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Abstract—Low earth orbit (LEO) satellite networks can break
through geographical restrictions and achieve global wireless
coverage, which is an indispensable choice for future mobile com-
munication systems. In this paper, we present a hybrid cloud and
edge computing LEO satellite (CECLS) network with a three-tier
computation architecture, which can provide ground users with
heterogeneous computation resources and enable ground users to
obtain computation services around the world. With the CECLS
architecture, we investigate the computation offloading decisions
to minimize the sum energy consumption of ground users, while
satisfying the constraints in terms of the coverage time and the
computation capability of each LEO satellite. The considered
problem leads to a discrete and non-convex since the objective
function and constraints contain binary variables, which makes it
difficult to solve. To address this challenging problem, we convert
the original non-convex problem into a linear programming
problem by using the binary variables relaxation method. Then,
we propose a distributed algorithm by leveraging the alternating
direction method of multipliers (ADMM) to approximate the
optimal solution with low computational complexity. Simulation
results show that the proposed algorithm can effectively reduce
the total energy consumption of ground users.

Index Terms—LEO satellite networks, computation offloading,
cloud and edge computing, alternating direction method of
multipliers.

I. INTRODUCTION

W ITH the unprecedented development of emerging ap-
plications such as the Internet of Things (IoT), aug-

mented reality (AR)/virtual reality (VR) and 4K/8K video
transmission, traditional terrestrial networks have been un-
able to meet the global demands for “ubiquitous connection”
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because they are difficult to fully cover some complex ter-
rains such as mountains and oceans [1], [2]. Moreover, the
terrestrial network infrastructure is vulnerable damaged by
natural disasters such as earthquakes and hurricanes, which
can interrupt the user communications. In recent years, with
the development of space communication networks, satellite
technologies have made considerable progress in commercial,
civilian and military services, which make satellites, especially
low earth orbit (LEO) satellites, economical and miniaturized.
Currently, many countries have launched several major LEO
satellites projects, such as OneWeb [3], SpaceX Starlink [4]
and O3b [5], and the latest news indicates that SpaceX will
cooperate with Azure to provide users with global communica-
tion services. Therefore, it can be concluded that LEO satellite
communication networks have unparalleled advantages over
terrestrial mobile communication systems, which can achieve
seamless global coverage and have become an indispensable
part of human daily life.

On another front, the increasing popularity of mobile de-
vices (such as smartphones and tablet computers) has spawned
many new computation-intensive applications, such as speech
recognition, games, multimedia encoding/decoding and in-
telligent transportation [6]–[9]. Therefore, the LEO satellite
networks not only need to provide users with global ubiquitous
access, but also need to provide users with various computing
service support. In general, the users can offload computa-
tion tasks to the cloud servers with abundant computation
resources for processing since their limited computation and
storage resources [10], [11]. Moreover, the computation tasks
generated by users in remote areas and ocean without the
support of terrestrial network communication infrastructure
can only be forwarded to the cloud servers for processing
through the LEO satellite networks. However, restricted by the
height of LEO satellites, the transmission delay of users in the
LEO satellite networks will increase correspondingly, making
it difficult to meet the real-time requirements of ground users.
Inspired by the terrestrial multi-access edge computing (MEC)
technology [12], it is highly demanding to introduce MEC
into the LEO satellite networks and provide ground users
with computation services by sinking the rich computation
resources of the cloud servers to the edge of the LEO satellite
networks. Therefore, the ground users in remote areas without
the support of terrestrial network communication facilities
can directly offload the computation tasks to LEO satellites
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for processing in real-time, which can reduce the frequent
satellite-to-terrestrial link transmissions and end-to-end service
transmission delays between LEO satellites and ground users.

Currently, the LEO satellite multi-access edge computing
(SMEC) network has attracted the attention of academia and
industry, which is considered to be one of the important
research directions for future network deployments [13]–[16].
Considering the impact of energy and load, the MEC server
on the LEO satellite can adopt a lightweight management
platform such as Docker [12], which enables the LEO satellite
to have the capabilities of computation and content distribu-
tion. In particular, [17] proposed a space-ground-sea integrated
network architecture, and a joint communication and computa-
tion resource allocation strategy based on deep reinforcement
learning was studied with the goal of minimizing the total
execute delay of users. The authors of [18] proposed a satellite-
terrestrial integrated network with dual-edge computation ca-
pabilities to minimize the energy consumption and delay of
all users, where the MEC servers were deployed on terrestrial
base stations and LEO satellites, and the Hungarian algorithm
was adopted to solve the proposed computation offloading
problem. In [19], the authors studied a computation offloading
strategy for the SMEC network based on game theory to re-
duce the offloading cost of users, where the user’s computation
task can be computed locally or offloaded to LEO satellites. By
exploiting the network functions virtualization technology, the
authors of [20] integrated computation resources within the
coverage of LEO satellites to minimize the perceived delay
of users and proposed a cooperative computation offloading
strategy in the SMEC network. In addition, the authors of
[21] presented a software-defined satellite-terrestrial network
to dynamically manage the caching and computing resources
of satellite-terrestrial networks, where a deep Q-learning al-
gorithm is developed to solve the joint resource allocation
optimization problem. Compared with the researches in [17]–
[21], where only a two-tier computing network including
terrestrial networks (i.e., base stations or users) and LEO
satellite networks is considered, but ignore the cloud servers
with abundant computing resources [6]. In order to make
full use of computation resources in the network and provide
ground users with more computation offloading opportunities,
this paper proposes a three-tier computation architecture that
includes ground users, LEO satellites, and the cloud servers.
Although the total energy consumption of ground users is
optimized in [18], [19], the limited computation capability and
coverage time of LEO satellites are ignored. Since the limited
computation capability and coverage time of LEO satellites
are important factors that reflect the characteristics of LEO
satellites, this paper considers both computation capability and
coverage time of each LEO satellite.

With this background, we consider a hybrid cloud and edge
computing LEO satellite network with a three-tier computa-
tion architecture (CECLS) in this paper. To the best of our
knowledge, the three-tier computation architecture has yet not
been studied in literature by leveraging the cooperation among
ground users, LEO satellite edge nodes and the cloud servers,

which motivates our current work. According to different
requirements of ground users, a computation task generated
by the ground user can be executed locally, at LEO satellites
or on the cloud servers in the CECLS network. Toward this
end, we investigate the computation offloading decisions in the
CECLS network with the aim of minimizing the sum energy
consumption of ground users subject to the coverage time and
the computation capability constraints of each LEO satellite.
Since the offloading decisions variables are binary values, the
resultant optimization problem is a discrete and non-convex
optimization problem, which is in general NP-hard. To this
end, we transform the original problem into a convex problem
by relaxing the discrete variables to continuous values. Then,
a distributed algorithm relying on the alternating direction
method of multipliers (ADMM) is exploited to provide an
approximate optimal solution. The distinct features of this
paper are as follows.
• We propose a computation offloading scheme in the CE-

CLS network, where the computation tasks generated by
ground users can be computed locally, at LEO satellites
or on the cloud servers.

• Different from other MEC solutions, this paper makes
full use of the powerful resources of the cloud and
edge servers to provide ground users with heterogeneous
computation services. Moreover, the limited computation
capability and the coverage time of each LEO satellite is
considered. Then, the formulated optimization problem
for minimizing the sum energy consumption of ground
users is studied.

• The formulated optimization problem is a discrete and
non-convex, which can be transformed into a linear
programming problem by using binary variables relax-
ation. Then, a distributed computation offloading scheme
based on ADMM with low computational complexity
is proposed to solve the converted problem. Extensive
simulations are conducted to show that our proposed
scheme outperforms the benchmark algorithms. We sum-
marize the difference between our work and the existing
literature in Table I.

The remainder of this paper is organized as follows. Section
II describes the system model of the CECLS network. In
Section III, the problem formulated is described. Section IV
introduces the problem solving via ADMM. Section V presents
the simulation results with the proposed algorithm. Finally, this
paper is concluded in Section VI.

II. SYSTEM MODEL

First, the system model for our CECLS network is presented
in this section. Then, we introduce the network, coverage time,
communication and computation models in details.

A. Network Model

The CECLS network is shown in Fig. 1, where LEO
satellites are in orbit and each LEO satellite is connected to the
cloud servers on the terrestrial via backhaul links. In addition,
the ground users are in remote areas without the support of
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TABLE I
COMPARISON BETWEEN OUR WORK AND THE EXISTING LITERATURE

Reference
Multi LEO

satellite
Ground

computing
Local

computing
LEO satellite

computing
Cloud

computing
Optimize energy

consumption
Optimize delay

[17] X X X

[18] X X X X X

[19] X X X X X

[20] X X X X

[21] X X

Our work X X X X X

Fig. 1. System model of a hybrid cloud and edge computing LEO satellite
network with a three-tier computation architecture.

terrestrial network communication infrastructure. We consider
that the CECLS network includes M LEO satellites and I
ground users, which can be denoted asM = {1, 2, 3, . . . ,M}
and I = {1, 2, 3, . . . , I}, respectively. Furthermore, we as-
sume that each LEO satellite m is equipped with a MEC
server, and hence can provide computation services to ground
users.

According to different requirements, the computation tasks
are computed in different ways. For computation-intensive
tasks that ground users cannot handle, the computation tasks
can be offloaded to LEO satellites via wireless links or for-
warded to the cloud servers via LEO satellites for processing.
For computation tasks that ground users have the ability to
handle, it can be computed by itself. Moreover, we assume
that each ground user has only one computation task to be
computed and the computation task cannot be partitioned
[22]. Besides, considering that LEO satellites have the char-
acteristics of high-speed movement, the communication time
between ground users and LEO satellites is limited by the
coverage time of LEO satellites. The main notations used in
the rest of this paper are summarized in Table II.

B. Coverage Time Model

Different from the MEC network model on the terrestrial,
the location of LEO satellites will change dynamically. Hence,
the ground users cannot always communicate with LEO satel-
lites at any time, only if a specific relationship is satisfied

between LEO satellites and ground users. According to the
[23], the geometric relationship between LEO satellites and
ground users is shown in Fig. 2. Herein, h represents the
distance between the ground user and the LEO satellite orbit,
Re denotes the radius of the earth, s expresses the distance
between the ground user and the LEO satellite, and θ is the
elevation angle between the ground user and the LEO satellite,
which can be obtained by

θ = arccos

(
Re + h

s
· sin γ

)
, (1)

where γ is the geocentric angle corresponding to the LEO
satellite coverage area and can be expressed as

γ = arccos

(
Re

Re + h
· cos θ

)
− θ. (2)

Then, we can obtain the longest communicate time between
the ground user and the LEO satellite, which can be denoted
as

T =
L

vs
, (3)

where vs is the speed of the LEO satellite, L is the arc length
that the ground user can communicate with the LEO satellite,
which can be calculated by

L = 2 · (Re + h) · γ. (4)

Since different LEO satellites can share information through
Inter-Satellites Links (ISL), when the ground users have a large
number of computation tasks that need to be offloaded, the
LEO satellites can cooperate to accomplish the computation
tasks processing. In addition, the transmission rate of ISL is
fast, and thus the transmission delay of the computation tasks
from the LEO satellite to another LEO satellite can be ignored.

C. Communication Model

We assume that each ground user can only access one
LEO satellite for data transmission and multiple ground users
share the same spectrum resource, which means that there
is mutual interference between ground users. Moreover, con-
sidering large-scale fading and shadowed-Rician fading [24],
let gi,m denote the channel power gain from ground user i
to LEO satellite m. Therefore, the uplink transmission rate
for computation offloading between ground user i and LEO
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Fig. 2. The space geometric relationship between the LEO satellite and the
ground user.

satellite m through the satellite-to-terrestrial links can be
calculated by

Ri,m = Blog2

(
1 +

gi,mpi∑
j∈I\{i} gj,mpj + σ2

)
, i ∈ I,m ∈M,

(5)
where B, pi and σ2 denote the available spectrum bandwidth,
the uplink transmit power of ground user i and the additive
white Gaussian noise (AWGN) power, respectively.

Furthermore, considering that the size of the computation
results is much smaller than the size of input computation
data and the downlink transmission rate of the LEO satellite
is much greater than the ground user [25]. Therefore, the
downlink transmission delay caused by the transmission of
the computation results from the LEO satellite or the cloud
servers to the ground user is ignored in this work.

D. Computation Model

For the computation model, according to [26], we consider
that each ground user has a computation task Wi

∆
= (Di, Xi)

which can be computed locally, by LEO satellites or by the
cloud servers, where Di denotes the size of computation input
data and Xi represents the required CPU cycles to accomplish
the computation task Wi. Furthermore, let ai,m ∈ {0, 1}
denote whether the computation task Wi is offloaded to LEO
satellite m or not and the corresponding strategies of ground
user i can be expressed by ai = {ai,1, ai,2, . . . , ai,M}, where
ai,m = 1 denotes that the computation task Wi is offloaded
to LEO satellite m, otherwise ai,m = 0. Similarly, let bi,m ∈
{0, 1} express whether the computation task Wi is offloaded
to the cloud servers or not and the corresponding strategies of
ground user i can be denoted by bi = {bi,1, bi,2, . . . , bi,M},
where bi,m = 1 denotes that the computation task Wi is
offloaded to the cloud servers via LEO satellite m, otherwise
bi,m = 0. Moreover, since the computation capability of each
LEO satellite is limited, the computation tasks offloaded by
ground users to the LEO satellite cannot exceed the maximum
computation capability of the LEO satellite, which means that∑

i∈I
ai,mXi ≤ Zm, m ∈M, (6)

TABLE II
NOTATION

Notation Definition

h
The distance between the ground user and the LEO satellite
orbit

Re The radius of the earth
s The distance between the ground user and the LEO satellite

θ
The elevation angle between the ground user and the LEO
satellite

γ The geocentric angle
vs The speed of the LEO satellite
gi,m The channel gain from ground user i to LEO satellite m
B The avaliable spectrum bandwidth
pi The uplink transmit power of ground user i
Ri,m The uplink transmit rate of ground user i
Di The input data size of computation task Wi

Xi The required CPU cycles of computation task Wi

ai, bi
The computation offloading decision vectors of ground
user i

fLi The computation capability of ground user i

fSi,m
The computation capability allocated to ground user i
by LEO satellites

fCi,m
The computation capability allocated to ground user i
by the cloud servers

TL
i

The execution time of computation task Wi processing at
ground user i

TS
i,m

The execution time of computation task Wi processing at
LEO satellite m

TC
i,m

The execution time of computation task Wi processing at
the cloud servers

EL
i

The energy consumption of computation task Wi computed
locally

ES
i,m

The energy consumption of computation task Wi computed
at LEO satellites

where Zm represents the maximum computation capability
of LEO satellite m. In addition, a computation task of each
ground user has only one offloading decision. Thus, the of-
floading decisions of ground user i need to meet the following
constraint, ∑

m∈M
(ai,m + bi,m) ≤ 1, i ∈ I. (7)

III. PROBLEM FORMULATION FOR COMPUTATION
OFFLOADING SCHEME

In Subsection III-A, we first discuss the computation over-
head in terms of processing time and energy consumption for
different computation offloading schemes. Then, the formu-
lated optimization problem for minimizing the sum energy
consumption of ground users is studied in Subsection III-B.

A. Computation Overhead

For ground users, there are three computation offloading
schemes to choose from. According to different offloading
schemes, the computation execution time and energy consump-
tion of ground users are different.
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1) Local Computing: In the local computing scheme, the
computation task Wi is executed locally on ground user
i. The locally computation capability (CPU cycles/s) of
ground user i can be expressed as fLi , which can be
different for various ground users [27]. Therefore, the
computation execution time TLi of the computation task
Wi computed locally by ground user i can be denoted
as

TLi =
Xi

fLi
, ∀i, (8)

and the energy consumption ELi of the computation task
Wi computed locally by ground user i can be expressed
as

ELi = ε
(
fLi
)2
Xi, ∀i, (9)

where ε expresses the energy factor and its size depends
on the chip architecture [28].

2) LEO Satellite Computing: In the LEO satellite comput-
ing scheme, the computation task Wi of ground user
i is executed on the LEO satellites. We set fSi,m as
the computation capability (CPU cycles/s) allocated to
ground user i by LEO satellite m and assume that the
computation capability of each LEO satellite is equal
[29]. However, the distance between the ground user
and the LEO satellite is relatively long, causing the
ground user to be affected by the propagation delay
when communicating with the LEO satellite. Thus, the
computation execution time TSi,m of the computation
task Wi computed on LEO satellite m by ground user i
consists of the propagation delay, the transmission delay
and the computing delay, which can be calculated by

TSi,m =
si,m
c

+
Di

Ri,m
+

Xi

fSi,m
, ∀i,m, (10)

where Di

Ri,m
and Xi

fS
i,m

indicate that the uplink transmis-
sion delay of ground user i for transmitting the data
Di to LEO satellite m, and the computing delay for
executing the computation task Wi at LEO satellite m,
respectively. In addition, si,m

c is the propagation delay
between ground user i and LEO satellite m, where
si,m denotes the distance between ground user i and
LEO satellite m and can be calculated by si,m =√
R2
e + (Re + h)

2 − 2 ·Re · (Re + h) · cos γ, and c is
the speed of light. Furthermore, the energy consumption
ESi,m of ground user i for offloading data Di to LEO
satellite m can be calculated by

ESi,m = pi
Di

Ri,m
, ∀i,m. (11)

3) Cloud Servers Computing: In the cloud servers comput-
ing scheme, the computation task Wi of ground user
i is executed on the cloud servers. We set fCi,m as
the computation capability (CPU cycles/s) allocated to
ground user i by the cloud servers [30]. The computation
execution time TCi,m of computation task Wi computed
on the cloud servers consists of the propagation delay,

the transmission delay, the computing delay and the
backhual delay, which can be obtained by

TCi,m =
si,m
c

+
Di

Ri,m
+
Di

r
+

Xi

fCi,m
, ∀i,m, (12)

where Di

r is the backhual delay of the data Di trans-
mitting from the LEO satellite m to the cloud servers
via backhaul link and r denotes the transmission rate
between LEO satellite m and the cloud servers. Xi

fC
i,m

is
the computing delay of computation task Wi computed
on the cloud servers. In addition, it can be observed
that whether the ground user offloads the computation
task Wi to LEO satellites or cloud servers, the energy
consumption of ground user remains unchanged.

B. Problem Formulation

In order to reduce the total energy consumption of ground
users while satisfying the limited computation capability and
the coverage time constraints of LEO satellites, we consider
the optimization problem of the computation offloading deci-
sions of ground users. Mathematically, the problem of interest
reads

min
ai,bi

I∑
i=1

M∑
m=1

(1− ai,m − bi,m)ELi + ai,mE
S
i,m + bi,mE

C
i,m

(13a)

s.t
∑
i∈I

ai,mXi ≤ Zm, m ∈M, (13b)∑
m∈M

(ai,m + bi,m) ≤ 1, i ∈ I, (13c)

ai,mT
S
i,m + bi.mT

C
i,m ≤ Tm, ∀i,m, (13d)

ai,m, bi,m ∈ {0, 1} , ∀i,m, (13e)

where Tm is the coverage time of LEO satellite m and can
be obtained by (3). The objective function (13a) aims to
minimize the total energy consumption of ground users and the
constraint (13b) guarantees that the total computation offload-
ing request of ground users cannot exceed the computation
capability of the LEO satellite. Furthermore, the constraints
(13c) and (13d) indicate that each ground user only adopts
one offloading decision to execute the computation task and
the processing time of computation tasks on LEO satellites
or the cloud servers cannot exceed the coverage time of LEO
satellites, respectively.

Since the objective function (13a) and the constraints
(13b)–(13e) are nonlinear and discrete, the optimization prob-
lem (13) is a mixed discrete and non-convex optimization
problem. In addition, the objective function and constraints
contain binary variables, which makes it a challenge to find
the optimal solution of original problem (13) in the poly-
nomial time complexity [31]. To circumvent these hurdles,
we transform the non-convex optimization problem into a
linear programming problem by the relaxation approach, and
then propose a low-complexity suboptimal approach that can
achieve the near-optimal performance in the following section.

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 01:27:26 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3056569, IEEE Internet of
Things Journal

IV. PROBLEM SOLVING VIA ALTERNATING DIRECTION
METHOD OF MULTIPLIERS

In Subsection IV-A, we first reformulate the optimization
problem (13) by relaxing binary variables, and then analyze
the convexity of (13) in Subsection IV-B. Simultaneously, in
Subsection IV-C, we propose a distributed computation of-
floading algorithm based on ADMM to solve the transformed
problem and an algorithm to recovery continuous variables to
binary variables is also presented. Finally, the convergence
and complexity of the proposed algorithm are analyzed in
Subsections IV-D and IV-E, respectively.

A. Problem Transformation

Through the above analysis, it can be seen that problem (13)
is non-convex because the objective function and constraints
contain binary variables ai,m and bi,m. To effectively solve
this problem, it is necessary to relax the binary variables ai,m,
bi,m into continuous variables 0 ≤ ai,m ≤ 1, 0 ≤ bi,m ≤
1. The relaxed variables can be explained as the fraction of
the relevant computation task data, which can be offloaded to
the LEO satellite or the cloud servers. Thus, the optimization
problem in (13) can be rewritten as

min
ai,bi

I∑
i=1

M∑
m=1

ε
(
fLi
)2
Xi + ai,m

(
pi

Di

Ri,m
− ε

(
fLi
)2
Xi

)
+ bi,m

(
pi

Di

Ri,m
− ε

(
fLi
)2
Xi

)
(14a)

s.t
∑
i∈I

ai,mXi ≤ Zm, m ∈M, (14b)∑
m∈M

(ai,m + bi,m) ≤ 1, i ∈ I, (14c)

ai,mT
S
i,m + bi,mT

C
i,m ≤ Tm, ∀i,m, (14d)

0 ≤ ai,m ≤ 1, ∀i,m, (14e)
0 ≤ bi,m ≤ 1, ∀i,m. (14f)

It can be seen that the objective function and constraints
of problem (14) are linear combinations of variables ai,m and
bi,m after relaxing the binary variables.

B. Convexity

In this subsection, we will discuss the convexity of problem
(14) by the following proposition.

Proposition 1: If problem (14) is feasible, it is a convex
problem with respect to all optimization variables.

Proof : After relaxing the binary variables in problem (13),
the objective function and constraints of problem (14) are a
linear combination of a series of continuous variables ai and
bi. Therefore, problem (14) is convex regarding variables ai
and bi.

In general, the centralized optimization algorithms can be
used to solve this convex optimization problem [32]. However,
the centralized optimization algorithms (such as the interior-
point algorithm) are suitable for cases where the global net-
work state information is relatively small. Furthermore, when
the number of LEO satellites and ground users in the network

are relatively large, the use of centralized optimization algo-
rithms will put a heavier computational load on the network.
Therefore, it is the best choice to design a distributed algorithm
to obtain the feasible computation offloading strategies.

C. Augmented Lagrangian and ADMM Sequential Iterations

In order to make each LEO satellite participate in the
computation to solve problem (14), we need to design a
distributed algorithm to separate problem (14). However, the
global variables ai and bi are inseparable in problem (14).
For the sake of making the problem separable so that each
LEO satellite can solve the problem independently, we first
introduce the local copies of the global variables ai and bi.
Then, we copy these local variables to each LEO satellite.
Thus, each LEO satellite can use its local variables to calculate
independently to solve the problem. For LEO satellite m, let
âm = {âmi,k}i∈I,k∈M, b̂m = {b̂mi,k}i∈I,k∈M as the local
copies of ai and bi, respectively. Thus, the feasible set of
local variables âmi,k, b̂mi,k corresponding to LEO satellite m can
be expressed as

φm =

 âm

b̂m

∣∣∣∣
∑
i∈I â

m
i,kXi ≤ Zk, ∀k∑

k∈M

(
âmi,k + b̂mi,k

)
≤ 1, ∀i

âmi,kT
S
i,k + b̂mi,kT

C
i,k ≤ Tk, ∀i, k

 . (15)

In addition, the objection function of problem (14) can be
denoted as min

∑
m∈M

∑
i∈I f (ai,bi) and the correspond-

ing local function of LEO satellite m is expressed as

ym =

{ ∑
i∈I f (λ), λ ∈ φm,

0, otherwise, (16)

where λ expresses {âm, b̂m, }m∈M.
Based on the above analysis, the global consensus problem

[33] of problem (14) can be expressed as

min
∑
m∈M

ym (λ) (17a)

s.t âmi,k = ai,m, ∀i,m, k, (17b)

b̂mi,k = bi,m, ∀i,m, k. (17c)

The consensus constraints (17b) and (17c) guarantee the
consistency between all local variables and global variables.
Since the objective function in (17a) corresponding to each
LEO satellite is independent of each other, and when the local
variables in each LEO satellite are equal to their corresponding
global variables, the consensus of problem (17) is held.
Therefore, we can apply the ADMM algorithm [34] to solve
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problem (17). According to [34], the augmented Lagrangian
of problem (17) is denoted as

Lρ (λ,µ, {σm, δm})

=
∑
m∈M

ym (λ) +
∑
m∈M

∑
k∈M
i∈I

σmi,k
(
âmi,k − ai,k

)
+
∑
m∈M

∑
k∈M
i∈I

δmi,k

(
b̂mi,k − bi,k

)
+
ρ

2

∑
m∈M

∑
k∈M
i∈I

∥∥âmi,k − ai,k∥∥2

+
ρ

2

∑
m∈M

∑
k∈M
i∈I

∥∥∥b̂mi,k − bi,k∥∥∥2

,

(18)

where σm = {σmi,k} and δm = {δmi,k} are the Lagrange multi-
pliers of problem (18) as well as ρ is a positive penalty coeffi-
cient, there has an important influence on the performance of
the iterative algorithm. Furthermore, let µ = {ai,bi}. To solve
the problem conveniently, the Lagrangian multiplier of prob-
lem (18) is scaled to combine the linear and quadratic terms
of the equality constraints, and the augmented Lagrangian
function of problem (18) is rewritten as

Lρ (λ,µ, {σm, δm})

=
∑
m∈M

ym (λ) +
ρ

2

∑
m∈M

∑
k∈M
i∈I

∥∥âmi,k − ai,k + umi,k
∥∥2

+
ρ

2

∑
m∈M

∑
k∈M
i∈I

∥∥∥b̂mi,k − bi,k + vmi,k

∥∥∥2

,

(19)

where umi,k =
σm
i,k

ρ and vmi,k =
δmi,k
ρ . In addition, after scaling

the corresponding Lagrangian multipliers in (19), the new dual
variables can be denoted as um = {umi,k} and υm = {vmi,k},
respectively. Simultaneously, the dual problem of (17) can be
denoted as

max
β

d (β) , (20)

where the dual function d (β) can be expressed as

d (β) = min
λ,µ

Lρ (λ,µ,β) , (21)

where β = {um,υm}.
The ADMM algorithm is used to solve the problem (20) by

iteratively updating λ, µ and β. Let λ(t), µ(t), β(t) denote
the values of λ, µ, β corresponding to the t-th iteration. Next,
we update the values of λ, µ, β in the (t + 1)-th iteration
according to the following steps:

1) Local Variables {âm, b̂m}m∈M Update: In this step,
we need to update the local variables. First, given
{µ(t),β(t)} and then minimize the function Lρ on the
local variables λ, which can be expressed as

λ(t+1) = argmax
λ

Lρ

(
λ,µ(t),β(t)

)
. (22)

The problem in (22) can be divided into M subproblems
and each subproblem is solved by each LEO satellite.

Therefore, each LEO satellite needs to solve the follow-
ing problem independently:

λ(t+1) = argmin
{âmi,k,b̂mi,k}

×

ym (λ) +
ρ

2

∑
k∈M
i∈I

∥∥∥âmi,k − a(t)
i,k + u

m(t)
i,k

∥∥∥2

+
ρ

2

∑
k∈M
i∈I

∥∥∥b̂mi,k − b(t)i,k + v
m(t)
i,k

∥∥∥2

 .
(23)

Correspondingly, for each LEO satellite m, the follow-
ing equivalent optimization problem is solved at the
(t+ 1)-th iteration:

min
âmi,k,b̂

m
i,k

ym (λ) +
ρ

2

∑
k∈M
i∈I

∥∥∥âmi,k − a(t)
i,k + u

m(t)
i,k

∥∥∥2

+
ρ

2

∑
k∈M
i∈I

∥∥∥b̂mi,k − b(t)i,k + v
m(t)
i,k

∥∥∥2

(24a)

s.t λ ∈ φm. (24b)

Obviously, problem (24) is a convex problem since
its quadratic objective function and convex constraint.
Therefore, the primal-dual interior-point algorithm or
CVX tools can be applied to obtain the optimal solution
of problem (24).

2) Global Variables {ai,bi}i∈I Update: In this step, we
need to update the global variables. Through the previ-
ous step, we have obtained the local variables λ(t+1).
Then, for a given λ(t+1), the update of global variables
µ is based on the following formulations:

{ai}(t+1)

= argmin
{ai,k}

ρ
2

∑
m∈M

∑
k∈M
i∈I

∥∥∥âm(t+1)
i,k − ai,k + u

m(t)
i,k

∥∥∥2

 ,
(25)

{bi}(t+1)

= argmin
{bi,k}

ρ
2

∑
m∈M

∑
k∈M
i∈I

∥∥∥b̂m(t+1)
i,k − bi,k + v

m(t)
i,k

∥∥∥2

 .
(26)

Since (25) and (26) are unconstrained quadratic convex
problems, we can obtain the following equations by tak-
ing their first derivative with respect to global variables
ai and bi:

ρ
∑
m∈M

(â
m(t+1)
i,k − ai,k + u

m(t)
i,k ) = 0, ∀i, k, (27)

ρ
∑
m∈M

(b̂
m(t+1)
i,k − bi,k + v

m(t)
i,k ) = 0, ∀i, k. (28)
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Then, we can obtain the global solution for variables ai
and bi, which can be denoted as

a
(t+1)
i,k =

1

M

∑
m∈M

(â
m(t+1)
i,k + u

m(t)
i,k ), ∀i, k, (29)

b
(t+1)
i,k =

1

M

∑
m∈M

(b̂
m(t+1)
i,k + v

m(t)
i,k ), ∀i, k. (30)

By initializing the Lagrange multipliers as zeros at the t-
th iteration, i.e.,

∑
m∈M

v
m(t)
i,k = 0,

∑
m∈M

u
m(t)
i,k = 0,∀i, k,

equations (29) and (30) reduce to

a
(t+1)
i,k =

1

M

∑
m∈M

â
m(t+1)
i,k , ∀i, k, (31)

b
(t+1)
i,k =

1

M

∑
m∈M

b̂
m(t+1)
i,k , ∀i, k. (32)

Equations (31) and (32) mean that at the (t + 1)-th
iteration the global variables are calculated by averaging
the total local variables of all LEO satellites.

3) Lagrange Multipliers {um,υm}m∈M Update: In this
step, we need to update the Lagrange multipliers. Here,
the Lagrange multipliers are updated according to the
following formulations:

um(t+1) = um(t) + âm(t+1) − a
(t+1)
i , (33)

vm(t+1) = vm(t) + b̂m(t+1) − b
(t+1)
i . (34)

With the updated local variables received from each
LEO satellite, the cloud servers use (33) and (34) to
update the Lagrange multipliers.

4) Algorithm Stopping Criterion: According to the [33], the
primal residuals of each LEO satellite must be as small
as possible under feasibility conditions. Therefore, the
algorithm stopping criterion can be denoted as

‖âm(t+1) − a
(t+1)
i ‖2 ≤ εpri, ∀m, (35)

‖b̂m(t+1) − b
(t+1)
i ‖2 ≤ εpri, ∀m, (36)

where εpri > 0 denotes the threshold for stopping
iteration under the primal feasibility conditions. In the
same way, the dual residuals under the dual feasibility
conditions can be denoted as

‖a(t+1)
i − a

(t)
i ‖2 ≤ εdual, ∀m, (37)

‖b(t+1)
i − b

(t)
i ‖2 ≤ εdual, ∀m, (38)

where εdual > 0 stands for the threshold for stopping
iteration under the dual feasibility conditions.

5) Binary Variables Recovery: Since the binary variables
are relaxed into continuous variables in the previous
section, it is necessary to recover the obtained contin-
uous variables ai and bi to binary values. Algorithm
1 introduces the specific process of the binary vari-
ables recovery [35]. In Algorithm 1, we only use ai
as an example, and the same algorithm is applied to
bi. Moreover, the distributed algorithm for computation
offloading is summarized in Algorithm 2.

Algorithm 1 Binary Variables Recovery Alogrithm
1: Set M′ := ∅;
2: for i = 1, 2, 3, . . . , I do
3: Find the maximum decision value ai,k̃ for ground user
i;

4: Set ai,k̃ = 1 and ai,k = 0 for others k ∈M\{k̃};
5: if the constraints (13b)-(13d) are satisfy then
6: Set M′ :=M′ ∪ {k̃};
7: else
8: break
9: end if

10: end for
11: Output the recovered binary variables {ai,k},∀i ∈ I, k ∈
M.

D. Algorithm Convergence

In Proposition 1, it is proved that problem (14) is convex.
In addition, since problem (17) is the corresponding global
consensus problem of problem (14) by introducing consen-
sus variables, problem (17) is equivalent to problem (14).
Moreover, the objective function of problem (17) is linear
and the constraints of problem (17) are affine with respect
to {âm, b̂m}m∈M, problem (17) is convex [36]. According
to [37], [38], all variables and objective function of problem
(17) are bounded, which can verify that problem (17) can
converge to its optimal value and the strong duality holds.
Furthermore, according to [33], the objective function of (17)
is convex, closed and proper, and the Lagrangian function in
(19) has a saddle point, so the proposed ADMM algorithm
for computation offloading can find the optimal solution of
problem (14).

E. Complexity Analysis

It is meaningful to compare the complexity of the proposed
distributed algorithm relying on ADMM for computation
offloading with other algorithms, such as centralized offloading
scheme (COS) [32], offloading to LEO satellites or computing
locally without offloading to the cloud servers (OSCLOC)
scheme and computing locally (CL) scheme. Since there are
I ground users, M LEO satellites and the cloud servers in
the CECLS network, the input size of COS is I(M + 1),
and thus the complexity of COS is O(I3(M + 1)3). Since
OSCLOC uses coordinate descent method in the SMEC sce-
nario to solve its corresponding problems, the complexity
of OSCLOC is O

(
I3
)
. For CL, its complexity is O (I)

in each iteration. Finally, we discuss the complexity of the
proposed distributed algorithm based on ADMM for compu-
tation offloading. In local variables updating, the complexity
is O

(
I3
)
. In global variables updating, the corresponding

complexity is given as O (I (M + 1)). In Lagrange multipliers
updating, its complexity is O (I). Therefore, the computational
complexity in each iteration of the proposed algorithm is
O
(
I3
)
+ O (I (M + 1)) + O (I) ≈ O

(
I3
)
. Assuming that

K represents the number of iterations required for the algo-
rithm to converge, the total computational complexity of the
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Algorithm 2 Proposed Distributed Algorithm Based on
ADMM for Computation Offloading

1: Set the stopping criterion threshold εpri > 0 and εdual >
0, initialize the feasible solution {a(t)

i ,b
(t)
i }, i ∈ I and

the scaling Lagrange multipliers vectors {um,υm}m∈M;
2: Set the maximum number of iterations T and the initial

value t = 0 of the iterations;
3: while t < T do
4: for each LEO satellite m ∈M do
5: Update the local variables âm(t+1), b̂m(t+1);
6: end for
7: Update the global variables a

(t+1)
i , b(t+1)

i ;
8: Update the Lagrange multipliers um(t+1), vm(t+1);
9: t = t+ 1;

10: until
11: ‖a(t+1)

i −a
(t)
i ‖2 ≤ εdual, ‖b

(t+1)
i −b

(t)
i ‖2 ≤ εdual,∀i;

12: end while
13: Output the continuous values ai and bi, and then use

Algorithm 1 to recovery them to binary variables;
14: Output the optimal solutions a∗i and b∗i , ∀i ∈ I.

proposed algorithm is O
(
I3
)
K. Based on the above analysis,

the proposed algorithm has low computational complexity
compared with COS. Although the complexity of the proposed
algorithm is similar to that of the other two algorithms, the
simulation results show that the performance of proposed
algorithm is better than the other algorithms.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
algorithm based on ADMM for computation offloading in
CECLS network, which is shown in Fig. 1, and compare it
with the following three algorithms:
• Offloading to LEO satellites or computing locally

without offloading to the cloud servers (OSCLOC):
For OSCLOC, each ground user can offload the compu-
tation task to LEO satellites for processing or perform
the computation task locally, and designs a computation
offloading strategy based on coordinate descent method.

• Computing locally (CL): For CL, the computation task
generated by each ground user can only be computed by
itself.

• Centralized offloading scheme (COS): Using the
interior-point method to solve problem (14), which can
find the optimal computation offloading decisions of
ground users [32].

Simulation is performed on Matlab R2018b. In this sim-
ulation, we consider that there are 3 LEO satellites with a
height of 784 km flying over a square area of 1200 m ×
1200 m [39], where ground users are randomly deployed in
this area and each ground user has only one computation task
to be offloaded or executed locally. Furthermore, we assume
that the transmit power of each ground user i is 23 dBm
[39], the channel bandwidth is 20 MHz, and the free-space

TABLE III
SYSTEM PARAMETERS

Parameters Definition
Transmit power of each ground user pi 23 dBm
Channel bandwidth B 20 MHz
Size of input computation task Di 1000 KB
Required CPU cycles of computation task Xi 4000 Mcycles/s
Computation capability of each ground user i 0.1 Gcycles/s
Computation capability allocated to each ground
user i by LEO satellite m

3 Gcycles/s

Computation capability allocated to each ground
user i by the cloud servers

10 Gcycles/s

Number of LEO satellites M 3
Height of LEO satellites h 784 km
Elevation angle θ 20°
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Fig. 3. The convergence performance of the proposed ADMM-based algo-
rithm.

path loss model is adopted for the LEO satellite networks.
For the computation task, we consider that the size of the
input computation task Di is 1,000 KB and required CPU
cycles Xi to accomplish the computation task Wi is 4,000
Mcycles/s. Moreover, the computation capability of ground
users is 0.1 Gcycles/s, which is equal to each ground user.
The computation capability of LEO satellites and the cloud
servers allocated to each ground user i are 3 Gcycles/s and 10
Gcycles/s [14], [18], respectively. The simulation parameters
are summarized in Table III.

The convergence performance of the proposed ADMM-
based algorithm and COS is demonstrated in Fig. 3. In this
figure, the number of ground users is set as 24. It can be
observed that the total energy consumption of ground users for
the ADMM-based algorithm gradually decreased in the first 15
iterations, and then entered a stable state after 30 iterations,
which indicates the proposed ADMM-based algorithm can
converge quickly. Furthermore, the total energy consumption
of the proposed ADMM-based algorithm after convergence
is close to COS, which shows that the proposed ADMM-
based algorithm can achieve relatively better performance after
multiple distributed iterations.
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Fig. 4. The total energy consumption of ground users versus different number
of ground users.
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Fig. 5. The total energy consumption of ground users versus different
computation requirement of task.

In Fig. 4, we illustrate the effectiveness of the proposed
ADMM-based algorithm by comparing the total energy con-
sumption of ground users with that of OSCLOC, CL, and
COS. It can be observed that our proposed ADMM-based
algorithm is better than the both the algorithms of OSCLOC
and CL. In addition, the performance of the proposed ADMM-
based algorithm has a small gap with COS, which indicates
that the proposed ADMM-based algorithm can provide ground
users with better computation offloading strategies with low
computational complexity. Simultaneously, it can also be
observed from Fig. 4 that the total energy consumption of
the four algorithms increases as the number of ground users
increases. This is because increasing the number of ground
users will increase the number of corresponding computation
tasks, resulting in an increase in the total energy consumption
of ground users. Moreover, when the number of ground users
exceeds the maximum computation capability of the LEO
satellite, some ground users may process their computation
tasks locally or further offload the computation tasks to the
cloud servers, which will cause more energy consumption.
The total energy consumption of the proposed ADMM-based
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Fig. 6. The total energy consumption of ground users versus different size
of computation task.

algorithm increases slowly and can effectively reduce the total
energy consumption of ground users by approximately 16.5%
and 32.6% compared with OSCLOC and CL, respectively.

In Fig. 5, we compare the total energy consumption of
ground users for the four algorithms with different compu-
tation requirement of task. Here the number of ground users
is 24. The larger computation requirement of task leads to
higher computation load in the network, which can increase
the energy consumption of ground users. As shown in Fig.
5, the total energy consumption of these algorithms increases
as the computation requirement of task increases and the
energy consumption of CL is the most. This is because
CL can only process computation tasks locally, when the
computation requirement required by the computation task
increases, the total energy consumption of CL will increase
accordingly. In the OSCLOC scheme, the computation tasks
of the ground users can be computed locally or offloaded
to LEO satellites for processing, but when the computation
requirements of ground users exceed the computation capabil-
ities of LEO satellites, the computation tasks of ground users
can only be processed locally. However, the proposed ADMM-
based algorithm can provide ground users with three different
computation offloading strategies so that ground users have
more computation offloading opportunities. Besides, when the
computation requirement required by the ground user is large,
the proposed ADMM-based algorithm can offload compu-
tation tasks to the cloud servers with abundant computing
resources to reduce the burden on LEO satellites. Therefore,
the proposed ADMM-based algorithm has better performance
compared with OSCLOC and CL, which can effectively reduce
the total energy consumption of ground users by 16.3% and
31.8%, respectively. Moreover, the energy consumption of the
proposed ADMM-based algorithm is almost the same as COS,
which shows that the proposed algorithm can achieve the
optimal solution like COS.

Fig. 6 compares the total energy consumption of ground
users for the four algorithms versus different size of com-
putation task. In this figure, the number of ground users is
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Fig. 7. The total energy consumption of ground users versus different
computation capability of each ground user.

set as 24. The larger the size of the computation task, the
more energy consumption for ground users to transmit tasks
to LEO satellites. From Fig. 6 we can see that the proposed
ADMM-based algorithm has much lower energy consumption
compared with OSCLOC and the gap with COS is quite small.
According to (9), the total energy consumption of ground
users when the computation task is executed locally is related
to the computation capability of the ground user and the
required computation requirement of the task, and thus the
total energy consumption of CL will not increase as the size
of computation task increases. However, as shown in Fig. 6,
the total energy consumption of the proposed ADMM-based
algorithm and OSCLOC increases as the size of computation
task increases because the total energy consumption of ground
users offloading computation tasks to LEO satellites or cloud
servers is related to size of computation task. Furthermore,
it can be seen that when the size of the computation task is
2,000 KB, the proposed ADMM-based algorithm can reduce
the total energy consumption of ground users by 15.7% and
28.8% respectively compared with OSCLOC and CL.

Fig. 7 shows the total energy consumption of ground users
for the four algorithms versus different computation capability
of each ground user. The number of ground users here is 24.
It can be seen from Fig. 7 that the total energy consumption
of the ground users corresponding to the four algorithms
increases as the computation capability of the ground users in-
creases. Although increasing the local computation capability
of ground users can enable them to process more computation
tasks locally and reduce the delay of task processing, it will
also increase its energy consumption. However, offloading
computation tasks to LEO satellites or cloud servers can
effectively reduce the total energy consumption of ground
users, which is beneficial to the battery lifetime of ground
users and makes full use of the computing resources of the
network. Therefore, the proposed ADMM-based algorithm
can effectively improve the utilization of network resources
and reduce the total energy consumption of ground users.
Furthermore, the proposed ADMM-based algorithm has a low
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Fig. 8. The total energy consumption of ground users versus different
elevation angle θ between ground users and LEO satellites.

energy consumption compared with OSCLOC and CL and
its curve almost coincides with COS, which indicates that
the proposed algorithm can effectively reduce the total energy
consumption of ground users.

Fig. 8 depicts the total energy consumption of ground users
for the four algorithms versus different elevation angle θ
between ground users and LEO satellites, where the number of
ground users is 24. According to (3), the communication time
between the LEO satellite and the ground user is related to
the elevation angle θ between them. Moreover, the smaller the
elevation angle θ, the longer the communication time between
the LEO satellite and the ground user. As shown in Fig.
8, the total energy consumption of proposed ADMM-based
algorithm and OSCLOC increases as the elevation angle θ
increases, and the total energy consumption of ground users
is the largest when elevation angle θ = 1.4 (close to 90°).
This is because the communication time between ground
users and LEO satellites decreases as the elevation angle θ
increases, which means that only a part of the ground users
can communicate with LEO satellites and offload computation
tasks to LEO satellites or the cloud servers. However, the
computation tasks of the remaining ground users can only
be computed locally. Therefore, when the elevation angle
θ = 1.4, the communication time between ground users and
LEO satellites cannot support ground users to perform com-
putation offloading, so the computation tasks of ground users
can only be performed locally, which causes the total energy
consumption of ground users increases as the elevation angle
θ increases. As for CL, since the computation task is only
processed locally by the ground user, the change in elevation
angle θ does not affect the total energy consumption of CL.
Moreover, the proposed ADMM-based algorithm has much
lower energy consumption and is close to COS compared with
OSCLOC and CL.

VI. CONCLUSION

In this paper, we have introduced a computation framework
in a LEO satellite network by considering the LEO-MEC
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servers and the remote cloud servers. In this network, we
jointly optimized the computation offloading decisions to min-
imize the sum energy consumption of ground users under the
constraints of the coverage time and the computation capability
of each LEO satellite. Since the formulated optimization
problem is non-convex, we used the binary variables relaxation
algorithm to transform the original problem into a convex
problem. To further reduce the complexity, we provided a
parallel optimization algorithm, ADMM, to deal with the
transformed problem. Extensive numerical results illustrated
that the proposed ADMM-based computation offloading algo-
rithm shows superior performance in reducing the total energy
consumption of ground users. Our work can provide valuable
insights to the important yet underexplored field of CECLS
networks. In future work, we will consider the security of
computation nodes, the cooperative offloading between LEO
satellites, and mobility management in CECLS network, which
may involve blockchain and deep reinforcement learning tech-
nology.
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