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Adaptive and Robust Routing With Lyapunov-Based
Deep RL in MEC Networks Enabled by
Blockchains

Zirui Zhuang

Abstract—The most recent development of the Internet of
Things brings massive timely sensitive and bursty data flows.
Also, joint optimization on storage, computation, and communi-
cation is in need for multiaccess edge computing frameworks. The
adaptive network control has been explored using deep reinforce-
ment learning (RL), but it is not sufficient for bursty network
traffic flows, especially when the network traffic pattern may
change over time. We formulate the routing control in an environ-
ment with time-variant link delays as a Lyapunov optimization
problem. We identify that there is a tradeoff between optimization
performance and modeling accuracy when the propagation delays
are included. We propose a novel deep RL (DRL)-based adaptive
network routing method to tackle the issues mentioned above.
A Lyapunov optimization technique is used to reduce the upper
bound of the Lyapunov drift, improving queuing stability in net-
worked systems. By modeling the network traffic pattern using
the Markovian arrival process, we show that network routing
problems can be modeled as Markov decision processes and
value-iteration-based RL methods can be used to solve them. We
design a blockchain-based protocol using proof of elapsed time
consensus mechanism to ensure a trustworthy network statistics
information exchange for the routing framework. Experiment
results show that the proposed method can learn a routing pol-
icy and adapt to the changing environment. The proposed method
outperforms the baseline backpressure method in multiple set-
tings and converges faster than existing methods. Moreover, the
DRL module can effectively learn a better estimation of the long-
term Lyapunov drift and penalty functions, providing superior
results in terms of the backlog size, end-to-end latency, age of
information, and throughput. Furthermore, the blockchain-based
network statistics exchange can provide the routing framework
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against malicious nodes. In addition, the proposed model per-
forms well under various topologies, and thus can be used in
general cases.

Index Terms—Adaptive control, Lyapunov optimization,
network routing, reinforcement learning (RL).

I. INTRODUCTION

HE EXPLOSION of the Internet of Things (IoT) gener-
T ates massive sensory and time-series data with burstiness.
Ten years ago, the death of Michael Jackson shocked people all
around the world, and it shocked us even more as it brought the
Internet down at the same time. End users experienced diffi-
culties in accessing services from almost all major information
technology providers. Today, the Internet, carriers, and service
providers are facing an even more challenging environment.
For instance, the COVID-19 pandemic forces people to work
from home, highly relying on teleconference, video confer-
ence and online collaboration, which creates bursty, long-range
peer-to-peer and high-volume network traffic. As ten years
have gone by, the dramatically increased volume of online
social networks, the upgraded mobile networks, and the
growth of ubiquitous IoT devices, provide a rapid channel
for information diffusion upon triggering events. It means that
there will be more and more information explosion, as well
as burstiness in the communication networks. Sometimes, the
burst of network traffic may even come from security vulner-
abilities. Attackers may exploit IoT terminals and use it to
perform (distributed-) denial-of-service attacks [1], [2].

As a result, these massive data are required to be trans-
mitted, delivered, and processed in a timely manner [3]. To
achieve lower latency, clouds and servers are deployed increas-
ingly closer to the end users, which is called multiaccess
edge computing (MEC) [4]. With the arising deployment of
MEC, it is vital for the routing methods to take into account
the edge service utilities [S] and to jointly optimize storage,
computation, and communication [6], [7]. There is existing
work from the perspective of storage and computation, such
as edge caching [8], [9] and computation offloading [10]-[12].
However, the perspective of communication still needs to be
explored.

Recent studies have summarized the timeliness of the net-
worked system using the age of packet received, defining a
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new metric called the Age of Information (Aol) [13], [14],
which can cover all the latency components of storage, com-
putation, and communication. The information generated from
hotspot events should be updated and delivered as soon as pos-
sible. The demand for timeliness also applies to sensory data
generated from the IoT devices, monitors, and roadside infras-
tructures [15]. Also, the network should be able to stabilize
itself against the burstiness caused by hotspot events. Although
important, few studies emphasize the impact of burstiness
on emerging network traffics [16]. This requirement pushes
network management into a whole new level. There is a vision
that future communication networks require a convergence
of communication, computing, and control [17], [18]. The
communication networks may achieve better performance and
higher efficiency with the help of artificial intelligence com-
puting techniques, and it may become more reliable and robust
with the integrated co-design of control systems. The highly
dynamic and unpredictable traffic pattern shifts the demand
for the ability to adaptively adjust control policy in network
management. Also, the control policy should be sufficiently
stable against random burstiness in traffic flows. It is our vision
that the combination of deep reinforcement learning (RL) and
Lyapunov optimization is the very first step toward more intel-
ligent, autonomous, and reliable communication networks in
future the Internet-of-Everything environment.

On the one hand, with the deep RL (DRL) methods as
powerful tools generating adaptive network control policies,
it becomes an increasingly trending concept [3] that these
problems are better solved with the cross-layer optimization
involving access control, resource allocation, and routing. On
the other hand, the Lyapunov optimization uses a quadratic
function of queue backlog sizes as the Lyapunov function,
and a control policy is used to reduce the upper bound of
the Lyapunov function drift. In this way, the queue backlog
sizes will be sufficiently stable as long as the arrival rates are
interior to the capacity region [19], [20].

Combining the DRL methods with the Lyapunov
optimization generates more power than simply pooling
their efforts together. Not only the Lyapunov optimization
part gives better stability guarantee and more robust decision
making, but also the RL part achieving a better cumulative
t-step control result as a whole than the #-slot time average in
standard Lyapunov optimizations. Moreover, the short-term
and long-term constraints of heterogeneous IoT Quality of
Service (QoS) demands stated by Chen et al. [14] can be met
over time as bonded by the Lyapunov methods.

But there is a major concern about the environment’s sta-
tionarity when we try to apply DRL onto a networking system
whose state will be affected by input from the outside of the
system. We show that the Markovian arrival process (MAP)
can be used to model the traffic’s arrival, and on top of that, the
environment will be stationary for a RL agent to learn from.
The MAP can be used to accurately model any arbitrary ran-
dom arrival process if the state space is sufficiently large and
the state transition matrix is sufficiently dense [21], [22].

As the routing decisions are made using information about
the queue backlog size in each node, it is vital to ensure
the backlog size acquired is accurate and trustworthy. This
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can be a challenge because the nodes may advertise wrong
information either actively or passively. In the active scenario,
the medium of a forwarding node, such as a roadside unit or
a drone, can be breached and taken control of by malicious
attackers. In the passive scenario, the hardware or software in
a forwarding node may by overloaded and facing performance
degradation, and thus provided inaccurate queue backlog size
information to other nodes.

Therefore, we propose an adaptive network routing con-
trol framework utilizing the strengths of both DRL and the
Lyapunov optimization. The blockchain-based network statis-
tics exchange protocol as an add-on enables a trusted and
reliable environment for the routing framework. The proposed
framework unravels the issues mentioned above.

In summary, the main contributions in this article are listed
as follows.

1) To our best knowledge, we are the first to model the
queuing dynamics in the network routing environment
with time-variant propagation delay properties. This
leads to a more accurate model and contributes to better
control policies.

2) We formulate the control objective using Lyapunov
optimization techniques. An objective function is
derived to achieve any given optimization goal with the
ability to stabilize the system in the sense of Lyapunov.
We also identify that there is a tradeoff between
optimization performance and modeling accuracy by
adjusting the time-slot interval.

3) We analyze why the (deep-) RL methods can be used to
solve the network routing problem where there is traffic
randomly injected into the system. We model the traffic
as a general random arrival process using the MAP and
show that the system environment is stationary so that
the RL-based methods can be applied.

4) We design a RL algorithm using deep neural networks
to adaptively search for the optimal control policy as the
network channel characteristics change.

5) We apply a blockchain-based protocol to provide a dis-
tributed and trusted routing information exchange. The
security is improved against actively malicious nodes
and passively malfunctioning nodes.

The remainder of this article is organized as follows.
Section II reviews related work. Section III reveals the system
models. Section IV explains the methodology. Section V gives
the experiment results and analysis. Section VI concludes this
article.

II. RELATED WORK

A. Adaptive Control and Deep Reinforcement Learning in
Communication Networks

The adaptive network control is previously exploited to
improve the Quality of Experience (QoE) [23], [24], the con-
nectivity in IoT networks [25], the reliability in vehicular
ad hoc network (VANET) [26], and the maximum sending
rate known as traffic engineering [27]. As adaptive control
policies are adjusted online and they usually can be mod-
eled as Markov decision processes (MDPs), RL techniques
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are used extensively, and many of them [23], [24], [26] use
DRL methods. This is because that DRL techniques are capa-
ble of extracting highly sophisticated system dynamics and
make policy adaptation according to the guidance of given
rewards.

Kim er al. [28] used logistic regression to classify con-
gestion status and build an adaptive rate control on top of
this congestion classifier. Zhou et al. [29] combined traffic
forecasting and DRL to choose frequency scaling in network
function virtualization-based network operations dynamically.
Fu et al. [30] used DRL to efficiently solve service function
chain embedding problem in network function virtualization-
enabled IoT systems. Wang et al. [31] used federated DRL to
improve QoS in edge cache services for IoT devices.

Guan et al. [32] proposed a cooperative topology control
scheme improving the network capacity by jointly consider
upper layer network capacity and physical layer cooperative
communications. Guan et al. [33] jointly consider authentica-
tion and topology control and formulate a discrete stochastic
optimization problem to adaptively achieve security accord-
ing to the available resource for mobile ad hoc networks with
cooperative communication.

There are recent works trying to use DRL methods to solve
network routing problems [34]-[36]. Stampa et al. [34] used
DRL to adaptively adjust link weight upon changes in the
traffic demand matrix, and the authors use these link weights
to generate routing decisions. Suarez-Varela er al. [35] used
DRL to schedule flows among a set of previously generated
paths. Xu et al. [36] used DRL to find the optimal traffic
split ratios in traffic engineering, where the state space vec-
tors represent the throughput and delay in each session. Note
that the new traffic arrivals in these works are all modeled as
Poisson processes, which is a strong and simplified assump-
tion. Due to the fact that RL techniques require stationary
environments to learn from, these attempts all make abstrac-
tion of network dynamics, either in the state space [34]—[36]
or the action space [34], [35]. These abstractions help DRL
algorithms converge despite that the communication networks
are highly dynamic and transient events are seen from time
to time. However, the abstractions also cost the networked
system the ability to make the optimal control decision since
all the burstiness is smoothed out. Upon changes in traffic pat-
terns, although the DRL algorithms are adaptive, they have to
converge again to the new (sub-)optimal solutions, and there
are concerns whether the algorithms can converge faster than
network traffic pattern shifts.

B. Modeling Methods of Arrival Processes

Klemm et al. [37] used the Batch MAP (BMAP) to model
the Internet protocol (IP) traffic and develop an expectation-
maximization (EM) algorithm to estimate the BMAP’s param-
eters. Okamura et al. [21] used EM algorithms to fit network
traffic to MAP and Markovian modulated arrival process
(MMAP) models with group data. Rezaei et al. [22] used
MAP to model the arriving flows and give delay analy-
sis in cache-enabled networks. Neely et al. [38] used the
Markovian arrival model to analyze the robustness of the
Lyapunov Optimization when the latter is used in network
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Fig. 1. Queuing dynamics in networked queuing systems: (a) case in which
the propagation delay between two queues is sufficiently small to be ignored
or does not exist and (b) case in which there is a d,; delay between two
queues.

routing. Kadota and Modiano [39] used the Bernoulli arrival
process to model the stochastic arrival of packets and mini-
mizes the Aol under this setting. Markovian models are also
used in the power system’s generation dynamics [40] to help
electricity pricing.

C. Lyapunov Optimization Methods

The Lyapunov second method states that if a system at its
stable state is given a trivial interference, it will always return
to its stable state as long as the drift of the Lyapunov function
is smaller than or equal to zero [41]. Lyapunov optimization
has been widely used as a tool to solve stochastic network
optimization problems, as in energy harvesting [42], smart
grid [43], cache placement [8], and network routing [44], [45].

Network routing with queuing stability objective is known
as backpressure routing [46] which uses differential queue
backlog sizes between neighboring nodes as an intermediate
state to minimize the system’s Lyapunov drift [19]. However,
backpressure routing often comes with long convergence
time, and thus cannot provide sufficient QoS guarantees.
Kabou et al. [47] used distributed and prioritized control pol-
icy to improve QoS in terms of end-to-end delay. To improve
the system stability in communication networks with con-
straints, Neely [44], [48] and Neely and Urgaonkar used
the Lyapunov optimization and drift-plus-penalty algorithm
as tools to perform stochastic network optimization in queu-
ing systems. Ying et al. [49] used virtual queues to add hop
constraints to Lyapunov-based backpressure routing, achiev-
ing queuing stability with the smallest hop counts possible.
Stefanovic and Pavel [50] consider optical networks with con-
stant link delay and optimize the Lyapunov bound under the
worst case scenarios. Neely [51] also designs a scheduling pol-
icy that gives bounded worst case delay in multihop networks.
Nufiez-Martinez and Mangues-Bafalluy [52] designed a dis-
tributed drift-plus-penalty algorithm with adaptive weighting
between queuing stability and the distance to the destination
node.

The queuing dynamics are often modeled in a time-slotted
manner, where the Lyapunov drift is computed between two
consecutive time slots and a control policy is used to minimize
the drift’s upper bound to stabilize the queuing system. A more
responsive control policy requires a more fine-grained time-
slot interval. Fig. 1(a) shows how the queuing dynamics work

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 01:32:22 UTC from IEEE Xplore. Restrictions apply.



ZHUANG et al.: ADAPTIVE AND ROBUST ROUTING WITH LYAPUNOV-BASED DEEP RL IN MEC NETWORKS ENABLED BY BLOCKCHAINS

Stats-Chain@/@/,

- §a®

Stats-Chain

Edge Computing

2211

Route 4

@

Edge Computmg

U
i

Stats-Chain

Fig. 2. Structure of mobile edge computing networks. Example routes are shown from endpoint A to computing services D, E, and F, as well as route from

endpoint B to office building C.

when there is no delay between the two queues. However, this
can be a problem when the system introduces delays moving
the content among queues, such as the propagation delays
when packets travel from one node to another, as shown in
Fig. 1(b). If the time-slot interval is sufficiently small, the
Lyapunov drift may depend on the control decisions made
many time slots ago, which means the control policy has
to make decisions minimizing the future expected Lyapunov
drift. In traditional Lyapunov optimizations, the smaller the
time-slot interval is, the more inaccurate the queuing dynam-
ics modeling will be, and hence it will be more difficult to
stabilize the system.

When the queuing dynamics are challenging to formulate
mathematically, predictive or approximation methods are often
used. de la Pefia and Christofides [53] used a predictive model
to resists inaccurate network state sensing which comes from
the time-varying data loss. Huang et al. [54] used a predictive
service model to predict packet arrival in future time slots.
Yu and Neely [45] used the last recorded injection rate to
help approximate queuing dynamics.

D. MEC and Blockchain in IoT

With the development of cloud computing, network func-
tion virtualization, software-defined networking and 5G radio
access, the MEC provides computation offloading, close prox-
imity services and the potential of better service QoE to IoT

devices [5]. In particular, MEC provides computation and
storage capacity to resource-limited mobile IoT devices and
enables blockchain usage in these devices [55]. The usage
of blockchain can establish a distributed peer-to-peer commu-
nication pattern and add security to microtransactions in IoT
services [56]. Liu et al. [57] used blockchains to distributively
deliver video streams in MEC networks. Liu er al. [58] used
DRL to promote data exchange in the industrial IoT settings in
a secure and efficient way. Yang et al. [59] surveyed the inte-
gration of blockchain and edge computing systems, pointing
out that blockchain brings security improvement and trust to
edge computing, and edge computing brings more computation
and storage resources to the blockchain network.

In terms of network routing, Yang et al. [60] used Proof-
of-Authority (PoA) consensus mechanism to build a trusted
routing framework in wireless sensor networks leveraging
PoA’s fast transactional speed, but the validation process is
limited to a small group of trusted nodes. Saad et al. [61] used
Clique to reach a consensus of routes over border gateway pro-
tocol (BGP) nodes, which is also a PoA algorithm. Among the
existing consensus mechanisms, the Proof-of-Elapsed-Time
(PoET) is known to provide randomly distributed valida-
tion selecting the node with the shortest wait time as the
validator [62]. Sharding can improve the scalability of a
blockchain-based system [63] and it can be used in together
with PoET [64].
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III. SYSTEM MODEL
A. Network Model

Fig. 2 shows the communication network structure in an
MEC setting. There is heterogeneous traffic in the network.
While some computation related traffic can be offloaded
from the central cloud to the edge computing clusters, other
traditional traffic also exists and produces nonoffloadable end-
to-end traffic volumes. For example, the endpoint A may
request a computation service which can be offloaded either
to edge computing clusters D or E, or no offloading at all.
For endpoint A, the traffic can be routed via one of routes
1, 2, and 3. Also, nonoffloadable traffic from endpoint B to
office building C can be routed via a possible route 4. As the
edge computing clusters are relatively immobile, it is impor-
tant for the network to route the requested tasks according to
the current network and computation resource status.

Let us consider a communication network represented in
graph 4 (7, &), where ¥ = {vy, va, ..., v,} is the set of nodes
and & = {ey,ea,...,ey} is the set of links. D is the link
propagation delay matrix. p is the forwarding policy tensor.
At each node v;, it keeps a queue for each destination node
vj, and the queue backlog size at time ¢ is noted as Y;;(f).
For the packets whose destination is a normal endpoint, the
queue backlog size is always set to zero once the packets hit
their destination. For the packets whose destination is an edge
computing server, the backlog size is reduced if and only if the
corresponding task is finished. The system has a transmission
capacity for each directed link e = (v;, v;), and the capacity is
noted as C; ;. T denotes the time-slot interval. For each source—
destination pair, the end-to-end latency is denoted by /; j, the
throughput is f; ;, and the delivery ratio is u; ;. The packets’
arrival is modeled by a random process, and /; j(#) denotes
the number of arrival packets from outside sources at time ¢.
A list of symbols used in this article and the corresponding
descriptions can be found in Table L.

B. Traffic Model

Let us define the arrival of injected network traffic as

a BMAP, whose underlying Markov process is {N(?), J(?)},

where N(¢) is the number of arrived packets at time ¢, and

J(?) is the system’s state at time ¢. For a M-state BMAP noted

by BMAP(M), 1 < J(¢) < M. The underlying continuous-time
Markov chain (CTMC) can be written as follows:

PM = (N0, 0},

N@) =0, 1<J@) <M. (D)

In the setting of BMAP, the infinitesimal generator for process
PM can be written as follows:

Dy D Dy Dpr1 Dpr2 Dpys
0 D9 D Dy Dpy1 Dpio

Q=10 0 D D Dy Dpyi

2)

Each element ® in 9 is an M x M matrix, giving the tran-
sition matrix between the states, and b denotes the number of
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TABLE I
SYMBOLS AND DEFINITIONS

Symbol Definition
g The graph representing a communication network
v The set representing all nodes in the network
3 The set representing all links in the network
Vi A node in 77
e; A link in &
n The number of nodes
The number of links
M The underlying continuous-time Markov chain of a given
M-state MAP or BMAP
Q The infinitesimal generator of a given Markov process
Dp The state transition matrix in a Markov process, where b
stands for the number of packets arrived as the transition
happens
Y, (1) The queue backlog size at node v; for destination v; at
time ¢
L(t) Lyapunov function value at time T
AL Lyapunov drift
B An upper bound for Lyapunov drift
f Optimization objective function
1'% Tradeoff preference parameter
S The state-space in the Markov decision process
A The action-space in the Markov decision process
P(s,a;s’) The state transition probability in the Markov decision

process from state s under action a to a new state s’
P¢(sc, a;s{)  The state transition probability in the Markov decision
process caused by the control policy from state s¢ under

action a to a new state s

]Pi(si;si') The state transition probability in the Markov decision
process caused by the underlying CTMC from state s; to
a new state s;
7(b) The matrix of hidden state transition probability density
function for a batch arrival of b packets
y Reward discount factor used in reinforcement learning
r The immediate reward for the deep-Q-network
QO(s,a) The expected cumulative reward for a given pair of state
and action
[ The neural network parameters used in deep-Q-networks

packets arrived when a state transition happens. The elements
in ® states the state transition rate, i.e.,

b b b
Mi My My
Ao )
2,1 2,2 2.M
Dp=| . . 3)
b. b. ' b.
Y A

An example of the state transition in a BMAP(2) is shown
in Fig. 3. Each arrowed line represents a transition between the
two given states. The dashed lines show the transitions where
no arrivals occur, and the solid lines show those with arrivals.
The transition rate also represents the arrival rate where there
are arrivals. Rate )»f” ; stands for a transition with a batch arrival
of b packets when b > 1.

It has been shown that MAP(M) can be analytically con-
structed when M < 3, and a few known arrival processes,
such as the Poisson process, the Erlang renewal process, and
the Markov modulated Poisson process, can be represented in
the form of MAP [65]. However, there is a tradeoff between
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i]

2,2

l]

1,1

Fig. 3. State transition diagram of a 2-state BMAP. The dashed lines represent
transitions between states where no arrival occurs, and the solid lines represent
transitions where there are b arrivals at rate Af? i b>1.

the tractability and the accuracy of the fitted (B)MAP models.
For better accuracy, it will require a more general (B)MAP(M)
where M >> 3, say M = 64 in real-world practices [66].

Modeling the arrival of traffic in a network as a whole can be
more sophisticated when considering the correlation between
extra factors such as the geographical locations and application
services. Fig. 4 shows an example of possible state transitions
between two correlated locations when a burst of traffic occurs.
Let us assume there is a social event that happens at Location 1
with a rate A1 that causes a burst of traffic from Location 1.
For a rate A4, some other users at Location 2 might start
generating traffic as well due to the fact that they share the
same interests with the users at Location I or simply because
they are geographically close to each other. The heat might
fade at Location 2, and then falls back to state S2 with a rate
A4,2. Depending on the type of event, the transition between
states will possibly go along with a different path, say S1 —
S2 — 83 — S1. Note that in this example, the states are
designed to capture the correlation of interarrival times among
different locations, not knowing there can be different services
that the users are with, different events that trigger the burst of
traffic, different groups of users, and many other dimensions
that can be involved. For a complete model, the number of
states needs to be the multiplication of the cardinals of every
dimension, which will dramatically increase the number of
states.

Because the number of states can be very large, it raises
concerns for people when applying BMAP into real-world sce-
narios. If the number of states is too small, the fitted model
will not be sufficiently accurate to guide the optimization of
the system’s operation. Moreover, if the number of states is
too large, it will be less likely that the fitted model will be
analytically tractable. Let alone the fitting process of BMAP
is time consuming, knowing it requires minutes of CPU time
when using EM algorithms [37].

Note that to distinguish between the states of underlying
CTMC and the states of MDP in the following sections, we
will call the states of underlying CTMC as the hidden states
in the following context.
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Location 1: With burst
Location 2: No burst

Location 1: No burst
Location 2: No burst

Location 1: With burst
Location 2: With burst

Location 1: No burst
Location 2: With burst

Fig. 4.  State transition diagram of a 4-state BMAP. Each state describes
whether there is a burst of traffic at each individual location. For simplicity,
the batched arrivals are not shown here.

C. Queuing Dynamics Modeling

Let us first consider a queuing dynamic where the propa-
gation delay in each link is ignored. For a forwarding queue
at node i with packets for destination j, the queuing dynamics
can be easily written as follows:

w0 =" taij® )
aeV,a#i

uliy=">"" s )
beV,b#i

Yij(t+1) =Y + Lj(t + 1) + pi () — uls(0) - (6)

where (4) is the sum of ingress packets, (5) is the sum of egress
packets, and (6) gives the whole queuing dynamics. Later, the
optimization framework will try to find an optimal routing
policy w using this dynamic. However, when the propagation
delay of links cannot be ignored, the queuing dynamics should
be updated accordingly to present a more accurate model. In
this case, the ingress packets are determined by a previous
routing policy multiple time slots before. Equation (4) should
be modified as follows:

w0 =" paij(t — Dai/T) ™)
acV,a#i

Yijt 4+ 1) = Vi) + L+ D + 50 — ndy0. @)

Note that only the arrival rates are updated and the departure
rates remain the same in the queuing dynamics when com-
paring (6) and (8). This is because at any given time slot, the
departure of packets from a node can always be precisely con-
trolled while the arrival of packets is affected by the delay of
a link, which is possibly unreliable and varies over time.
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IV. LYAPUNOV OPTIMIZATION-BASED DEEP
REINFORCEMENT LEARNING

A. Lyapunov Optimization
We use a quadratic function of the queue backlog sizes as

a scalar measurement for the level of the system’s instability.
It can be used as a Lyapunov candidate function as

1 n—1n—1
L =5 R AO )

i=0 j=0
We use the quadratics of queue backlog size because it is
a widely use candidate to model and improve network sta-
bility [45], [54], [67]. Now that we have the definition of
the Lyapunov function, the Lyapunov drift can be derived as

follows:

AL =L({t+ 1) — L@

n—1n—1

= 3 S (H@ g0 + 0 — o)

i=0 j=0

(10)

n—1n—1
— % Z Z Yi,j(t)2
i=0 j=0
n—1 n—1
5B+§:§:Eﬂthﬂﬂ+Mﬁ0y_wyﬂwaﬂam

i=0 j=0

(1)

where the upper bound is a constant defined as follows:

1 n—1n—1 2

2
Z(Ii,j+m§1X(Ma,i,j)) + <m§1x(ui,b’1)> .
=0 =0

i=0

B=s (13)

If the network traffic is within the capacity region, the expec-
tation in the right part of (12) will be negative. Let it be a
number € > 0, i.e.,

E[ 10 + 15 0 = u 0¥ 0] < —e.

It means that as long as the system’s queue backlog sizes
are sufficiently large, say Z:l:_ol er‘:ol Yij(t) = (B/e), the
Lyapunov drift AL will always be smaller than or equal to
zero, and thus pushing the system back to a stable status. In
other words, the system’s queue backlog size is bounded by
(B/e€) in the long term, as in

(14)

n—1n—1

E ZZY,-J@) <§.

i=0 j=0

15)

To find the optimal routing control policy, we leverage the
drift-plus-penalty algorithm. The objective function becomes

f=AL+V.-P (16)

where P is the penalty we want to minimize, and V is a param-
eter controlling the preference between system stability and
penalty reduction.

However, there is a dilemma. Like (14) states, the expected
departure rate is lower than the combined arrival rate. If the
time-slot interval is too large, some of the queues may under-
run, which means a portion of service rate may be wasted
while waiting for new packets’ arrival. If the time-slot interval
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is too small, the current arrival rate estimation would be more
inaccurate, as shown in (4) and (7). If the links’ propaga-
tion delay is time-invariant, it might be possible to record
each queue’s previous D, ;/T-slots service rate and use it in
optimization and minimize the Lyapunov bound for the worst
case scenarios [50], [51]. However, in networked systems with
time-variant propagation delay, this is not an option, because
the future propagation delay is not known a priori and it needs
more sophisticated methods to take future propagation delays
into consideration, whether directly or indirectly.

B. Robust Deep Reinforcement Learning Enabled by
Lyapunov Optimization

We propose a dual DRL-based method to tackle the issues
mentioned above.

First, we model the control of network routing as an MDP.
The system consists of a state-space S, an action-space A, a
state-transition probability

P(s, a; s') = Pr(si1 = '|sy = 5, 0 = a) (17)

an immediate reward function R (s, a; ") indicating the reward
received by taking action a at state s and transitioning into new
state ', and a decision policy P(s) : S — A. The problem
is how to design a policy P(s) that maximizes the expected
cumulative long-term reward

o0
Z yt'R(st, ap, si+1),  ar = P(sy).
=0

(18)

This cumulative reward can be approximated using a value
function V/, where the update is made along with the MDP.

V(s) =Y P(s, P(s); s)[R(s, Pls): ) + yV(s')] (19)
Also, the policy function is updated by

P(s) = arg max{z P(s,a; 5')[R(s,a; 5') + y V(5')] } (20)
a s
In practice, we can try to merge the calculation of policy func-
tion into the calculation of the value function, as shown by
Bellman [68], which is called the value iteration. The new
update procedure is as follows:

Vii1(s) = mfx{Z[P(s, a; ) [R(s a; s) + y‘l/l-(s’)]}.(Zl)

Here, i indicates the number of iterations, and eventually, the
value function at both sides of the equation will converge.

However, the number of states can be so enormous as men-
tioned in Section III-B that it will be impractical to build a
value function revealing each and every state. With the help
of deep neural networks, we are able to build a model approx-
imating this large state-space and to train a DRL agent on top
of it.

Just like in an MDP, the DRL agent induces an action for
any given state and adjusting the decision policy according
to the rewards received from the environment. The proposed
model reacts with the environment as shown in Fig. 5. To
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Environment

Y Rewards

Q-estimate for Lyapunov drift

Q-estimate for penalty difference

Action

Fig. 5.

Lyapunov
Optimization

Proposed Lyapunov-based DRL loop. The system will learn Q-values for expected cumulative Lyapunov drift and penalty, respectively. Later, the

Lyapunov optimization is performed to select an action minimizing the estimated drift-plus-penalty objective.

be specific, two deep-Q-networks are used to approximate the
long-term expected cumulative reward, or in other words, the
value function %/(s). To train the neural networks more effi-
ciently, we make these two neural networks share a few layers
which are connected to the input, and these shared layers can
be regarded as a low-level feature extractor.

The following paragraphs will explain the state space, action
space, and rewards definitions in detail.

State Space: The networked system’s queue backlog sizes
Y(r) are used as the state space. For a network with n
nodes, the size of state space is n x n. In addition, a list of
previous control actions is included to capture delayed queuing
behaviors.

Action Space: A set of service rate patterns is preconfigured,
which satisfies that each queue has and only has one next-hop
routing target. These service rate patterns are mapped into a
discrete action space, and each action represents one service
rate pattern.

Reward for Lyapunov Deep-Q-Network: The calculated cur-
rent Lyapunov drift as defined in (11) is used as the immediate
reward for the Lyapunov deep-Q-network, i.e.,

1 n—1n—1 1 n—1n—1
k= 3 PR AR 5 DD IR FICER VA )
i=0 j=0 i=0 j=0

Penalty Deep-Q-Network: The difference between two con-
secutive time-slots’ penalty is used as the immediate reward
for the penalty deep-Q-network as

' =P@) - Pt—-1). (23)

The deep-Q-networks are updated in a value-iteration manner
by the Bellman operators, as stated in (21)

AQY (s, a) = ot(rL(s, a) + y min 085, d') — QX s, a)) (24)
AQP*(s, a) = a(r”(s, a)+y minQ°(s', ') — 0" (s, a)) (25)

and an e-greedy policy as shown in Algorithm 1 is used to do
the exploration.

Algorithm 1: Lyapunov-Based DRL for Online Adaptive
Routing Control

initialize deep-Q-networks oL and 07

for t:=1,2,... do Online decision loop
Generating the control action

Get current system status s;

1 Generate random number 7;
if n < € then

\ Choose a random action a;

else
Greedy action selection

a* := argminy QL(s,d’) +V - @’(s, a);

end
Assign rewards
Calculate Lyapunov function L(T) ;
Record current penalty P(?);
assign Lyapunov drift and penalty drift as rewards
rlL = AL=L() — Lt — 1);
P =P@)— Pt —1);
Update deep-Q-networks
AQM (s, a) =

a(r(s, a) + y ming Q"(s', @) — Q" (s, @));
AQP(s.a) =

a(rf (s, a) + y ming O°(s', d') — O (s, @));
0L = argmingz Y gouen [AQY* (5, @)1%);
0F = argmingr Y, goucn (AQP* (5, @)1%);

end

Note that since we want to reduce the Lyapunov drift to
improve system stability and to reduce the penalty to achieve
smaller end-to-end latency, we use minimizing in (24) and (25)
instead of maximizing in (21). When choosing the greedy
action

a* = arg min é\L(s, d)+Vv- @)(S, d). (26)

a
Using the queue backlog size as state space gives the benefit
that the learned deep-Q-network models can still perform well
when facing changes in the traffic pattern. This is because any
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imbalance in the traffic pattern will show up in the queue back-
log sizes eventually. The changes in network’s propagation
delay can be captured and the optimal routing control policy
can be adaptively learned by the deep-Q-network models. The
employment of two separated deep-Q-network models leads
to the models’ faster convergence, and also provides the flexi-
bility for carriers or network managers to adjust the emphasis
on system stability and penalty reduction through parameter
V without the need to retrain the models from ground zero
again.

C. Proof of Stationarity Under Markovian Arrival

RL methods requires the environment to be stationary for a
possible (sub-) optimal policy or value function to be learned.
In this section, we are going to show that the proposed method
has a stationary environment and a value function can be
learned if the traffic follows a Markovian arrival, by the
construction of state transition probability.

Although the expression of the value iteration as in (21)
omits the explicit use of state transition probability P(s, a; s”),
a valid state transition probability is still needed so that the
value function update (19) and the policy function update (20)
can be rewritten in the form of value iteration. This require-
ment is automatically satisfied if the system is self-contained
and all the changes in the states are done by the interactions
between the system and the control policy, or in other words,
between the environment and the RL agent.

However, this requirement is not directly satisfied in the
network routing environment, because the changes in the states
can also come from a stochastic arrival of packets that was
injected into the system with randomness and burstiness. In
this section, we prove that the following lemma stands.

Lemma 1: For a networked queuing system without input,
the state transition is only related to the control policy’s
actions, and the state transition probability P¢(s.,a;s,) is
deterministic from any given current state s., to next state
s under action a.

Proof: First, let us rewrite the queuing dynamics in (8).
For simplicity, we show the queuing dynamics for a given
source—destination pair, and thus omit i, j in subscripts. We
have

I()=N@® —N@t—1)
C(t) = u™ (1) — n @

where (27) uses the cumulative arrival count N(¢) defined in
Section III-B to represent the arrival at the ¢ + 1 time slot
I(t + 1), and C(r) represents the packet flow caused by the
control policy as shown in (28). The queuing dynamics now
become

27)
(28)

YCu+ 1) =Y® +Co)
Y+ 1) =Y+ D) +10t+1)

(29)
(30)

where (29) reveals the queuing dynamics when only the
network routing control policy is involved, and the whole
queuing dynamics consist of two decoupled parts YC(r + 1)
and I(t 4+ 1) as shown in (30).
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It is apparent that we can write a state transition probability
function P(sc, a; s.) for the dynamics in (29). It is because
that C(7) creates a deterministic mapping a — R between
the action and changes in queue backlog size caused by the
control policy at current time slot #. Once a network routing
control policy S — A is determined, we immediately have a
mapping describing the (29), S x A — S. |

Lemma 2: For a networked queuing system with the MAP
as input and without departure process, the state transition
probability Pi(s;, sp;s}) from any given current state sj, to
next state sé can be derived, under hidden state sy,

P (si, 53 5¢) = Z[%}; (e - 1)}

/
Sh

€19

sh,s’h

Proof: For the second part involving newly arrived
network traffic 7(r 4+ 1), we here show how the state transition
probability Pi(s;; s{) is calculated. Note that since I(z + 1)
only relies on the network traffic pattern as shown in (27)
and is independent of the control policy’s actions, the nota-
tion of action a is removed from the state transition probability.
The matrix of the hidden state transition probability density
function can be written as

(b) = " . Dy (32)
The state transition probability can be calculated as
1
P‘(si,Sh; S:) = Z/o (b)|5h,3/h dt

Sb

1
N NN
s 0 %%
h
et@0i|
sh,s’h

zz[z_z 0
=;[§—Z.(e©0—1)} -

S5

1

(33)

In (33), we assume the shifting from current state s; to the
next state s/i causes an arrival of b packets, that is to say,
I(t+1) = N(t+1)—N(t) = b. Besides, it shows the state transi-
tion probability can be calculated given sufficient information
about the hidden state sy which is part of the BMAP used to
model the traffic pattern. |

Lemma 3: For a networked queuing system with the MAP
as input and without departure process, the state transition
probability P! (s;; s;) from any given current state s, to next
state s’i can be derived, regardless of hidden state sy.

Proof: The state s; is directly observable by the RL agent,
and the hidden state sy, is not directly observable, which makes
the problem a partially observable Markov decision process
(POMDP). Researchers have studied the POMDP problems
and there are many techniques to solve them [69]. One of the
methods is constructing beliefs. A belief is the probability of
being at hidden state sy after a series of history observations
O = {si6> Sie—1, Sip=2, .- - }

P (s, Or) = Pr{sy|O,}. (34)
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Over time, the belief vector Z is updated to become closer
to the actual distribution. The update of the probability of s%
being the actual hidden state at each step is given by

gg(s;]) - Pr(s/hw, D,+1)
Pr{s’h, B, Dt+]}
Pr{%, Dt—s-l}
Pr{D,+1 |s/h, B } Pr{s’h|93 } Pr{%}
Pr{O,11| %) Pri %)
Pr{DtH |s%, B } Pr{s’h|%’}
Pr{O114}

(35)

where

1
Pr{DH] I %} = Z%’(sh)/o (b)|s,,,s;j dt
st
1
= ;ﬁ(sh)fo [690[@1’]%3;} a
Dp

=SZ«%’(%)[§—Z'

sh,s’h
b= si1 — Siy (36)
and
Pr{s/h \B } =" B (50) Qs s, (37)
Sp

Pr{O 1|12} = Z B (sp) Pr(si 11811 5p)
Sb
= Z%’(sbﬁ?i(si,,,sb; si,,+1). (38)
Sh

Here, (36), (37), and (38) show that these probabilities are
all derived from the hidden state transition probability density
function in (32) which is fixed for a given traffic pattern and
can be learned implicitly by the deep neural networks.

Once the belief converges, we can extract the hidden
state s}'; by

sy = arg max 2 (sp).

sp

(39)

As a consequence of Lemma 2, we can write the state
transition probability caused by arrival traffic as

P (si; si) —pi (si, SE; si)

“2[5 ()]

(40)
s?‘],s’b
|
Theorem 1: Given an MAP as the packet arrival model and
rate allocation schemes as the action-space of the control pol-
icy, there exists a valid state transition probability P(s, a; s)
from current state s to next state s’ under action a.
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Proof: Provided with the state transition probability
for scenarios without input and without control, given by
Lemma 1 and Lemma 3, respectively, the whole state transition
probability is derived by

IE”(S, a; s’) = IP’c(sc, a; s’c) + ]P"(si; 5/1) (41)
where s = s¢ +s; and 5’ = s, + 5. [ ]

Corollary 1: Given an MAP as the packet arrival model
and rate allocation schemes as the action-space of the control
policy, value-iteration-based RL methods can be used to solve
the optimal control problem in network routing.

Now that the state transition probability can be derived, it is
safe to say that the network routing problem can be modeled as
an MDP and use value-iteration-based RL method to solve it,
while the BMAP-based modeling preserves the highly variant,
bursty, and stochastic properties of the network traffic arrival.

In addition, since we introduce BMAP to the network traf-
fic modeling, we can derive a more precise upper bound for
the LRL-based routing in communication networks. The upper
bound for new traffic arrival is

1(t) = max b

s.t. Pi(si,sz; si + b) > 0. (42)

Similar to (13), the upper bound for the Lyapunov drift can
be derived as

o 1 n—1n—1 ) 2
B(r) = o ;;(L}j@) + mgx(ﬂa,i,j)) + <m]le(Mi,b,j)) .
(43)

Because of the most possible hidden state s}, is selected rather
than all possible hidden states, the bound of drift given in (43)
is tighter than the one given in (13), and the bound of stability
also becomes tighter, as in

E ZZY,-,,»(:) <§.

i=0 j=0

(44)

D. Blockchain-Based Implementation With Proof of Elapsed
Time Consensus

Since the accuracy and trustworthiness of queue backlog
size are critical to the selection of the proposed Lyapunov-
based DRL routing method, we further design an information
exchange protocol based on blockchains. As shown in Fig. 6,
each node has two kinds of peers that it needs to communicate
with. The greens ones are the direct neighbors, and the blue
ones are the indirect peers. The peers exchange information in
twofold: 1) rapidly exchange current queue backlog size with
direct peers (green ones) and 2) blockchain-based information
exchange with all the peers (green and blue ones).

1) For Direct Peers: The difference in backlog sizes
between the direct peers builds up the backpressure to push the
flow of packets to the destination, and thus it is important that
the backlog sizes are updated and exchanged frequently with
each pair of direct peers. To reduce overhead, only backlog
sizes are exchanged.
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2) For All the Peers: Each peer exchange with each other
the number inbound packets, the number of outbound packets,
and the current queue backlog size, at a smaller rate. Once the
data from all nodes in the network is acquired, it is easy to
validate if there is a node sending inconsistent information.
Traditional in-band hop-by-hop message delivery may cope
with malfunction nodes passively sending wrong statistics due
to performance degradation, but it cannot deal with malicious
nodes actively sending or alternating the information on the
way. As a result, we propose to use blockchain to distribute
the statistic information among the peers in the network.

The architecture is in two-folds. First, network nodes
actively transmit the inbound and outbound statistics through
secure HTTPs channels to the controller in a nearby MEC
cluster. The controller records the statistics and prepares them
to be sent to the blockchain network, and the statistics is
aggregated to queue backlog size and send back to all nodes
it controls within the same region. Second, the controllers
submit and exchange statistics through the Stats-Chain, as
shown in Fig. 2. Once new statistics are acquired, the con-
troller aggregates them and updates the local copy of the queue
backlog size accordingly. When conducting statistics aggrega-
tion, the controller audits the history data to check if there is
any anomaly and apply security patches accordingly, whether
the data is acquired directly from nodes within the region or
through blockchain.

The PoET consensus mechanism is used in our blockchain
using Hyperledger Sawtooth [70], which leverages Intel soft-
ware guard extensions (SGX) technology as the trusted execu-
tion environment. Each peer randomly generates a wait time
inside SGX enclave, register to the system, and wait for the
registered time. The first peer who resumes from waiting gets
to be the next leader in the blockchain system. The random-
ness distribution is enforced inside the SGX environment, so
that no attacker can fake a short wait time without breaching
the SGX beforehand.

If the trusted execution hardware is not breached, the
attacker would have no choice but to follow the proto-
col [71], and thus each node can acquire a trustworthy copy
of current network statistics. However, of course, the attacker
can gain control of the blockchain and then manipulating
the network statistics if the trusted execution hardware is
breached. Although it is not impossible, it is considered
to be far more unlikely for the trusted execution hardware
to be practically breached compared with upper layer soft-
ware [72]. Thus, the blockchain-based statistics information
exchange provides added security, robustness, and reliability
to the network.

V. PERFORMANCE EVALUATION
A. Experimental Setup

We compare the proposed Lyapunov-based DRL routing
method against two families of algorithms, the standard back-
pressure routing [67] and backpressure routing with Lyapunov
optimization [52]. All algorithms tested are implemented in
distributed forms.
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Fig. 6. [Illustration of information exchange between the nodes. The source
node is colored in red, and its direct neighbors are colored in green. The blue
nodes represent all the other peer nodes.

We use 11 topologies to evaluate the performance of the
proposed method, as shown in Fig. 7. The major experimental
results are achieved using a grid topology Fig. 7(a), and the
rest topologies Fig. 7(b)—(k) are used to show the results and
conclusions also apply to general cases.

The link latency is 0.01 s with one exception for 0.1 s to
create imbalance, and the latency of all the links will shift from
—10% to 10% in cycles of 4 s. The link bandwidth is set to
100 Mb/s. The burstiness of traffic is controlled by a parameter
p, which is used in an ON-OFF model to produce a burst of
packets at the chance of probability p. In the experiments, each
node sends traffic designated for each and every other node in
the network. The topologies we used have 6 nodes, and that
makes 6 x 5 = 30 tasks generating traffic in the network. In
the setup five selected tasks generate traffic around 100 Mb/s
and other tasks generate traffic at a lower rate around 2 Mb/s
to serve as the background traffic. The time-slot interval T is
set to 0.01 s as well. The end-to-end latency is chosen as the
penalty function. And the five selected tasks generate traffic
to the same destination node.

In our experiments, the neural networks used consist of five
fully connected layers, in which three layers are shared com-
mon layers and two dedicated branches are for the Lyapunov
part and the penalty part, respectively. In shared layers, there
are 32 neurons in each layer. In each branch, there are two
layers with sixteen neurons. The number of output neurons
depends on how many direct neighbors that a communication
node has, and it varies.

B. Evaluation Metrics

Queue Backlog Size: The queue backlog size is used to
measure the system’s queuing stability. Since the system starts
with empty queues, a system with a smaller measured queue
backlog size will be the one more stable against the burstiness
in the inputs.

End-to-End Latency: Because the end-to-end latency is used
as the penalty function, it is also chosen as a metric to reflect
how well the system performs. A lower end-to-end latency
would show that the system has better performance.
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(@) (b) (©) (d) (e)
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Fig. 7. Topologies used in the experiments. (a) A two-by-three grid graph topology used to present temporal and statistical results; (b)-(k) Randomly generated

topologies used to further examine the effectiveness of the proposed method.
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Fig. 8. Temporal results under burstiness p = 0.5. The results with different values of preference parameter V are shown. Data curves are smoothed using the
Savitzky—Golay filter with window size 15 and polynomial order 4. BPLO stands for the backpressure routing method with Lyapunov optimization. (a) Queue
backlog size versus time. (b) End-to-end latency versus time. (c) Aol versus time. (d) Throughput versus time.

Age of Information: The sum of the ages of packets since
their generation over the whole network is used to measure the
freshness of the network’s information, or the timeliness of the
network. This metric includes the age of packets that have been
sent from the previous node but yet to be received by the next

node. A lower Aol would show that the information inside
the system is fresher and the networked system’s control and
routing policy provides more timeliness.

Throughput: The sum of all end-to-end throughput over
the whole network. Since backpressure routing is known to
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Fig. 9. Statistical results over various tested methods. Error bar shows the one standard deviation region for each data point. The solid line shows the mean
evaluation metrics for the baseline backpressure algorithm, and the dashed line shows its one standard deviation region. (a) Sum of queue backlog size versus
preference parameter V. (b) Average latency under different values of the parameter V. (c) Sum of the Aol over the whole network. (d) Sum of end-to-end

throughput over the whole network.

provide good throughput results, it is vital to compare the
tested methods in this aspect. A higher throughput shows that
the system is able to route and deliver more information across
the network.

C. Simulation Results and Analysis

Fig. 8 shows the temporal results of the proposed methods
under different settings. Fig. 8(a)-8(d) shows the results in
terms of the queue backlog size, end-to-end latency, the Aol,
and the throughput, respectively. The first three figures also
show that the proposed Lyapunov-based DRL routing model
converges faster than existing solutions. The convergence time
is also listed in Table II, where we can see an improvement
as in relatively reduced convergence time ranging from 18.2%
to 53.2%, depending on the metric selected.

Fig. 9 further shows the statistical results of the tested
methods over different settings of parameter V. Similarly,
Fig. 9(a)-(d) reveals the performance in the metric of
the queue backlog size, end-to-end latency, the Aol, and
the throughput, respectively. The results show that the

TABLE 11
TyPICAL CONVERGENCE TIME

Backlog size  Latency Aol Throughput
Backpressure 22s 6.2s 5.6s 2.1s
Proposed 1.8 s 29 s 39s 2.1s
Improvement 18.2 % 532 % 304 % -

backpressure routing with the Lyapunov optimization performs
slightly better and almost identical to the standard backpres-
sure routing, and typically the proposed Lyapunov-based DRL
routing model outperforms both the existing solutions over all
the evaluated metrics.

By taking a deeper dive into the results illustrated by Fig. 9,
we can find an interesting observation that although the end-to-
end latency estimation is used as the penalty function, typically
(when V <= 50), the increased emphasis on penalty reduction
(increased value of V) leads to not only reduced end-to-end
latency, but also better stability with reduced queue back-
log size. It is because reducing the overall end-to-end latency
requires the queue backlog to be sufficiently small, and thus
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enforcing the queue stability. In the existing literature, the
penalty is designed to pursuing either better overall network
throughput or better fairness among the services, which trig-
gers more demand for queue backlog. This is also why we
did not see a tradeoff of upper bound accuracy O(1/V) for

queue stability and O(V) for the penalty as in other Lyapunov
optimization applications.

In addition, Fig. 9(a) and (b) also shows that the
performance hits a plateau when the preference parameter
V € [30,50] in terms of queue backlog size and average
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Fig. 12. Statistical results under different malicious node advertise ratio. Error bar shows the one standard deviation region for each data point. (a) Relative
queue backlog size. (b) Relative end-to-end latency. (c) Relative Aol over the whole network. (d) Relative end-to-end throughput over the whole network.

end-to-end latency. This is because the algorithm becomes
more and more emphasized on the latency reduction as the
parameter V increases. At V = 30, the latency hits a bottle-
neck as the best forwarding links are reaching to their capacity
limits. However, the proposed method still manages to sta-
bilize the system by balancing the traffic across the whole
network for V € [30, 50], as the overall Aol increases shown
by Fig. 9(c). For V > 50, the control policy becomes overly
focused on reducing latency and tasks are competing for a
few key links. The links become overloaded and it results in
performance degradation. The system is no longer stable, and
the one standard deviation region increases dramatically.

In practice, the parameter V can be changed at will, wither
manually or through an automatic procedure. We have tested
one possible procedure that initially set V := 1 at the start and
gradually increase V until the end-to-end latency breaks its
last-known best value. Then the parameter is resetto V := V /2
and repeat the procedure again.

Fig. 9(c) further shows the Aol over the network and that the
aforementioned improvement comes from optimally routing
the packets to different links. This metric measures not only
the Aol residing in the nodes, but also those over the links. The
proposed method effectively reduces the Aol as the parameter
V increases from 0.01 to 30. The link transportation delay is
usually much larger than the port transmission delay and thus

the links can be used as a big buffer. As the parameter V goes
beyond 30 and toward 50, although the performance is satu-
rated, the links can absorb the side effects of penalty reduction
being overly emphasized. The DRL module implicitly takes
the links into consideration and learns a better estimation of
the penalty function, thus providing better results.

Fig. 10 shows queuing stability by queue backlog size for
three different models. The proposed method achieves a bet-
ter result than the baseline backpressure method under all
circumstances. When there is more burstiness in the system
(p is smaller), the improvement in queuing stability is more
significant.

Fig. 11(a)—(d) shows the statistical results under ten dif-
ferent topologies from Fig. 7(b)—(k). In most cases, the
proposed method outperforms the other methods in terms of
smaller backlog size, smaller end-to-end latency, and higher
throughput. In some cases (topology Fig. 7(b) and (i), the
proposed method achieves comparable results in terms of the
aforementioned metrics. In all cases, the proposed method
achieves better system responsiveness as in smaller measured
Aol

Fig. 12(a)—~(d) shows the relative statistical results with the
proposed blockchain information exchange protocol compared
to those without it. The malicious node would advertise its
queue backlog size to the other peers proportional to the actual
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Fig. 13.

value. The malicious advertise ratio is noted in the x-axis
of each figure. An extremely small value of this malicious
advertise ratio would create a blackhole at the position of the
malicious node and result in a congestion there. The result
shows that the proposed blockchain-based network statistics
exchange can protect the proposed network routing frame-
work from this kind of attacks. Thus, the system becomes
more robust and reliable.

Finally, we show the performance of blockchain implemen-
tation in Fig. 13. Five blockchain nodes are deployed and the
input transaction speed ranges from 3 to 15 tps, which roughly
translate to 0.6-3 samples/s. The blockchain system reaches
its capacity for input transaction rate higher than 9 tps. The
network throughput is not affected much as the queue backlog
size information is more frequently exchange between direct
neighbors, regardless of the status of the blockchain.

D. Discussion on Implementation Details

Scalability: The following methods may be of help to
improve scalability.

1) The proposed method is implemented in a distributed
way and there is one DRL agent per node so that the
action space is reduced.

The computationally intensive model
offloaded to nearby MEC clusters.
Potentially a compressed feature embedding can be
extracted from the middle layer of jointly trained mod-
els, reducing state space on network nodes.

Routing loops: The distributed hop-by-hop implementation
of DRL agents increases the risk of routing loops, and we use
the following methods to mitigate it.

1) In the early bootstrap stage, use the actual queue back-

log size difference to estimate the pressure as it is done
in standard backpressure routing. Once the bootstrap is
completed, the algorithm will switch back to using the
output of DRL models.
When the DRL agent selects a nonoptimal route for
exploration, it should also mark the packet so that the
following hops do not explore again, and thus preventing
routing loops caused by exploration.

2) training is

3)

2)

VI. CONCLUSION

In this article, we considered the network routing control
with time-variant propagation delays, and modeled it as a

Output transaction throughput (Tps)
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Lyapunov optimization problem. In addition, we identified that
the time-slot interval has a big effect, and there is a trade-
off between optimization performance and modeling accuracy
for queuing dynamics. To tackle the issues, we proposed a
DRL-based adaptive routing control method that combines
Lyapunov drift and penalty and uses it as the objective func-
tion. By using BMAP to model the network traffic pattern,
we prove that the network routing problem with highly vari-
ant, bursty, and stochastic input can be modeled as a Markov
decision process and that we can use value-iteration-based RL
methods to solve it. Moreover, the DRL module can effec-
tively learn a better estimation of long-term Lyapunov drift and
penalty functions, and thus it provides superior results in terms
of the backlog size, end-to-end latency, Aol, and throughput.
Furthermore, the proposed method outperforms the baseline
backpressure method in multiple settings, and converges faster
than existing methods. Extensive experiments also show that
the proposed model performs well under various topologies,
and thus the proposed model can be used in general cases. At
last, the proposed blockchain-based information exchange pro-
tocol can provide trustworthy network statistics to the routing
framework.
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