexity
and can not obtain the optimal solution within relatively
shorter time, we give the current optimal solution when the
task number reaches up to 25 and 30. As we can verify later,

even the currently optimal solution is better than the heuris-
tic greedy algorithm.

Fig. 2 compares the average delay of the LaDelay algo-
rithm (i.e., the Lagreedy algorithm when setting u1 to 0.999
in the objective function) and the subgradient descent algo-
rithm. The average delay is defined as the average value of
all tasks’ delay. As described in Section 5.3, the Lagreedy
algorithm computes a feasible solution of the master prob-
lem; while the subgradient algorithm obtains a lower
bound. As shown, the average delay of the LaDelay algo-
rithm (i.e., green dash dotted line) is slightly longer than the
lower bound (i.e., orange dotted line). The difference of
average delay is about 0.2 ms when the number of tasks is
larger than 10. Therefore, we conclude that the LaDelay
algorithm is able to obtain good, feasible solution of the
master problem.

Fig. 3 compares the average delay of all algorithms. The
red dashed line represents the average delay of the pro-
posed branch-and-bound algorithm, and the black solid line
represents the results of the heuristic greedy algorithm.
When tasks are offloaded to the computation nodes with
the minimum transmission power, the branch-and-bound
algorithm always gives shorter average delay with an
increasing number of tasks. The blue dotted line and green
dash dotted line represent the average delay of the LaPower
and the LaDelay algorithms, respectively. When setting u1
to 0.999, the objective value is dominated by the delay met-
ric, the LaDelay will iteratively adjust the transmission
power to achieve a shorter delay. As shown with green
dash dotted line, the LaDelay converges into a better solu-
tion than those of the branch-and-bound and the heuristic
greedy algorithm. However, when the power consumption
becomes the main concern, the LaPower cannot obtain a
shorter delay than the other two algorithms. We can explain
the results from the following two aspects. First, the
LaPower uses the heuristic greedy algorithm to allocate
tasks in each iteration, which cannot outperform the opti-
mal solution of the branch-and-bound algorithm. Second, it
targets to minimize the power consumption, and hence the
influence of delay metric is almost ignored in the converg-
ing process. In addition, with an increasing number of tasks,
the average delay of all algorithms will increase accord-
ingly. This is because when more tasks arrive at the task
queue, they have to wait for longer time due to limited com-
munication and computation resources of fog nodes, which
will cause longer total delay.

Fig. 4 compares the average consumed power of all algo-
rithms under different numbers of tasks. As shown,
although both the branch-and-bound algorithm and the
heuristic greedy algorithm use the minimum transmission
power to offload tasks, the branch-and-bound algorithm
has lower power consumption. Combined with Fig. 3, the
branch-and-bound can achieve both the lower delay and
lower power consumption than those of the heuristic
greedy algorithm. In addition, the LaPower obtains much
similar results with the heuristic greedy algorithm. But as

pi;j ¼ N0 �
P

t2T xi;j;t � bj � wi;j

ln 2 � r2i;j � �2
i;j 1; 2ð Þ �K � s�a

i;j þPt2T xi;j;t �N0 � u
� 	� 1

hi;j

�� ��2 �K � s�a
i;j

0
@

1
A (39)
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described in Fig. 3, the LaPower is reducing the transmis-
sion power at the cost of longer delay. On the contrary, the
LaDelay achieves the shortest average delay with larger
transmission power.

Fig. 5 evaluates the program execution time of all algo-
rithms under different numbers of tasks. When the number of
tasks increases, the execution time of the heuristic greedy algo-
rithm increases slowly. As described in Section 5.2.2, the time
complexity of the heuristic greedy algorithm is O J2ð Þ.

However, the increasing trend of execution time cannot be
shown clearly due to large values of y-axis. For the Lagreedy
algorithm, since the greedy strategy is applied in each iteration
to reallocate tasks, the time complexity is determined by the
number of iterations and the execution time of heuristic algo-
rithm. For the branch-and-bound algorithm, it outputs the
optimal solution when the number of tasks is lower than 25,
and outputs current optimal solution for more than 25 tasks.
Since the worst-case time complexity of the branch-and-bound
algorithm is exponential, we set the maximum allowable exe-
cution time of 90 s for 25 tasks, and 150 s for 30 tasks. From
Fig. 3, we can observe that even the current optimal results
(i.e., the average delay with 25 and 30 tasks) of the branch-
and-bound algorithm keep better than the heuristic greedy
algorithm. In addition, although the average execution time of
the Lagreedy is higher than the preset time of the branch-and-
bound algorithm, the LaDelay (i.e., the Lagreedy algorithm
when setting delay weight u1 to 0.999) obtains the lowest aver-
age delay compared with other algorithms (see Fig. 3). How-
ever, as explained above, the average delay of the LaPower
(i.e., the Lagreedy algorithm when setting power weight u2 to
0.999) is longer than the branch-and-bound algorithm.

Fig. 6 shows the percentage of tasks that are offloaded to
cloud center. When the task number is less than 15, all tasks
can be offloaded to fog nodes. With an increasing of task num-
ber, the percentage of tasks offloaded to cloud center will
increase. Compared with the heuristic greedy algorithm, the
branch-and-bound algorithm and the LaDelay algorithm off-
load fewer tasks to the cloud center in all settings. This

TABLE 3
Simulation Parameters

Parameter Value

Noise power 10�12 mW
Path loss exponent 3
System parameter 1
Channel fading 2-mean 0.4-variance

distribution
Distance between RSU and fog nodes 100; 1000½ �meters
SNR threshold 1; 10½ �
Reliability threshold 0.9
Number of tasks 20
Number of fog nodes 6
Number of periods 6
Length of each period 0.1 ms
Required bandwidth of each task 1; 5½ �MHz
Bandwidth increment at each period 1; 3½ �MHz
Demanding computation rates of each task 1; 15½ � � 108 cycles/s
Computation rate increment at each period 1; 6½ � � 108 cycles/s
Size of input data 400; 1002

� �
bytes

Size of computation task 100; 202
� �

Kcycles

Fig. 2. Comparison of feasible solution and lower bound.

Fig. 3. Average delay under different number of tasks.

Fig. 4. Average consumed power under different number of tasks.

Fig. 5. Average execution time under different number of tasks.
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phenomenon also verifies the result of Fig. 3. Since it takes lon-
ger time for tasks to be offloaded to the cloud center, the LaDe-
lay achieves the lowest average delay by offloading more tasks
to fog nodes. On the contrary, the LaPower will offload rela-
tively more tasks to the cloud center.

Fig. 7 shows the average delay, the consumed power, as
well as the objective value of the Lagreedy algorithm under dif-
ferent settings of u1. In this set of experiments, we consider 20
tasks. A larger value of u1 represents a relatively larger weight
of delay metric in the objective function. The blue dashed line
represents the varying trend of the average delay under differ-
ent values of u1. With u1 increasing from 0.001 to 0.999, the
delay metric gradually dominates the value of the objective
function. The goal of the Lagreedy algorithm varies frommini-
mizing the power consumption, to finally mainly minimizing
the average delay. Therefore, the average power consumption
will increase due to a decreasing weight (i.e., u2) in the objective
function, as shown in red dotted line. The black solid line rep-
resent the objective values, which are the weighted sum of the
average delay and the power consumption.

Fig. 8 shows the average delay of the heuristic greedy
algorithm, the branch-and-bound algorithm and the LaDelay
algorithm under different numbers of fog nodes. Since the
LaDelay algorithm can obtain the lowest average delay, we
only compare its results with the branch-and-bound, and the
heuristic greedy algorithm. With an increasing number of
fog nodes, the average delay of all algorithms decreases
accordingly. On one side, the tasks do not need to wait a long
time before being offloaded, and hence the waiting delay is
reduced. On the other side, there are more options of fog

nodes, and tasks can choose themost suitable fog nodes with
lower transmission and computation delay for computation
offloading. In this way, both the communication delay and
the computation delaywill decrease accordingly.

Fig. 9 shows the average consumed power of all algo-
rithms under different numbers of fog nodes. With an
increasing number of fog nodes, more tasks can be offloaded
to the fog nodes which require less transmission power. For
the branch-and-bound and the heuristic greedy algorithms,
all tasks are transmitted with the minimum transmission
power. The lower bound of minimum transmission power
will decrease with more options of fog nodes. For the
LaPower algorithm, it will generate increasing pairs of task
and fog node, which leads to a better converging result.

The average delay of the three algorithms under different
values of the reliability threshold are compared in Fig. 10.
As shown, the LaDelay algorithm keeps the lowest average
delay compared with the branch-and-bound, and the heu-
ristic algorithm in all settings. With the increasing of reli-
ability threshold, the average delay decreases. This is
because a higher reliability threshold requires larger trans-
mission power, which also gives a higher data rate. Thus,
the average delay will decrease correspondingly.

The average consumed power under different values of
reliability threshold are shown in Fig. 11. With the increas-
ing of reliability threshold, the minimum transmission
power to guarantee the reliable communication is increased.
Although the offloading solution would change with the
updating of transmission power, tasks tend to require a
larger transmission power for offloading, the total

Fig. 6. Percentage of tasks offloaded to cloud.

Fig. 7. Comparison of two metrics.

Fig. 8. Average delay under different number of fog nodes.

Fig. 9. Average consumed power under different number of fog nodes.
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consumed transmission power will increase. Specifically,
when the reliability threshold increases from 0.92 to 0.95,
the total transmission power increases significantly. In addi-
tion, in all settings, the branch-and-bound algorithm has a
lower average transmission power than that of the heuristic
greedy algorithm and the LaPower algorithm.

Fig. 12 shows the delays of all tasks as well as their aver-
age delay under different algorithms. We can observe that,
the delay distribution of all tasks under the branch-and-
bound algorithm and the LaDelay algorithm are very simi-
lar. The delay of most of tasks is close to the average delay
of all tasks. In addition, the number of tasks with shorter
delay (than the average delay) is more than that of tasks
with longer delay. This is because it causes longer delay to
transmit tasks to the cloud center, even fewer tasks being
offloaded to the cloud center will increase the average delay
of all tasks.

7 CONCLUSION

In this paper, we have presented a computation offloading
architecture tomeet the reliability-guaranteed and delay-sen-
sitive requirements in emerging 5G application. To well
explore the limited communication and computation resour-
ces of fog nodes, we have considered the dynamic resource
queue model, and allocate tasks in a time sequence. In order
to guarantee the reliable communication, we compute the
minimum transmission power for each pair of task and com-
putation node. The CVaR theory is applied to guarantee a
reliable transmission under any worst-case channel

environments. On this basis, we have formulated the
MPGAP, which is an integer programming problem to mini-
mize the total delay of all tasks. The branch-and-bound algo-
rithm ismodified to obtain the optimal solutionwith a higher
time complexity. In addition, we have proposed a heuristic
greedy algorithm to obtain approximate solutionswith much
lower computation overhead. Furthermore, to analyze the
effects of transmission power on the total delay of tasks, we
have formulated a non-convex optimization problem, which
considered both delay metric and power consumption met-
ric. To solve its lagrange dual problem, the Lagreedy algo-
rithm has been designed by combining the subgradient
algorithm and the heuristic greedy algorithm. By assigning a
largerweight to the power consumptionmetric, the Lagreedy
algorithm has the approximate objective with the branch-
and-bound algorithm, as well as the heuristic greedy algo-
rithm. Through the comprehensive studies, we have demon-
strated that the Lagreedy algorithm can only achieve lower
average delay at the cost of high power consumption, and the
branch-and-bound algorithm is able to achieve better perfor-
mance on both the total delay and the power consumption.
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