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Abstract—Mobile edge computing (MEC) enables computing services at the network edge closer to mobile users (MUs) to reduce
network transmission latency and energy consumption. Deploying edge computing servers in small base stations (SBSs), operators
make profit by offering MUs with computing services, while MUs purchase services to solve their own computation tasks quickly and
energy-efficiently. In this context, it is of particular importance to optimize computing resource allocation and computing service pricing
in each SBS, subject to its limited computing and communication resources. To address this issue, we formulate an optimization
problem of computing resource management and trading in small-cell networks and tackle this problem using a two-tier matching.
Specifically, the first tier targets at the association algorithm between MUs and SBSs to achieve maximum social welfare, and the
second tier focuses on the collaboration algorithm among SBSs to make efficient usage of limited computing resources. We further
show that the two proposed algorithms contribute to stable matchings and achieve weak Pareto optimality. In particular, we verify that
the first algorithm arrives at a competitive equilibrium. Simulation results demonstrate that our proposed algorithms can achieve a
better network social welfare than baseline algorithms while retaining a close-optimal performance.
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1 INTRODUCTION

It is predicted that data produced by the internet of things
(IoT) will occupy 45% of the network data by 2019. Un-
doubtedly, the ever-growing loT applications will rely on
large computation power and stringent response delay
in IoT networks [1]. In particular, if a large number of
computation-intensive tasks are processed in mobile user
(MU) devices, it is bound to accelerate energy consump-
tion and shorten their service life, which becomes the key
driving force behind the invent of cloud computing [2],
[3]. However, long-distance communications between MU
devices and cloud result in unendurable latency in IoT
networks, which cannot meet the requirements of delay-
sensitive applications [4]. To handle the nail-biting issue,
mobile edge computing (MEC) is emerging as an efficient
solution to enable timely and efficient local services at the
network edges [5], [6].

In recent years, MEC is an increasingly popular com-
puting paradigm due to low latency, high resource uti-
lization efficiency, high transmission, and easy connection
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with next-generation wireless communication systems. By
leveraging these enticing benefits, MEC can help MUs of-
fload computation to MEC servers in small-cell networks
[7]. In [8], the authors proposed a new centralized resource
management scheme combining the cloud and MEC for
resource allocation in the fiber-wireless access network,
jointly considering packet delay, response time efficiency,
and gain-offload overhead ratio. As follow-up effort, Ref.
[9] proposed a centralized energy efficient computation
offloading mechanism that optimizes resource allocation
to minimize energy consumption in small cell network,
meanwhile taking into account the computing power and
computing delay requirements of user devices. It is stressed
that aforementioned works in [8], [9] concentrated on the
centralized algorithms. However, it is widely accepted that
the centralized solutions rely on the coordinator to collect
the information from the entire network at the cost of
high complexity and signalling, which limits MEC effi-
ciency. Compared with centralized algorithms, distributed
algorithms decompose an optimization problem into many
small parts and process each part locally in a distributed
manner. Among distributed solutions, matching theory is an
effective method which is also scalable in MEC networks.

In economic literature, matching game theory is a math-
ematical framework to form reciprocal relationships over
time [10]. According to the general classification, matching
theory can be divided into three categories, i.e., one-to-one,
many-to-one, and many-to-many matching [11]. Matching
theory has been widely studied in wireless communications
for resource allocation [12], [13]. Under the framework of
MEC, matching theory can also be utilized to solve resource
allocation problems. For example, in [14], the authors pro-
posed two separate matching games to achieve caching
resource allocation in decentralized edge cache network
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with mobile MUs by using distributed algorithm to im-
plement resource allocation. Later on, [15] proposed a joint
distributed optimization framework for all edge nodes, data
service operators, and data service subscribers in the MEC
network, using stackelberg and matching games to solve
the computing resource allocation. In [16], matching algo-
rithm was used to maximize the overall uplink throughput
while jointly considering the user correlation, subchannel
allocation and power allocation in the cognitive femtocell
networks. In [17], the authors studied the three-level duplex
matching scheme in the MEC-based cloud radio access net-
works by applying the Gale-Shapley theory and proposed
a multi-stage heuristic to minimize the refusal rate for
the task offloading requests. Nevertheless, these matching
algorithms in [15]–[17] cannot achieve optimal pricing of
resources if there exist competition among MUs and compe-
tition between MUs and resource owners. Meanwhile, [15]–
[17] lack of price adjustment for resource owners to achieve
competitive equilibrium.

In practice, MEC is implemented based on a virtualized
platform that leverages recent advancements in network
functions virtualization, which enables MEC providers to
run independent tasks on a single physical server. Add
to that, these tasks can access the underlying physical
resources while being isolated from each other [18]. For
instance, the edge computing server (ECS) independently
compute different tasks through different virtual machines
(VMs) in various MEC networks [19]. In [20], a novel ap-
proach to MEC for the IoT architecture was proposed with
the aid of two types of VMs deployed in the edge node and
IoT service provider. Considering the MEC provider’s profit
and MU’s cost, how to allocate the limited number of VMs
for efficient task computing remains challenging.

In this paper, we study a two-tier matching game in a
small cell network with MEC, where each MU first offloads
its tasks to the small base stations (SBSs) with the ECSs
through association and then the overloaded SBS transfers
its tasks to the underloaded SBSs through collaboration. In
particular, the virtualization enables each ECS to provide
computing services to multiple MUs by creating multiple
VMs. To optimize the network social welfare [21], we pro-
pose a two-tier matching algorithm that first focuses on the
association problem between MUs and SBSs and then ad-
dresses the collaboration problem among SBSs sequentially.
In the first algorithm, we optimize the VM allocation of SBSs
for task offloading from MUs by treating MUs and SBSs as
the players in a many-to-one matching game. In the second
algorithm, we optimize the computing resources among
SBSs, which is formulated as a many-to-many matching
game. Our main contributions are summarized as follows:

• We propose a many-to-one matching game integrat-
ed with a bidding mechanism to solve the association
problem between MUs and SBSs to maximize the
social welfare, which guarantees not only the utility
of each MU but also the optimal pricing of each SBS
(see Section 4.2).

• We propose a many-to-many matching game to solve
the SBS collaboration problem, which saves the hard-
ware cost of ECS (see Section 2.2) and minimizes the
total transfer delay in collaboration (see Section 4.3).

• We verify the stability and optimality of the proposed
matching algorithms. In particular, we validate that
the association algorithm arrives at the competitive
equilibrium and analyze the impact of price step on
the equilibrium (see Section 5.2).

• We illustrate the impacts of different MU demands
(concern more about time delay or energy consump-
tion) on social welfare under different uploading
powers of MUs through simulations (see Section 6).
When the uploading power of MUs ranges from 0W
to 1W, the more the MUs concerned about time delay,
the larger the social welfare is. Meanwhile, when the
uploading power of MU ranges from 1W to 2W, the
more the MUs concerned about energy consumption,
the larger the social welfare is.

The rest of this paper is organized as follows. Section 2
describes the system model and utility function. The MU
and SBS association problem and SBS allocation problem
are formulated in Section 3. Section 4 formulates a two-
tier matching according to the proposed two matching
algorithms. Section 5 investigates the stability and Pareto
optimality of the proposed algorithms. In particular, the
competitive equilibrium of the association algorithm is in-
vestigated. Section 6 presents the simulation results. Finally,
Section 7 concludes this paper.

2 SYSTEM MODEL

The MEC system consists of M MUs denoted by U =
{U1, U2, · · · , UM} and N SBSs (owned by an operator)
denoted by A = {A1, A2, · · · , AN}. As shown in Fig. 1,
each SBS in the center of the small cell 1 depolys the same
ECS which can open at most G VMs to serve the MUs over
different subcarriers, and a single VM handles only one
MU’s task. The larger theG is, the higher the ECS costs. This
is due to the fact that the VM occupies a portion of hardware
resources (CPU and memory) [22]. Suppose that each MU is
assigned with a computation-intensive and time-sensitive
task beyond its limited computing power. As a result, each
MU cannot handle its task without the aid of ECS deployed
in the SBS. It is assumed that each MU with the same
hardware quality has not only sufficient storage capacity
to store its task but also sufficient power to uploading its
computing task. This paper assumes that each MU in U
offloads its task at the same time. In this work, each SBS
has a set of orthogonal subcarriers that can serve at most K
MUs simultaneously. Regarding the relation between G and
K, we define three types of SBSs as follows:

• Underloaded SBS: The number of associated MUs
with the SBS is less than G.

• Fully loaded SBS: The number of associated MUs
with the SBS is G.

• Overloaded SBS: The number of associated MUs
with the SBS is more than G but no more than K.

1. The small cell network is the network composed of multiple small
cells. In each single small cell, there exists an SBS located in the center
that serves some MUs. In the MEC-enabled small cell network, each
MU can offload its task to any SBS in the network, and the tasks can
be transferred from one overloaded SBS in one small cell to another
underloaded SBS in a different small cell.
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Fig. 1. An MEC network consisting of multiple SBSs each
with multiple subcarriers and a single ECS each with multi-
ple VMs, where the overloaded SBS1 with G = 3 and K = 4
transfers an MU’s task to SBS2.

Overall, the MEC focuses on the task offloading from the
MUs to SBSs via association and the task computing within
the SBSs via collaboration. First, each MU sends a request
to all SBSs for the ECS rent. Second, each SBS collects the
requests, decides which MUs should be associated with, and
leases its ECS to its associated MUs. Third, the overloaded
SBS requests the computing resources from the underload-
ed SBSs2. Fourth, each underloaded SBS decides whether
to accept the request from the overloaded SBS. Once the
request is accepted, the underloaded SBS becomes a helper
of the overloaded SBS and the collaboration is established
between the two SBSs.

2.1 Association Model

During each period of task offloading, each MU can only be
served by a unique VM of a single ECS. Moreover, each SBS
has a set of orthogonal subcarriers that can serve at most K
MUs simultaneously.

To reduce the cost, each MU wants to connect with the
SBS yielding the minimum task offloading consumption.
However, limited subcarriers of each SBS does not guaran-
tee that all MUs can connect with the best SBS, especially
when the number of MUs is large. This paper considers
that each SBS deploys the same ECS. In addition, each ECS
can open at most G VMs. Therefore, it is a key issue to
find out an cost-efficient solution to the SBS association and
computing task allocation.

First, we consider that the association between a pair of
MU Um and SBS An is established if Um is served by An.
For ease of exposition, we use an M × N adjacency matrix
X to represent all possible associations between any pair of
Um and An, where the {m,n}-th element of X is given by

xm,n =

{
1, if Um is associated withAn,
0, otherwise.

(1)

2. We consider that the SBSs distributed in different locations are
interconnected with each other through reliable internal links. In this
way, they can exchange their offloaded tasks through the shared links.

From (1), Um uploads its task to An if xm,n = 1. Then,
the uploading rate from Um to An is given by

Rm,n = W log2

(
1 +

Pmgm,n

N0

)
, (2)

whereW denotes the bandwidth of each uploading link, Pm

is the uploading power of Um, gm,n is the channel gain from
Um to An, and N0 represents the Gaussian noise power.
Therefore, the time delay caused by the uploading from Um

to An is given by

tupm,n =
Qm,n

Rm,n
, (3)

where Qm,n is the data size of the uploaded task from Um to
An. From (3), minimizing the uploading time is equivalent
to maximizing the transfer rate under fixed data size of each
MU task. From (2) and (3), the uploading energy Eup

m,n from
Um to An is

Eup
m,n = tupm,nPm. (4)

The computation in each SBS is characterized by the
following key parameters. First, we use f to denote the
computing speed of the VM in the ECS of each SBS, namely,
the cycles of CPU per second. With reference to [23], the
energy consumption of CPU per second is P = kf3, where k
is the effective switched capacitance of the chip architecture.
Then the computing time of the task offloaded from Um to
An is given by

tcomm,n =
Qm,nDm

f
, (5)

where Dm, also called computational complexity, indicates
different numbers of CPU cycles consumed by computing
different tasks per bit. With reference to [24], [25], the energy
consumption in An caused by the computation of Um’s task
is given by

Ecom
m,n = Ptcomm,n = Qm,nDmkf

2. (6)

In practice, a general energy model includes the memory
energy consumption caused by the storage of Um in An.
As Section 2.3 and 4.2 will elaborate, our proposed associa-
tion and collaboration algorithms are also applicable in the
general energy model, as long as the SBS is aware of the
memory energy consumption.

With reference to [26], we consider that the data size
of computing result is much smaller than that of offloaded
task. Thus, compared with task uploading, we can ignore
the delay and energy induced by the data downloading
from SBS to MU.

2.2 Collaboration Model
As Section 2.1 points out, each SBS can serve at mostK MUs
over the fixed K orthogonal subcarriers, and each ECS can
open at most G VMs.

2.2.1 ECS Configuration
This part elaborates different ECS configurations in each
SBS.

Case 1 : (K − 1)N < M ≤ KN
In this case, there exists at least one SBS associated

with K MUs. To guarantee that all MUs can be served
simultaneously, we choose G = K. Put differently, to meet
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Case 1, each SBS can serve at most K MUs. Note that the
number of MUs served by each SBS may differ. If M = KN ,
each SBS is fully loaded, i.e., (GN −M) = 0. Otherwise, the
underloaded SBS indeed exists as GN = KN > M . It is
worth noting that the overloaded SBS does not exist in this
case.

Case 2 : 1 ≤M ≤ (K − 1)N
The following findings motivate the new setup for this

case. First, all SBSs can transfer tasks through the internal
links as shown in Fig. 1, and the cost of data transfer among
the SBSs is much lower than that of high-performance ECS.
Second, we can ignore the transfer delay among the SBSs,
since the speed of internal links is much faster than the MUs
uploading speed. Driven by these findings, we propose the
following strategies for this case:

• Keep the associations between MUs and SBSs un-
changed and set G = dM/Ne, where dxe denotes
the ceiling function that maps x to the least integer
greater than or equal to x.

• It is possible that the underloaded, fully loaded, and
overloaded SBSs coexist. Each overloaded SBS trans-
fers its overloaded tasks to the underloaded SBSs.
Notably, each overloaded SBS refunds the associated
MUs to compensate for the delay caused by the data
transfer 3.

In this case, choosing the ECS with G = K VMs as Case
1 results in higher cost. To illustrate this problem, consider
that N = 4 SBSs each with K = 4 subcarriers and M = 10.
This example falls into Case 2 as 1 ≤M ≤ (K − 1)N . Thus,
we set G = d10/4e = 3. That is, each SBS deploys the ECS
which can open 3 VMs at most. However, if we follow Case
1, each SBS will deploy the ECS with higher performance
that supports G = K = 4 VMs. Apparently, this leads to
more idle hardware resources.

We remark that some MUs need to queue up to solve
their own tasks if M > KN . To study this special case,
queuing theory may be cater to the analysis of time delay
performance, which is beyond the scope of this paper.
Therefore, this paper only considers M ≤ KN .

2.2.2 SBS Collaboration
In Case 1, the data transfer among SBSs is not required, since
the offloaded task from each MU can be accommodated by
its associated SBS simultaneously. However, in Case 2, each
overloaded SBS needs to transfer its local tasks beyond its
computing capability to some underloaded SBSs. We refer
to this task transferred from SBS Aum,h to its peer Ar as
the collaboration between Aum,h and Ar . For ease of expo-
sition, we refer to Ar as a helper of Aum,h. To be specific,
Aum,h denotes the overloaded SBS Ah associated with MU
Um, h ∈ {1, · · ·, H} with H being the number of overloaded

3. The transfer delay among SBSs is much smaller than uploading
delay and computing delay for the MU, since the speed of internal links
among SBSs is much faster than the uploading speed of MUs. Therefore,
from the MUs perspective, the MUs can ignore the transfer delay
among SBSs, which does not impose any impact on the association. On
the other hand, the task offloading caused by data transfer consumes
more time than that without data transfer, even though the transfer
delay is small. Therefore, due to this transfer delay, the overloaded SBS
compensates its associated MUs whose tasks are transferred as shown
in (13).

SBSs, and Ar is the underloaded SBS, r ∈ {1, · · ·, R} with
R being the number of the helpers. We remark that R < N ,
since the number of helpers of Aum,h is a subset of the SBS
set. Furthermore, we use an M × R adjacency matrix Y to
represent the collaboration between Aum,h and Ar , where
the {m, r}-th element of Y is given by

yr,um,h
=

{
1, ifAr is a helper of Aum,h,

0, otherwise.
(7)

2.2.3 Transfer Delay

Define the time delay caused by the task transfer of Um in
Ah to Ar as

ttranum,h,r
= δQm,h,rdh,r, (8)

where δ is the reference delay induced by transmission per
bit between any two SBSs separated by unit distance,Qm,h,r

is the total bits of tasks in Aum,h transferred to Ar, and dh,r
represents the distance between Aum,h and Ar .

2.3 Utility Functions of MUs and SBSs

Generally, each MU is willing to minimize its cost by
taking into account the computation tasks, the computing
consumption, and the rent of ECS, while each SBS aims to
maximize its profit from the computing services.

First, we define the utility function of MU Um associated
with An as

WMU
m,n = ςQmDm − λCm,n − βm,n, (9)

where ς is the reference profit achieved by the computation
of every bit with unit complexity, λ is the reference cost
caused by unit computing consumption, and βm,n is the
ECS rental fee of An paid by Um. In (9), the computing
consumption Cm,n consists of the task offloading delay and
energy consumption, given by4

Cm,n = αt
m(tupm,n + tcomm,n) + αe

mE
up
m,n,

αt
m, α

e
m ∈ [0, 1], αt

m + αe
m = 1, (10)

where αt
m and αe

m are the weighted parameters of time
delay and energy consumption respectively. Notably, the
values of αt

m and αe
m depend on different roles of MUs. For

example, we set a higher αe
m for the MU with lower battery

that has a more stringent power constraint, and a higher αt
m

for the MU with more delay-sensitive tasks.
Second, the utility function of the SBSAn associated with

Um is given by

W SBS
n,m = βm,n − q − τEcom

m,n, (11)

where q is the hardware cost of a single VM in An, τ is the
energy price per dBm, and Ecom

m,n is given in (6). To ensure
that each SBS utility is positive, we set βm,n ≥ q + τEcom

m,n .

4. The linear utility functions have been widely used in many existing
works such as [27] [28] [29].
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2.4 Social Welfare

In this network, any underloaded SBS has the idle hardware
resources. For example, in Case 1, the operator deploys the
ECSs that can support at most GN = KN MUs in total.
However, given the M MUs in this case, this setup wastes
the hardware resource due to the KN − M idling VMs.
Define the network social welfare as the sum of utilities of
all entities in the network (i.e., MUs and SBSs in this paper)
[21]. In many existing works on resource allocation such
as [21] [30], maximizing social welfare is usually a general
goal of the algorithms. For example, [21] developed a joint
rate adaptation, channel assignment, and routing approach
to maximize all utilities of all secondary nodes, i.e., social
welfare, in the multihop cognitive radio ad hoc networks. In
the following, we characterize the social welfare according
to the ECS configurations in Section 2.2.1.

In Case 1, recall that the SBS collaboration is not re-
quired. The social welfare function is given by

S1 =
M∑

m=1

N∑
n=1

xm,n(WMU
m,n +W SBS

n,m )− (KN −M)q, (12)

where (KN −M)q represents the cost induced by the idle
hardware resources in Case 1.

In Case 2, the social welfare function is given by

S2 =
M∑

m=1

N∑
n=1

xm,n(WMU
m,n +W SBS

n,m )− (GN −M)q−

λαt
m

M∑
m=1

R∑
r=1

yr,um,h
ttranum,h,r

, (13)

where (GN −M)q is the cost induced by the idle hardware
resources in Case 2, and the last term in the right-hand-
side of (13) is the total refund to MUs due to transfer delay
among SBSs.

3 PROBLEM FORMULATIONS

In this section, we first formulate the optimization problems
regarding to the association between MU and SBS as well as
the collaboration among SBSs, so as to maximize the social
welfare. Notably, we bear in mind that each SBS is selfish
and greedy to maximize its profit, while each MU also aims
to solve its own task at lowest cost.

In the MEC network, we put forth two requirements
that all MUs and SBSs have to comply with. First, an MU
will not make any other requests to other SBSs if it is
associated with an SBS. Second, the SBSs will not accept
any other requests if the SBS is fully associated with K
MUs (i.e., fully loaded). We stress that the association and
collaboration occur in sequence, since each SBS seeks for
collaboration with other SBSs after its associations with MUs
are completed. Therefore, we formulate two corresponding
problems sequentially.

3.1 Optimization Problem of Association
The purpose of the optimal association between MU and SB-
S is to maximize the social welfare in (12). The optimization
problem of association is given by

max
X

S1 (14a)

s.t. xm,n ∈ {0, 1} (14b)
N∑

n=1

xm,n = 1, m = 1, · · ·,M, (14c)

M∑
m=1

xm,n ≤ K, n = 1, · · ·, N, (14d)

where X is defined in (1). We find that the optimization
problem is an NP-hard combinatorial problem. With refer-
ence to [30], the optimal solution exists if x ∈ {0, 1}. We
remark that the matrix X is a feasible solution if it satis-
fies conditions (14b)-(14d). Moreover, the optimal solution

x∗m,n exists if it satisfies
M∑

m=1

N∑
n=1

x∗m,n(WMU
m,n +W SBS

n,m ) >

M∑
m=1

N∑
n=1

xm,n(WMU
m,n +W SBS

n,m ).

3.2 Optimization Problem of Collaboration
First, the optimization problem of collaboration is given by

max
Y

S2 (15a)

s.t. yr,um,h
∈ {0, 1}, (15b)

−
M∑

m=1

xm,h

R∑
r=1

yr,um,h
+

M∑
m=1

xm,h = G, h = 1, · · ·, H,

(15c)
M∑

m=1

yr,um,h
+

M∑
m=1

xm,r ≤ G, r = 1, · · ·, R, (15d)

where (15b) indicates whether Aum,h is matched with Ar , Y
is defined in (7), (15c) guarantees that the number of MUs
associated with Aum,h is G, and (15d) guarantees that the
total offloaded tasks from the associated MUs and the data
transfer from the overloaded SBSs are within the computing
capability of the help Ar . Recall that association precedes
collaboration. As such, we can optimize S2 by treating
M∑

m=1

N∑
n=1

xm,n(WMU
m,n + W SBS

n,m ) and (GN − M)q in (13) as

the constants. Therefore, given the optimal solutions in (14),
the problem in (16) is reduced to

min
Y

M∑
m=1

R∑
r=1

yr,um,h
toum,H ,r, (16a)

s.t. yr,um,h
∈ {0, 1}, (16b)

−
M∑

m=1

xm,h

R∑
r=1

yr,um,h
+

M∑
m=1

xm,h = G, h = 1, · · ·, H,

(16c)
M∑

m=1

yr,um,h
+

M∑
m=1

xm,r ≤ G, r = 1, · · ·, R. (16d)

Similarly, the optimization problem in (16) is also an NP-
hard combinatorial problem.
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4 MATCHING ALGORITHMS

In this section, we first brief key preliminaries of matching
theory and then develop two matching algorithms to solve
the problems in (14) and (16) respectively.

4.1 Preliminaries of Matching

According to the matching theory, MUs and SBSs are re-
garded as two sides of players and each of them is assumed
as a separate and independent set.

In the association problem, the MU is willing to be
associated with the best SBS with the minimum computing
assumption, while the SBS decides whether to accept or
reject the requests from the MUs based on its utility. Given
that each SBS is associated with multiple MUs, we treat the
association problem between MUs and SBSs as a many-to-
one matching.

Given Um ∈ U and An ∈ A, we define ω: U → A
as a many-to-one matching function that maps the MU set
U to the SBS set A. Following the association strategy, the
matching between U and A follows

1) ω(Um) ∈ A and |ω(Um)| ≤ 1, (17a)
2) ω(An) ∈ U and |ω(An)| ≤ K, (17b)
3) ω(Um) = An ⇔ ω(An) = Um, (17c)

where (17a) implies that each MU can be served by a single
SBS only, (17b) represents that the maximum number of
MUs associated with any SBS is K, and (17c) states that
ω builds a bidirectional matching between A and U .

In the collaboration problem, each overloaded SBS re-
quests all underloaded SBSs to compute its overload tasks,
and the underloaded SBSs decides whether to accept the
requests. Both actions are determined by the transmit delay
between any SBS pair in collaboration. Since each overload-
ed SBS may connect to multiple helpers, we treat the collab-
oration problem among SBSs as a many-to-many matching.

Given Aum,h ∈ AO
U and Ar ∈ AR, we define ρ:

AO
U → AR as a many-to-many matching function that

maps the overloaded SBS set AO
U to the helper set AR.

Let Fh = Wh − G be the number of MUs associated with
Aum,h and offloaded to other underloaded SBSs, where Wh

is the number of MUs associated with Aum,h. In addition,
let Br = G − Wr be the number of the remaining VMs
in Ar after association, where Wr is the number of MUs
associated with Ar. Following the association strategy, the
matching between AO

U and AR follows

1) ρ(Aum,h) ∈ AR and |ρ(Aum,h)| = Fh, (18a)

2) ρ(Ar) ∈ AO
U and |ρ(Ar)| ≤ Br, (18b)

3) ρ(Aum,h) = Ar ⇔ ρ(Ar) = Aum,h, (18c)

where (18a) means that the overloaded SBS Aum,h transfers
tasks of Fh MUs, (18b) implies that Ar can only accept
tasks from Br MUs, and (18c) indicates that ρ builds a
bidirectional matching between AO

U and AR.

4.2 Association Algorithm

Following the matching in (18), we propose an association
algorithm to solve the optimal problem in (14), as shown in

TABLE 1: Notations in Algorithm 1

Number of subcarriers K

Profit of Um associated with An in iteration t WMU,t
m,n

Profit of An associated with Um in iteration t WSBS,t
n,m

Price-allocation number in iteration t βt
m,n

Number of MU requests received by An subn

Set of SBSs each receiving more than K requests AK

Price-step number ε
Received requests of An after increasing its price NUMn

Algorithm 1 Association Algorithm.
Input: WSBS

n,m , WMU
m,n, K;

Output: stable matching X, price-allocation number βm,n;
1: Initialization: t=1, βt

m,n = βmin
m,n ; the set of unmatched MUs

U = {U1, U2, · · · , UM}; the set of unmatched SBSs A =
{A1, A2, · · · , AN};

2: while U 6= ∅ do
3: for all An ∈ A do
4: An broadcasts its price-allocation number βt

m,n to all the
unmatched MUs;

5: end for
6: for all unmatched Um ∈ U do
7: Um determines its profit WMU,t

m,n and bids for An which
provide the biggest profit;

8: Count the number of requests received by An as subn;
9: Add AK

n with subn > K into the set AK ;
10: end for
11: while AK 6= ∅ do
12: for all AK

n ∈ AK do
13: t = t+ 1, βt

m,n = βt
m,n + ε;

14: MUs decide whether to make a further request to AK
n ;

15: Updates NUMn;
16: if NUMn > K then
17: Go to step 13;
18: end if
19: if NUMn = K then
20: AK

n associated with theseK MUs. RemoveAK
n fromAK

and A, and remove these MUs from U ;
21: end if
22: if NUMn < K then
23: WMU,t

m,n = WMU,t−1
m,n , WSBS,t

n,m = WSBS,t−1
n,m , βt

m,n =

βt−1
m,n;

24: AK
n associated with K MUs that provide the first K

maximum profits for AK
n ;

25: Remove AK
n from AK and A, and remove these MUs

from U ;
26: end if
27: end for
28: end while
29: For all Um associated with An, xm,n = 1;
30: end while
31: return Stable matching X, price-allocation number βm,n.

Algorithm 1. Table 1 presents the commonly used notations
in this algorithm.

The algorithm starts with the initialization in lines 1.
In line 4, the SBS broadcasts the price-allocation number
βm,n to all unmatched (or unassociated) MUs, where βm,n

is prices made by An for MU Um. Each MU then sends the
request to the SBS An that provides the highest profit and
bids for it. Then, the number of requests received byAn (i.e.,
subn) increases.

If subn ≤ K , An will not increase βm,n and keep the
unmatched MUs in the following iterations. If subn ≤ K
until the end of iteration, the SBS will be associated with
the MUs that have made the requests. If subn > K, the
requesting MUs of the SBS will enter the bidding process
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TABLE 2: Notations in Algorithm 2

Number of subcarriers K
Maximum Number of VMs opened by ECS G
Number of overloaded SBSs H
Number of fully loaded SBSs S
Number of underloaded SBSs R
Number of overloaded MUs associated with Ah Fh

Number of surplus VMs in Ar Br

Number of SBS requests received by Ar reqr
Preference of Ah to Ar Γh

r

Set of overloaded SBSs AO
H

from lines 11 to 28.
Upon receiving the requests yielding subn > K in the

t-th iteration, the SBS AK
n ∈ AK decides wether to accept

these requests. In the (t + 1)-th iteration, AK
n increases

its price-allocation numbers βt
m,n by ε, m = 1, 2, ...M ,

as shown in line 13. As βt
m,n increases, there are three

possibilities in terms of NUMn and K. First, NUMn < K
in line 22. Note that in the t-th iteration, AK

n has received
requests from more than K MUs. The SBS will be associated
with K MUs that provide the first K largest profits and
keep the remaining MUs in the unmatched list as shown
in lines 23-25. Second, NUMn = K in line 19. In this case,
AK

n will be associated with all these requesting MUs. Third,
NUMn > K in line 16. In this case, AK

n will further increase
βt
m,n until it is associated with exactly K MUs as shown in

line 13.
The last iteration of the algorithm produces an the empty

unmatched list. Finally, we obtain the matching matrix X
and βm,n.

4.3 SBS Collaboration Algorithm
Following the matching in (18), we propose a collaboration
strategy in Algorithm 2 to solve the problem in (16). Table 2
presents the commonly used notations in the algorithm.

After the association in Algorithm 1, we can deter-
mine not only the numbers of overload, fully loaded, and
underloaded SBSs as H , S, and R respectively, but also
the numbers of corresponding overloaded MUs and VMs
supported by surplus handware resource as Fh and Br ,
respectively. To start with the collaboration, each overload
SBS sends the requests to the underloaded SBSs according
to the preference as follows:
Definition 1. The preference of Ah to Ar is defined as

Γh
r =

1

ttranum,h,r

, (19)

where ttranum,h,r
is defined in (8).

From (19), lower transfer delay leads to higher prefer-
ence. We stress that the mutual preference holds. That is,
ttranum,h,r

in (19) also characterizes the preference of Ar to Ah.
Accordingly, the overloaded SBS Ah sends the requests ac-
cording to the first Fh largest preferences in Γh

r , r = 1, ..., R,
while the underloaded SBS accepts the requests according
to the first Br largest preferences in Γh

r , h = 1, ...,H .
Let us elaborate Algorithm 2. As shown in line 4, if

M∑
m=1

xm,h > G, then Fh =
M∑

m=1
xm,h − G is the num-

ber of MUs in the SBS Ah and offloaded to other un-

Algorithm 2 Collaboration Algorithm.
Input: Γh

r , K, G, X;
Output: stable matching Y;
1: Initialization: the set of overloaded SBSs AO

H = {A1, A2, · · · , AH},
yr,um,p = 0;

2: while AO
H 6= ∅ do

3: for all Ah ∈ AO
H do

4: Ah makes requests to the Fh SBSs in its preference list;
5: Remove the top F SBSs in Γh

r ;
6: end for
7: for all Ar do
8: if reqr > Br then
9: Ar chooses the first Br tasks transferred by overloaded

SBSs according to Γh
r and rejects the other requests;

10: else
11: Ar accepts the requests from AO

H ;
12: end if
13: Ar sets yr,um,h = 1 for the accepted SBSs;
14: end for
15: for all Ah ∈ AO

H do

16: if −
M∑

m=1
xm,h

R∑
r=1

yr,um,h +
M∑

m=1
xm,h = G, then

17: remove Ah from AO
H ;

18: end if
19: end for
20: end while
21: return stable matching Y.

derloaded SBSs. As such, Ah makes requests to Fh un-
derloaded SBSs with the Fh largest preferences accord-

ing Γh. Given
M∑

m=1
xm,r in (14) and

M∑
m=1

yr,um,h
in (17),

Br = G −
M∑

m=1
xm,r −

M∑
m=1

yr,um,h
. For any underloaded

SBS Ar, there are two possibilities in terms of reqr and
Br. First, if reqr > Br in line 8, Ar will accept requests
from the overloaded SBSs which provide the first Br largest
preferences. Second, if reqr ≤ Br in line 10, the SBS will
accept all requests.

The last iteration of the algorithm produces an empty
unmatched list. Finally, we obtain the matching matrix Y.

5 PERFORMANCE ANALYSIS OF PROPOSED AL-
GORITHMS

In this section, we first prove the stability of proposed
algorithms and then verify that the association algorithm
can achieve a competitive equilibrium.

5.1 Stability of Association Algorithm
A stable matching ensures that none of players has any
motivation to change its matched players. To evaluate the
stability, we consider the concept of group stability. The
many-to-one matching problem includes multiple stable
pairs. The matching game is stable if all the matching pairs
are stable. Let `(U ,A) denote the set of final matching
pairs, and (Um, An) denote the subset of `(U ,A), where
(Um, An) is a matched pair. We introduce the concept of
blocking pair and stability as follows. The current matched
pair (Um, An) is blocked by the other pair if the following
conditions are satisfied [31]:

1) blocking occurs in the pairs of (Um, An) and is not
blocked by Um only or An only.
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2) both Um and An can achieve a higher utility if each
of them matches with the others, compared with their
current matching.

where condition 1) states that blocking pair must occur in
pairs without the intention of any party, and condition 2)
guarantees that the utility of blocking pair must be higher
than the current matching.
Definition 2. Given a pair (Um∗ , An∗)6∈`(U ,A). In this case,

the cost of Um∗ associated with An∗ is less than ω(Um∗),
while Um∗ can provide a higher profit to An∗ than
at least one element in ω(An∗). We define the pair
(Um∗ , An∗) as the blocking pair.

Note that the many-to-one matching is stable if and only
if there is no blocking pair. Second, by Definition 2 and
Algorithm 1, we prove the stability as follows:
Theorem 1. The proposed MU and SBS association in Algo-

rithm 1 is a stable matching.

Proof: This proof largely follows [30]. To prove the
stability, we verify that the blocking pair does not exist in
the association problem. As lines 7 and 24 of Algorithm 1
show, the MU is associated with the SBS that provides the
biggest profits and the SBS is associated with the MUs that
provide the first K largest profits. This guarantees that there
is no blocking pair.

To analyze the stability of Algorithm 2, we introduce the
concept of pairwise stability [32]. As the SBS collaboration
is a many-to-many matching algorithm, we validate that the
stability of the many-to-many matching is pairwise stable.
Assuming that there is a blocking pair (Aum,h∗ , Ar∗) with
Aum,h∗ 6∈ ρ(Ar∗) and Ar∗ 6∈ ρ(Aum,h∗), we have

1)∃Ai
um,h ∈ ρ(Ar∗) : Aum,h∗ � Ai

um,h, (20a)

2)∃Ai
r ∈ ρ(Aum,h∗) : Ar∗ � Ai

r, (20b)

where ρ is defined in (18) and � represents that
(Aum,h∗ , Ar∗) can provide smaller transfer delay than
(Ai

um,h, A
i
r).

Theorem 2. The final matching result Y is a pairwise stable.

Proof: To prove the pairwise stability, we verify that
the blocking pair does not exist in the collaboration problem.
As lines 4 and 9 of Algorithm 2 indicate, the overloaded
SBSs make requests to the underloaded SBSs that provide
the first Fh smallest transfer delays and the underloaded
SBS accepts the requests from the overloaded SBSs that
provide the firstBr smallest transfer delays. This guarantees
that there is no blocking pair. Thus, the final matching is
pairwise stable.

5.2 Competitive Equilibrium of Association Algorithm
A competitive equilibrium is a traditional concept of eco-
nomic equilibrium, appropriate for the analysis of commod-
ity markets with flexible prices and many agents [11]. In
the association problem, the commodity markets consist of
two types agents, i.e., MUs and SBSs. When the commodity
market arrives at the competitive equilibrium, there comes
to a price at which the number of MUs that will pay is equal
to the number of SBSs that will sell. In this sense, the social
welfare reaches the maxima among all possibilities of stable
matchings due to different price-step numbers.

First, the competitive equilibrium in our problem is
defined as
Definition 3. For the matching matrix X and price-allocation

βm,n, the MU and SBS association problem is in a
competitive equilibrium if the following conditions are
satisfied:

1) For each SBS An ∈ A, if An is associated with an MU
Um ∈ U , then βm,n ≥ Cm,n.

2) For each MU Um ∈ U , Um is associated with the SBS
that offers the maximum utility.

3) For each SBS An ∈ A, if An is not associated with any
MU, then βm,n = Cm,n.

where βm,n and Cm,n are defined in (9) and (10) respective-
ly.

Second, by Definition 3 and Algorithm 2, we prove
achievability of the competitive equilibrium as follows:
Theorem 3. The proposed association in Algorithm 1 arrives

at the competitive equilibrium for a sufficiently small ε.

Proof: To prove this theorem, we verify that condi-
tions 1)-3) of Definition 3 hold in Algorithm 1. First, we
set βm,n ≥ Cm,n and the price will be higher after each
iteration. It proves that condition 1) holds. Second, if the
SBS is not associated with any MU, the SBS will not receive
any rents and will not cost anything. Therefore, condition
3) is also true. Thrid, let us verify condition 2). Suppose
that we set a threshold ε0 for the price-step number ε in
Algorithm 1. Given this ε0, this algorithm encounters two
situations. In the first situation, ε is relatively large such that
ε > ε0. As such, the SBSs have raised its price by ε in each
iteration up to an unaffordable price, such that some MUs
give up the bidding and the number of associated MUs with
each overloaded SBS may be less than G. Consequently,
these SBSs will be associated with the MUs according to
the profits, which results in that some MUs are unable to
be associated with the SBS that provides the largest benefit.
In the second situation, ε is relatively low such that ε < ε0.
The requesting MUs is reduced one by one to G as the price
of SBSs increases. As such, the SBS is associated with the G
requesting MUs. This verifies that condition 2) is true.

Furthermore, we can verify that Algorithm 1 is also a sta-
ble matching if it can arrive at the competitive equilibrium.
From condition 2) of Definition 3, we conclude that each MU
is associated with the SBS that provides the largest utility
with the price-step number βm,n, and each SBS arrives at the
price which makes it just receive exactlyG requests from the
MUs. However, it is possible that a stable matching cannot
arrive at the competitive equilibrium.

5.3 Pareto Optimality of Two-Tier Matching Game
First, let us introduce the definition of Pareto improvement
as follows:
Definition 4. For a multi-objective function, a Pareto im-

provement occurs if changing the match can increase the
social welfare while meeting participants’ wishes [33].

From Definition 4, the final matching is weak Pareto optimal
when there is no Pareto improvement.

Second, by definition 4, we prove the weak Pareto opti-
mality of proposed two-tier matching as follows:
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TABLE 3: Parameters in Simulations

Notations V alue
Transmit power of user equipment P 2.0W
Gaussian noise power N0 10−9dB
Data size Qm [2.0 , 4.0]Gbit
Number of subcarriers K 4
Computational complexity Dm [2000,2500]cycles/bit
Weighted parameter of time delay αt

m 0.5
Computing speed of VM f 2.5× 109

Effective switched capacitance k 10−26

Reference profit of MU’s benefit ς 1.2× 10−6

Reference cost of system consumption λ 105

Hardware cost of a single VM q 500
Reference delay δ 1× 10−10

TABLE 4: Social welfare under different numbers of MUs
and SBSs

(M,N ) Exhaustive Random Association
(4,4) 18250 17997 18250
(8,4) 35354 34588 35354
(12,4) 57904 56488 57904
(16,4) 76412 74998 76410

Theorem 4. The proposed two-tier matching game is weak
Pareto optimal.

Proof: Observing two proposed matching algorithm,
each participant chooses matching objects according to its
preference list. If the next selection has a higher position in
his preference list, the participant will change his matching
target to the next. The participant cannot receive higher
utility by returning to any previous choice. For an MU Um,
there exists an SBS An that can provide a higher utility than
An∗ /∈ ω(Um). Therefore, Um and An∗ are more inclined
to establish a matching relationship and form a pair of
blocking pairs. As Theorem 1 has verified, the matching
algorithm is stable and there are no blocking pairs. Thus,
when the first matching comes to an end, there exists no
Pareto improvement. Similarly, we can prove that there is
no Pareto improvement in Algorithm 2. Therefore, the two-
tier matching game is weak Pareto optimal .

6 SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms by numerical results. In the simulations, all MUs
and SBSs are randomly located. The transmit power of each
MU is 2W. The noise power is set to 10−9dB. The MU
tasks are ranges from 2Gb to 4Gb, and the computational
complexity of MUs’ tasks ranges from 2000cycle/bit to
2500cycle/bit. The number of subcarriers per SBS is 4. The
computing power of each VM is 2.5GHz. The simulation
parameters are detailed in Table 3.

We compare the proposed algorithms with random al-
location, greedy algorithm, and exhaustive searching or
branch-and-bound algorithm. In the random allocation, the
SBSs and MUs are randomly associated with each other. The
performance of random allocation is evaluated by taking
the average over 300 times. In the greedy algorithm, we
fully load one ECS before moving to the next. When the
numbers of SBSs and MUs are small, we employ exhaustive
searching (i.e., optimal in general). When the numbers of
SBSs and MUs are large, we adopt the branch-and-bound
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algorithm (i.e., approximately optimal when N and M are
large enough) [34].

In Table 4 and Fig. 2, we examine the impact of N , M
on the social welfare under the four algorithms. Table 4
presents the social welfare of proposed association, exhaus-
tive searching, and random allocation algorithms when the
numbers of MUs and SBSs are relatively small. First, we
observe that the social welfare of association is close to that
of exhaustive searching and outperforms that of random
allocation. Second, we observe that the social welfares of
all algorithms increase as the number of MUs increases.

Fig. 2 shows the social welfare of proposed association,
branch-and-bound, greedy, and random allocation algo-
rithms when the numbers of MUs and SBSs are relatively
large. Consider that the number of SBSs is N = 100. First,
we observe that the social welfare of association is close
to that of the branch-and-bound algorithm and outperforms
that of random allocation and greedy algorithm. Second, we
observe that the social welfares of all algorithms increase as
the number of MUs increases. We remark that both exhaus-
tive searching and branch-and-bound algorithms are imple-
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mented in a centralized manner regardless of the utilities
of each individual MU and SBS. In contrary, the proposed
algorithm is a distributed solution with less computational
complexity than exhaustive searching whose complexity
increases exponentially over the network size.

Fig. 3 depicts the impact of the step number ε on the
social welfare. We observe that the matching arrives at the
competitive equilibrium and obtains the maximum social
welfare when ε is less than a certain threshold. This obser-
vation is consistent with Theorem 3. For example, when
the number of MUs is 40 and ε < 4, the matching is in
the competitive equilibrium state and obtains the maximum
social welfare of 2.188 × 105. When the number of MUs is
30 and ε < 8, the competitive equilibrium state corresponds
to the maximum social welfare of 1.58027× 105.

Fig. 4 examines the impact of weighted parameters of
time delay αt

m on the social welfare. Consider that N = 100,
M = 400, and uploading power of MUs ranges from 0W to
2W. First, we observe that the social welfare goes up as αt

m

increases when 1W < P ≤ 2W. This implies that when
1W < P ≤ 2W, the more MUs who are concerned about
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delay consumption participate, the larger the social welfare
is. Second, we observe that the social welfare drops as αt

m

increases when 0W < P < 1W, This implies that when
0W < P < 1W, the more MUs who are concerned about
energy consumption participate, the larger the social welfare
is. Third, we observe that αt

m has little impact on the social
welfare when P = 1W.

Fig. 5 shows the comparison of the transfer delay among
the proposed collaboration, random allocation, and branch-
and-bound algorithms with respect to different numbers
of MUs. First, it is observed that the total transfer de-
lay of each algorithm increases within three regions of
N ∈ [50, 100], [100, 200], and[200, 300], respectively. When
50 < N < 100, G = 1 according to Case 2 in Section 2.2.1.
When 100 < N < 200, G = 2 according to Case 2. When
200 < N < 300, G = 3 according to Case 2. Second, we
see that the total transfer delay of each algorithm becomes
zero when N > 300. This is because the collaboration is not
required when N > 300 by Case 1 in Section 2.2.1. Third,
we observe that the proposed algorithm has similar delay
performance to that of the branch-and-bound algorithm,
while they both have much smaller total delay than that
of the random allocation. For example, when the number of
MUs is 200, the proposed algorithm has the delay of 0.014s
and the delay of the random allocation is 0.024s, which
indicates a 42.1% decrease on the transfer delay.

Fig. 6 compares the social welfare among the proposed
two-tier (including the association and collaboration), asso-
ciation, random allocation, greedy, and branch-and-bound
algorithms with respect to different numbers of MUs. For
N ∈ [200, 300], the maximum number of VMs supported
by every single ECS is 3 according to Case 2 in Section
2.2.1. First, we observe that the two-tier algorithm not on-
ly outperforms association, greedy, and random allocation
algorithms, but also achieves similar social welfare to the
branch-and-bound algorithm. Second, it is observed that the
social welfares of all algorithms boosts as M increases.

Differences between Fig. 2 and Fig. 6 are highlighted as
follows. First, Fig. 2 focuses on the comparison between
the proposed association and other algorithms, while Fig.
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6 focuses on the comparison among the proposed two-
tier algorithm (including the association and collaboration),
association algorithm, and other algorithms. Second, the
number of MUs ranges from 200 to 400 in Fig. 2, while the
number of MUs is from 200 to 300 in Fig. 6. Notably, the
collaboration algorithm is not applicable when the number
of MUs is from 300 to 400, as 300 ≤ M ≤ 400 belongs to
Case 1 and the collaboration is not needed. Third, Fig. 2 and
Fig. 6 use different branch-and-bound algorithms for the
proposed association algorithm and the two-tier algorithm
respectively.

7 CONCLUSIONS

In this paper, we have investigated the two-tier matching
in small cell networks with MEC. First, we formulated the
association problem between MUs and SBSs and the collab-
oration problem among SBSs as the two-tier matching game.
Second, we proposed distributed matching algorithms, i.e.,
Algorithms 1 and 2, for the association and collaboration
problems respectively. Our algorithm not only maximized
the social welfare of the network, but also guaranteed the
individual utilities of MUs and SBSs. In particular we intro-
duced the bidding mechanism into the association algorith-
m, and we realized the competition equilibrium between
MUs and SBSs and the optimal pricing of computing re-
sources in SBS. Finally, simulation results demonstrated that
the proposed algorithms outperformed random allocation
and greedy algorithms in terms of social welfare, while
retaining a close performance to exhaustive searching and
branch-and-bound algorithms.

Several interesting directions follow this work. First, this
paper only considered homogenous ECS (i.e., each ECS e-
quipped with the same hardware resources). How to deploy
heterogeneous ECSs each with distinct hardware resources
remains challenging. Second, our proposed algorithm was
applicable in the scenario with M ≤ KN . It is of interest
to apply the queueing theory [35] to address the scenario
where the number of offloaded tasks are beyond computa-
tion capability of all ECSs, i.e., M > KN .
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