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Abstract— Multi-access edge computing (MEC) has been
proposed to reduce latency inherent in traditional cloud com-
puting. One of the services offered in an MEC network (MECN)
is computation offloading in which computing nodes, with limited
capabilities and performance, can offload computation-intensive
tasks to other computing nodes in the network. Recently, mean-
field-type game (MFTG) has been applied in engineering applica-
tions in which the number of decision makers is finite and where
a decision maker can be distinguishable from other decision
makers and have a non-negligible effect on the total utility of the
network. Since MECNs are implemented through finite number
of computing nodes and the computing capability of a computing
node can affect the state (i.e., the number of computation tasks)
of the network, we propose non-cooperative and cooperative
MFTG approaches to formulate computation offloading prob-
lems. In these scenarios, the goal of each computing node is
to offload a portion of the aggregate computation tasks from
the network that minimizes a specific cost. Then, we utilize
a direct approach to calculate the optimal solution of these
MFTG problems that minimizes the corresponding cost. Finally,
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we conclude the paper with simulations to show the significance
of the approach.

Index Terms— Mean-field-type games, computation offloading,
multi-access edge computing networks.

I. INTRODUCTION

MOBILE cloud computing (MCC) offers cloud services
such as computing, caching, and communications to

mobile end users. These services are processed in the cloud
that might be geographically located far from the end users.
Consequently, MCC suffers from high latency that is not
acceptable in some applications. To alleviate this problem,
multi-access edge computing (MEC) has been proposed in
which the cloud services are provided at the edge network
located in proximity with the end users. Therefore, the move
of computing services from the cloud to the edge network
effectively reduces latency. Aside from low latency, other
benefits of MEC include proximity, high bandwidth, real-time
radio network information, and location awareness [1]. MEC
can be implemented through a network of computing nodes
distributed over a geographic area. These computing nodes
form the multi-access edge computing network (MECN) that
provides computing services to the end users.

Computation offloading is one of the main services provided
by an MECN where an end user equipment, such as a smart-
phone, can offload computation-intensive tasks, or portions
of it, to the MECN instead of performing the task locally.
The decision to offload depends on factors such as latency,
bandwidth, and energy consumption of the equipment. In the
literature, computation offloading has been formulated as a
game theoretic problem or an optimization problem with the
goal of minimizing the cost incurred by a mobile device or the
network subject to constraints such as computing power,
latency, and bandwidth. Many works in game theory focus
on modeling and optimizing wireless and communication
networks of competing and/or cooperating network entities [2].
Furthermore, game theory has been used to improve the per-
formance of wireless networks through efficient and effective
allocation of network resources [3].

Meanwhile, mean field games (MFGs), introduced by Lasry
and Lions in [4], have been applied in many applications in
economics and engineering. MFGs model the interaction of
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a decision maker with the collective behavior of other decision
makers in the game. In order to apply MFG, the assump-
tions made in the game include large number of decision
makers, anonymity and non-atomicity of decision makers [5].
Recent applications of MFG in engineering are power con-
trol in D2D networks [6], electric vehicle competition in
smart grids [7], security enhancements in mobile ad-hoc
networks [8], and power allocation in full-duplex ultra-dense
cellular networks [9]. However, there is a relaxed version of
MFG, called mean-field-type game (MFTG), in which the
assumptions made in MFG do not necessarily have to hold.

In this paper, the idea of computation offloading is extended
to offloading among computing nodes [10]. Specifically,
an MECN aggregates the computation tasks from the end
users and then it offloads portions of the aggregated tasks to
the computing nodes. Since an MECN can be implemented
through finite number of computing nodes where a comput-
ing node can have a significant effect on the utility of the
network, we propose non-cooperative and cooperative MFTG
approaches to computation offloading in MECN. In these
approaches, the goal of each computing node is to minimize
cost by controlling its own offloading strategy subject to the
state dynamics of the MECN. Each computing node does not
need to know the offloading strategy of other computing nodes
in order to determine its own offloading strategy. Instead,
a computing node only needs to know the mean field terms
that correspond to the aggregate effects of other computing
nodes to the network.

The contributions of this work are summarized as follows:
• We propose and formulate computation offloading as a

non-cooperative MFTG problem in which each comput-
ing node minimizes its own cost function subject to the
state dynamics of the network. In the non-cooperative
approach, the computing nodes operate in a decentralized
manner where each computing node can compute its own
computation offloading strategy without full knowledge
of the strategies of other computing nodes.

• We propose and formulate a cooperative MFTG problem
of computation offloading where the computing nodes
jointly minimize a global cost function subject to the state
dynamics of the network. In the cooperative approach,
the computing nodes operate in a centralized manner
where the network determines the offloading strategy of
each computing node that minimizes the cost incurred by
the edge network.

• We solve for the optimal computation offloading control
profile that minimizes the cost in each case using a direct
approach proposed in the literature. This approach does
not require solving coupled partial differential equations
which can be challenging. Instead, it involves calculation
of mean-field terms that represent the behavior of the
entire network.

• We design and propose the non-cooperative and coop-
erative MFTG computation offloading algorithms based
on the direct approach of solving MFTG computation
offloading problems. The non-cooperative algorithm is
implemented in a decentralized manner while the cooper-
ative algorithm is implemented in a centralized manner.

• We provide simulations that demonstrate the effectiveness
of the proposed MFTG-based algorithms as well as the
computation offloading behavior of a computing node
under varying conditions. Moreover, we compare the
proposed non-cooperative and cooperative MFTG com-
putation offloading algorithms with typical computation
offloading algorithms.

This work is organized as follows. Section II provides a
brief survey of works in computation offloading. In Section III,
the system model for computation offloading in an MECN
is presented. Next, computation offloading is formulated as
non-cooperative and cooperative MFTGs in Section IV. Then,
these MFTG problems are solved using a direct approach in
Section V. In Sections VI and VII, the proposed algorithms
for MFTG-based computation offloading and the performance
evaluation metrics are presented, respectively. Section VIII
provides simulations that demonstrate the results of utilizing
MFTG in computation offloading. Finally, the paper is con-
cluded in Section IX.

II. RELATED WORKS

Offloading of computation-intensive tasks from mobile
devices to MECNs has garnered a lot of interests in the
research community. In this section, we briefly describe some
these computation offloading methods.

Various game theoretic methods have been applied to model
computation offloading among many computing units. In [11],
the authors utilized a game theoretic approach to computation
offloading problem among mobile users in a multi-user, multi-
channel wireless MECN. Meanwhile, in order to utilize the
computation resources in the cloud, collaborative computation
offloading between the centralized cloud server and the MEC
servers was studied in [12].

Many research have jointly optimized computation offload-
ing with other network technologies and issues. The authors
of [13] formulated computation offloading among mobile
devices as a joint optimization of the radio and computation
resources that minimizes a user’s energy consumption while
satisfying latency requirements. An energy-efficient dynamic
offloading and resource scheduling formulated as a minimiza-
tion problem was investigated in [20]. In [21], interference
management was integrated in computation offloading and
formulated together as an optimization problem. To reduce
execution delay, computation offloading was integrated with
cache placement in MEC to store and share popular compu-
tation results to mobile users [22].

Several works have focused on integrating computation
offloading feature in networks involving wireless power.
Computation offloading in mobile cloud computing powered
by wireless energy transfer was studied in [19]. The authors
proposed the use of CPU-cycle statistics information and
channel state information to enforce policies that maximize
the probability of successful computation of data subject to the
energy harvesting and latency constraints. In [23], the authors
combined the concepts of MEC with wireless power transfer
so that the MEC access point can transmit wireless power to
mobile users which can be used for local computing. Then,
the authors of [14] proposed a Lyapunov optimization-based
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dynamic algorithm for MEC with energy-harvesting devices
that jointly decides on the offloading, CPU frequency, and
transmit power.

Energy-efficient computation offloading algorithms have
been the focus of several works as well. An energy-efficient
computation offloading scheme was proposed in [15] where
the energy consumption of the offloading system was min-
imized while still satisfying the latency requirements of the
tasks. Meanwhile, energy-efficient task offloading in software
defined ultra-dense network was investigated in [16].

Partial offloading where only a part of an application is
offloaded to computing entities has been studied by several
works. The authors of [17] considered partial offloading due
to limited bandwidth in wireless networks. Also, the authors
of [18] proposed a cooperative partial computation offloading
between cloud computing and MEC-enabled IoT.

Before concluding this section, we briefly discuss some
works involving MFTGs. In [24], energy storage problem in
a microgrid was formulated as an MFTG. The mean and
variance of the energy level were added to the cost function
and used MFTG to keep track and maintain the desired energy
level in the microgrid. Meanwhile, MFTG was utilized as a
particle filter for video-based vehicular tracking in Intelligent
Traffic Systems (ITS) [25]. A mean field term was included
in the formulation to provide accurate and robust state (i.e.,
vehicle position) prediction. In [26], MFTG was applied in
blockchain token economics. This work introduced variance in
the utility function to capture the risk of cryptographic tokens
associated with the uncertainties of technology adoption, net-
work security, regulatory legislation, and market volatility.

The main difference of this work is that computation
offloading in MECN has been formulated as an MFTG in
which each computing node has a desired level of computation
tasks it can handle. This level is dictated by the energy
consumption and computing capability of the computing node.
Moreover, this work utilizes a direct approach that does not
require solving coupled partial differential equations to solve
for the optimal computation offloading strategy of each com-
puting node. Lastly, we have considered both non-cooperative
and cooperative scenarios among the computing nodes.

III. SYSTEM MODEL

Fig. 1 shows the system model proposed in this paper. The
end user devices (EUs) offload computation-intensive tasks
that cannot be performed locally to the task aggregator (TA)
in the area or cell the EU is located. Each EU decides to
offload based on algorithms presented in the literature such
as in [27]. Then, the TA combines all the computation tasks
submitted by the EUs in the area. It organizes the computation
tasks to reduce redundancy and overloading of computation
tasks. Moreover, it performs a portion of the tasks and directly
sends the results to the corresponding EUs. Afterwards, the TA
offloads parts of the remaining aggregate computation tasks to
the edge computing nodes (ECNs) in the cell. Each ECN is
capable of performing computation-intensive tasks and is more
powerful than a typical mobile EU equipment. For instance,
a typical ECN has a computing power of about 10,000 to

Fig. 1. Proposed system model for computation offloading in MECNs.

100,000 times that of a mobile phone [28]. After the ECNs
perform their respective offloaded computation tasks, they
transmit the results to the requesting EUs.

Consider a cell of an MECN consisting of one TA and
a finite set N of ECNs with |N | = N . The time horizon
defined as t ∈ [0, T ] is finite, where T > 0 is the terminal
time. Let the network state x(t) be the number of aggregate
computation tasks to be offloaded by the TA to the ECNs
at time t. In addition, denote the network state dynamics
x′(t) = dx(t)/dt as the change or evolution of the number
of aggregate computation tasks with respect to time. Also,
let the admissible computation offloading control ui(t) be the
portion of x(t) offloaded by ECN i from the TA at time t. The
goal of each ECN i ∈ N is to determine its optimal control
u∗

i (t) that minimizes its cost, defined by a cost function Ji,
subject to network state dynamics x′(t).

In the following subsections, the cost function and network
state dynamics equation are presented. Important parame-
ters that influence the optimal control of an ECN are also
introduced.

A. Cost Functions

In this work, we assume that the ECNs follow a quadratic
cost function because of its desirable economic properties such
as monotonicity, concavity, and non-decreasing [29].

Let the consumed energy of ECN i per CPU cycle be
εi = κe,if

2
i [30], where κe,i is a constant depending on the

architecture of the CPU of ECN i and fi is the computing
capability (i.e., the number of CPU cycles per unit time)
of ECN i. To calculate the cost associated with the energy
consumed by a certain number of computation tasks, we define
the energy cost coefficient ei as the cost (per unit time) of
energy spent by computing node i per squared number of CPU
cycles,

ei = we,iε
2
i = we,i(κe,if

2
i )2, (1)

where the constant we,i is the weight or significance assigned
to energy consumption cost. A higher value of we,i means that
an ECN prioritizes minimizing its energy consumption.

Meanwhile, to calculate the cost corresponding to the exe-
cution or computation time of a certain number of computation
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tasks, we define the computation time cost coefficient τi as the
cost (per unit time) associated with execution time spent by
ECN i per squared number of CPU cycles,

τi =
wd,i

f2
i

, (2)

where the constant wd,i is the weight assigned by ECN i to
the computation time cost. A higher value of wd,i means that
ECN i prioritizes minimizing the cost from computation time.

Lastly, to quantify the cost earned by the TA from offloading
computation tasks to ECN i, we define the offloading cost
coefficient ρi as the cost (per unit time) incurred by the TA
per squared number of aggregate computation task. It takes
into account the cost not associated with computation by an
ECN i such as processing and transmission from the TA to
ECN i.

Combining these cost coefficients with the network state
x(t) and the control ui(t), we arrive at the follow-
ing running cost function that tells how much the cost
increases or decreases with time,

Li(x(t), ui(t), t) =
1
2
[
ρix

2(t) + (τi + ei)u2
i (t)

]
. (3)

Since the goal of computation offloading is to offload tasks
from the TA to the ECNs, we want to penalize the number
of computation tasks x(t) that remains at the TA at terminal
time T . That is, x(T ) is considered as a part of the cost to be
minimized. Since the cost at terminal time T is proportional
to the number of computation tasks x(T ), the terminal cost
function for ECN i is stated as

Φi(x(T ), T ) =
1
2
ρix

2(T ). (4)

In other words, it computes the cost incurred by ECN i based
on the network state x(t) at t = T .

B. Network State Dynamics Equation

The network state dynamics x′(t) refers to the evolution
of the network state x(t) with respect to time t. In our
computation offloading system model, x′(t) refers to the
dynamics or change in the number of aggregate computation
tasks at the TA with time. Let qin(t) be the incoming rate
of the computation tasks to the TA. Then, the number of
computation tasks x(t) at the TA is related, qin(t) = r0 x(t),
with r0 defined as

r0 =
R0

C0
=

1
C0

M∑
j=1

Bj log2(1 + γj),

=
1

C0

M∑
j=1

Bj

(
1 +

Pjg0,j

N0 + Ij

)
, (5)

where R0 is the maximum incoming rate of computation
task the TA handle and C0 is the capacity or the maximum
number of computation tasks the TA can store. Physically,
r0 is the frequency at which computation tasks arrive at the
TA. Meanwhile, R0 is the sum of the rates the TA receives
from M EUs, Bj is the channel bandwidth for EU j, and γj

is the signal-to-interference-plus-noise (SINR) ratio between

the TA and EU j, where Pj refers to EU j transmit power,
g0,j is the channel gain between the TA and EU j, N0 is the
background noise power, Ij is the interference noise power
experience by EU j.

On the other hand, the outgoing rate qout(t) of computation
task from the TA is affected by the computation offloading
control ui(t) of ECN i ∈ N . Hence, qout(t) =

∑N
i=1 riui(t)

with

ri =
Ri

Ci
=

Bi log2(1+γi)
Ci

=
Bi

Ci
log2

(
1+

Pigi,0

N0+Ii

)
, (6)

where Ri is the maximum outgoing rate of computation task
to ECN i, Ci is the capacity or the maximum number of
computation tasks ECN i can handle, and consequently, ri

is the frequency at which computation tasks arrive at ECN i.
In addition, Bi is the channel bandwidth of ECN i and γi

is the SINR between the TA and ECN i, where Pi is the
transmit power of ECN i, gi,0 is the channel gain between the
TA and ECN i, N0 is the background noise power, and Ii is
the interference power experienced by ECN i.

Since the total rate of computation task x′(t) = qin(t) −
qout(t), then the network state dynamics equation can be
written as

dx(t) =
(

r0x(t) −
N∑

i=1

riui(t)
)

dt, (7)

which is similar to the state dynamics equation used in [31].
To summarize, the cost function is affected by ui(t) since

the the cost depends on the number of tasks ECN i offloads
from the TA. On the other hand, the state dynamic equation
is affected by riui(t) since the change in the number of x(t)
depends on the rate riui(t) at which tasks are offloaded to
ECN i. Moreover, the linear state dynamic equation in (7) can
also represent a state dynamic equation of the form dx(t) =
f(t) dt through linearization at sampling time t = tn of the
function F (t) =

∫ t

0 f(s) ds,

F (t) = F (tn) +
∂F

∂t
|t=tn · (t − tn),

and the solution x(t) of (7),

x(t) = x(tn) +
∂x

∂t
|t=tn · (t − tn).

Consequently, f(tn) = ∂F
∂t |t=tn = ∂x

∂t |t=tn . For instance,
if x(t) = x0 eg(t), then f(tn) = ∂g

∂t |t=tn ·x(tn). If x(t) follows
a distribution function such as a Poisson process, then the state
dynamic equation dx(t) can model the transition between the
sampling times.

In the next section, we extend these formulations in order to
adapt an MFTG approach. The main feature of this method is
the addition of mean field terms in the cost functions and the
state dynamics equation so that each ECN aims to compute
for an optimal control u∗

i (t) that minimizes the variance of
the state of the network x(t) as well as the variance of its
control ui(t).
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IV. MEAN-FIELD-TYPE GAME PROBLEM FORMULATION

The theory of MFG, introduced in [4], [34]–[36], has been
used in a variety of applications which are formulated as
games among a large number of decision makers that aim
to optimize their own payoffs or cost functions subject to
a state dynamic equation. The main concept behind MFG
is that each decision maker determines its optimal strategy
(i.e., the strategy or action that optimizes its payoff or cost
function) based on an aggregate information about the states
of other decision makers. In other words, a decision maker
computes its optimal strategy based on a statistical distribution
of the states of other decision makers (i.e., a mean-field term)
instead on a full knowledge of the states of other decision
makers.

According to [5], most MFG models share the following
assumptions: (i) there are infinitely many decision makers,
(ii) the decision makers are indistinguishable, and (iii) a
decision maker has negligible effect on the global utility.
However, in engineering applications, these assumptions may
be difficult to prove. Consequently, a more relaxed MFTG
has been proposed in the literature. In MFTG, the number of
decision makers may be infinite or finite, the decision makers
may not be indistinguishable, and finally, a decision maker
may have a significant effect on the global utility. Applications
of MFTG include distributed power networks [37], network
security [38], and multilevel building evacuation [39].

In this section, we formulate computation offloading in
MECN as an MFTG. First, we derive the cost functions
to be minimized by an ECN. Then, we show the state
dynamics which is the differential equation constraint of the
minimization problem. The MFTG cost functions and state
dynamic equation contain mean field terms that quantify the
behavior or strategy of all the computing nodes. These terms
are added to the cost function so that each computing node
can minimize the variance in the network state as well as the
variance in computing node control. In the last subsection,
we state two MFTG computation offloading problems: a non-
cooperative MFTG problem where the ECNs minimize their
own cost function independently, and a cooperative MFTG
problem where the ECNs minimize a single global cost
function.

A. Preliminaries

The network state or state of the TA x(t) refers to the
number of aggregate computation tasks to be offloaded to the
ECNs. An admissible computation offloading control or strat-
egy ui(t) of ECN i refers to a portion of x(t) it can offload
from the TA, while the set Ui denotes the set of all admissible
controls of ECN i. Vector u(t) = [ui(t)]i∈N contains the

control of all the ECNs in the cell, while the vector u−i(t) =
[ui(t)]i∈N\i contains the control of all ECNs in the cell except
ECN i.

The following subsections present the cost functions and
state dynamic equation in an MFTG setting. The main differ-
ence in the formulations to follow is the inclusion of mean
field terms x̄(t) = E[x(t)] and ū(t) = E[u(t)]. Consequently,
a tilde ∼ is put on top of the MFTG cost function J̃i and state
dynamic function f̃ to differentiate them from their mean-
field-free counterparts. Afterwards, the resulting MFTG-based
computation offloading problems are stated.

B. Cost Functions

The total cost function J̃i(u) of ECN i consists of the
running cost function L̃i(x, u, x̄, ū, t), which corresponds to
the accumulated cost of ECN i for performing a portion
ui(t) of x(t), and the terminal cost function Φ̃i(x, x̄, T ),
which penalizes the computing node at terminal time t = T
depending on how far the network state x(t) is from a target
state (e.g., x(t) = 0, when all of the aggregate computation
tasks are offloaded). Mathematically,

J̃i(u) = E

[ ∫ T

0

L̃i(x, u, x̄, ū, t) dt + Φ̃i(x, x̄, T )
]
. (8)

However, the running cost L̃i(x, u, x̄, ū, t) for MFTG differs
from that in (3) since L̃i depends on the expected values of
the network state x̄(t) and the control ū. The expected values
have been included in the cost function because these values
are assumed to be known, and consequently, the difference to
these expected values, x(t) − x̄(t) and ui(t) − ūi(t). Hence,
E
[
L̃i(x, u, x̄, ū, t)

]
is given by (9) at the bottom of the page,

where ρ̄i, τ̄i and ēi refer to the mean of cost coefficients
defined in Section III-A.

Similarly, the terminal cost Φ̃i(x, x̄, T ) depends as well on
the expected value of the network state at time T so that the
goal of an ECN i is to minimize var[x(t)]

E
[
Φ̃i(x, x̄, T )

]
=

1
2

E
[
ρix

2(T ) + ρ̄ix̄
2(T )

]
,

=
1
2

E
[
ρi(x(T ) − x̄(T ))2 + (ρi + ρ̄i)x̄2(T )

]
,

=
1
2
(
ρivar[x(T )] + (ρi + ρ̄i)x̄2(T )

)
. (10)

The quadratic cost functions presented in this work refer
to the penalty incurred by the network through the ECNs
for executing a specific number of computation tasks. While
the ECNs are constrained in terms of their local energy con-
sumption and execution time through ei and τi, respectively,
the penalty allows the ECNs follow a network-wide algorithm

E
[
L̃i(x, u, x̄, ū, t)

]
=

1
2

E
[
ρix

2(t) + ρ̄ix̄
2(t) + (τi + ei)u2

i (t) + (τ̄i + ēi)ū2
i (t)

]

=
1
2

E
[
ρi(x(t) − x̄(t))2 + (ρi + ρ̄i)x̄2(t) + (τi + ei)(ui(t) − ūi(t))2 + (τi + τ̄i + ei + ēi)ū2

i (t)
]

=
1
2
(
ρivar[x(t)] + (ρi + ρ̄i)x̄2(t) + (τi + ei)var[ui(t)] + (τi + τ̄i + ei + ēi)ū2

i (t)
)

(9)
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that optimizes the network performance. Hence, the physical
meaning of the costs refers to the penalty set by the network
to the ECNs. These penalties are based on physical quantities
the computing nodes spend when performing computation
tasks. The number of computation tasks offloaded by each
ECN is limited by these penalties. Moreover, the costs are
also indicators of network performance since a low cost may
indicate a low terminal cost Φ̃i(x, x̄, T ) which means a low
number of un-offloaded tasks remain in the TA; also, a low
cost may indicate a low running cost L̃i(x, u, x̄, ū, t) which
means the ECNs execute the number of computation tasks that
satisfy their local energy and time constraints.

C. Network State Dynamics Equation

The network state dynamics x′(t) of refers to the evolution
of the state x(t) of the TA with respect to time t. In (7),
the network state dynamics is affected by the current network
state x(t) and the controls ui(t), ∀i ∈ N . Like in the MFTG
cost functions, the expected values x̄ and ū are included in
the MFTG state dynamic equation x′(t) so that the evolution
of the state can be formulated in terms of the deviation of
x(t) and u(t) from their respective expected values. Conse-
quently, the updated network state dynamics of a computation
offloading in an MFTG setting is

dx(t) = f̃(x, u, x̄, ū) dt + σ dW (t), (11)

where W (t) is a standard Wiener process, σ is a coefficient
that captures the randomness in the state dynamics, the drift
term f̃(x, u, x̄, ū, t) is given by

f̃(x, u, x̄, ū, t) = r0x(t) + r̄0x̄(t)

−
( N∑

i=1

riui(t) +
N∑

i=1

r̄iūi(t)
)

, (12)

and the coefficients are defined as r̄0 = E[R0
C0

] and r̄i =
E[Ri

Ci
] = E[Bi log2(1+γi)

Ci
]. The drift term can be written in

an equivalent form

f̃(x, u, x̄, ū, t)
= r0(x(t) − x̄(t)) + (r0 + r̄0)x̄(t)

−
( N∑

i=1

ri(ui(t) − ūi(t)) +
N∑

i=1

(ri + r̄i)ūi(t)
)

, (13)

which expresses the network state dynamics as the sum of
the mean fields x̄(t) and ūi(t) and the terms x(t) − x̄(t) and
ui(t)−ūi(t). In our computation offloading scenario, since we
keep track of the mean number of computation tasks x(t), then
we only need to know the difference x(t)− x̄(t) of the current
number x(t) from mean number x̄(t). The same principle is
applied with ui(t) and ūi(t).

D. Non-Cooperative Problem

Consider an MECN consisting of N ≥ 2 ECNs. Each ECN
is capable of offloading and performing computation tasks
from the TA. In addition, suppose the MECN implements
a non-cooperative scenario where each ECN computes its
offloading strategy by minimizing its own cost function. If the
cost function of ECN i is defined by (8), then in a non-
cooperative setting each ECN i tries to solve the MFTG
problem in (14) at the bottom of the page, where x̄(t) < +∞.
Any control u∗

i (t) that satisfies (14) is the best-response of
computing node i to (u−i, E[x(t)]).

Definition 1: Any control u∗
i (t) ∈ Ui satisfying (14) is

called a risk-neutral best-response control of computing node
i to the control u−i ∈ Πj∈NUj of the other computing nodes
j �= i.

The set of best-response controls of computing node i is
defined by BRi : Πj∈NUj → 2Ui , where 2Ui is the set
of subsets of Ui. Using the concept of best-response control
strategy, a Nash equilibrium of (14) is (u∗

i , u
∗
−i), where every

ECN i solves their best-response control u∗
i .

inf
ui∈Ui

J̃i(u) =
1
2

E

[ ∫ T

0

[
ρi(x(t) − x̄(t))2 + (ρi + ρ̄i)x̄2(t) + (τi + ei)(ui(t) − ūi(t))2 + (τi + τ̄i + ei + ēi)ū2

i (t)
]
dt

+ ρi(x(T ) − x̄(T ))2 + (ρi + ρ̄i)x̄2(T )
]

subject to dx(t) =
[
r0(x(t) − x̄(t)) + (r0 + r̄0)x̄(t) −

( N∑
i=1

ri(ui(t) − ūi(t)) +
N∑

i=1

(ri + r̄i)ūi(t)
)]

dt + σ(t) dW (t)

x(0) = x0 (14)

inf
ui∈Ui

J̃0(u) =
1
2

E

[ N∑
i=1

∫ T

0

[
ρi(x(t) − x̄(t))2 + (ρi + ρ̄i)x̄2(t) + (τi + ei)(ui(t) − ūi(t))2

+ (τi + τ̄i + ei + ēi)ū2
i (t)

]
dt + ρi(x(T ) − x̄(T ))2 + (ρi + ρ̄i)x̄2(T )

]

subject to dx(t) =
[
r0(x(t) − x̄(t)) + (r0 + r̄0)x̄(t) −

( N∑
i=1

ri(ui(t) − ūi(t)) +
N∑

i=1

(ri + r̄i)ūi(t)
)]

dt + σ(t) dW (t)

x(0) = x0 (16)
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Definition 2: A Nash equilibrium of the mean-field-type
game in (14) is a control profile (u∗

i , u
∗
−i), such that for every

computing node i,

J̃i(u∗
i , u

∗
−i) ≤ J̃i(ui, u

∗
−i), ∀ui ∈ Ui. (15)

E. Cooperative Problem

Suppose the ECNs try to jointly minimize a single

global cost function J̃0(u) = E[
∑N

i=1 J̃i(u)] where u =
(u1, . . . , uN) is the computation offloading control profile in
a cooperative setting. Then, the corresponding cooperative
MFTG problem is given in (16) at the bottom of the previous
page. Any control profile u∗ = (u∗

1, . . . , u
∗
N) that satisfies (16)

is a global optimum control profile that minimizes the global
cost function J̃0.

The next section provides the method proposed in [40]
to solve for a solution of linear-quadratic MFTGs such
as (14) and (16).

V. LINEAR-QUADRATIC MEAN-FIELD-TYPE GAME

SOLUTION USING A DIRECT METHOD

The MFTG problems defined in (14) and (16) are called
linear-quadratic MFTGs (LQ-MFTG) since the cost functional
is quadratic and the state dynamics is linear with respect to the
state and control. Because of their special form, the authors
in [40] proposed a direct approach in computing the opti-
mal control u∗

i (t) of LQ-MFTG. The proposed method can
solve an LQ-MFTG without solving coupled partial differen-
tial equations. The authors proved that the proposed direct
approach to LQ-MFTG yields the same solution as an analyt-
ical approach. Based on this method, this section presents the
main concepts in deriving the solution for the non-cooperative
and cooperative MFTG problems introduced in the previous
section. The solution u∗

i (t) to each problem refers to the
computation offloading control or the number of computation
tasks u∗

i (t) ECN i must offload from the TA in order to
minimize the corresponding cost of the problem. In other
words, the optimal control is the number of computation tasks
to be offloaded by an ECN such that the penalty incurred by
the network due to the number of executed computation tasks
by the ECN and the remaining tasks at the TA are minimized.

A. Non-Cooperative Solution

The direct method for the LQ-MFTG problem starts with
choosing a guess cost functional φi(x, t). Since the cost func-
tional Ji is quadratic, the corresponding φi(x, t) is quadratic
as well,

φi(x, t) =
1
2
αi(x − x̄)2 +

1
2
βix̄

2 + γix̄ + δi,

where αi, βi, γi, and δi are restricted to time-invariant
coefficients for [0, T ].

Then, apply the Ito’s formula in (17) at the bottom of
the page for a drift-diffusion process to φi(x, t) with t = T .
The next step is to compute and substitute the partial deriv-
atives ∂tφi, ∂xφi, and ∂xxφi to φi(x(T ), T ) and take its
expectation, E[φi(x(T ), T )−φi(x(0), 0)]. Afterwards, the gap
J̃i − E[φi(x(0), 0)] is calculated.

Finally, the optimal control u∗
i is derived from

minui∈Ui J̃i(u) using the appropriate optimality principles.
A control ui is called a feedback control if it is a function
of time t and the state x(t). To compute the best-response
control u∗

i of computing node i to feedback strategies
uj, j �= i, complete the square of the gap J̃i − E[φi(x(0), 0)]
as shown in (18) at the bottom of the page.

Consequently, the equivalent objective functional becomes

inf
ui∈Ui

J̃i =
1
2
αi(0)var[x(0)] +

1
2
βi(0)(E[x(0)])2

+
1
2

E

[ ∫ T

0

σ2(t)αi(t) dt
]
. (19)

Using this equivalent objective functional, we arrive at the
following theorem for its optimal control u∗

i .
Theorem 1: Let the cost functional J̃i(u) of an LQ-MFTG

problem take the form φi(x, t) = 1
2αi(x− x̄)2+ 1

2βix̄
2+γix̄+

δi, where αi, βi, γi, and δi are constants. Then, the optimal
control u∗

i (t) associated with the problem is given by

u∗
i (t) =

ri

τi + ei
αi(x − x̄) +

ri + r̄i

τi + τ̄i + ei + ēi
βix̄, (20)

where the constants αi and βi solve the following equations,
respectively,

r2
i

τi + ei
α2

i + 2
( N∑

j=1,j �=i

r2
j

τj + ej
αj − r0

)
αi − ρi = 0,

(ri + r̄i)2

τi + τ̄i + ei + ēi
β2

i + 2
( N∑

j=1,j �=i

(rj + r̄j)2

τj + τ̄j + ej + ēj
βj

−(r0 + r̄0)
)

βi − (ρi + ρ̄i) = 0,

(21)

and the mean field term x̄(t) is given by

x̄(t) = x̄(0)e
�

t
0

(
(r0+r̄0)−

�N
i=1

βi(ri+r̄i)
2

τi+τ̄i+ei+ēi

)
ds

, (22)

and ūi has been expressed as βi(ri + r̄i)/(τi + τ̄i + ei + ēi)x̄.

φi(x(T ), T ) = φi(x(0), 0) +
∫ T

0

(
∂tφi + f̃(x, u, x̄, ū, t)∂xφi +

σ2

2
∂xxφi

)
dt +

∫ T

0

σ(t)∂xφi dW (t) (17)

J̃i − E[φi(x(0), 0)] =
1
2

E

[ ∫ T

0

(τi + ei)
(
ui − ūi − ri

τi + ei
αi(x − x̄)

)2

dt

]
+

1
2

E

[ ∫ T

0

σ2αi dt

]

+
1
2

E

[ ∫ T

0

(τi + τ̄i + ei + ēi)
(
ūi − βi

ri + r̄i

τi + τ̄i + ei + ēi
x̄
)2

dt

]
(18)
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Proof: The optimal control u∗
i is obtained by minimizing

the following terms with respect to control ui and ūi,

∂

∂ui

[
(τi + ei)

(
ui − ūi − ri

τi + ei
αi(x − x̄)

)2

+ (τi + τ̄i + ei + ēi)
(

ūi − βi
ri + r̄i

τi + τ̄i + ei + ēi
x̄
)2

]
= 0,

which yields ui = ri

τi+ei
αi(x − x̄) + ūi, where ūi = βi(ri +

r̄i)/(τi + τ̄i + ei + ēi)x̄. Meanwhile, the mean field x̄(t)
is derived by taking the expectation of the state dynamic
equation in (14) and then solving the resulting differential
equation for x̄(t).

Theorem 1 states that the optimal number of computation
tasks ECN i must offload from the TA in a non-cooperative
scenario is given in (20). This number minimizes the cost
incurred by ECN i where αi and βi satisfy the conditions
(21), and the mean field x̄(t) satisfies (22). We can say that
u∗

i (t) not only depends on x(t) but also on how much x(t)
exceeds x̄(t). Moreover, αi and βi reflect the weights of how
much u∗

i (t) depends on x(t) − x̄(t) and x̄(t), respectively.

B. Cooperative Solution

To obtain the global optimum solution to the cooperative
LQ-MFTG problem in (16), we follow the procedure stated
in the previous subsection. Hence, the LQ-MFTG problem in
(16) is equivalent to

inf
u1,...,uN

J̃0 =
1
2
α0(0)var[x(0)] +

1
2
β0(0)(E[x(0)])2

+
1
2

E

[ ∫ T

0

σ2(t)α0(t) dt
]
. (23)

The corresponding optimal control u∗
i (t) is given by the

following theorem.
Theorem 2: Let the cost functional J̃0(u) of an LQ-MFTG

problem take the form φ0(x, t) = 1
2α0(x−x̄)2+ 1

2β0x̄
2, where

α0 and β0, are constants. Then, the optimal control u∗
i (t)

associated with the problem is given by

u∗
i (t) =

ri

τi + ei
α0(x − x̄) +

ri + r̄i

τi + τ̄i + ei + ēi
β0x̄, (24)

where the constants α0 and β0 solve the following equations,
respectively,

( N∑
i=1

r2
i

τi + ei

)
α2

0−2r0α0−ρ0 = 0,

( N∑
i=1

(ri + r̄i)2

τi + τ̄i + ei + ēi

)
β2

0 − 2(r0 + r̄0)β0−(ρ0+ρ̄0) = 0,

(25)

and the mean field term x̄(t) is given by

x̄(t) = x̄(0)e
�

t
0

(
(r0+r̄0)−β0

�N
i=1

(ri+r̄i)
2

τi+τ̄i+ei+ēi

)
ds

, (26)

and ūi has been expressed as β0(ri + r̄i)/(τi + τ̄i + ei + ēi)x̄.

Proof: The optimal control u∗
i is obtained by minimizing

the following terms with respect to control ui and ūi,

∂

∂ui

[
(τi + ei)

(
ui − ūi − ri

τi + ei
α0(x − x̄)

)2

+ (τi + τ̄i + ei + ēi)
(

ūi − β0
ri + r̄i

τi + τ̄i + ei + ēi
x̄
)2

]
= 0,

which yields ui = ri

τi+ei
α0(x − x̄) + ūi, where ūi = β0(ri +

r̄i)/(τi + τ̄i + ei + ēi)x̄. Meanwhile, the mean field x̄(t)
is derived by taking the expectation of the state dynamic
equation in (16) and then solving the resulting differential
equation for x̄(t).

Theorem 2 states that the optimal number of computation
tasks ECN i must offload from the TA in a cooperative
scenario is given by (24). This number minimizes the cost
incurred by ECN i where α0 and β0 satisfy (25), and the
mean field x̄(t) satisfies (26). We can conclude that u∗

i (t) not
only depends on x(t) but also on how much x(t) exceeds
x̄(t). Moreover, α0 and β0 capture how dependent u∗

i (t) is on
x(t) − x̄(t) and x̄(t), respectively.

VI. MEAN-FIELD-TYPE GAME-BASED COMPUTATION

OFFLOADING ALGORITHMS

This section presents the proposed algorithms that imple-
ment the MFTG-based computation offloading developed in
the previous sections. A non-cooperative algorithm based on
Theorem 1 is designed to simulate a scenario when the ECNs
decide to minimize their own cost function. The algorithm
can be implemented in a decentralized manner where each
ECN decides for itself the optimal number of tasks to offload
from the TA. Meanwhile, a cooperative algorithm based on
Theorem 2 is designed for situations when the ECNs decide
to minimize a global cost function. The algorithm can be
implemented in a centralized manner where the TA decides for
every ECN the optimal number of tasks to offload to the ECN.
The proposed MFTG-based algorithms calculate the optimal
solution u∗

i (t) that corresponds to the portion of computation
tasks that each ECN must offload in order to optimize its
cost. As illustrated in Section VIII, these algorithms improve
the system cost and benefit-cost ratio of the local computing
and dynamic greedy algorithms for computation offloading.
Thus, the proposed MFTG-based algorithms can improve the
targeted network performance.

Fig. 2 illustrates the general procedure involved in the
proposed algorithms. First, each ECN i determines its own cost
coefficients ri, τi, and ei. Then, in the non-cooperative setting,
ECN i computes the state and mean-state coupling coefficients
αi and βi, while in the cooperative setting, the TA determines
α0 and β0. These coefficients capture the effect of the state
and mean-state to the optimal computation offloading control.
At the same time, the TA determines the state x(t) and mean-
state x̄(t). Finally, the TA offloads a number of computation
tasks to ECN i based on u∗

i (t). The non-cooperative algorithm
emulates a decentralized approach in which each ECN deter-
mines its own u∗

i (t), while the cooperative algorithm follows
a centralized approach in which the TA determines u∗

i (t) of
each ECN.
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Fig. 2. Illustration of the proposed MFTG computation offloading algorithms.

These algorithms require a sample period Ts and number
of samples M , instead of a specified terminal time T . One
main reason for this requirement is to avoid network parameter
updates every time t, which can now be done every Ts.
In addition, the cell dimension L and the number of ECNs
N are required as well. The location of each node in the cell
is limited within the area defined by [0, L] × [0, L]. The TA
is located at z0 = [L/2, L/2], while the location zi of each
ECN i is distributed randomly in the area. In addition, for each
ECN i, its computing capability fi, cost weights wd,i and we,i

are also defined.

A. Non-Cooperative Computation Offloading

Since the non-cooperative solution using the direct approach
stated in Theorem 1 assumes that each ECN has knowledge
about the other ECNs, it has to be simplified in order to be
implemented more practically. Let

λ̄ =
1
N

∑
j∈N

r2
j

τj + ej
αj =

1
N

∑
j∈N

λj ,

μ̄ =
1
N

∑
j∈N

(rj + r̄j)2

τj + τ̄j + ej + ēj
βj =

1
N

∑
j∈N

μj .

Then, it follows that∑
j∈N\i

λj = Nλ̄ − λi,

∑
j∈N\i

μj = Nμ̄ − μi. (27)

Consequently, (21) can be rewritten as

r2
i

τi + ei
α2

i + 2
(
Nλ̄ − λi − r0

)
αi − ρi = 0,

(ri + r̄i)2

τi + τ̄i + ei + ēi
β2

i + 2
(
Nμ̄ − μi − (r0 + r̄0)

)
βi

−(ρi + ρ̄i) = 0.

(28)

Algorithm 1 Non-Cooperative MFTG Computation
Offloading
1: Set M , Ts, L, N , zi, fi, we,i, and wd,i, ∀i ∈ N .
2: Initialize ē

(0)
i , τ̄

(0)
i , r̄

(0)
i , ρ̄

(0)
i , λ̄, and μ̄.

3: for m = 1 to M do
4: for each ECN i in N do
5: Compute ei, τi, ri using (1), (2), and (6), respectively.

Compute αi, βi using (28).
6: for each t in 0 ≤ t ≤ Ts do
7: Observe and measure x(t). Calculate x̄(t) using (22).

Calculate u∗
i (t) using (20).

8: end for
9: Update

ē
(m)
i = 1

m (ei + (m − 1)ē(m−1)
i ),

τ̄
(m)
i = 1

m (τi + (m − 1)τ̄ (m−1)
i ),

r̄
(m)
i = 1

m (ri + (m − 1)r̄(m−1)
i ),

ρ̄
(m)
i = 1

m (ρi + (m − 1)ρ̄(m−1)
i ).

10: Update λ̄ and μ̄ using (27).
11: end for
12: end for

Meanwhile, the mean values r̄i, τ̄i, ēi, and ρ̄i can be found
using the law of large numbers. It states that a sample average

S̄m =
1
m

(y1 + · · · + ym),

converges to the expected value ȳ = E[y] as m → ∞. Hence,
the relationship between the parameters ri, τi, ei, and ρi and
their respective expected values is given by

lim
m→∞

1
m

(ri,1 + · · · + ri,m) = r̄i,

lim
m→∞

1
m

(τi,1 + · · · + τi,m) = τ̄i,

lim
m→∞

1
m

(ei,1 + · · · + ei,m) = ēi,

lim
m→∞

1
m

(ρi,1 + · · · + ρi,m) = ρ̄i, (29)

∀i ∈ N .
As a result, Algorithm 1 shows the non-cooperative compu-

tation offloading algorithm based on Theorem 1. After setting
up some network parameters, each ECN i needs to initialize
r̄i, τ̄i, ēi, λ̄, and μ̄. Then, each ECN i determines ri, τi, and ei.
Also, each ECN i estimates αi and βi using (21). Meanwhile,
the TA broadcasts x(t) and x̄(t) to the ECNs. Consequently,
each ECN i can now calculate and offload from the TA the
optimal offloading portion u∗

i (t) that minimizes their own cost.
Lastly, ECN i updates r̄i, τ̄i, ēi, λ̄, and μ̄.

B. Cooperative Computation Offloading

Algorithm 2 implements the cooperative computation
offloading based on Theorem 2. It starts with setting up some
network parameters. Then, each ECN i initializes parameters
such as r̄i, τ̄i, and ēi and transmits them to the TA. Next,
the TA computes α0 and β0 based on (25). Afterwards, the TA
can now compute the optimal offloading control u∗

i (t) of each
ECN based on the values of x(t) and x̄(t). Then, the TA
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Algorithm 2 Cooperative MFTG Computation Offloading
1: Set M , Ts, L, N , zi, fi, we,i, and wd,i, ∀i ∈ N .
2: Initialize ē

(0)
i , τ̄

(0)
i , and r̄

(0)
i .

3: for m = 1 to M do
4: for each ECN i in N do
5: Compute ei, τi, and ri using (1), (2), and (6), respec-

tively. Compute α0 and β0 using (25).
6: for each t in 0 ≤ t ≤ Ts do
7: Observe and measure x(t). Calculate x̄(t) using (26).

Calculate u∗
i (t) using (24).

8: end for
9: Update

ē
(m)
i = 1

m (ei + (m − 1)ē(m−1)
i ),

τ̄
(m)
i = 1

m (τi + (m − 1)τ̄ (m−1)
i ),

r̄
(m)
i = 1

m (ri + (m − 1)r̄(m−1)
i ).

10: end for
11: end for

offloads the corresponding number of computation tasks to
each ECN i. Finally, the TA updates r̄i, τ̄i, and ēi.

VII. PERFORMANCE EVALUATION

A. Baseline Approaches

To be able to evaluate the performance of the MFTG
computation offloading algorithms proposed in this work,
we compare them with two typical algorithms in computation
offloading. The first algorithm is the local computing based
on [14]. It finds the number of computation tasks x0(t) that
can be executed locally in the TA such that it satisfies the
required deadline d0, x0(t)/f0 < d0. The cost function of the
TA for local computing is defined by

Jlo = E

[ ∫ T

0

(wd,0τlox0(t) + we,0elox0(t)) dt

]
, (30)

where τlo = 1/f0 refers to the number of time to execute
a unit of computation task, elo = κef

2
0 refers to the energy

consumption per unit of computation task, and the constants
wd,0 and we,0 refer to the weights given by the TA to energy-
and time-efficient optimization, respectively.

Another baseline algorithm used in this work is the dynamic
greedy algorithm based on [14]. This algorithm finds the
number of computation tasks xi(t) to be offloaded to ECN i
that satisfies xi(t)/fi < di where di is the deadline associated
with xi(t). The cost function of ECN i for dynamic greedy
computing is defined by

Jdg,i = E

[ ∫ T

0

(wd,iτdg,ixi(t) + we,iedg,ixi(t)) dt

]
, (31)

where τdg,i = 1/fi refers to the number of time to execute
a unit of computation task, edg,i = κef

2
i refers to the energy

consumption per unit of computation task, and the constants
wd,i and we,i refer to the weights given by ECN i to energy-
and time-efficient optimization, respectively.

To bridge the gap between the baseline algorithms with lin-
ear cost functions and the proposed MFTG-based algorithms
with quadratic cost functions, a quadratic term is added to the

linear costs so that

Jlo = E

[ ∫ T

0

(a1ξ0 x0(t) + a2ξ
2
0 x2

0(t)) dt

]
,

Jdg,i = E

[ ∫ T

0

(a1ξixi(t) + a2ξ
2
i x2

i (t)) dt

]
, (32)

where ξ0 = wd,0τlo + we,0elo, ξi = wd,iτdg,i + we,iedg,i, a1

and a2 as constants with a2 
 a1.

B. Performance Metrics

The following metrics are calculated in order to compare
the performance of the computation offloading approaches
presented in this paper.

An offloading control fraction pi(t) is the ratio between
the offloading control ui(t) and the state x(t) of the TA,
pi(t) = ui(t)/x(t). Consequently, an optimal offloading
control fraction p∗i (t) is written mathematically as

p∗i (t) =
u∗

i (t)
x(t)

, (33)

where u∗
i (t) is the optimal offloading control of ECN i.

The two main parameters in the MFTG formulation of
computation offloading that limit the control of an ECN
are energy consumption and computation or execution time.
Consequently, the performance of the computation offloading
methods are evaluated through energy efficiency and time
efficiency. By efficiency, we mean how much computation
tasks are executed per unit of network resource. Hence, energy
efficiency is defined as the ratio between the number of
computation tasks and the associated energy consumption. For
an MECN with N ECNs, the network energy efficiency is
written as

ηe =
x(t)∑N

i=1 κe,if2
i ui(t)

, (34)

where the ratio is taken between the total number of tasks at
the TA and the total energy consumed by all the ECNs.

Meanwhile, time efficiency refers to the ratio between the
number of computation tasks and the corresponding compu-
tation or execution time spent. For an MECN with N ECNs,
the network time efficiency is given by

ηd =
x(t)∑N

i=1
ui(t)

fi

, (35)

where the ratio is taken between the total number of tasks
at the TA and the cumulative computation time of the tasks
through the ECNs.

System cost is another way of comparing the computation
offloading methods. It consists of the computation offloading
cost and the overhead cost associated with each computation
offloading algorithm. For both MFTG approaches, overhead
exists between an ECN and the TA. Thus, the system costs
for the non-cooperative and cooperative MFTG methods are
given by

Cnc =
N∑

i=1

(
J̃i + 2δiθi,0

)
,

Cco = J̃0 +
N∑

i=1

2δiθi,0, (36)
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where δi is the cost associated per overhead while θi,0 is the
number of overhead between ECN i and the TA. For the local
computing algorithm, since the TA does not collaborate with
any computing nodes, the overhead is zero. In the dynamic
greedy offloading, overhead exists not only between the TA
and ECNs but also between any two ECNs. Thus, the system
costs for these two baseline approaches are

Clo = Jlo,

Cdg =
N∑

i=1

(
Jdg,i + Nδdg,iθdg,i

)
, (37)

where δdg,i is the cost associated per overhead while θdg,i,

is the number of overhead from ECN i to another computing
node. In this work, overhead refers to the delay associated
with the transmission time of overhead messages between an
any two computing nodes. For an overhead message of length
b, the transmission time is b/r, where r is the rate at which
the message is transmitted.

Lastly, to be able to compare the computational overhead
and benefits of the proposed algorithms, we perform a benefit-
cost analysis on the proposed algorithms as well as the typical
algorithms in computation offloading. The metric we used to
compare the algorithms is called the benefit-cost ratio B/C.
The benefit B of each algorithm is the weighted sum of the
energy and time efficiencies

B = wdηd + weηe, (38)

where the constants wd and we denote the weights given to
the efficiencies and wd + we = 1. The cost C used for each
algorithm is the system cost defined previously.

VIII. SIMULATION RESULTS AND DISCUSSION

A. Simulation Setup

The simulations in this paper can be extended to networks
containing multiple cells assuming that each cell operate
independently of each other. That is, the TA of a cell can
offload tasks only to ECNs located in its cell. Moreover,
the interference between cells are minimized using techniques
such as FDMA and SDMA. In addition, each simulation has
been performed over 100 iterations and the average of the
results has been drawn in each figure.

Consider one network cell with an area of 150 × 150 m2

containing one TA located at the center of the cell. The
number of ECNs has been varied from 2 to 20. The location
of each ECN is randomly distributed within the cell. Fig. 3
shows the locations of the ECNs for the sparse MECN with
N = 5 and the dense MECN with N = 20 utilized in the
following simulations. The end users are located randomly
within the cell. The number of end users are set at 50. The
computation tasks arrive at the TA randomly, and the users are
assumed to submit an average of 5 Tcycles of computation
tasks.

Assume that the TA has a transmit power of 100 mW,
a maximum incoming rate of computation task R0 =
10 Gbps, and a maximum capacity C0 of 10 Tb worth of

Fig. 3. Location of the ECNs.

Fig. 4. Optimal offloading control of the ECNs in time domain.

computation tasks. Meanwhile, the computing nodes have
a transmit power pi of 100 mW, capacity Ci of 100 Gb
worth of computation tasks. The computing capability fi of
each computing node is randomly selected from 10, 12, and
14 Tcycles/s. The cost weights wd,i and we,i for the com-
putation time and energy consumption are both set to 0.5.
For SINR γi computations, the channel gain model used
between any two nodes i and j is gi,j = d−α

i,j where di,j

denotes the distance between the two nodes and the path loss
exponent α = 4. Meanwhile, the background noise N0 is set
at −100 dBm. The quadratic cost constants for the baseline
algorithms are set at a1 = 0.9 and a2 = 0.1.

B. Optimal Offloading Control

In the first of part the simulations, the optimal offloading
control u∗

i (t) of ECN i based on the feedback controls u∗
−i(t)

of other ECNs is computed using the MFTG computation
offloading algorithms. Fig. 4 shows the plots of u∗

i (t) for the
sparse MECN in both non-cooperative and cooperative MFTG
scenarios as well as the number of computation tasks x(t) at
the TA. We can conclude from this figure that the two MFTG
algorithms divide the computation tasks at the TA to the ECNs
differently.

The partition of computation tasks among the ECNs is
shown in Fig. 5 where each color denotes the particu-
lar share of an ECN. Fig. 5a shows the average percent-
age of offloaded computation tasks from the TA to each
ECN i in the sparse and dense MECN. In the sparse
MECN, the non-cooperative MFTG approach distributes the
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Fig. 5. Partition of aggregate computation tasks for each ECN.

tasks more evenly than the cooperative approach. Mean-
while, in the dense MECN, the distribution of tasks is more
similar between the two MFTG offloading algorithms. The
figure also implies that the offloading controls change accord-
ingly when the number of ECNs is varied. Meanwhile, Fig. 5b
presents the energy consumption per cycle of each ECN, and
Fig. 5c shows the computation time per cycle contributed by
each ECN.

Next, the effects of computing capability fi and the cost
weights wd,i and we,i of ECN i to its optimal control u∗

i (t)
are investigated. While Fig. 6 shows u∗

i (t) as a fraction of
x(t) averaged over time for ECN 1, the analyses that follow

Fig. 6. Effect of computing capability and cost weights to the optimal
computation offloading control.

can be generalized to any ECNs. From the figure, it can
be noticed that as the computing capability fi of an ECN
increases, the average percentage of aggregate computation
task it offloads rises up to a certain point, then it decreases. The
reason for this trend is the compromise between minimizing
computation time and energy consumption. When fi is low,
the energy consumption of ECN i is also low; however,
the computation time to execute the offloaded tasks is high.
As fi becomes higher, the energy consumption of an ECN
increases while the computation time to execute the offloaded
tasks becomes lesser.

Meanwhile, as computation time is given more weight by
increasing its weight from 0.1 to 0.9, the curve shifts to the
right. This means that as an ECN prioritizes minimizing com-
putation time, the computing capability at which it can afford
to offload the highest percentage of the aggregate computation
task increases. However, as more weight is given to energy
consumption from 0.1 to 0.9, the curve shifts to the left. That
is, to lower the energy consumption of an ECN, the computing
capability at which its offloading percentage is at the highest
decreases.

In summary, an ECN with lower computing capabil-
ity offloads more from the TA if minimizing the energy
consumption is more critical, as shown by the red curves.
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Fig. 7. Average network efficiency of the computation offloading algorithms.

However, if the priority is to minimize computation time, then
an ECN with higher computing capability offloads more from
the TA, as shown by the blue curves.

C. Network Efficiency

The energy efficiency ηe using different computation
offloading approaches are compared in Fig. 7a. From the
figure, the cooperative MFTG (CMFTG) approach has better
ηe than the non-cooperative MFTG (NCMFTG) approach.
However, both MFTG algorithms have higher ηe than the
local and dynamic greedy algorithms. This is one of the
reasons that justifies the significance of computation offloading
in MECN.

Meanwhile, the time efficiency ηd of the network under
different computation offloading approaches are displayed
in Fig. 7b. We can conclude from the figure that MFTG
computation offloading approaches maintain a competitive ηd

against the dynamic greedy algorithm.
Hence, we can conclude that the MFTG offloading

algorithms can be as efficient as the dynamic greedy
algorithm which requires full knowledge of the charac-
teristics of all the ECNs. In the following subsection,
we compare the system costs of the computation offloading
algorithms.

Fig. 8. Average network cost of the computation offloading algorithms.

Fig. 9. Benefit-cost ratio of the computation offloading algorithms.

D. System Cost and Benefit-Cost Ratio

Fig. 8 presents the system cost sustained by each compu-
tation algorithm investigated in this work. The system cost of
the dynamic greedy approach is higher than both the MFTG
approaches because the overhead required to implement the
greedy algorithm is larger than the overhead required by the
MFTG approaches. The system cost of the local computing
approach is shown for comparison purposes even though it
does not require the use of ECNs. Between the two MFTG
approaches, the cooperative approach has lower system cost
than the non-cooperative approach when the number of ECNs
is lower. However, as the number of ECNs increases, the sys-
tem cost of the non-cooperative approach becomes lower than
that of the cooperative approach.

Fig. 9 shows the benefit-cost ratio B/C for each com-
putation offloading approaches. We can conclude that the
non-cooperative MFTG approach has the best B/C, fol-
lowed by the cooperative MFTG approach. The benefits of
the MFTG approaches are contributed by the energy- and
time-efficient partition of computation tasks as well as the
low number of network overhead required to implement the
offloading.

Moreover, we can tell that the system cost and benefit-cost
ratio of the local computing and dynamic greedy algorithms
with quadratic cost (QC) are almost equivalent to the system
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cost and benefit-cost ratio of the original linear cost (LC).
Therefore, we can conclude that the form of the cost function
does not affect the performance of the algorithms significantly
since the main difference between the cost functions of the
proposed work and the baseline algorithms is the overhead
cost.

IX. CONCLUSION

Multi-access edge computing networks (MECN) reduce the
latency inherent in cloud computing networks by performing
the tasks in an edge network near the network users rather
than in a cloud network. Computation offloading is one of the
services in an MECN in which computation-intensive tasks
in a computing node may be offloaded to other computing
nodes in the network. In this work, computation offloading
problem has been formulated using mean-field-type game
(MFTG). Then, non-cooperative and cooperative computation
offloading algorithms have been proposed. These algorithms
search for the optimal computation offloading controls of
each computing node in an MECN. The non-cooperative
algorithm is a decentralized approach since each computing
node determines its own offloading control. Nevertheless,
the cooperative algorithm is a centralized approach in which
the network determines the offloading control of each com-
puting node. Lastly, the simulation results have indicated that
MFTG is an effective way to model computation offloading
in MECNs.
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