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Abstract—Unmanned aerial vehicles (UAVs) can be conveniently
deployed for environmental monitoring, firefighting, disaster res-
cue, and so on. However, the utmost challenge is how to transfer the
important and urgent information to the control center as quick as
possible in face of communication and computation constraints. As
one of the promising technologies, mobile edge computing (MEC)
technology can be deployed on UAVs to support computation-
intensive and latency-critical applications. Therefore, a joint com-
munication and computation optimization model is established
for a MEC enabled UAV network, which includes a centralized
MEC enabled top-UAV and a swarm of distributed bottom-UAVs.
Using stochastic geometry, the successful transmission probability
results for a single link and a group of links are derived based on
the three-dimensional distribution of UAV swarm. Moreover, the
optimal response delay is theoretically achieved with the closed-
form solutions by using stochastic geometry and queueing theory.
In contrast to the conventional UAVs without MEC capabilities,
the optimal response delay is achieved by using our proposed
joint communication and computation optimization algorithm in
the MEC enabled UAV swarm scenario. The performances of the
proposed algorithm are evaluated based on the results from the
simulation system and the hardware testbed.

Index Terms—Mobile edge computing, stochastic geometry,
queueing theory, unmanned aerial vehicle.

I. INTRODUCTION

A S PREDICTED by METIS project [1], the worldwide mo-
bile traffic will increase by 33 times in 2020 compared with

that of 2010. Due to the flexible moving capability, unmanned
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aerial vehicles (UAVs) are considered as an important technol-
ogy for future wireless networks like areal access networks,
which can support various applications, such as surveillance,
aerial photography, and disaster rescue (such as Notre Dame
fire rescue) [2]. With the fast development of millimeter wave
(mmWave) technology, UAVs can support the fifth generation
(5G) system with extended coverage and enhanced capacity us-
ing sub-6GHz and mmWave spectrum bands [3], [4]. However,
the UAV-aided 5G system brings about new challenges, such
as efficient spectrum resources allocation for UAVs to mitigate
interference [5], and low-latency information transmission in an
emergency communication scenario.

To overcome those challenges, many research works have
been proposed on UAV-aided wireless communication solu-
tions in the literature. For example, Lim et al. [6] proposed an
overview of UAV-aided wireless connection technology with a
basic network architecture and channel characteristics. Besides,
a feasible method utilizing UAV-based floating relay cells inside
macrocell was designed in [7]. Both advantage and disadvantage
of various types of UAV networks were introduced in [8] with
comprehensive analysis. In terms of the interference problem
among UAV-aided communication links, the stochastic geome-
try theory is also considered as an effective tool for performance
evaluation [9]. For a two-dimensional (2D) network, the signal-
to-interference-plus-noise ratio (SINR) coverage probability
and rate coverage probability were analyzed in [10] and [11],
respectively. However, these works were mainly constrained
to 2D space without considering about the three-dimensional
(3D) distribution of UAV swarm. Although, both SINR and
density distribution performance indicators were considered in
[12] by using stochastic geometric theory, only single UAV’s
scenario was considered. A novel framework for UAV networks
with the massive access capability using NOMA technology has
been proposed in [13]. The path loss, mobility, agility of UAV
networks are analyzed in detail and the reason for establishing
a random spatial model of UAVs using the stochastic geometry
theory is also explained explicitly.

In order to enhance the performance of UAV-aided wireless
communication, mobile edge computing (MEC) technology
is proposed by appropriately utilizing computing resources at
the edge of network to decrease response delay and increase
efficiency of network resources utilization [14]–[17]. A novel
approach of deploying MEC nodes on UAVs was introduced
to support intensive-computation-oriented (ICO) and sensitive-
delay-oriented (SDO) tasks [18], [19]. Although both spatial
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modeling and delay analysis for MEC were derived in [20],
neither the joint MEC technology in UAVs nor the delay op-
timization scheme have been considered yet. Besides, other
research works were done on the performance optimization for
MEC on UAVs. As mentioned in [21] and [22], the offloading
optimization methods were discussed on UAV-enabled MEC
networks. And the computation rate maximization method was
proposed in [23] for UAV-aided wireless networks. However,
these studies only considered the local optimization problem,
which did not jointly consider both communication and compu-
tation resources optimization issues.

In general, few research works considered the combination of
MEC and the UAV-aided wireless network optimization. Most
existing works have not considered its impact on response delay
with the capacity limitation on the wireless backhaul link. In
addition, the joint communication and computation resources
optimization problem in the UAV-aided wireless network has
not been fully solved by using MEC technology. In this paper,
we propose a two-layered UAV network to jointly optimize the
communication and computation resources using MEC. Both
the successful transmission probability and the optimal response
delay are theoretically derived with closed-form solutions by
using stochastic geometry and queueing theory for a swarm
of three-dimensional distributed UAVs. Therefore, the main
contributions are listed as following.
� Considering the complex distribution of UAVs and variable

MEC server deployment demands, a 3D Poisson Point Pro-
cess (PPP) model is proposed for the joint communication
and computation optimization problem formulation in the
UAV network, including a centralized MEC enabled top-
UAV (T-UAV) and a swarm of distributed bottom-UAVs
(B-UAVs). In terms of the payload and energy constraints
of this UAV swarm, MEC servers are deployed on the
T-UAV in a centralized way.

� Stochastic geometry theory is utilized to analyze various
types of interference among UAVs to derive the closed-
form solutions on the successful transmission probability
for UAV communication links. In terms of the performance
of communication and computation capabilities in UAV
swarm, the influential variables and four delay perfor-
mance indicators are analyzed theoretically using queueing
theory.

� Considering both computing capability and spatial distri-
bution of UAVs, a novel optimization method of response
delay is proposed with the closed-form solutions. With both
communication and computation resources constraints, the
optimal solution of UAV swarm deployment and MEC
server configuration can be achieved at a certain threshold
of response delay based on our proposed response delay
optimization algorithm. And the performances of the pro-
posed algorithm are evaluated and discussed based on the
results from both the simulation system and the hardware
testbed.

The rest of this paper is organized as follows. Section II
introduces the system model for joint communication and com-
putation optimization in the UAV-aided wireless network. In
Section III, the successful transmission probability is derived

Fig. 1. System model of joint communication and computation optimization
in the UAV-aided wireless network.

for both the single link and a group of links scenarios. The
response delay has been formulated theoretically by four kinds
of delay indicators by considering both the communication
and computation constrains and the closed-form results are
achieved with analyses in the MEC enabled UAV swarm sce-
nario in Section IV. The results of both the simulation system
and the hardware testbed are discussed to evaluate the perfor-
mance of the proposed response delay optimization algorithm in
Section V. Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, the two-hop UAV scenario is considered, in-
cluding the first hop from B-UAV to T-UAV and the second
hop from T-UAV to the control center. As shown in Fig. 1, the
information detected by B-UAVs is collected and compressed
by MEC servers in T-UAV, and is transmitted to the control
center via the backhaul link. The control center consists of four
components [24]: ground control station (GCS), baseband units
(BBUs), centralized data cloud (CDC), and centralized control
cloud (CCC). To collect the information efficiently and flexibly
in different UAV scenarios, the B-UAV swarm is composed of
small rotary-wing UAVs. On the other hand, the T-UAV with the
processing and computing abilities on board can collect the data
from B-UAVs and support the heavy payload, the wide coverage,
and the long flight duration time. Therefore, the fixed-wing UAV
deployed with the MEC server is used as a T-UAV in this paper.

A. UAV-Aided Communication System Model

Many empirical and theoretical results show that the PPP is
an appropriate point process to model the distribution of base
stations with tractability. And the PPP model is widely used
to formulate different types of networks, such as the cellular
networks [9] and the UAV networks [12]. If the network is
sufficiently large and stationary (or just isotropic) with the
strong enough random propagation effects such as fading and
shadowing, the stochastic results obtained by modelling the
wireless networks as a spatial Poisson point process are still
valid in the practical scenario [25]. By introducing the stochastic
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theory into a 3D space, the successful transmission probabilities
of the communication links and system throughputs can be
analyzed intuitively based on [9]–[12]. Therefore, in this paper,
we assume that the locations of B-UAVs follow a 3D PPP
model Φu with an intensity λu in the UAV swarm scenario.
Considering the practical constraints, the distribution space of
UAVs is limited by Vu(x, y, z), where x, y ∈ R, z ∈ [H1, H2]
and the subscript u is the brief notation of UAV. Besides, H1 and
H2 represent the vertical distance between the lowest altitude
and the highest altitude of B-UAVs from the T-UAV in the 3D
space, respectively. Besides, as a centralized processing node,
the T-UAV will collect the information in a certain sphere area.
To guarantee an efficient data exchange, the directional antenna
with pencil beams can be used for communication as follows
[26],

G (θ∗) =

{
2π
θw

, θ∗ ∈
[
ϕ∗ − θw

2 , ϕ∗ + θw
2

]
,

C, others,
(1)

where θ∗ ∈ [0, 2π] is the angle from the x-axis in the 2D coordi-
nate system and ϕ∗ is the angle of the antenna orientation from
x-axis, and θw is the beamwidth. B-UAVs in the entire space
form a set of Sn, and some B-UAVs associated with the same T-
UAV can be defined by the set XA = {x1, x2, . . ., xk, . . ., xK},
XA ⊂ Sn. Elementsx1 toxK indicate the distance between each
B-UAV to T-UAV and K represents the number of B-UAVs in
the set XA.

In this paper, we assume that only B-UAVs within the cover-
age of the T-UAV can the establish communication links with
this T-UAV. Meanwhile, we only discuss a one-way uplink where
the B-UAVs are the transmitters and the T-UAV is the receiver.
As shown in Fig. 1, considering the limited loading and flying
capabilities of the small rotary-wing B-UAVs, one mmWave
phased array antenna is deployed to generate a single beam
for the wide-band services transmission among B-UAVs and
T-UAV. For the fixed-wing T-UAV with much stronger loading
and flying capabilities, it can deploy multiple phased array
antennas to generate different beams concurrently to support the
space-division multiple access (SDMA) communication for B-
UAVs [27]. Multiple radio frequency integrated circuits (RFICs)
are integrated in each phased sub-array antenna panel to ensure
that the main lobe beam at the receiver T-UAV points to the direc-
tion of each transmitter B-UAV [28]. Considering the mmWave
pencil beam feature, multiple B-UAVs can access to T-UAV
with separate beams by employing the spatial orthogonality
technology based on the location awareness techniques, such as
the global positioning system (GPS) and the image processing
technology from cameras in UAVs. Therefore, multiple B-UAVs
within a group can simultaneously transmit to the T-UAV by us-
ing the SDMA technology in the same frequency band. However,
considering the extreme cases, when two B-UAVs are located
within the beamwidth of the same T-UAV beam, these B-UAVs
can utilize the time-division multiple access (TDMA) technol-
ogy in [29] or the frequency-division multiple access (FDMA)
technology in [30] to avoid the intra-group interference. Besides,
there is a high probability to guarantee the spatial orthogonality
among different beams by either appropriately tuning the beam
direction using beamforming technology or making the full use

of the flying mobility of UAVs. Therefore, the intra-group main
lobe interference among B-UAVs is not considered in this paper.
However, due to the random distribution of UAVs outside the set
XA and the presence of side lobe beam interference, when the
T-UAV receives the main lobe beam of one B-UAV in the set
XA, the side lobe beams from the inter-group UAVs will also
be received, which cause the interference to B-UAVs in the set
XA in [31].

In a word, a typical T-UAV at O will suffer the interference
from B-UAVs outside the set XA while receiving the desired
signals. Using directional antennas, Gk

t and Gk
r represent the

antenna gains of main lobe at both transmitter and receiver,
respectively andGk

A = Gk
tG

k
r . Meanwhile,Gi

t andGi
r represent

the average antenna gains at both interferer and receiver, respec-
tively and Gi = Gi

tG
i
r. The path loss is proportional to x−α,

wherex represents the distance between each pair of B-UAV and
T-UAV, and α indicates path loss index. hk represents the gain
of small scale fading channel of the kth B-UAV communicating
with the T-UAV, which is a random variable following a unit
mean exponential distribution. It is assumed that all B-UAVs
transmit at the same power levelPt. The additive white Gaussian
noise (AWGN) power is given by N = N0B, where N0 is the
noise power density and B is the system bandwidth. Therefore,
the SINR γx

k
of any B-UAV k within the set XA at T-UAV can

be expressed as

γxk
=

Pthkx
−α
k Gk

A∑
xi∈Sn\{XA} Pthix

−α
i Gi +N

. (2)

B. MEC Enabled Computation System Model

As mentioned in [6], the rotary-wing UAVs such as quad-
copters, have the limited energy and payload due to their dimen-
sions and flying abilities. Therefore, we assume that all B-UAVs
only have the communication ability, and the MEC servers are
not deployed on B-UAVs due to the computation and energy
constraints. On the other hand, the T-UAV equipped with MEC
servers can collect the data from different B-UAVs and compute
the data by using image processing algorithms to remove redun-
dant information and detect targets. The parallel computing can
be implemented by creating a number of virtual machines (VMs)
on the same physical machine (PM) within the T-UAV. However,
multiple VMs sharing the same PM using the VM multiplexing
technology will lead to the overall performance deterioration
due to the I/O interference among VMs. The degradation factor
d (d ≥ 0) is used to depict the increase of expected service time
by the VM when it is multiplexed with another VM. It is also
assumed that the expected service time T1 of the VM in isolation
is exponentially distributed with a mean of 1/μ. Thus, we can
derive the expected time which executes two multiplexed VMs
as T2 = T1(1 + d). According to [32], the expected execution
time of m multiplexed VMs is denoted as

Tm = T1(1 + d)m−1. (3)

III. UAV COMMUNICATION LINK PERFORMANCE

The successful transmission probability is used to indicate the
quality of communication link in UAV swarm, which is defined
as the probability when the received SINR γ is larger than the
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threshold θ according to [10] as

P (θ) = P (γ > θ). (4)

To ensure the quality of communication links among UAVs,
the distribution area of interferers follows the association criteri-
ons as follows. Let EXA

denote that a T-UAV is associated with
the B-UAVs from the set XA. According to (2), the received
power Pr from the B-UAV k is given as

Pr = Pthkx
−α
k Gk

A, (5)

where k ∈ [1,K]. Hence, the average received power P avg
xk

is

P avg
xk

= Ptx
−α
k Gk

A. (6)

Therefore, the event EXA
is equivalent to that no any other

B-UAV i not within the set XA has a much higher P avg at
the T-UAV. The set XA contains K B-UAVs and the number of
B-UAVs inVu isVuλu. Therefore, the range of i can be expressed
as i ∈ [1, Vuλu −K] and (6) is further written as

EXA
=

⋂
xk∈XA

{
P avg
xk

> P avg
xi

, ∀xi ∈ Sn\ {XA}
}

=
{
min(P avg

xk
) > P avg

xi
, ∀xk ∈ XA, xi ∈ Sn\ {XA}

}
.

(7)

Based on (6), the event of (7) can be further written as

EXA
=

{
xi >

(
Gi

Gk
A

) 1
α

max(xk), ∀xk ∈ XA, xi ∈ Sn\XA

}
.

(8)

Because the association relation among T-UAV and B-UAVs
is based on the average received power strength, a primary
exclusive region (PER) around the T-UAV is created in the whole
network Sn. The closest distance from the interferer UAV to the
T-UAV under the association criterion is given in (8). Therefore,
based on the 3D distribution of UAV swarm, the PER forms a
sphere with a radius of R(xk) as

R (xk) ≥ xi =

(
Gi

Gk
A

) 1
α

max (xk) . (9)

To explicitly distinguish the distribution range of commu-
nication and interfering UAVs, we assume that all UAVs in
XA are distributed within PER, while all interfering UAVs are
distributed outside PER. Based on the association criterion, the
successful transmission probability is derived in Lemma 1.

Lemma 1: When all the following conditions are satisfied:
1) The gain of small scale fading channel is a random variable

following a unit mean exponential distribution. The distri-
bution function is f(x) = e−x, x > 0, which is expressed
as h ∼ exp(1).

2) The inter-group interference I =
∑

xi∈Sn\{XA} hix
−α
i Gi.

3) The distance from B-UAV k to the T-UAV xk ∈ XA, and
the distance from B-UAV i to the T-UAV xi ∈ Sn\{XA}.

By choosing xk from the set XA arbitrarily and substituting
eq. (2) to eq. (4), the successful transmission probability is

derived as

P
(
γx

k
> θ

)
= P

(
Pthkx

−α
k Gk

A

PtI +N
> θ

)

= exp

(
− θ

Gk
A

xα
k

N

Pt

)
LI

(
θ

Gk
A

xα
k

)

= exp

(
− θ

Gk
A

xα
k

N

Pt

)

× ESn

⎧⎨
⎩

∏
xi∈Sn\XA

⎛
⎝ 1

1 + Giθ
Gk

A

xα
kx

−α
i

⎞
⎠
⎫⎬
⎭ ,

(10)

where LI(
θ

Gk
A

xα
k ) is the Laplace transform of I =∑

xi∈Sn\{XA} hix
−α
i Gi.

Proof: Please see Appendix A. �
Based on the THEOREM 4.9 in [33], LI(

θ
Gk

A

xα
k ) can be

further derived as

LI

(
θ

Gk
A

xα
k

)
= ESn

⎧⎨
⎩

∏
xi∈Sn\{XA}

⎛
⎝ 1

1 + Giθ
Gk

A

xα
kx

−α
i

⎞
⎠
⎫⎬
⎭

= exp

⎛
⎝−λu

∫
V

⎛
⎝1 − 1

1 + Giθ
Gk

A

xα
kx

−α
i

⎞
⎠ dx

⎞
⎠.

(11)

According to (9), the interference sources are constrained in a
regionV = Vu − VR(xk). Therefore, the integral part of (11) can
be expanded as

∫
V

⎛
⎝1 − 1

1 +
Giθxα

k

Gk
A

x−α
i

⎞
⎠ dx

=

∫ H2

H1

∫ 2π

0

∫ R

0

⎛
⎜⎝1 − 1

1 +
Giθxα

k

Gk
A

(√
r2 + z2

)−α

⎞
⎟⎠rdrdϕdz

−
∫ R(xk)

0

∫ π
2

0

∫ 2π

0

⎛
⎝1 − 1

1 +
Giθxα

k

Gk
A

x−α
i

⎞
⎠x2

i sin θdxidθdϕ

= V (H1, H2, θ, xk) . (12)

Substituting (11) and (12) into (10), the successful transmission
probability is represented as

Pxk
= P

(
γx

k
> θ

)

= exp

(
− θ

Gk
A

xα
k

N

Pt

)
exp (−λuV (H1, H2, θ, xk)) ,

(13)

where Pxk
indicates the successful transmission probability of

the link xk between B-UAV and T-UAV. When a T-UAV is asso-
ciated with a group of B-UAVs simultaneously, the successful
transmission probabilityPXA

of the setXA can be denoted based
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Fig. 2. Procedure of data packet transmission for UAVs.

Fig. 3. Different types of delay in data packet transmission.

on [34] as

PXA
= 1 −

K∏
k=1

(1 − Pxk
) ≥ Pxk

, ∀xk ∈ XA. (14)

When a group of UAVs are working cooperatively a swarm,
the successful transmission probability PXA

will increase based
on (14). For example, if a UAV link in a swarm fails due
to an unpredictable environment deterioration, this UAV can
still communicate with the bottom or top UAVs to guarantee a
stable link connectivity among the UAVs. Based on the derived
relation results between the successful transmission probability
and the density of UAVs, the MEC technology can be utilized to
reduce the delay pressure on backhaul links for latency sensitive
applications in Section IV.

IV. DELAY OPTIMIZATION IN MEC ENABLED UAVS

The performance of data packet procedure delay is studied
with the backhaul link constraints in MEC enabled UAV-aided
wireless networks in Fig. 2. Different B-UAVs can offload data
packets to a T-UAV for MEC servers to process, which will be
delivered to the control center via backhaul links.

When a packet flows from source to destination via the entire
system, the response delay (RD) can be divided into commu-
nication delay and computation delay from the perspectives
of communication and computation processes in Fig. 3. More
specifically, the communication delay includes both waiting
delay (WD) and transmission delay (TD), while the compu-
tation delay consists of queueing delay (QD) and processing
delay (PD) [35]. Thus, the RD can be achieved by summing
these four kinds of delay, which are WD, TD, QD, and PD. In
order to minimize RD, a joint communication and computation
optimization problem is formulated. With different communi-
cation and computation resources, the optimal configuration of
communication and computation resources is achieved by TD
and QD variations with RD constraints.

A. Communication Delay Modeling and Analysis

The communication delay of UAVs Tcomm comprises of
the expected WD for offloaded packets at B-UAVs denoted as
Tcomm−w, and the TD denoted as Tcomm−t. We assume that the
transmission time for a packet from B-UAV to T-UAV includes
L slots in a frame. t0 is the length of a slot and TL = Lt0 is the
length of a frame. Each UAV has its own offloading buffer, in
which a new task need to wait when an existing task is trans-
mitting. The probability of generating a task in each time slot is
defined by p, so the probability in a frame isPG = 1 − (1 − p)L.
Let S denotes the slot index when a packet arrives at offloading
buffer. And the probability distribution of S follows a conditional
geometric distribution, which can be expressed as

PG(S = s) =
p(1 − p)s−1

PG
=

p(1 − p)s−1

1 − (1 − p)L
. (15)

Therefore, the WD of offloaded packets can be expressed as

Tcomm−w = t0E[L− S] = t0

(
L

1 − (1 − p)L
− 1

p

)
. (16)

We also assume that the bandwidth of the B-UAV to T-UAV
communication link is B1 and the task packet size is l. Refer to
the derivation of the successful transmission probability in (13),
the TD which spans L slots is defined based on [36] as

Tcomm−t = Lt0 =
l

C
=

l

B1 log(1 + θ1)Pxk

. (17)

Therefore, the communication delay of offloaded packets from
B-UAV to T-UAV is depicted by adding (16) and (17) as

TB−T
comm = Tcomm−w + Tcomm−t

= t0

(
L

1 − (1 − p)L
− 1

p

)
+

l

B1 log(1 + θ)Pxk

.

(18)

Moreover, data packets processed by MEC-enabled system
are compressed compared to the system without computing
ability. If the packet is compressed, δ = 1 to indicate the packets
are compressed by MEC servers, otherwise δ = 0. Assuming
that the compression ratio is η and the bandwidth of backhaul
link is B2, TD via backhaul link is denoted by

TT−C
comm−t =

{
l

B2 log(1+θ2)
, δ = 0,

ηl
B2 log(1+θ2)

, δ = 1.
(19)

B. Computation Delay Modeling and Analysis

When different packets arrive at T-UAV from B-UAVs si-
multaneously, they will be queued in the buffer, waiting for
computation. In (15), the tasks are generated following an inde-
pendent and identically distributed (i.i.d.) Bernoulli distribution
at different time instants. And the superposition of independent
arrival process behaves as a Poisson process [20]. Therefore,
based on the distribution space VR(xk), the distribution density
λu of B-UAVs, and the PG of task generation probability, the
packets at the buffer of T-UAV follow a Poisson process with a
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rate of λ as

λ =

K∑
k=1

[
1 − (1 − p)L

]B1 log(1 + θ1)Pxk

l

≈ K
PG

Lt0
=

λuVR(xk)PG

Lt0
. (20)

1) Optimal VM Control: Based on the computation model in
(3), the total computation rate of T-UAV is denoted by

μ(m) =
m

Tm
=

m

T1
(1 + d)1−m. (21)

On one hand, a large number of VMs will bring a big chal-
lenge to energy consumption of UAVs and reduce the individual
computation rate due to I/O interference. On the other hand, the
lack of VMs leads to a marginal gain from parallel computing.
Therefore, it is important to optimize the number of VMs to
ensure that the overall computation rate is maximized. Denoted
by (21), the upper convex function can achieve the maximal
value and the derivation is shown below,

dμ(m)

dm
=

1
T1

(1 + d)1−m [1 −m ln(1 + d)] = 0, (22)

mmax = round

(
1

ln(1 + d)

)
, (23)

where round(x) rounds x to the nearest integer. Therefore,
μ(mmax) represents the maximum computation rate of MEC
model, and it will impose constraints on the packet arrival rate.

2) Queueing Delay and Processing Delay: The packets ar-
rive at the buffer of T-UAV are approximated as a Poisson process
with the rate λ. Besides, the whole computation rate of VMs
for T-UAV is μ(m) and the expected service time of each VM
in isolation is exponentially distributed. Therefore, it can be
modeled as the M/M/m queue. The QD and PD are depicted
as Tcomp−q and Tcomp−p, respectively.

The computation load rate of M/M/m is denoted as

ρ =
λ

μ(m)
=

λuVR(xk)PG

μ(m)Lt0
. (24)

In order to avoid infinite queues due to insufficient computing
capability, the computation load rate must be less than 1. Since
the maximum computation rate is μ(mmax), the packet arrival
rate and the density of B-UAVs are bounded as following,

λ ∈ (0, ρμ (mmax)] , λu ∈
(

0,
ρμ (mmax)Lt0

VR(xk)PG

]
. (25)

Because μ(m) is a non-linear function of state m which is
intractable, the lower bound μ−(m) can represent μ(m) as

μ−(m) =
m

T1
(1 + d)1−mmax . (26)

Let μ = μ−(m)
m , according to the first in first out (FIFO) schedul-

ing policy, the probability of no packet in the queue is

P0 =

[(
m−1∑
n=0

λn

μnn!

)
+

1
m!

(
λ

μ

)m (
1

1 − ρ

)]−1

. (27)

Therefore, applying the classical M/M/m queue results in [37],
the average number of packets in the queue and the system is

TABLE I
DIFFERENT TYPES OF DELAY

defined by Lq and Ls, respectively

Lq =
λmρP0

μmm!(1 − ρ)2 , Ls = Lq +
λ

μ
. (28)

Moreover, according to the Little’s law, QD, PD, and the sojourn
delay are denoted by Tcomp−q, Tcomp−p, and Tcomp

Tcomp−q =
Lq

λ
, Tcomp−p =

1
μ
, and Tcomp =

Ls

λ
. (29)

C. Response Delay Optimization

All types of delay for the joint communication and computa-
tion optimization are shown in Table I, in which RD is depicted
by Tall−before without MEC as

Tall−before = Tcomm−w + Tcomm−t + TT−C
comm−t, δ = 0.

(30)

When MEC is applied, RD is denoted by Tall−after as

Tall−after = Tcomm−w + Tcomm−t + Tcomp−q

+ Tcomp−p + TT−C
comm−t, δ = 1. (31)

The additional delay includes QD and PD. The length of PD
mainly depends on the capability of each VM. Therefore, to
optimize RD, we must know the trend of QD Tcomp−q as

Tcomp−q =
Lq

λ
=

λm−1ρP0

μmm!(1 − ρ)2 = F (λ,m)P0. (32)

The remaining part of (32) that does not include P0 is defined
by F (λ,m). Using the Stirling’s approximation, F (λ,m) can
be further derived as

F (λ,m) =
λm−1ρ

μmm!(1 − ρ)2 ≈ (ρe)
λ

ρμ

λ
3
2

√
2π
ρμ

ρ

(1 − ρ)2 . (33)

According to (27), P0 can be approximated when m is suffi-
ciently large and ρ is sufficiently small. Based on the series
theory, P0 can be further derived as

P0 =

[(
m−1∑
n=0

λn

μnn!

)
+

1
m!

(
λ

μ

)m (
1

1 − ρ

)]−1

≈
(

m∑
n=0

λn

μnn!

)−1

= exp(−λ

μ
). (34)
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Therefore, we take the derivative of QD Tcomp−q as

dTcomp−q(λ)

dλ

=

√
ρμ

2π
ρ

(1 − ρ)2 (ρe)
λ

pμ λ− 3
2 e−

λ
μ

[
ln(ρe)

1
ρμ

− 3
2λ

− 1
μ

]

= 0. (35)

Considering that ρ < 1, the extreme point λ∗ is achieved based
on (35) as follows,

λ∗ =
3ρμ

2[ln(ρe)− ρ]
< 0. (36)

However, considering the actual meaning of packet arrival
rate, the parament λ should be positive. Therefore, in the defini-
tion domain (0, ρμmmax], the derivative dTcomp−q(λ)

dλ
< 0, and

Tcomp−q is a monotonically decreasing function of λ. Thus,
when the packet arrival rate reaches the maximum ρμmmax,
and the number of VMs is mmax, the optimal value of QD is
achieved. However, deploying a large number of VMs will lead
to an increase of the energy consumption for T-UAV. On the other
hand, according to (17) and (20), the increase of packet arrival
rate will increase the distribution density of UAVs, leading to an
increase of TD. It is not appropriate to determine the deployment
of entire UAV swarm only based on the optimization results of
QD. Therefore, the optimal RD should consider both TD and
QD.

According to RD results in (30) and (31), data is compressed
by MEC servers so that the TD over backhaul links is reduced.
If Tall−after > Tall−before, the network is considered as a
computation-limited network. On the contrary, if Tall−after <
Tall−before as derived in Lemma 2, the network is considered
as a communication-limited network.

Lemma 2: In order to ensure Tall−after < Tall−before, the
data compression ratio η is restricted by

η < 1 −
B2 log(1 + θ2)

(
Lq

λ
+ 1

μ

)
l

. (37)

Proof: Please see Appendix B. �
Therefore, based on the comprehensive analysis of various

factors and constraints, the optimization model of RD is

min Tall−after (38a)

s.t. η < 1 −
B2 log(1 + θ2)

(
Lq

λ
+ 1

μ

)
l

, (38b)

λ

mμ
= ρ > ξ, (38c)

λ ∈ (0, ρμ (mmax)] ,m ∈ (0,mmax] . (38d)

where ξ is the threshold of computation load rate and can guar-
antee the appropriate ratio of communication and computation
resources. More specifically, (38b) represents the constraints of
the data compression ratio in the computation delay model,
and (38c) represents the limitation of the computation load
rate. Furthermore, (38d) indicates the limitation range of packet

arrival rate and the number of VMs deployed in the T-UAV. In
order to solve (38a), Theorem 1 is proposed below.

Theorem 1: By substituting variables, RD can be represented
as a function only related to λ,

Tall−after

= w(λu) + t(λu) + q(λ) +
1
μ
+

ηl

B2 log(1 + θ2)
= T (λ),

(39)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λu = λLt0
VR(xk)

PG
,

w(λu) = t0

(
L

1−(1−p)L
− 1

p

)
= t(λu)

1−(1−p)L
− t0

p ,

t(λu) =
l

B1 log(1+θ1)
exp

(
θ

Gk
A

xα
k

N
Pt

)
× exp (λuV (H1, H2, θ, xk)) ,

q(λ) = λm−1ρ

μmm!(1−ρ)2

[(
m−1∑
n=0

λn

μnn!

)
+ 1

m!

(
λ
μ

)m (
1

1−ρ

)]−1

.

(40)

Proof: Please see Appendix C. �
Then, by using the Taylor’s formula, we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L

1−(1−p)L
≈ L, L 
 1,

exp
(

θ
Gk

A

xα
k

N
Pt

)
≈ 1, θ

Gk
A

xα
k

N
Pt

→ 0,

exp (λuV (H1, H2, θ, xk)) ≈ 1 + λuV (H1, H2, θ, xk) ,

λu = lλ
B1 log(1+θ1)VR(xk)

, λuV (H1, H2, θ, xk) � 1.

(41)

Therefore, (39) can be simplified as follows,

T (λ) = 2Lt0 + q(λ) +
1
μ
+

ηl

B2 log(1 + θ2)
− t0

p

≈ 2l2λV (H1, H2, θ, xk)

[B1 log(1 + θ1)]
2VR(xk)

+
(ρe)

λ
ρμ

λ
3
2

√
2π
ρμ

ρ

(1 − ρ)2 · e− λ
μ

+
2 l

B1 log(1 + θ1)
+

1
μ
+

ηl

B2 log(1 + θ2)
− t0

p

= y1(λ) + y2(λ) + C∗, (42)

whereC∗ is a constant. Without loss of generality, when ρ = 0.5
and μ = 10, the derivatives of y1(λ) and y2(λ) are

dy1(λ)

dλ
=

2l2V (H1, H2, θ, xk)

[B1 log(1 + θ1)]
2VR(xk)

,

dy2(λ)

dλ
= − 1.40.2λ

1.14 × 2.70.1λ × λ1.5

(
0.077 +

3
λ

)
. (43)

Theorem 2: We assume that the derivative of y is unchanged
whenλ is increased by 1. We define the eventEλ† that RD reaches
its minimum when λ = λ†(∀λ ∈ (0, ρμmmax]), and the event
Em† when m = m†(∀m ∈ (0,mmax],m ∈ N∗). The sufficient
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TABLE II
OPTIMAL CONFIGURATION SCHEME OF COMMUNICATION AND

COMPUTATION RESOURCES

conditions of λ† and m† are (44) and (45).

Eλ† =

⎧⎨
⎩

1.40.2λ

1.14×2.70.1λ×λ1.5 (0.077 + 3
λ
)

≥ 2l2λV (H1,H2,θ,xk)

[B1 log(1+θ1)]
2VR(xk)

⎫⎬
⎭

∩

⎧⎨
⎩

1.40.2(λ+1)

1.14×2.70.1(λ+1)×(λ+1)1.5 (0.077 + 3
λ+1 )

≤ 2l2λV (H1,H2,θ,xk)

[B1 log(1+θ1)]
2VR(xk)

⎫⎬
⎭ , (44)

Em† =

⎧⎨
⎩

1.4m

2.51×2.70.5 m×m1.5 (0.077 + 0.6
m )

≥ 10l2λV (H1,H2,θ,xk)

[B1 log(1+θ1)]
2VR(xk)

⎫⎬
⎭

∩

⎧⎨
⎩

1.4m+1

2.51×2.70.5(m+1)×(m+1)1.5 (0.077 + 0.6
m+1 )

≤ 10l2λV (H1,H2,θ,xk)

[B1 log(1+θ1)]
2VR(xk)

⎫⎬
⎭ . (45)

Proof: Please see Appendix D. �
Based on Theorem 2, the minimum RD is T (λ†) as

T
(
λ†) = w(λ†

u) + t(λ†
u) + q(λ†) +

1
μ
+

ηl

B2 log(1 + θ2)

= w

(
lλ†

B1 log(1 + θ1)VR(xk)

)

+ t

(
lλ†

B1 log(1 + θ1)VR(xk)

)

+ q(λ†) +
1
μ
+

ηl

B2 log(1 + θ2)
. (46)

The optimal configuration scheme of communication and
computation resources is shown in Table II, and the minimum
RD can be achieved based on the proposed Algorithm 1.

D. Algorithm Complexity Analysis

The complexity of our proposed RD optimization algorithm
in Algorithm 1 is analyzed by four aspects from both the commu-
nication and computation systems. Considering the communica-
tion system, the first aspect comes from the density of B-UAVs
and the second aspect is from the traversal method of obtaining
the successful transmission probability. Due to the adoption of
the traversal method and nesting cycle, the complexity isO(n2).
In the computation system, the third aspect is the packet arrival
rate and the fourth aspect is the number of VMs. In order to
calculate the QD, when the packet arrival rate changes, the
number of VMs needs to be traversed from 1 to m. There is

Algorithm 1: Response Delay Optimization Algorithm.

1: Input: Antenna gains Gk
A and Gi, transmit power Pt,

noise power density N0, path loss index α, distribution
space Vu, and SINR threshold θ.

2: Output: Response delay Tall−after, packet arrival rate
λ†, and the number of VMs m†.

3: Step 1: UAV distribution information
4: Initialization: λu = 0, XA = Sn = ∅.
5: Establish a 3D-PPP distribution model, add UAV

nodes to the sets of Sn and XA based on PER.
6: Step 2: Successful transmission probability

acquisition.
7: for λu = 1; λu < 100; λu ++ do
8: Calculate successful transmission probability Pxk

and PXA
from the set XA.

9: end for
10: Step 3: All kinds of delay calculation.
11: Input: Successful transmission probability Pxk

,
degradation factor d, service time T1, and compression
ratio η.

12: Initialization: m = 0, λ = 0.
13: Calculate mmax.
14: for m = 1; m < mmax; m++ do
15: Calculate Tcomm−w, Tcomm−t, Tcomm−q, Tcomm−p.
16: Calculate Tall−before, Tall−after.
17: Find the minimum Tall−after.
18: if min(Tall−after) < Tall−before then
19: Get m†, calculate λ† and λ†

u.
20: else
21: Reassign ρ and go to Step 3.
22: end if
23: end for

a nesting cycle in the algorithm of the computation system.
Therefore, the complexity is denoted by O(n2). The PER-based
DSC algorithm of communication system performance analysis
is proposed in [12], but the computation system performance
analysis is not considered. Although the APs/CSs algorithm
complexity of the communication system in [20] isO(n), it does
not analyze the trend of communication system performance in
terms of the node density and the interference, where only the
TD at a certain SINR is given. Therefore, compared with the con-
ventional algorithms in [12] and [20], our proposed algorithm
can realize the RD optimization for the joint communication
and computation system without the extra algorithm complexity
increase. And the system parameter configuration scheme with
both communication and computing resources limits are also
discussed and analyzed thoroughly in Section V. In summary,
the complexity comparison results among different algorithms
are shown in Table III.

V. RESULTS AND ANALYSIS

To evaluate the performance of the proposed joint commu-
nication and computation optimization algorithms, both the
simulation system and the hardware testbed have been designed
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TABLE III
COMPLEXITY COMPARISON AMONG ALGORITHMS

Fig. 4. Simulation scenario of MEC enabled UAV swarm.

and analyzed based on the numerous performance evaluation
results in Section V.

A. Simulation System Design and Performance Analysis

The Monte Carlo simulation algorithm has been used to
verify our proposed algorithms in the typical scenarios and the
key simulation parameters follow the default settings unless
specified otherwise. Within the coverage range of 1 km for
x, y, and z axes [13], [38] in Fig. 4, the layout of simulation
scenario includes one T-UAV in the top layer, and a swarm of
B-UAVs following a 3D-PPP distribution in the bottom layer.
The effective communication range between the T-UAV and
the intra-group B-UAVs is set by 300 m, and the maximum
distance of the received interference signal by the inter-group
UAVs is 1000 m based on [39]. The total bandwidth of the
B-UAV to T-UAV communication link is B1 = 400 MHz and
the bandwidth of backhaul link is B2 = 100 MHz [40]. The
path loss is PL(dB) = 72 + 30 × log10(d) [4]. The expected
service time of the single VM is T1= 0.1 s and the degradation
factor d is set as d = 0.2. The task generation probability per
slot is p = 0.2 [20]. The detailed parameters and settings of the
proposed simulation system are shown in Table IV.

Fig. 5 illustrates the relation between the successful trans-
mission probability and the density of B-UAVs within the set
XA at different distances from T-UAV based on the numerical
simulation restuls. Typically, the distances of three UAVs, named
UAVs 1, 2, 3, to the T-UAV, are increasing successively as shown
in Fig. 5. Moreover, the increasing density of B-UAVs leads to
the interference problem, which will decrease the successful
transmission probability. Therefore, when the density of B-
UAVs reaches a certain threshold, the performance of communi-
cation links among UAVs will be deteriorated seriously, resulting
in a transmission failure. Furthermore, the overall successful

TABLE IV
KEY PARAMETERS OF SIMULATION SYSTEM FOR MEC ENABLED UAVS

Fig. 5. Successful transmission probability under different densities of UAVs.

transmission probability of a group of UAVs will be increased
if these UAVs can cooperate with each other.

In Fig. 6, the performances of the successful transmission
probability and the TD are shown with the increase of the density
of UAVs. In Fig. 6(a), the successful transmission probabil-
ity results at different UAV distribution densities are achieved
from the average of 1000 simulations. The trends of successful
transmission probability between the simulation results and the
theoretical results are consistent based on Fig. 5 and Fig. 6(a).
As the density of B-UAV increases, the interference among
UAVs will become more severe, leading to the decrease of
the successful transmission probability. On the other hand, the
TD between B-UAV and T-UAV is shown in Fig. 6(b). As the
density of B-UAV increases, the successful transmission prob-
ability among different communication links decreases, and the
capacity of communication links will also decrease. Therefore,
the data packet transmission will take much longer time due
to the retransmission process, leading to an increase of TD.
Moreover, when the density of UAVs is relatively large, the
random distribution of a large number of UAVs will cause a
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Fig. 6. Successful transmission probability and transmission delay for
B-UAVs.

severe interference fluctuation problem. Therefore, as shown
in Fig. 6(b), when the density of UAVs increases, the TD will
increase and the fluctuation trend will be obvious as well.

In Fig. 7, the average number of packets in the queue system
is analyzed. In order to derive the statistical law of the average
number of packets, the simulation has been performed 10000
times. It can be seen that the average number of packets in the
queue increases as the packet arrival rate grows. However, by
using the parallel computing algorithm in the T-UAV, the average
number of packets in the queue can be effectively reduced.
If the packet arrival rate grows consecutively and exceeds the
processing limit of the computation system, the queue length
will increase indefinitely when the computation load rate is
greater than 1 according to (24). The preset buffer capacity in
the simulation is 100, therefore the queue length will eventually
approach the maximum capacity limit of the buffer as shown in
Fig. 7. Besides, by increasing the number of VMs denoted by the
parameter m, the improved computation capability can process
more packets. Therefore, as shown in Fig. 7, when “m = 1,”

Fig. 7. Average number of packets in queue.

Fig. 8. Performance of parallel computing on queueing delay.

the system reaches its computation limit when the packet arrival
rate is 15/s. When “m = 5,” the system reaches the limit when
the packet arrival rate is 80/s.

The impact of parallel computing using multiple VMs on the
QD is shown in Fig. 8. The change of the packet arrival rate
is determined by the density of B-UAVs, the task generation
probability of B-UAVs, and the TD of the communication link.
Without considering the computation load level of the system,
QD will increase as the packet arrival rate grows. By increasing
the number of VMs for parallel computing, QD can be effectively
reduced. Corresponding to the curve “m = 1” in Fig. 8, if only
one VM is used for computation, QD will increase sharply as
the packet arrival rate grows due to the computation resource
limit. When the packet arrival rate achieves 8/s, according
to (24), the computation load rate is greater than 1 and the
computation system is not capable to process all the packets.
The acceptable maximum packet arrival rate of the system is
8/s, beyond which the infinite queue exists and deteriorates the
system performance. By using five VMs as depicted by “m = 5”
in Fig. 8, when the packet arrival rate is less than 25/s, the slope
of QD curve is smooth. However, as the packet arrival rate is
growing consecutively, QD will increase significantly due to the
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Fig. 9. Response delay based on Monte Carlo simulation.

Fig. 10. Queuing delay comparison between theoretical approximation and
simulation results.

computation resource limit, leading to the acceptable maximum
packet arrival rate of 34/s.

The RD of the entire system is evaluated and analyzed based
on the Monte Carlo simulation results in Fig. 9, which is mainly
affected by the density of UAVs and the number of VMs. The
density of UAVs reflects the capability of the communication
system, while the number of VMs denotes the capability of
the computation system. On one hand, as the density of UAVs
increases, the interference among UAVs becomes much more
severe, leading to the increase of TD and RD due to the re-
transmission process. On the other hand, as the number of
VMs grows, the QD decreases due to the computation capacity
enhancement, resulting in the reduction of RD. Therefore, the
performance of RD in the joint communication and computation
system is comprehensively analyzed by Fig. 9.

According to (24) and (26), the distribution density of B-
UAVs has a linear relation with the number of VMs in T-UAV.
Fig. 10 shows the relation between QD and VMs, where the
solid lines denote the simulation results and the dashed lines
are the theoretical approximation values. By using the series
approximation method, when the number of VMs m ≥ 3 and
the computation load rate ρ ≤ 0.6, the error between theoretical
and simulation results is negligible. Moreover, when the number

Fig. 11. Delay rate of change for QD and TD.

Fig. 12. Response delay with and without MEC models.

of VMs increases, QD shows a monotonous decreasing trend,
which is consistent with the theoretical analysis. Furthermore,
when a large number of VMs is deployed, the descending speed
of QD will slow down, which means that consuming extra
computing resources will not yield a better performance.

The relation between the number of VMs and the delay rate of
change for QD and TD is shown in Fig. 11, where the derivative
of QD is negative and the derivative of TD is positive. To
compare the slopes of QD and TD, we utilize the absolute value
of the derivatives for QD and TD in Fig. 11. Three crossing points
among these curves are highlighted by ρ = 0.6, ρ = 0.7, and
ρ = 0.8, where the approximate results of the number of VMs
are m = 2, m = 2, and m = 3, respectively. Simulation results
prove the effectiveness of the approximated value m when the
event Em† occurs.

The performance of RD is calculated with different number
of VMs in Fig. 12 based on (38a). The optimization function is a
lower convex function, and the number of VMs in Fig. 12 is the
same as that in Fig. 11 when RD achieves the minimum. By using
MEC technology, the RD can be reduced by 10%∼20% based on
the results. Furthermore, as the computation load rate increases,
the RD becomes larger. When the number of VMs is small, the
RD using MEC is larger than that without MEC. On the contrary,
when the number of VMs is large, the RD using MEC will be
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Fig. 13. 5G NR mmWave UAVs hardware testbed.

TABLE V
5G NR mmWAVE COMMUNICATION SYSTEM PROTOCOL

smaller than that without MEC. Moreover, when the number of
VMs is greater than 6, the RD shows a unified trend with different
computation load rates. When ρ = 0.6, ρ = 0.7, and ρ = 0.8,
different curves of RD indicate the same ascending trend as the
curve of Tall−before without using MEC. According to (42), the
change of RD mainly depends on TD and QD. When the number
of VMs is greater than 6, the sharply increased TD will play a
dominant role in the performance of RD due to the interference
caused by a large number of data packets transmission, where
the MEC technology loses its advantage. Therefore, the RD
can be effectively minimized based on the appropriate VMs
configuration in accordance with various packet arrival rates.

B. Hardware Testbed and Performance Analysis

Considering the disaster rescue scenario, we have designed
and developed the hardware testbed to evaluate the RD perfor-
mance of MEC enabled UAV communication system by using
two DJI M100 quad-rotor UAVs and the 5G New Radio (NR)
mmWave communication system as shown in Fig. 13. We deploy
two mini-sized computers on the top of B-UAV and T-UAV,
which are utilized as the MEC modules on UAVs. On the left
side of Fig. 13, the B-UAV can use its camera to generate a video
streaming service which is transmitted via the 5G NR mmWave
communication system. As one of the candidate spectrum bands
for 5G systems, the 5G NR mmWave communication system
operates in the 28 GHz mmWave spectrum band with a band-
width of 800 MHz by aggregating eight 100 MHz carriers. To
support the mobile communication scenario for MEC enabled
UAVs, two 64-element phased array antennas are utilized at
both the transmitter and the receiver of 5G mmWave system
with mmWave beam alignment and beam tracking capabilities.
The communication protocol is based on the 3GPP TS 38.300
standard on 5G NR [41] and the detailed parameters are shown
in Table V based on the NI mmWave testbed in [40].

Fig. 14. Transmission delay of the hardware testbed.

On the right side of Fig. 13, the T-UAV can receive the video
streaming service via the 5G mmWave link at the receiver side.
However, the accumulated surging demands of video streaming
services transmitted from different B-UAVs to the same T-UAV
will put a great pressure on the transmission link capacity
between the T-UAV and the control center. In contrast to the
conventional algorithms without the MEC capability on the
T-UAV, the video streaming service can be reduced to a few
number of key frames containing only the useful disaster rescue
information, such as the fire, the survivor, and other targets,
by using the image processing algorithms with the support of
the MEC on the T-UAV. Therefore, the transmission capacity
requirements between the T-UAV and the control center can be
substantially reduced by using the computation ability of MEC
server on the T-UAV.

The performance of TD is evaluated as shown in Fig. 14 based
on the MEC enabled UAVs hardware testbed in Fig. 13. Con-
sidering the scenario of multiple B-UAVs simultaneous trans-
mission to one T-UAV, six communication links are generated
by using a random radio resource allocation algorithm, which
have the same total data amount of 100 Mbits. Fig. 14 shows
the instantaneous transmission rate and the TD for different
communication links, where the communication links 1, 3, 4,
and 5 have much higher transmission rates due to the increased
amount of communication resources allocated. Moreover, when
the transmission processes are completed for the communica-
tion links of 1, 3, 4, and 5, the communication links 2 and
6 can achieve their peak data rates due to the abundant radio
resources and the decrease of severe interferences from other
communication links.

Furthermore, the performance of computation delay is ana-
lyzed by using the MEC server on the T-UAV to process the
target detection algorithm for the disaster rescue scenario based
on the received video streaming data in shown in Fig. 15. Based
on the hardware testbed in Fig. 13, the camera of B-UAV gen-
erates the video streaming service, where one person is walking
with a constant speed of 1 m/s with the word “Target” on a
white board for the image detection test as depicted by the red
rectangle in Fig. 15(a). The MEC server on the T-UAV utilizes
the speeded up robust features video stream detection algorithm
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Fig. 15. Computation delay evaluation based on the hardware testbed.
(a) Target detection scenario for MEC enabled UAVs. (b) Computation delay of
processing different numbers of video frame.

(SURF-VSD) [42] to detect the target from the received video.
The performance of computation delay is evaluated based on
nine key frames with the detected “Target” in each frame by
Fig. 15(b). Considering the computation capability limit of the
MEC server deployed on the T-UAV in the hardware testbed,
the video streaming service has a length of 52 seconds with a
total traffic size of 7.84 Mbits. The total traffic size of these nine
key frames is 775.9 kbits. Therefore, by using the computation
capability of MEC server on the T-UAV, the total packets of video
streaming service transmitted from the T-UAV to the control
center can be significantly decreased by 89.9% in contrast to
the conventional algorithms without the MEC. As a result, the
pressure of the linear surging demands on the transmission
link capacity between the T-UAV and the control center can be
substantially decreased, which is caused by multiple concurrent
transmission links from different B-UAVs to the same T-UAV.

VI. CONCLUSION

In this paper, a joint communication and computation opti-
mization scheme has been proposed in the MEC enabled UAV
swarm scenario, which can improve the transmission efficiency
and minimize the response delay under communication and
computation constrains. The successful transmission probability
for UAVs is achieved theoretically with the closed-form solu-
tions and the response delay is also formulated as an optimiza-
tion problem by considering four delay parameters. Compared
with conventional UAVs without MEC capabilities, there is a
10%∼20% decrease of the response delay for our proposed
algorithm with the communication and computation resources
limits and the delay constrains in the disaster rescue scenario.
On one hand, with both communication and computation re-
sources limits, the optimal response delay can be achieved with
an optimal configuration scheme of the distribution density of
UAVs and the number of VMs. On the other hand, in order
to meet the delay constraint of latency-sensitive services, the
demanding communication and computation resources can be
estimated based on our proposed joint optimization algorithm.
Finally, both the simulation system and the hardware testbed
have been developed to evaluate the feasibility and performance
of our proposed response delay optimization algorithm in the
MEC enabled UAV swarm scenario. Numerous results prove that
the total packets of video streaming service transmitted from the
T-UAV to the control center can be significantly decreased by
89.9% using the computation capability of MEC server on the
T-UAV, in contrast to the conventional algorithm without using
MEC.

APPENDIX A

PROOF OF LEMMA 1
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Therefore, substituting (48) to (47), Lemma 1 is proved.
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APPENDIX B

PROOF OF LEMMA 2

According to (30) and (31), the condition to ensure that
Tall−after is less than Tall−before is derived as follows,

Tall−after < Tall−before
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APPENDIX C

PROOF OF THEOREM 1

The RD Tall−after is expressed as follows,
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According to (20), we know λu = λLt0
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can be expressed as
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Therefore, Theorem 1 is proved.

APPENDIX D

PROOF OF THEOREM 2

According to (43) where dy2(λ)
dλ

< 0, y2(λ) is a monotonically
decreasing function. In order to obtain the trend of y2(λ), the
second derivative in y2(λ) is derived as follows,

y
′′

2 (λ) = −1.14 ×
{

λ0.5 × 0.97λ × [λ ln(0.97)− 1.5]
λ3

×
(

0.077 +
3
λ

)
−3 × 0.97λ

λ3.5

}
. (52)

When λ > 0, λ ln(0.97)− 1.5 < 0, we have y2
′′
(λ) > 0. It

means that y2(λ) is a concave function and the descending
trend will become smaller with the increase of λ. Besides, the
increasing rate y1(λ) is a fixed value. Thus, when RD reaches
the minimum, the following two conditions must be met.

(i) When λ = λ†, |dy2(λ)
dλ

| ≥ |dy1(λ)
dλ

|.
(ii) When λ = λ† + 1, |dy2(λ)

dλ
| ≤ |dy1(λ)

dλ
|.

According to m = λ
ρμ , the number of VMs m† is also

achieved. Therefore, Theorem 2 is proved.
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