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Abstract—In order to make intelligent transportation systems
(ITSs) come true, execution of a large amount of data needs to be
migrated from the cloud centers to the edge nodes, especially in the
scenarios requiring ultra reliable low latency communications
(URLLC). In this article, we propose to study the energy-aware
task allocation problem in the vehicular fog networks considering
URLLC. Specifically, a requester who has some bursty
computation tasks which cannot be finished within a required time
by itself, needs to decide whether the nearby computation nodes can
meet the latency and reliability requirements, and which nodes
should be chosen. Given the required latency and reliability, the
maximum computation capacity of each fog node is first calculated
based on the martingale-theory-derived delay bound. Then, if the
available fog nodes can accommodate the computation tasks, two
different optimization problems concerning the energy efficiency
maximization and the energy consumption minimization are
constructed further. The corresponding solutions are also provided.
Specifically, the optimal solution in maximizing the energy
efficiency is not unique, while the optimal solution in minimizing
the energy consumption is unique. Moreover, the latter solution is
provided as a truncated-channel-inversion like policy. At last,
numerical results are illustrated to demonstrate effectiveness of the
proposed optimal task allocation schemes from the perspectives of
the energy efficiency and the energy consumption.

Index Terms—Computation Offloading, Energy Efficiency,
Task Allocation, Truncated-Channel-Inversion Like Policy,
URLLC, Vehicular Fog Networks.

I. INTRODUCTION

RECENTLY, intelligent transportation systems (ITSs),

which aim to provide high efficient traffic, safety road,

autonomous driving and accurate navigation, etc., have attracted

enormous attentions from both academia and industry [1], [2]. In

order to implement the ITSs, a large amount of data has to be

reliably processed within a very limited time. The vision of the

ITSs, especially its stringent requirements on reliability and

latency, can be classified as ultra-reliable and low latency com-

munications (URLLC), one of the 5G usage pattern [3], [4].

However, at present, the processing of big data mainly depends

on cloud centers which are usually located in remote areas [5].

Albeit clouds have abundant computation resources, in order to

meet the high reliability and low latency requirements, the ITSs

cannot process the generated data solely relying on the cloud

centers.

Fog computation has been proposed to decrease the commu-

nication and computation latency in realizing the ITSs by intro-

ducing a layer of computation devices between the cloud

centers and end users [6]–[10]. Usually, road side units (RSUs)

and small-cell base stations (SBSs) are proposed as computa-

tion devices to help connected vehicles improve their task com-

putation efficiency [11]–[14]. Among these works, vehicles are

considered as computation sources, making use of computation

resources in RSUs or SBSs. However, on the one hand, the

expenditures of deploying RSUs are very high, especially in

the scenarios requiring dense RSU coverage. On the other

hand, it is commonly known that the SBSs are operated by the

cellular network operators. It’s challenging to realize URLLC

between two independent systems. Nevertheless, driven by the

increasing demands on connections between vehicles, vehicu-

lar manufacturing industry begins to deploy intelligent compu-

tation and communication modules into their products.

Moreover, Federal Communication Commission (FCC) has

issued a 75 MHz frequency band for the dedicated short-range

communication (DSRC) between connected vehicles [15].

Also, the release of IEEE 802.11p protocol makes vehicle-

to-vehicle (V2V) communication possible. Driven by the con-

nections among vehicles as well as the large on-board battery

capacity, it is promising that computation tasks can be alterna-

tively executed inside the connected vehicles, not only depen-

dent on external infrastructures or systems. Taking vehicles as

computation resources may reduce the cost of realizing the

ITSs, and improve computational efficiency.

Therefore, how to properly allocate the vehicular computation

tasks to satisfy the URLLC has arisen as a crucial issue in realiz-

ing the ITSs. Delay, as one of the important URLLC factor,

includes communication delay and queueing delay [16], [17].
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In [16], the authors investigate the joint computation partitioning

and resource allocation for latency sensitive applications. An

efficient heuristic and an online solution are proposed to solve

this problem. In [17], the authors study the joint task and network

flow scheduling in order to minimize the completion time of the

application. The communication delay that shows a determined

characteristic has been exhaustively studied in the existing

vehicular-related works [18]–[20]. Meanwhile, queueing delay

is also a non-negligible issue, especially in the URLLC sce-

nario [21]–[23]. Due to its stochastic characteristic, it is chal-

lenging to calculate the queueing delay. Instead of directly

calculating the queueing delay time, queueing delay bounds

which can be obtained by utilizing the effective bandwidth the-

ory [24] or the effective capacity theory [25] are proposed to

indicate the delay performance. In [26], the authors investigate

the resource allocation problem in vehicular networks to maxi-

mize the sum ergodic capacity of the vehicle-to-infrastructure

(V2I) links.While theV2V links need to satisfy the requirements

on latency violation probability, which is derived by the effec-

tive capacity theory.

At the same time, the effective bandwidth/capacity theory is

challenged by its loose result for non-Poisson processes [27].

Martingale theory is proposed as a valuable alternative in esti-

mating the delay bound [28]. It fits any arrival and service pro-

cesses, and especially, it can provide a very tight delay bound

in a bursty traffic scenario. In [29], the authors provide a theo-

retical way to measure the end-to-end delay bound using the

martingale theory in multimedia heterogeneous high-speed

train networks where the link from train to track-side-access

point is highly dynamic and bursty. Simulation results demon-

strate that the derived delay bound are remarkably tight to the

real data trace results. Furthermore, in their next work, the

delay bounds are investigated in multi-hop vehicular ad hoc

networks where data from vehicles is expected to be bursty [30].

It is also verified that the martingale delay bound is very tight to

the real data trace. Besides providing tight system delay bound,

the martingale theory can be utilized to construct optimization

problems. In [31], the authors optimize the network energy effi-

ciency subjected to a certain delay-bound violation probability

which is derived within the framework of the martingale theory

in machine type communication networks. In [32], the optimal

task allocation scheme is derived with the objective to mini-

mize the overall network delay-bound violation probability

based on the martingale theory.

Moreover, energy-related problem is also very critical in real-

izing the ITSs. Energy-related problem is a systematic issue, and

it requires integration and coordination of different systems.

Although there is adequate energy in a vehicular network, it is

still necessary to discuss the energy efficiency of computation

offloading in such a system. There are two kinds of computation

sources, i.e., the on-board application and the in-vehicle user

equipment. Usually, the on-board applications are powered by

the vehicles. Many on-board applications, such as route selec-

tion, control system, and driving strategy, are designed to

improve the vehicular energy efficiency. In [33], the authors pro-

pose a timely and energy-efficient route selection algorithm

based on historical driving data. In [34], a predictive control

system is proposed to reduce the driving energy consumption,

while maintaining a suitable distance from the preceding

vehicles. In [35], the authors propose model-based driving strat-

egies to predict and optimize the energy consumption of a trip

via eco-routing, eco-driving and energy consumption prediction.

In order to obtain timely and reliable feedback, almost all of the

on-board applications require massive computations. As more

and more on-board applications are installed in a vehicle, the

massive computations will consume significant energy. There-

fore, it is of great importance to design an energy-efficient

computation scheme to realize on-board applications, while

maintaining timely and reliable feedback. Different from the on-

board applications, the in-vehicle user equipments usually suffer

from energy constraint. In [36], the authors study the energy-

efficient computation offloading problem for in-vehicle user

equipment and provide a distributed solution based on consensus

alternating direction method of multipliers (ADMM). Thus, no

matter the on-board applications or the in-vehicle user equip-

ments, improving the energy efficiency of computation is vital

in a vehicular network. From the perspective of computation off-

loading, two commonly recognized objectives for computation

offloading are reducing execution time and shifting energy con-

sumption. Thus, at the mention of computation offloading, no

matter in what kind of network, the computation source node

has to make two classes of decision, i.e., what computation to

offload and where to offload [37]. Many works have been done

in this area. For example, in [38], the authors propose an energy-

efficient computation offloading decision-making scheme in a

combined fog and cloud scenario to minimize the system cost.

In [39], by optimally designing the computation offloading deci-

sion, the authors can improve the energy efficiency of computa-

tion. To summarize, energy efficiency is a commonly used

criterion in making computation offloading decisions.

Different from the existing works in [29]–[39], in this paper,

we are inspired to study the energy-aware task allocation prob-

lem in vehicular fog networks, where the computation tasks

have a stringent execution time and reliability requirements.

By jointly considering the channel queueing delay and the com-

putation delay, delay-bound violation probability is derived by

following the martingale theory. Specifically, one vehicular

node, named as requester, has some bursty computation

tasks which cannot be timely processed by itself. It needs to

divide this task into small subtasks and parallelly executed in

the nearby vehicular fog nodes. The requester needs to deter-

mine whether the surrounding vehicular fog nodes can accom-

modate these subtasks while satisfying the requirements on

latency and reliability, and which nodes should be chosen to

enhance the energy-aware performance further.

The proposed task allocation schemes can satisfy the

requirements on latency and reliability, and moreover, it can

enhance the energy-related performance of the networks. The

main contributions of this paper are summarized as follows,

1) A vehicular computation offloading scenario is con-

structed, where the generated task with the burst nature is

modeled as a Markov-modulated on off (MMOO) pro-

cess, while the transmission is modeled as an independent

and identically distributed (i.i.d.) process. By jointly
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considering the channel queueing delay and computation

delay, the delay-bound violation probability is then pro-

vided by following the martingale theory.

2) Given the required time and the reliability, we calculate

the maximum computation capacity of each available

vehicular fog node based on the martingale-theory-

derived delay bound.

3) If the summation of the nearby computation capacity is

larger than the computation task, two different optimi-

zation problems, considering energy efficiency and

energy consumptions, are established to enhance the

network performance further.

4) At last, the corresponding task allocation solutions are

provided. Especially the optimal solution for the energy

consumption optimization problem is constructed as a

truncated-channel-inversion like policy. When the inher-

ent parameter of a vehicular node is larger than a prede-

termined threshold, this node will be suspended in order

to reduce the overall network energy consumption.

5) Simulation results are provided to demonstrate the per-

formance of the proposed schemes from the perspectives

of the energy efficiency and the energy consumption.

The rest of this paper is organized as follows: the systemmodel

is presented in Section II. The optimal task allocation problem

considering latency, reliability and energy is investigated in

Section III. Numerical results are presented in Section IV, and

conclusions are drawn in Section V.

II. SYSTEM MODEL

In this section, we consider a vehicular fog computation sce-

nario. A simple example of vehicular fog computation offload-

ing is depicted in Fig. 1. In this system, there are multiple fogs,

each of which consists of one requester and many fog nodes as

shown in Fig. 1. In one fog, we assume there are N available

vehicular fog nodes, denoted byV ¼ fV1; . . . ;VNg, within the
scope of the requesterR’s communication range.R hasmultiple

computation tasks which need to be executedwithin timeT . Due
to the limited local computation resources, R cannot finish the

tasks in time by itself. It needs to offload the computation tasks

to the nearby computation nodes. Therefore, R needs to decide

whether the tasks can be finished timely within the available

computation nodes and which nodes should be employed. For

simplicity, arbitrary precision is assumed in task partition, and

any two sub-tasks have no overlap. For example, in a autono-

mous driving scenario, a large amount of images can be divided

in to several subsets that can be processed in parallel.

A. Data Generation Model

Usually, the requesterR is equipped with some applications,

for example, the on-board autonomous driving or entertainments

in user’s equipment, to enhance the driving experience and

passengers’ satisfactions. The bursty application data amount

aðkÞ at time k can be modeled as anMMOO process by utilizing

the Monte Carlo Markov Chain (MCMC) method [40]. The

MMOO process has two static statusPa , ½p0
a;p

1
a�. On state p0

a,

there is no application data generated, i.e., aðkÞ ¼ 0, while on

state p1
a, aðkÞ ¼ Rbits=s, and R > 0. The corresponding state

transitionmatrix is defined as

Tra ,
1� a a

b 1� b

� �
; (1)

where a represents the transition probability from state p0
a to

state p1
a, while b represents the transition probability from p1

a

to p0
a. Accordingly, the steady state distribution of aðkÞ is

calculated as

Pa ¼ b

aþ b
;

a

aþ b

� �
: (2)

The unit of time interval is one second. Therefore, the cumula-

tive generating data over time interval ½m;n� is represented as

Aðm;nÞ ¼
Xn
k¼m

aðkÞ � 1; (3)

where Aðm;nÞ can be regarded as a bivariate arrival process.

Ifm ¼ 0, we use Að0; nÞ , AðnÞ for brevity.

Fig. 1. A simple example in vehicular fog computation offloading.
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B. Transmission Service Model

When the generated computation tasks cannot be finished

within the required time T by itself, the requester R needs to

offload its tasks to the nearby vehicular fog nodes. In order to

guarantee a constant receiving power Pc
i on the Vi’s side, a

truncated channel inversion policy with a cutoff channel gain

go is employed by R [31]. The outage probability Pout can be

represented as,

Pout ¼ Prðgi < goÞ: (4)

During the transmission stage, R provides a constant offload-

ing rate Ci bits=s for each Vi; i 2 f1; . . .Ng, i.e.,

Ci ¼ B log 2 1þ Pc
i

Bs2
o

� �
; (5)

where B is the bandwidth allocated to one vehicular fog node

and s2
o is the noise variance. P

c
i is calculated as

Pc
i ¼ PtrðgiÞgid�l

i ; (6)

where PtrðgiÞ is a tunable transmission power based on the

channel state gi to guarantee a constant receiving power Pc
i ,

di denotes the distance between the requester R and fog

node Vi, and l is the pathloss exponent. Note that even

though vehicles are moving fast, since a group of vehicles

can form a relatively stable neighborhood, and the channels

between vehicles will not change rapidly. Hence, the channel

state information can be obtained to realize the truncated

channel inversion.

Thus, the accumulative transmission process from R to

Vi; i 2 f1; . . .Ng can be represented as

Siðm;nÞ ¼
Xn
k¼m

siðkÞ � 1; (7)

where siðkÞ � 1 is the offloading amount at time k. Specifically,
it is

siðkÞ ¼ Ci; Psuc,
0; 1� Psuc,

�
(8)

where Psuc represents the probability of successful transmission,

i.e.,

Psuc ¼ 1� Pout: (9)

Observing (8), it can be seen that the transmission realizations

sið1Þ; sið2Þ; . . . can be regarded as i.i.d. variables with a non-

negative distribution which is given by

Ps , ½p0
s;p

1
s � ¼ ½1� Psuc; Psuc�: (10)

On state p0
s , there is no transmission, while on state p1

s ,

siðkÞ ¼ Ci.

In order to make the problem non-trivial, we assume that

E½aðkÞ� < E½siðkÞ� < supaðkÞ; 8i: (11)

It means that the expectation of siðkÞ is larger than the expec-

tation of aðkÞ, but it is smaller than the peak rate of aðkÞ. In
this scenario, the arrival data may experience some queueing

delay before it is transmitted successfully.

C. Delay Violation Probability

Every vehicular fog node Vi; i ¼ 1; . . . ; N is assumed to

have a basic computation capability of fo cycles=s which

can be adjusted by a tuning parameter gi; i ¼ 1; . . . ; N .

Generally, a task can be represented by a three-field nota-

tion which contains the task size Xi in the unit of bits, the
completion deadline in the unit of seconds, and the compu-

tation intensity L in the unit of cycles=bit [41], [42]. The

three-filed notation describes the nature of the applications,

and the three parameters can be evaluated by task pro-

filers [37], [43]. Furthermore, these parameters can be used

to evaluate the computation and communication demands,

as well as the execution latency [41]. When the task size Xi

and the computation intensity L are known by the requester

R, the computation time DC
i consumed on Vi’s side can be

calculated as

DC
i ¼ XiL

gifo
: (12)

Note that the final computation outcomes are usually much

smaller than the raw computation data Xi. For example, in a

autonomous driving scenario, when a vehicle is approaching

an intersection, a large amount of images, i.e., the raw compu-

tation data, will be processed, while the final computation out-

come will be a simple instruction, such as turning left/right,

stopping or going ahead. Thus, in order to make the analysis

tractable, we do not consider the latency caused by the out-

come feedback from Vi toR.

The computation task is expected to be finished within time

T which includes the computation delay determined by (12)

and the channel queueing delay which has a stochastic charac-

teristic and cannot be determined precisely. The channel

queueing delay is defined as follows,

Definition 1: Channel Queueing Delay: the channel queue-

ing delayDQ
i from the requesterR to the computation node Vi

is defined as the waiting time in the network before the data is

successfully transmitted fromR to Vi.D
Q
i is given by

DQ
i , inffk � 0jA n� kð Þ � SiðnÞg: (13)

Before we set out to analyze the property of channel queueing

delay, we first construct two supermartingales [28] as follows.

MAðnÞ , ha aðnÞð Þeu AðnÞ�nKað Þ; n � 0; (14)

and

MSðnÞ , hs sðnÞð Þeu nKs�SðnÞð Þ; n � 0: (15)

ðAÞn is an arrival martingale process, if for every u > 0, there
is aKa and a function ha : rngðaðnÞÞ ! Rþ such that the pro-

cess MAðnÞ is a supermartingale. rngð�Þ is a range operator.
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Similarly, ðSÞn is a service martingale process, if for every

u > 0, there is a Ks and a function hs : rngðsðnÞÞ ! Rþ

such that the processMSðnÞ is a supermartingale.

In this way, the arrival and service processes are character-

ized by two supermartingales with parameters haðaðnÞÞ, Ka,

hsðsðnÞÞ, and Ks, respectively. Next, we present an auxiliary

definition on ‘Threshold’ which is useful for the following

discussions.

Definition 2: Threshold [28]:We define the thresholdH as

H , minfhaðaÞhsðsÞja� s > 0g: (16)

H is the smallest value of haðaÞhsðsÞ that the arrival a is

larger than the service s.
In the following, we will give the delay-bound violation

probability in Theorem 1. Since the channel queueing

delay of multiple computation nodes are independent from

each other, in Theorem 1 and its corresponding proof, we

add the aforementioned supermartingale parameters with

index i to indicate the specific link from the requester R
to a fog node Vi, i.e., h

a
i ðaðnÞÞ, Ka

i , h
s
i ðsðnÞÞ, Ks

i , and Hi,

correspondingly. First in first out (FIFO) scheduling policy

is employed in this paper. Similar to [28], the delay-bound

violation probability in the concerned scenario is presented

in Theorem 1.

Theorem 1: The delay-bound violation probability is cal-

culated as

Pr DQ
i � T �DC

i

� �	 

� E ha

i að0Þð Þ� �
Hi

e�u�i K
s
i
ðT�DC

i
Þ

¼ E ha
i að0Þð Þ� �
Hi

e
�u�i K

s
i
ðT�XiL

gifo
Þ
; ð17Þ

whereHi ¼ minfha
i ðaÞhs

i ðsiÞja� si > 0g.
Proof: Please refer to Appendix A. &

The relationships between the martingale parameters and the

physical layer parameters also can be found in Appendix A.

Definition 3: Reliability: reliability is defined as user’s

maximal endurable delay-bound violation probability.

It can be seen from Definition 3 that (17) should be smaller

than the reliability. In the following section, based on the

relationship between (17) and the reliability, we will discuss

the maximum computation capacity of the available vehicular

fog nodes, and further discuss how to enhance the network

energy-aware performance, i.e., energy efficiency and energy

consumption.

III. ENERGY-AWARE OPTIMAL TASK ALLOCATION

Given the reliability requirement " and latency time T , we
have

Pr DQ
i � T �DC

i

� �	 

� ": (18)

Substituting (17) into (18), we have

E ha
i að0Þð Þ� �
Hi

e
�u�i K

s
i
ðT�XiL

gifo
Þ � "; (19)

and then we arrive at

Xi � gifo
L

T þ
ln "Hi

E½ha
i
að0Þð Þ�

u�iK
s
i

0
@

1
A; 8i: (20)

Therefore, the maximum computation capacity Xmax
i of each

vehicular fog node is represented as

Xmax
i ,

gifo
L

T þ
ln "Hi

E½ha
i
að0Þð Þ�

u�iK
s
i

0
@

1
A; 8i: (21)

If the computation task size X is larger than any of the nearby

fog nodes’ computation capacity, this task should be divided

into several small tasks and computed parallelly. Thereby, we

need to figure out whether the nearby vehicular fog nodes can

accommodate the task X, and how to optimally allocate the

computation task. Therefore, in this section, we first figure out

themaximum fog computation capacity considering the network

computation energy constraint. Then energy efficient and energy

consumption-aware task allocation problems are investigated to

enhance the performance of the considered networks further.

A. Maximum Computation Capacity With Computation

Energy Constraint

Recalling that the computation node has a tuning parameter

gi, the overall computation capacity can be maximized by

properly adjusting the parameter gi. Moreover, in practical,

each node has a different hardware architecture which may

induce different energy expenditures. We use a parameter

ki; i ¼ 1; . . . ; N related to the hardware architecture to charac-

terize this difference. Since the execution of each task is associ-

ated with some kinds of rewards. If the execution expenditures

are larger than its rewards, it is not worth to process this task.

Here, we assume that the overall execution energy expenditure

of one task is constrained byEmax. That is to say, if the energy
expenditure is larger than Emax, it is not worth to process this
task. The problem is therefore formulated as

max
gi

XN
i¼1

gifo
L

T þ
ln "Hi

E½ha
i
að0Þð Þ�

u�iK
s
i

0
@

1
A;

s.t.,
XN
i¼1

LXmax
i kiðgifoÞ2 � Emax;

gi � 0; ð22Þ
where the first constraint represents that the overall energy

consumption in the vehicular fog cannot exceed the maxi-

mum energy Emax. The optimal solution g�
i is provided in

Theorem 2.

Theorem 2: Solving for gi with constraint that gi � 0
yields the optimal solution as
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g�
i ¼

f�1
o k

�1
2

i E
1
3
maxPN

i¼1 k
�1
2

i T þ Xið Þ
� �1

3

; (23)

where

Xi ¼
ln

"Hi

E½ha
i ðað0ÞÞ�

u�
i
Ks
i

:

Proof: Please refer to Appendix B. &

Substituting (23) into (21), the maximum computation

capacityXCVF of the available fog nodes is calculated as

XCVF ¼
XN
i¼1

Xmax
i

¼ 1

L

XN
i¼1

ðT þ XiÞk�
1
2

i E
1
3
maxPN

i¼1 k
�1
2

i T þ Xið Þ
� �1

3

¼ E
1
3
max
L

XN
i¼1

k
�1
2

i T þ Xið Þ
PN

i¼1 k
�1
2

i T þ Xð Þ
� �1

3

¼ 1

L
E

1
3
max

XN
i¼1

k
�1
2

i T þ Xið Þ
 !2

3

: ð24Þ

Observing (24), it can be seen that only all the nearby fog

nodes, i.e., N nodes, are involved in computation, the maxi-

mum computation capacity can be achieved. Moreover, the

maximum computation capacity in (24) is irrelevant to the

basic computation capability fo and the tuning parameter gi.

B. Energy-Aware Task Allocation

When the generated computation task is larger than the maxi-

mum computation capacity shown in (24), i.e., the summation of

all the available computation resources, it can be concluded that

this task cannot be finished within the required time T by satisfy-

ing the reliability ". When the computation task X is smaller

than the maximum computation capacity, by observing (24), the

computation task can be accommodated while reducing the over-

all energy consumption Emax, or suspending some fog nodes.

There are multiple criteria in choosing the suspended nodes. In

this subsection, we focus on discussing two different schemes.

1) Scheme 1: Energy Efficiency-Aware: Since the compu-

tation task is smaller than the maximum computation capacity,

the requester R needs to determine which nodes can be

employed. In Scheme 1, after determining the optimal gi; i ¼
1; . . . ;N in (23) and the maximum computation capacity in

(24), the optimal nodes determination problem is then con-

structed as follows,

max
I

XP
j2I LX

max
j kjðgjfoÞ2

; (25)

s.t.,
1

L
E

1
3
max

X
j2I

k
�1
2

j T þ Xj

� � !2
3

� X: (26)

The objective function in (25) is to maximize the energy effi-

ciency in choosing the optimal node set I , while the constraint
is to guarantee that the chosen set I can accommodate the

computation task X. The optimal solution is therefore pro-

vided in Theorem 3.

Theorem 3: The optimal set I in Scheme 1 is determined

by

I� , argmin I




X
j2I

k
�1
2

j T þ Xj

� � � X

1
LE

1
3
max

0
@

1
A

3
2

8><
>:

9>=
>;: (27)

Proof: Please refer to Appendix C. &

In Scheme 1, there may have multiple computation sets I
that satisfy Theorem 3. Given an optimal computation node

set I�, we get the optimal task allocation Xj as

Xj ¼ Xmax
j ; j 2 I�,

0; j 62 I�.

�
(28)

2) Scheme 2: Energy Consumption-Aware: In Scheme 2,

when the network maximum computation capacity is larger

than the computation task X, the requester R needs to re-

determine the optimal node set I at the very beginning, i.e., at

the stage that determines the tuning parameter gj. The optimal

gj for the chosen node can be rewritten as

gj ¼
f�1
o k

�1
2

j E
1
3
max

P
j2I k

�1
2

j T þ Xj

� �� �1
3

: (29)

Observing (29) and (23), though the numerator in (29) is the

same with the one in (23). However, the denominator in (23),

i.e.,
PN

i¼1 k
�1
2

i ðT þ XiÞ, is the summation of N fog nodes,

while the denominator in (29), i.e.,
P

j2I k
�1
2

j ðT þ XjÞ, is the
summation of the optimal node set I . Moreover, the set I is a

subset of the N fog nodes.

The energy consumption Ej on unit cycle is represented as

Ej ¼
LXjkjðgjfoÞ2

Xj
¼ LkjðgjfoÞ2: (30)

Substituting (29) into (30), we get

Ej ¼ LE
2
3
maxP

j2I k
�1
2

j T þ Xj

� �� �2
3

: (31)

Observing (31), when the node set I is determined, Ej is actu-

ally irrelative to the index j. In order to make the notations accu-

rate, we useEI denoteEj in the following discussions. With the

purpose to minimize the overall energy consumption of the
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chosen fog nodes, the optimization problem can be constructed

as

min
I

jIjEI ; (32)

s.t.,
1

L
E

1
3
max

X
j2I

k
�1
2

j T þ Xj

� � !2
3

� X: (33)

The corresponding solution is provided in Theorem 4.

Theorem 4: The optimal fog node set I� in Scheme 2 is

determined by

I� , argmin jI j




X
j2I

k
�1
2

j T þ Xj

� � � X

1
LE

1
3
max

0
@

1
A

3
2

8><
>:

9>=
>;:

(34)

Proof: Please refer to Appendix D. &

Theorem 4 indicates that the optimal computation set I�

should meet the following two conditions:

1) The chosen nodes can accommodate the computation

taskX.

2) Among all the candidates, choose the set with the mini-

mal size. If the candidates have the same sizes, choose

the one with a larger value of
P

j2I k
�1
2

j ðT þ XjÞ.
In order to make the following discussions clear, we define

di , k
1
2
i T þ Xið Þ�1: (35)

In (35), ki is a parameter that determines the energy consump-

tion in Vi. A larger ki will induce a larger energy consumption

in processing the same computation cycles. T þ Xi represents

the remaining computation time after being successfully trans-

mitted through wireless channel. Since the total time is T , it is
easy to figure out that a larger T þ Xi associates with a smaller

queueing delay. In other words, from the perspective of the

requesterR, a computation node with a smaller di, i.e., a prod-

uct of k
1
2
i and ðT þ XiÞ�1

, is more preferable than the nodes

with larger dj; j 6¼ i.

For fd1; . . . ; dn; . . . ; dNg, let nð�Þ denote a permutation of

di, such that dnð1Þ � dnð2Þ � . . . � dnðNÞ. The computation

node set I� can be further determined by the following

proposition.

Proposition 1: The fog node set I� derived in Theorem 4

can be rewritten as

I� ¼ argmin M





 X
nðMÞ

j¼nð1Þ
d�1
j � X

1
LE

1
3
max

0
@

1
A

3
2

8><
>:

9>=
>;: (36)

Proof: Please refer to Appendix E. &

Proposition 1 indicates that the computation set I� excludes
the nodes with larger di. In this way, the network performance

can be enhanced by suspending the nodes with larger di. The

cutoff threshold do is therefore represented as,

do , k
1
2
nðMÞ T þ XnðMÞ

� ��1
: (37)

The solution g�
j and allocated taskX

max
j are given by

g�
j ¼

f�1
o k

�1
2

j
E
1
3
maxP

j2I� d
�1
j

	 
1
3
; dj � do,

0; dj > do,

8>><
>>: (38)

and

Xmax
j ¼

E
1
3
maxd�1

j

Lð
P

j2I� d
�1
j

Þ
1
3
; dj � do,

0; dj > do,

8><
>: (39)

respectively.

The solution of Scheme 2 employs a truncated-

channel-inversion like policy. It can be seen that when the

inherent parameter dj is larger than a cutoff threshold do, the

nodes will be suspended to improve the network performance.

C. Some Discussions

When there is a data burst from the applications, the data

will first be pushed into a queue. Then, the scheduling policy

will help determine when to allocate the data based on their

priorities. In this paper, FIFO is utilized as a scheduling pol-

icy. Based on which, the delay violation probability can be

derived. Then, the proposed two schemes will be utilized to

give the optimal energy-aware task allocation results. That is

to say, the two schemes will be triggered after the data burst is

pushed into a queue.

Given b is fixed, changing the value of a which is the transi-

tion probability from state p1
a to p0

a, is equivalent to changing

the data generation model. When a decreases, the steady prob-

ability of state 0 grows and the steady probability of state 1

drops. That means there are less data generated on average.

Based on some preliminary simulations, it can be inferred that

as data generation model changes, i,e, a decreases or less data

generated on average, less fog nodes may be involved.

The number of fog nodes involved is jointed affected by

many factors, such as the data generation model, channel status,

total computation amount, computation capacity of each node,

as well as the chosen allocation scheme. In this paper, we

assume that all the other factors are fixed, and then we investi-

gate the involved fog nodes under different allocation criterion.

Explicit analyse on the relationship between the involved fog

nodes and data generation model, channel status, as well as other

factors will be thoroughly investigated in our future works.

IV. NUMERICAL RESULTS

In this section, we conduct numerical simulations to verify

effectiveness of the proposed task allocation schemes. The FIFO

scheduling policy is employed in this paper. Rayleigh fading

channel is assumed, and the small-scale channel gain gi obeys
the exponential distribution with parameter 1. The general simu-

lation parameters are listed in Table I. We will provide the spe-

cific simulation parameters when the scenario is changed.
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A. Theoretical Supermartingale Delay Bound Versus

Simulation Results

At first, we conduct a simplified simulation and run 5000

realizations to calculate the delay-bound violation probability.

We assume that a ¼ 0:3, b ¼ 0:4, and data generation rate

equals to 6 Mega bits per second (Mbps). Service rate is

5 Mbps. The channel cutoff threshold is assumed to be 0.6242

and the corresponding successful transmission probability is

Psuc ¼ 0:5357.

To verify the tightness of the derived bound, Fig. 2 com-

pares the supermartingale delay-bound violation probability

with the real simulation results shown as the box plot. It is

obvious that as delay time increases, the delay-bound violation

probability decreases. Also, it can be verified in Fig. 2 that the

delay bound derived from the martingale theory is very tight

to the real simulation results. Thus, it can be concluded that

the supermartingale delay bound is feasible to conduct accu-

rate delay performance analysis, especially in the URLLC

scenarios.

B. Optimal gi and Maximum Computation Capacity

We assume a ¼ 0:1, b ¼ 0:9, R ¼ 3:1 � 109 bps, T ¼
0:1 ms, and reliability " ¼ 10�9. To evaluate the channel

queueing delay time of nodes in different distances, Fig. 3

plots the delay curves when the channel cutoff threshold

varies. It is shown that the channel queueing time gradually

grows as the distance increases. This is due to the fact that

when the distance increases, the offloading rate, i.e., Ci in (5)

decreases. As the channel cutoff threshold go grows from 0.05

to 0.7, given the node’s distance, the channel queueing delay

time increases dramatically. Also it is obvious that all the

channel queueing time are below 0:1 ms when go ¼ 0:05; 0:1,
and 0.4. Fig. 3 reveals the fact that the distance di, which
determines the offloading rate in (5), and channel cutoff

threshold go, which determines the successful transmission

probability in (9), makes a profound impact on the channel

queueing delay performance.

Given the required time T ¼ 0:1 ms which includes the

channel queueing time and the computation time, as seen in

Fig. 3, when the cutoff channel threshold is smaller than 0.4,

the channel queueing delay time may meet the deadline

requirement. We assume 6 vehicular fog nodes with

di ¼ 4; 6; 8; 10; 12; and14 m away from the requester, the

same hardware architecture, i.e., k ¼ 10�11, and the maximum

energy Emax ¼ 10 w. Fig. 4 and Fig. 5 illustrate the bar plots

of the optimal tuning parameter g�
i and the maximum compu-

tation capacity Xmax
i of each node. Observing the two fig-

ures, it can be seen that the nodes which are closer to the

TABLE I
SIMULATION PARAMETERS

Fig. 2. Comparisons between the supermartingale delay bound and real
simulation results under the FIFO scheduling policy.

Fig. 3. Channel queueing time of nodes with increasing distances from
requesterR, when channel cutoff threshold go ¼ 0:05; 0:1; 0:4; and0:7.

Fig. 4. Optimal tuning parameter g�i , when channel cutoff threshold
go ¼ 0:05; 0:1; and 0:4.

1886 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 01:15:07 UTC from IEEE Xplore.  Restrictions apply. 



requester are allocated with higher tuning parameters gi, and

they have larger computation capacities.

In Fig. 4, when the channel cutoff threshold go increases, the
optimal tuning parameter of one vehicular node also increases.

That is due to the reason that, when go increases, according to

(9), the successful transmission probability decreases. This will

make the channel queueing delay time increase, and then make

the remaining computation time, i.e., T þ Xi decrease. Accord-

ing to (23), a smaller denominator leads to a larger g�
i .

In Fig. 5, it is observed that when the channel cutoff thresh-

old go increases, the maximum computation capacity of one

vehicular node decreases. This can be verified by simply

substituting (23) into (21).

Moreover, the variation of channel cutoff threshold can be

caused by the channel status variation. As shown in Fig. 5,

when channel cutoff threshold go grows, the maximum compu-

tation capacity of each node decreases. In this case, in order to

complete the computation task, more nodes may be involved.

C. Performance of the Energy Efficiency-Aware Scheme

In this subsection, we follow the same simulation setup

in Section IV-B, i.e., there are 6 vehicular fog nodes and

the channel cut off threshold is set to go ¼ 0:1.
ki ¼ ½1; 2; 3; 4; 5:062; 6� � 10�11. The computation task

which needs to be offloaded is X ¼ 3000 bits. By substitut-

ing X into (27), we can get the minimum demanding value

of
P

i2I d
�1
i ¼ 5:1962 � 104.

To verify the conclusion drawn in Theorem 3, Fig. 6(a)

plots d�1
i of each vehicular node. The d�1

i value of each node

is f2:8249; 1:9817; 1:6060; 1:3808; 1:2189; 1:1121g � 104. It

can be verified that set 1 with nodes fV3;V4;V5;V6g and set 2

with nodes fV1;V4;V6g have the same summations, i.e., d�1
3 þ

d�1
4 þ d�1

5 þ d�1
6 ¼ d�1

1 þ d�1
4 þ d�1

6 ¼ 5:3178 � 104. Fig. 6(b)
makes a comparison between the summation of two node sets

and the minimum demanding summation value. It can be seen

that set 1 and set 2 are all larger than the demanding value.

Thereby, the two sets can be chosen as candidates. Moreover,

by substituting the summation of d�1
i of the two sets into (25),

it can be verified that the two sets have the same energy effi-

ciency with a value of 571.1569. Thus, it can be verified that

the optimal solution in maximizing the energy efficiency is

not unique.

In this simulation, this carefully designed parameter ki
can be used to verify Theorem 3. We give the explicit val-

ues here to help readers calculate the minimum demanding

value and the summations of d�1
i in different sets. It can

Fig. 5. Maximum computation capacity of each node, when channel cutoff
threshold go ¼ 0:05; 0:1; and 0:4.

Fig. 6. d�1
i of each vehicular node, and the comparisons between the summa-

tion of fV3;V4;V5;V6g and fV1;V4;V6g, given go ¼ 0:1.

Fig. 7. Maximum computation capacity and energy efficiency of all the set
combinations among these 6 fog nodes, given go ¼ 0:1.

Fig. 8. Maximum computation capacity and energy consumption of all the
set combinations among these 6 fog nodes, given go ¼ 0:1.
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be noted that there are two different sets with the same

summation value, and further Theorem 3 can be validated.

Fig. 7 plots the maximum computation capacity and the cor-

responding energy efficiency of all the set combinations among

these 6 vehicular fog nodes. The curve with crosses denotes the

maximum computation capacity, and the corresponding Y-axis

is on the left hand side of Fig. 7. The curve with circles repre-

sents the energy efficiency, and the corresponding Y-axis is on

the right hand side of Fig. 7. There are totally 63 sets, the dotted

box highlights the candidate area, within which, the summation

of computation capacity is larger than the demanding capacity

X ¼ 3000 bits, the set with the maximum energy efficiency

can be found correspondingly.

D. Performance of the Energy Consumption-Aware Scheme

In this subsection, we follow the same simulation setup in

Section IV-C. To demonstrate the conclusions drawn in

Theorem 4 and Proposition 1, Figs. 8 and 9 depict the energy

consumption under different node set combinations.

Fig. 8 plots the maximum computation capacity and energy

consumption of all the set combinations among 6 vehicular

nodes. Note that in this scheme, the maximum computation

capacity is not the same as that in Fig. 7. This is due to the rea-

son that, in this scheme, the optimal g�
i is determined in (29)

which is associated to the chosen set I . However, in Fig. 7, g�
i

is determined by (23) which is associated with all the fog nodes.

Therefore, they have different g�
i , and further, they have differ-

entXmax
i according to (21). The dotted box highlights the can-

didate area. The set with the minimum energy consumption,

i.e., P1, is the optimal solution.

Fig. 9 plots the maximum computation capacity and the cor-

responding energy consumption followed by the rule in

Proposition 1. In specific, we sort the nodes with an increasing

order of di, and then compare the summation of d�1
i to the

threshold shown in (36). The computation capacity grows as

the node number increases, and the energy consumption also

increases. Since the demanding computation X ¼ 3000, the
first 3 nodes can meet the computation requirement. At the

same time, they can provide the minimum energy consumption.

Moreover, comparing Figs. 8 and 9, P1 in Fig. 8 has the

same value with P2 in Fig. 9. Observing Fig. 8, P1 is the

optimal solution among all the set combinations, and P2 is the

optimal solution using our proposed scheme. Thus, the opti-

mal solution can be found by the proposed scheme which is

easy to be implemented.

V. CONCLUSION

In this paper, we provide a new idea on task allocation in

vehicular fog networks. In order to realize the ITSs, queueing

delay, especially in the scenario requiring URLLC, is a non-

negligible issue. Due to its stochastic characteristics, queueing

delay time cannot be preciously calculated. The martingale the-

ory is utilized to analyze the queueing delay performance

instead. Thereby, we conduct researches on task allocation

problem in a vehicular fog computation offloading scenario

based on the martingale-theory-derived delay bound. The

requester needs to determine whether the demanding computa-

tions can be satisfied by the available computation resources,

and which nodes should be chosen to further optimize the

energy-aware performance. The optimal solution to maximize

the energy efficiency is not unique. Meanwhile, the optimal

solution to minimize the overall energy consumption is unique,

and can be constructed as a truncated-channel-inversion like

policy. Simulation results are provided to demonstrate effec-

tiveness of the proposed schemes.
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