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Optimal Task Allocation in Vehicular Fog Networks
Requiring URLLC: An Energy-Aware Perspective

Tingting Liu
Feng Shu

Abstract—In order to make intelligent transportation systems
(ITSs) come true, execution of a large amount of data needs to be
migrated from the cloud centers to the edge nodes, especially in the
scenarios requiring ultra reliable low latency communications
(URLLC). In this article, we propose to study the energy-aware
task allocation problem in the vehicular fog networks considering
URLLC. Specifically, a requester who has some bursty
computation tasks which cannot be finished within a required time
by itself, needs to decide whether the nearby computation nodes can
meet the latency and reliability requirements, and which nodes
should be chosen. Given the required latency and reliability, the
maximum computation capacity of each fog node is first calculated
based on the martingale-theory-derived delay bound. Then, if the
available fog nodes can accommodate the computation tasks, two
different optimization problems concerning the energy efficiency
maximization and the energy consumption minimization are
constructed further. The corresponding solutions are also provided.
Specifically, the optimal solution in maximizing the energy
efficiency is not unique, while the optimal solution in minimizing
the energy consumption is unique. Moreover, the latter solution is
provided as a truncated-channel-inversion like policy. At last,
numerical results are illustrated to demonstrate effectiveness of the
proposed optimal task allocation schemes from the perspectives of
the energy efficiency and the energy consumption.

Index Terms—Computation Offloading, Energy Efficiency,
Task Allocation, Truncated-Channel-Inversion Like Policy,
URLLC, Vehicular Fog Networks.

1. INTRODUCTION

ECENTLY, intelligent transportation systems (ITSs),
which aim to provide high efficient traffic, safety road,
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autonomous driving and accurate navigation, etc., have attracted
enormous attentions from both academia and industry [1], [2]. In
order to implement the ITSs, a large amount of data has to be
reliably processed within a very limited time. The vision of the
ITSs, especially its stringent requirements on reliability and
latency, can be classified as ultra-reliable and low latency com-
munications (URLLC), one of the 5G usage pattern [3], [4].
However, at present, the processing of big data mainly depends
on cloud centers which are usually located in remote areas [5].
Albeit clouds have abundant computation resources, in order to
meet the high reliability and low latency requirements, the ITSs
cannot process the generated data solely relying on the cloud
centers.

Fog computation has been proposed to decrease the commu-
nication and computation latency in realizing the ITSs by intro-
ducing a layer of computation devices between the cloud
centers and end users [6]-[10]. Usually, road side units (RSUs)
and small-cell base stations (SBSs) are proposed as computa-
tion devices to help connected vehicles improve their task com-
putation efficiency [11]-[14]. Among these works, vehicles are
considered as computation sources, making use of computation
resources in RSUs or SBSs. However, on the one hand, the
expenditures of deploying RSUs are very high, especially in
the scenarios requiring dense RSU coverage. On the other
hand, it is commonly known that the SBSs are operated by the
cellular network operators. It’s challenging to realize URLLC
between two independent systems. Nevertheless, driven by the
increasing demands on connections between vehicles, vehicu-
lar manufacturing industry begins to deploy intelligent compu-
tation and communication modules into their products.
Moreover, Federal Communication Commission (FCC) has
issued a 75 MHz frequency band for the dedicated short-range
communication (DSRC) between connected vehicles [15].
Also, the release of IEEE 802.11p protocol makes vehicle-
to-vehicle (V2V) communication possible. Driven by the con-
nections among vehicles as well as the large on-board battery
capacity, it is promising that computation tasks can be alterna-
tively executed inside the connected vehicles, not only depen-
dent on external infrastructures or systems. Taking vehicles as
computation resources may reduce the cost of realizing the
ITSs, and improve computational efficiency.

Therefore, how to properly allocate the vehicular computation
tasks to satisfy the URLLC has arisen as a crucial issue in realiz-
ing the ITSs. Delay, as one of the important URLLC factor,
includes communication delay and queueing delay [16], [17].
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In [16], the authors investigate the joint computation partitioning
and resource allocation for latency sensitive applications. An
efficient heuristic and an online solution are proposed to solve
this problem. In [17], the authors study the joint task and network
flow scheduling in order to minimize the completion time of the
application. The communication delay that shows a determined
characteristic has been exhaustively studied in the existing
vehicular-related works [18]-[20]. Meanwhile, queueing delay
is also a non-negligible issue, especially in the URLLC sce-
nario [21]-[23]. Due to its stochastic characteristic, it is chal-
lenging to calculate the queueing delay. Instead of directly
calculating the queueing delay time, queueing delay bounds
which can be obtained by utilizing the effective bandwidth the-
ory [24] or the effective capacity theory [25] are proposed to
indicate the delay performance. In [26], the authors investigate
the resource allocation problem in vehicular networks to maxi-
mize the sum ergodic capacity of the vehicle-to-infrastructure
(V2I) links. While the V2V links need to satisfy the requirements
on latency violation probability, which is derived by the effec-
tive capacity theory.

At the same time, the effective bandwidth/capacity theory is
challenged by its loose result for non-Poisson processes [27].
Martingale theory is proposed as a valuable alternative in esti-
mating the delay bound [28]. It fits any arrival and service pro-
cesses, and especially, it can provide a very tight delay bound
in a bursty traffic scenario. In [29], the authors provide a theo-
retical way to measure the end-to-end delay bound using the
martingale theory in multimedia heterogeneous high-speed
train networks where the link from train to track-side-access
point is highly dynamic and bursty. Simulation results demon-
strate that the derived delay bound are remarkably tight to the
real data trace results. Furthermore, in their next work, the
delay bounds are investigated in multi-hop vehicular ad hoc
networks where data from vehicles is expected to be bursty [30].
It is also verified that the martingale delay bound is very tight to
the real data trace. Besides providing tight system delay bound,
the martingale theory can be utilized to construct optimization
problems. In [31], the authors optimize the network energy effi-
ciency subjected to a certain delay-bound violation probability
which is derived within the framework of the martingale theory
in machine type communication networks. In [32], the optimal
task allocation scheme is derived with the objective to mini-
mize the overall network delay-bound violation probability
based on the martingale theory.

Moreover, energy-related problem is also very critical in real-
izing the ITSs. Energy-related problem is a systematic issue, and
it requires integration and coordination of different systems.
Although there is adequate energy in a vehicular network, it is
still necessary to discuss the energy efficiency of computation
offloading in such a system. There are two kinds of computation
sources, i.e., the on-board application and the in-vehicle user
equipment. Usually, the on-board applications are powered by
the vehicles. Many on-board applications, such as route selec-
tion, control system, and driving strategy, are designed to
improve the vehicular energy efficiency. In [33], the authors pro-
pose a timely and energy-efficient route selection algorithm
based on historical driving data. In [34], a predictive control
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system is proposed to reduce the driving energy consumption,
while maintaining a suitable distance from the preceding
vehicles. In [35], the authors propose model-based driving strat-
egies to predict and optimize the energy consumption of a trip
via eco-routing, eco-driving and energy consumption prediction.
In order to obtain timely and reliable feedback, almost all of the
on-board applications require massive computations. As more
and more on-board applications are installed in a vehicle, the
massive computations will consume significant energy. There-
fore, it is of great importance to design an energy-efficient
computation scheme to realize on-board applications, while
maintaining timely and reliable feedback. Different from the on-
board applications, the in-vehicle user equipments usually suffer
from energy constraint. In [36], the authors study the energy-
efficient computation offloading problem for in-vehicle user
equipment and provide a distributed solution based on consensus
alternating direction method of multipliers (ADMM). Thus, no
matter the on-board applications or the in-vehicle user equip-
ments, improving the energy efficiency of computation is vital
in a vehicular network. From the perspective of computation off-
loading, two commonly recognized objectives for computation
offloading are reducing execution time and shifting energy con-
sumption. Thus, at the mention of computation offloading, no
matter in what kind of network, the computation source node
has to make two classes of decision, i.e., what computation to
offload and where to offload [37]. Many works have been done
in this area. For example, in [38], the authors propose an energy-
efficient computation offloading decision-making scheme in a
combined fog and cloud scenario to minimize the system cost.
In [39], by optimally designing the computation offloading deci-
sion, the authors can improve the energy efficiency of computa-
tion. To summarize, energy efficiency is a commonly used
criterion in making computation offloading decisions.

Different from the existing works in [29]-[39], in this paper,
we are inspired to study the energy-aware task allocation prob-
lem in vehicular fog networks, where the computation tasks
have a stringent execution time and reliability requirements.
By jointly considering the channel queueing delay and the com-
putation delay, delay-bound violation probability is derived by
following the martingale theory. Specifically, one vehicular
node, named as requester, has some bursty computation
tasks which cannot be timely processed by itself. It needs to
divide this task into small subtasks and parallelly executed in
the nearby vehicular fog nodes. The requester needs to deter-
mine whether the surrounding vehicular fog nodes can accom-
modate these subtasks while satisfying the requirements on
latency and reliability, and which nodes should be chosen to
enhance the energy-aware performance further.

The proposed task allocation schemes can satisfy the
requirements on latency and reliability, and moreover, it can
enhance the energy-related performance of the networks. The
main contributions of this paper are summarized as follows,

1) A vehicular computation offloading scenario is con-
structed, where the generated task with the burst nature is
modeled as a Markov-modulated on off (MMOO) pro-
cess, while the transmission is modeled as an independent
and identically distributed (i.i.d.) process. By jointly
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R: Requester

Fig. 1. A simple example in vehicular fog computation offloading.

considering the channel queueing delay and computation
delay, the delay-bound violation probability is then pro-
vided by following the martingale theory.

2) Given the required time and the reliability, we calculate
the maximum computation capacity of each available
vehicular fog node based on the martingale-theory-
derived delay bound.

3) If the summation of the nearby computation capacity is
larger than the computation task, two different optimi-
zation problems, considering energy efficiency and
energy consumptions, are established to enhance the
network performance further.

4) At last, the corresponding task allocation solutions are
provided. Especially the optimal solution for the energy
consumption optimization problem is constructed as a
truncated-channel-inversion like policy. When the inher-
ent parameter of a vehicular node is larger than a prede-
termined threshold, this node will be suspended in order
to reduce the overall network energy consumption.

5) Simulation results are provided to demonstrate the per-
formance of the proposed schemes from the perspectives
of the energy efficiency and the energy consumption.

The rest of this paper is organized as follows: the system model

is presented in Section II. The optimal task allocation problem
considering latency, reliability and energy is investigated in
Section III. Numerical results are presented in Section IV, and
conclusions are drawn in Section V.

II. SYSTEM MODEL

In this section, we consider a vehicular fog computation sce-
nario. A simple example of vehicular fog computation offload-
ing is depicted in Fig. 1. In this system, there are multiple fogs,
each of which consists of one requester and many fog nodes as
shown in Fig. 1. In one fog, we assume there are N available
vehicular fog nodes, denoted by V = {V;,..., Vy}, within the
scope of the requester R’s communication range. R has multiple
computation tasks which need to be executed within time 7". Due
to the limited local computation resources, R cannot finish the

V;: Vehicular Fog Node i o

.':, : One Vehicular Fog

.=

tasks in time by itself. It needs to offload the computation tasks
to the nearby computation nodes. Therefore, R needs to decide
whether the tasks can be finished timely within the available
computation nodes and which nodes should be employed. For
simplicity, arbitrary precision is assumed in task partition, and
any two sub-tasks have no overlap. For example, in a autono-
mous driving scenario, a large amount of images can be divided
in to several subsets that can be processed in parallel.

A. Data Generation Model

Usually, the requester R is equipped with some applications,
for example, the on-board autonomous driving or entertainments
in user’s equipment, to enhance the driving experience and
passengers’ satisfactions. The bursty application data amount
a(k) at time k can be modeled as an MMOO process by utilizing
the Monte Carlo Markov Chain (MCMC) method [40]. The
MMOO process has two static status I1, 2 [z, 7!]. On state 7*,
there is no application data generated, i.e., a(k) = 0, while on
state 7}, a(k) = Rbits/s,and R > 0. The corresponding state
transition matrix is defined as

Traé[ll‘go‘ * } (1)

18

where « represents the transition probability from state 7° to
state 7!, while B represents the transition probability from 7!
to 7%, Accordingly, the steady state distribution of a(k) is

calculated as
B o
n,=|—,—. 2
L + B a+ ﬁ} @)

The unit of time interval is one second. Therefore, the cumula-
tive generating data over time interval [m, n] is represented as

n

A(m,n) = a(k)*1, 3)

k=m

where A(m,n) can be regarded as a bivariate arrival process.
If m = 0, we use A(0,n) £ A(n) for brevity.
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B. Transmission Service Model

When the generated computation tasks cannot be finished
within the required time 7' by itself, the requester R needs to
offload its tasks to the nearby vehicular fog nodes. In order to
guarantee a constant receiving power P on the V;’s side, a
truncated channel inversion policy with a cutoff channel gain
g, is employed by R [31]. The outage probability P, can be
represented as,

Pout = Pr(gz < go)' (4)

During the transmission stage, /R provides a constant offload-
ing rate C; bits/s foreach V;,i € {1,... N}, ie.,

P)i(f
Ci:BIOgQ(l"i_W)v &)

o

where B is the bandwidth allocated to one vehicular fog node
and o2 is the noise variance. P! is calculated as

P¢ = P, (g)g:d;, (6)

where P;;(g;) is a tunable transmission power based on the
channel state g; to guarantee a constant receiving power P,
d; denotes the distance between the requester R and fog
node V;, and [ is the pathloss exponent. Note that even
though vehicles are moving fast, since a group of vehicles
can form a relatively stable neighborhood, and the channels
between vehicles will not change rapidly. Hence, the channel
state information can be obtained to realize the truncated
channel inversion.

Thus, the accumulative transmission process from R to
Vi,i € {1,... N} can be represented as

n

Si(myn) = si(k) % 1, (7)

k=m

where s; (k) 1 is the offloading amount at time k. Specifically,
itis

Ci7 Ruca
Sz(k) = { 0 1— Psuc (8)

where P, represents the probability of successful transmission,
ie.,

Psuc =1- Pout- (9)

Observing (8), it can be seen that the transmission realizations
si(1), 8:(2), ... can be regarded as i.i.d. variables with a non-
negative distribution which is given by

Hsé[ﬂg,ﬂﬂ = [1 _f)sumPSuC}' (10)

0

52

On state ", there is no transmission, while on state ni,

In order to make the problem non-trivial, we assume that

E[a(k)] < E[s;(k)] < supa(k),Vi. (11)
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It means that the expectation of s;(k) is larger than the expec-
tation of a(k), but it is smaller than the peak rate of a(k). In
this scenario, the arrival data may experience some queueing
delay before it is transmitted successfully.

C. Delay Violation Probability

Every vehicular fog node V;,i =1,..., N is assumed to
have a basic computation capability of f, cycles/s which
can be adjusted by a tuning parameter y,;,i=1,..., N.
Generally, a task can be represented by a three-field nota-
tion which contains the task size X; in the unit of bits, the
completion deadline in the unit of seconds, and the compu-
tation intensity L in the unit of cycles/bit [41], [42]. The
three-filed notation describes the nature of the applications,
and the three parameters can be evaluated by task pro-
filers [37], [43]. Furthermore, these parameters can be used
to evaluate the computation and communication demands,
as well as the execution latency [41]. When the task size X;
and the computation intensity L are known by the requester
R, the computation time D¢ consumed on V;’s side can be
calculated as

XL
Vifo '

D¢ (12)
Note that the final computation outcomes are usually much
smaller than the raw computation data X;. For example, in a
autonomous driving scenario, when a vehicle is approaching
an intersection, a large amount of images, i.e., the raw compu-
tation data, will be processed, while the final computation out-
come will be a simple instruction, such as turning left/right,
stopping or going ahead. Thus, in order to make the analysis
tractable, we do not consider the latency caused by the out-
come feedback from V; to R.

The computation task is expected to be finished within time
T which includes the computation delay determined by (12)
and the channel queueing delay which has a stochastic charac-
teristic and cannot be determined precisely. The channel
queueing delay is defined as follows,

Definition 1: Channel Queueing Delay: the channel queue-
ing delay Df;? from the requester R to the computation node V;
is defined as the waiting time in the network before the data is
successfully transmitted from R to V;. DiQ is given by

D2 2 inf{k > 0|A(n — k) < S;(n)}. (13)

Before we set out to analyze the property of channel queueing

delay, we first construct two supermartingales [28] as follows.

Ma(n) 2 ho(a(n))e A0 > 0, (14)

and

Mg(n) 2 hy(s(n))e?™ =50 n >0, (15)

(A), is an arrival martingale process, if for every 6 > 0, there
is a K, and a function h, : tng(a(n)) — R™ such that the pro-
cess My(n) is a supermartingale. rng(-) is a range operator.
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Similarly, (S),, is a service martingale process, if for every
6 > 0, there is a K and a function h, : rng(s(n)) — R*
such that the process Mg(n) is a supermartingale.

In this way, the arrival and service processes are character-
ized by two supermartingales with parameters h,(a(n)), K,,
hs(s(n)), and Kj, respectively. Next, we present an auxiliary
definition on ‘Threshold’” which is useful for the following
discussions.

Definition 2: Threshold [28]: We define the threshold H as

H 2min{h,(a)hs(s)la —s > 0}. (16)

H is the smallest value of h,(a)hs(s) that the arrival a is
larger than the service s.

In the following, we will give the delay-bound violation
probability in Theorem 1. Since the channel queueing
delay of multiple computation nodes are independent from
each other, in Theorem 1 and its corresponding proof, we
add the aforementioned supermartingale parameters with
index ¢ to indicate the specific link from the requester R
to a fog node V,, i.e., hf(a(n)), K¢, hi(s(n)), K7, and H;,
correspondingly. First in first out (FIFO) scheduling policy
is employed in this paper. Similar to [28], the delay-bound
violation probability in the concerned scenario is presented
in Theorem 1.

Theorem 1: The delay-bound violation probability is cal-
culated as

H;
E [ (a(0))] o

“viko

H; ’

where H; = min{h{(a)hi(s;)|la — s; > 0}.

Proof: Please refer to Appendix A. u

The relationships between the martingale parameters and the
physical layer parameters also can be found in Appendix A.

Definition 3: Reliability: reliability is defined as user’s
maximal endurable delay-bound violation probability.

It can be seen from Definition 3 that (17) should be smaller
than the reliability. In the following section, based on the
relationship between (17) and the reliability, we will discuss
the maximum computation capacity of the available vehicular
fog nodes, and further discuss how to enhance the network
energy-aware performance, i.e., energy efficiency and energy
consumption.

III. ENERGY-AWARE OPTIMAL TASK ALLOCATION

Given the reliability requirement ¢ and latency time 7', we
have

Pr(D? > (T - Df)) <e. (18)

1883
Substituting (17) into (18), we have
E|h? 0 ot s (XL
| lj(;-—( W oo < (19)
and then we arrive at
In—Hi
To E[h(a(0 .
X, < ’“Lf T+ — ) i 20)
Therefore, the maximum computation capacity X ™% of each
vehicular fog node is represented as
In ol
; E[h%(a
X}naxéyl_f” T M Vi 1)

L 0 K?

If the computation task size X is larger than any of the nearby
fog nodes’ computation capacity, this task should be divided
into several small tasks and computed parallelly. Thereby, we
need to figure out whether the nearby vehicular fog nodes can
accommodate the task X, and how to optimally allocate the
computation task. Therefore, in this section, we first figure out
the maximum fog computation capacity considering the network
computation energy constraint. Then energy efficient and energy
consumption-aware task allocation problems are investigated to
enhance the performance of the considered networks further.

A. Maximum Computation Capacity With Computation
Energy Constraint

Recalling that the computation node has a tuning parameter
y;, the overall computation capacity can be maximized by
properly adjusting the parameter y;. Moreover, in practical,
each node has a different hardware architecture which may
induce different energy expenditures. We use a parameter
ki,t =1,..., N related to the hardware architecture to charac-
terize this difference. Since the execution of each task is associ-
ated with some kinds of rewards. If the execution expenditures
are larger than its rewards, it is not worth to process this task.
Here, we assume that the overall execution energy expenditure
of one task is constrained by Emax. That is to say, if the energy
expenditure is larger than Fmax, it is not worth to process this
task. The problem is therefore formulated as

Ny In g ety
iJo [ p i \@
my?X; L\ TTer )

N
S't'7 ZLXjInaXKi(yif0>2 S EmaXa
i=1

vi 20, (22)

where the first constraint represents that the overall energy
consumption in the vehicular fog cannot exceed the maxi-
mum energy Fmax. The optimal solution y; is provided in
Theorem 2.

Theorem 2: Solving for y; with constraint that y; > 0
yields the optimal solution as
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11
. fo_lKi 2B
yi = max - (23)
N 3 =y\°
(Zil Ki (T+5i)>
where
. €H1j
g, — Elhi(a(0))]
S
Proof: Please refer to Appendix B. u

Substituting (23) into (21), the maximum computation
capacity Xy of the available fog nodes is calculated as

N
Xovr = Z;X?a"

(24)

Observing (24), it can be seen that only all the nearby fog
nodes, i.e., /N nodes, are involved in computation, the maxi-
mum computation capacity can be achieved. Moreover, the
maximum computation capacity in (24) is irrelevant to the
basic computation capability f, and the tuning parameter y;.

B. Energy-Aware Task Allocation

When the generated computation task is larger than the maxi-
mum computation capacity shown in (24), i.e., the summation of
all the available computation resources, it can be concluded that
this task cannot be finished within the required time 7" by satisfy-
ing the reliability €. When the computation task X is smaller
than the maximum computation capacity, by observing (24), the
computation task can be accommodated while reducing the over-
all energy consumption Fax, or suspending some fog nodes.
There are multiple criteria in choosing the suspended nodes. In
this subsection, we focus on discussing two different schemes.

1) Scheme 1: Energy Efficiency-Aware: Since the compu-
tation task is smaller than the maximum computation capacity,
the requester R needs to determine which nodes can be
employed. In Scheme 1, after determining the optimal y,,7 =
1,...,N in (23) and the maximum computation capacity in
(24), the optimal nodes determination problem is then con-
structed as follows,

X
max max 2 ’
z Z]EI LXj Kj(yjft))

(25)
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1 1 1 ’
st 7 Phax (Z K E(T + Ej)> > X. (26)

jeT

The objective function in (25) is to maximize the energy effi-
ciency in choosing the optimal node set Z, while the constraint
is to guarantee that the chosen set Z can accommodate the
computation task X. The optimal solution is therefore pro-
vided in Theorem 3.

Theorem 3: The optimal set Z in Scheme 1 is determined
by

_1 X
"4 argmind 7 ZKJ-Z(T—i—Ej) > T .27
ez %E%nax
Proof: Please refer to Appendix C. n

In Scheme 1, there may have multiple computation sets Z
that satisfy Theorem 3. Given an optimal computation node
set Z*, we get the optimal task allocation X; as

: 0, jELr.

2) Scheme 2: Energy Consumption-Aware: In Scheme 2,

when the network maximum computation capacity is larger

than the computation task X, the requester R needs to re-

determine the optimal node set Z at the very beginning, i.e., at

the stage that determines the tuning parameter ;. The optimal
y; for the chosen node can be rewritten as

(28)

11
f(:lKj *Ehax
(Ejel "‘7‘7 (T+E,i)>

Observing (29) and (23), though the numerator in (29) is the
same with the one in (23). However, the denominator in (23),

1
ie., Zilillci T + &), is the summation 01f N fog nodes,

while the denominator in (29), i.e., Y7k, *(T + Ej), is the
summation of the optimal node set Z. Moreover, the set Z is a
subset of the NV fog nodes.

The energy consumption £; on unit cycle is represented as

B LXjwi(vifo)’

y; = (29)

1
3

Dol

y < = Lij(y;fo)’ (30)
J
Substituting (29) into (30), we get
LE?
Ej — max (3 1)

2
3

(Z]’ez K; : (T + 5]))

Observing (31), when the node set Z is determined, E; is actu-
ally irrelative to the index j. In order to make the notations accu-
rate, we use L7 denote F; in the following discussions. With the
purpose to minimize the overall energy consumption of the
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chosen fog nodes, the optimization problem can be constructed
as

min |Z|Ex, (32)

11 DN
s.t., ZEfnaX<ZKj2(T+:j)> > X. (33)
jez

The corresponding solution is provided in Theorem 4.
Theorem 4: The optimal fog node set Z* in Scheme 2 is
determined by

_1 X
"2 argming [Z]| > k(T + &) > -
= 7 Efnax
(34)
Proof: Please refer to Appendix D. u

Theorem 4 indicates that the optimal computation set Z*
should meet the following two conditions:
1) The chosen nodes can accommodate the computation
task X.
2) Among all the candidates, choose the set with the mini-

mal size. If the candidates have the same sizes, choose
1

the one with a larger value of ), 7 «; *(T + Z;).
In order to make the following discussions clear, we define
1

8 2K(T+5,)" (35)
In (35), «; is a parameter that determines the energy consump-
tion in V;. A larger ; will induce a larger energy consumption
in processing the same computation cycles. T' + Z; represents
the remaining computation time after being successfully trans-
mitted through wireless channel. Since the total time is 7', it is
easy to figure out that a larger 7' + Z; associates with a smaller
queueing delay. In other words, from the perspective of the
requestelr ‘R, a computation node with a smaller §;, i.e., a prod-

uct of «? and (T + Z;)”", is more preferable than the nodes
with larger §;, j # 1.

For {81,...,8,,...,8x}, let v(-) denote a permutation of
i, such that 8,1y < d,0) < ... <d,u). The computation
node set Z* can be further determined by the following
proposition.

Proposition 1: The fog node set Z* derived in Theorem 4
can be rewritten as

(M) X .
7" = argming M Z 8]-_1 > T . (36)
J=v(1) % E%nax
Proof: Please refer to Appendix E. u

Proposition 1 indicates that the computation set Z* excludes
the nodes with larger §;. In this way, the network performance
can be enhanced by suspending the nodes with larger §;. The
cutoff threshold §, is therefore represented as,

1885

(37
The solution y; and allocated task X** are given by
11
f;ll( 2p3

j max 5] < 5

J/j N (Zjez* 8;1>% oY

0, 5] > 8o,
and
5o
Emax‘sf <
max 1 8
— 1 7 = Yoy
Xj = L<Zje1* 8;1)3 J (39)
Oa 81 > 80;
respectively.
The solution of Scheme 2 employs a truncated-

channel-inversion like policy. It can be seen that when the
inherent parameter §; is larger than a cutoff threshold 6, the
nodes will be suspended to improve the network performance.

C. Some Discussions

When there is a data burst from the applications, the data
will first be pushed into a queue. Then, the scheduling policy
will help determine when to allocate the data based on their
priorities. In this paper, FIFO is utilized as a scheduling pol-
icy. Based on which, the delay violation probability can be
derived. Then, the proposed two schemes will be utilized to
give the optimal energy-aware task allocation results. That is
to say, the two schemes will be triggered after the data burst is
pushed into a queue.

Given S is fixed, changing the value of o which is the transi-
tion probability from state 7} to 72, is equivalent to changing
the data generation model. When « decreases, the steady prob-
ability of state 0 grows and the steady probability of state 1
drops. That means there are less data generated on average.
Based on some preliminary simulations, it can be inferred that
as data generation model changes, i,e, o decreases or less data
generated on average, less fog nodes may be involved.

The number of fog nodes involved is jointed affected by
many factors, such as the data generation model, channel status,
total computation amount, computation capacity of each node,
as well as the chosen allocation scheme. In this paper, we
assume that all the other factors are fixed, and then we investi-
gate the involved fog nodes under different allocation criterion.
Explicit analyse on the relationship between the involved fog
nodes and data generation model, channel status, as well as other
factors will be thoroughly investigated in our future works.

IV. NUMERICAL RESULTS

In this section, we conduct numerical simulations to verify
effectiveness of the proposed task allocation schemes. The FIFO
scheduling policy is employed in this paper. Rayleigh fading
channel is assumed, and the small-scale channel gain g; obeys
the exponential distribution with parameter 1. The general simu-
lation parameters are listed in Table I. We will provide the spe-
cific simulation parameters when the scenario is changed.
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TABLE 1
SIMULATION PARAMETERS
Parameter ‘ ‘ Value ‘
Bandwidth B = 75MHz [44]
Transmit Power Py = 33dBm [45]
Distance d; = [2, 90]m [46]
Pathloss Exponent =4
Noise Density 02 = —174dBm
Fog Node Number N =6
Basic Computation Capacity fo = 1GHz
Hardware-related Parameter ki = [10~11 9% 10~ 1] [47]
Computation Deadline T =0.1us
Reliability e= 1077
computation intensity L=1
Channel Cutoff Threshold go = [0.05,0.1,0.4,0.7]
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Fig. 2. Comparisons between the supermartingale delay bound and real
simulation results under the FIFO scheduling policy.

A. Theoretical Supermartingale Delay Bound Versus
Simulation Results

At first, we conduct a simplified simulation and run 5000
realizations to calculate the delay-bound violation probability.
We assume that @ = 0.3, § = 0.4, and data generation rate
equals to 6 Mega bits per second (Mbps). Service rate is
5 Mbps. The channel cutoff threshold is assumed to be 0.6242
and the corresponding successful transmission probability is
Psuc = 0.5357.

To verify the tightness of the derived bound, Fig. 2 com-
pares the supermartingale delay-bound violation probability
with the real simulation results shown as the box plot. It is
obvious that as delay time increases, the delay-bound violation
probability decreases. Also, it can be verified in Fig. 2 that the
delay bound derived from the martingale theory is very tight
to the real simulation results. Thus, it can be concluded that
the supermartingale delay bound is feasible to conduct accu-
rate delay performance analysis, especially in the URLLC
scenarios.

B. Optimal y; and Maximum Computation Capacity

We assume o =0.1, $ =009, R=3.1x10° bps, T =
0.1 us, and reliability ¢ = 1079, To evaluate the channel
queueing delay time of nodes in different distances, Fig. 3
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Fig. 3. Channel queueing time of nodes with increasing distances from
requester R, when channel cutoff threshold g, = 0.05,0.1, 0.4, and0.7.
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Fig. 4. Optimal tuning parameter y;, when channel cutoff threshold
go = 0.05,0.1,and 0.4.

plots the delay curves when the channel cutoff threshold
varies. It is shown that the channel queueing time gradually
grows as the distance increases. This is due to the fact that
when the distance increases, the offloading rate, i.e., C; in (5)
decreases. As the channel cutoff threshold g, grows from 0.05
to 0.7, given the node’s distance, the channel queueing delay
time increases dramatically. Also it is obvious that all the
channel queueing time are below 0.1 us when g, = 0.05,0.1,
and 0.4. Fig. 3 reveals the fact that the distance d;, which
determines the offloading rate in (5), and channel cutoff
threshold ¢,, which determines the successful transmission
probability in (9), makes a profound impact on the channel
queueing delay performance.

Given the required time 7' = 0.1 us which includes the
channel queueing time and the computation time, as seen in
Fig. 3, when the cutoff channel threshold is smaller than 0.4,
the channel queueing delay time may meet the deadline
requirement. We assume 6 vehicular fog nodes with
d; =4,6,8,10,12, and14 m away from the requester, the
same hardware architecture, i.e., k = 107!, and the maximum
energy Fmax = 10 w. Fig. 4 and Fig. 5 illustrate the bar plots
of the optimal tuning parameter y; and the maximum compu-
tation capacity X ™@X of each node. Observing the two fig-
ures, it can be seen that the nodes which are closer to the
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Fig. 5. Maximum computation capacity of each node, when channel cutoff
threshold g, = 0.05,0.1, and 0.4.
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Fig. 6. & ! of each vehicular node, and the comparisons between the summa-
tion of {V5, V4, V5, Vs } and {V1, V4, Vs }, given g, = 0.1.

requester are allocated with higher tuning parameters y;, and
they have larger computation capacities.

In Fig. 4, when the channel cutoff threshold g, increases, the
optimal tuning parameter of one vehicular node also increases.
That is due to the reason that, when g, increases, according to
(9), the successful transmission probability decreases. This will
make the channel queueing delay time increase, and then make
the remaining computation time, i.e., 7" + =; decrease. Accord-
ing to (23), a smaller denominator leads to a larger ;.

In Fig. 5, it is observed that when the channel cutoff thresh-
old g, increases, the maximum computation capacity of one
vehicular node decreases. This can be verified by simply
substituting (23) into (21).

Moreover, the variation of channel cutoff threshold can be
caused by the channel status variation. As shown in Fig. 5,
when channel cutoff threshold g, grows, the maximum compu-
tation capacity of each node decreases. In this case, in order to
complete the computation task, more nodes may be involved.

C. Performance of the Energy Efficiency-Aware Scheme

In this subsection, we follow the same simulation setup
in Section IV-B, i.e., there are 6 vehicular fog nodes and
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Fig. 7. Maximum computation capacity and energy efficiency of all the set
combinations among these 6 fog nodes, given g, = 0.1.
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Fig. 8. Maximum computation capacity and energy consumption of all the
set combinations among these 6 fog nodes, given g, = 0.1.

the channel cut off threshold is set to g, =0.1.
ki =[1,2,3,4,5.062, 6]+107''. The computation task
which needs to be offloaded is X = 3000 bits. By substitut-
ing X into (27), we can get the minimum demanding value
of Y7 81 = 5.1962 x 10%.

To verify the conclusion drawn in Theorem 3, Fig. 6(a)
plots §; ! of each vehicular node. The §; ' value of each node
is {2.8249,1.9817,1.6060, 1.3808,1.2189, 1.1121} * 10*. It
can be verified that set 1 with nodes {Vs3, V4, V5, Vs } and set 2
with nodes {V1, V4, Vi } have the same summations, i.e., 85 Iy
St 8+ 85t =87 +8,' +8;' =5.3178 % 10". Fig. 6(b)
makes a comparison between the summation of two node sets
and the minimum demanding summation value. It can be seen
that set 1 and set 2 are all larger than the demanding value.
Thereby, the two sets can be chosen as candidates. Moreover,
by substituting the summation of §; ! of the two sets into (25),
it can be verified that the two sets have the same energy effi-
ciency with a value of 571.1569. Thus, it can be verified that
the optimal solution in maximizing the energy efficiency is
not unique.

In this simulation, this carefully designed parameter «;
can be used to verify Theorem 3. We give the explicit val-
ues here to help readers calculate the minimum demanding
value and the summations of §;' in different sets. It can
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Fig. 9. Maximum computation capacity and energy consumption of the pro-
posed scheme, given g, = 0.1.

be noted that there are two different sets with the same
summation value, and further Theorem 3 can be validated.

Fig. 7 plots the maximum computation capacity and the cor-
responding energy efficiency of all the set combinations among
these 6 vehicular fog nodes. The curve with crosses denotes the
maximum computation capacity, and the corresponding Y-axis
is on the left hand side of Fig. 7. The curve with circles repre-
sents the energy efficiency, and the corresponding Y-axis is on
the right hand side of Fig. 7. There are totally 63 sets, the dotted
box highlights the candidate area, within which, the summation
of computation capacity is larger than the demanding capacity
X = 3000 bits, the set with the maximum energy efficiency
can be found correspondingly.

D. Performance of the Energy Consumption-Aware Scheme

In this subsection, we follow the same simulation setup in
Section IV-C. To demonstrate the conclusions drawn in
Theorem 4 and Proposition 1, Figs. 8 and 9 depict the energy
consumption under different node set combinations.

Fig. 8 plots the maximum computation capacity and energy
consumption of all the set combinations among 6 vehicular
nodes. Note that in this scheme, the maximum computation
capacity is not the same as that in Fig. 7. This is due to the rea-
son that, in this scheme, the optimal y; is determined in (29)
which is associated to the chosen set Z. However, in Fig. 7, y;
is determined by (23) which is associated with all the fog nodes.
Therefore, they have different y}, and further, they have differ-
ent XX according to (21). The dotted box highlights the can-
didate area. The set with the minimum energy consumption,
i.e., P, is the optimal solution.

Fig. 9 plots the maximum computation capacity and the cor-
responding energy consumption followed by the rule in
Proposition 1. In specific, we sort the nodes with an increasing
order of §;, and then compare the summation of §; 1 to the
threshold shown in (36). The computation capacity grows as
the node number increases, and the energy consumption also
increases. Since the demanding computation X = 3000, the
first 3 nodes can meet the computation requirement. At the
same time, they can provide the minimum energy consumption.

Moreover, comparing Figs. 8 and 9, P, in Fig. 8 has the
same value with P in Fig. 9. Observing Fig. 8, P is the
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optimal solution among all the set combinations, and P, is the
optimal solution using our proposed scheme. Thus, the opti-
mal solution can be found by the proposed scheme which is
easy to be implemented.

V. CONCLUSION

In this paper, we provide a new idea on task allocation in
vehicular fog networks. In order to realize the ITSs, queueing
delay, especially in the scenario requiring URLLC, is a non-
negligible issue. Due to its stochastic characteristics, queueing
delay time cannot be preciously calculated. The martingale the-
ory is utilized to analyze the queueing delay performance
instead. Thereby, we conduct researches on task allocation
problem in a vehicular fog computation offloading scenario
based on the martingale-theory-derived delay bound. The
requester needs to determine whether the demanding computa-
tions can be satisfied by the available computation resources,
and which nodes should be chosen to further optimize the
energy-aware performance. The optimal solution to maximize
the energy efficiency is not unique. Meanwhile, the optimal
solution to minimize the overall energy consumption is unique,
and can be constructed as a truncated-channel-inversion like
policy. Simulation results are provided to demonstrate effec-
tiveness of the proposed schemes.
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