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Abstract—Attracted by the advantages of multi-access edge
computing (MEC) and non-orthogonal multiple access (NOMA),
this paper studies the resource allocation problem of a NOMA-
MEC system in an ultra-dense network (UDN), where each user
may opt for offloading tasks to the MEC server when it is
computationally intensive. Our optimization goal is to minimize
the system computation cost, concerning the energy consumption
and task delay of users. In order to tackle the non-convexity
issue of the objective function, we decouple this problem into
two sub-problems: user clustering as well as jointly power
and computation resource allocation. Firstly, we propose a user
clustering matching (UCM) algorithm exploiting the differences
in channel gains of users. Then, relying on the mean-field game
(MFG) framework, we solve the resource allocation problem for
intensive user deployment, using the novel deep deterministic
policy gradient (DDPG) method, which is termed by a mean-
field-deep deterministic policy gradient (MF-DDPG) algorithm.
Finally, a jointly iterative optimization algorithm (JIOA) of UCM
and MF-DDPG is proposed to minimize the computation cost
of users. The simulation results demonstrate that the proposed
algorithm exhibits rapid convergence, and is capable of efficiently
reducing both the energy consumption and task delay of users.

Index Terms—Multi-access edge computing, non-orthogonal
multiple access, deep reinforcement learning, mean-field game,
deep deterministic policy gradient
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I. INTRODUCTION

ITH the rapid development of mobile communication,
W computationally intensive applications and data traffic
have grown explosively. Moreover, the fifth generation (5G)
mobile communication technology has developed rapidly in
recent years, which facilitates the deployment of ultra-dense
networks (UDNSs) in the future development of communica-
tions [1]. The UDNSs can effectively enhance system capacity
and data transmission rate while guaranteeing the quality of
service (QoS) of users. Specifically, an UDN refers to densely
deploying the small base stations (SBSs) and then accessing
a large number of users for improving network coverage and
for reducing transmission delay [2]. However, it is a huge
challenge to solve the computationally intensive tasks in UDNs
due to the limited computing power of users .

As an emerging technology, multi-access edge computing
(MEC) has been proposed to alleviate computational pressure
in UDNs [3]. Specifically, users can offload the entire or
a fraction of their computing task to MEC servers through
wireless channels for improving the QoS of users, which
reduces network delay and energy consumption. Furthermore,
due to the deployment of UDNs and the limited spectrum
resources, the classical orthogonal multiple access (OMA)
technologies can no longer meet the requirement imposed on
both low delay and on low energy consumption in MEC. As
an emerging technology, non-orthogonal multiple access (NO-
MA) can effectively improve the system spectral efficiency by
allocating the same resources to multiple users compared with
OMA [4], [5].

At the time of writing, reinforcement learning (RL) has
become a powerful tool in MEC systems to solve diverse
problems, such as resource allocation and power control [6]—
[8]. In RL, the agent interacts with the environment and
selects the actions based on the current state to obtain the
optimal policy. However, when the number of agents is very
large, the action space and state space of the agent are
usually high-dimensional and continuous, which is suitable
for applying the deep reinforcement learning (DRL) algorithm
based on policy gradients, such as stochastic policy gradient
(SDG) and deterministic policy gradient (DPG) [9], [10]. Deep
deterministic policy gradient (DDPG) combines the advantage
of actor-critic (A2C) and deep Q-network (DQN) based on
the DPG algorithm, which solves the problem that reward
function is difficult to converge in continuous action spaces
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TABLE I: List of Notations.

[ Notations | Description [[ Notations | Description |
N Number of SBSs Ko Number of users for each NOMA cluster
K Number of users in each SBS || yn Received signals of the nth SBS
M Number of NOMA clusters in each SBS || 7 SINR of the nth user for mth cluster
Pmik Transmit power of the user || Inoma Interference introduced by NOMA
Rk Channel gain of the user || ITpama Interference introduced by TDMA
Amk Input data of the computing task || f.x Computing capability per CPU cycle

Number of CPU cycles required to ! . .
Crmk complete the calculation task Emk Time for local computing
— Maximum delay of the task || 6., Energy consumption per CPU cycle
e Time for local computing || A%, Weight coefficient of the task delay
ok Weight coefficient of energy consumption || W Bandwidth of system
Computing capability per CPU cycle determines whether the kth user

fn of MEC server of the nth SBS B is on the mth NOMA cluster
n Transmission time for e Calculation time of the

mk offloading computing mk calculation process
n Transmission energy consumption ex Energy consumption of
Emk for offloading computing Emk the calculation process
o’ Additive white Gaussian noise || dpmk Energy consumed by each CPU unit

[11]. Specifically, DDPG adds target networks and evaluation
networks to the actor-critic network, while the deep neural
network (DNN) is used for functional approximation.

On the other hand, mean-field game (MFG) has also been
widely applied to solve various resource allocation problems in
UDNs [12]-[14]. Unlike the classical games, MFG is a specific
game theory used for studying member intensification, which
may simplify the large and complex models. Specifically, for
an independent individual in UDNSs, the effect that all members
are faced with can be deemed to be a mean-field. Thus, MFG
simplifies the complex problem to the individual problem of
each member. In MFG, the Hamilton-Jacobi-Bellman (HJB)
equation is defined to characterize the interactions between in-
dividuals and the mean-field. The Fokker-Planck-Kolmogorov
(FPK) equation is defined to describe the evolution of the
mean-field under the individual decision of the game. Then,
the equilibrium solution of the MFG is obtained by obtaining
the solutions of the HJB equation and the FPK equation.
Conventionally, a finite difference method is usually used to
solve the mean-field equilibrium (MFE) [15]. However, when
the dimensions of the state space and the action space becomes
large, the finite difference method requires a large amount
of computation, which prohibits the method from realistic
implementation. Given that MFG can be attributed to the
Markov decision process (MDP) based optimization problem,
it is natural to exploit the RL algorithm to solve the MFE [16].

In this paper, a NOMA-MEC system is modeled for the
UDN scenario, where each SBS is equipped with an MEC
server. The so-called partial offloading policy is selected for
our considered system.To elaborate, when a user is incapable
of processing a large number of computing tasks in a timely
manner, a fraction of the tasks is offloaded to the MEC
server. The main works and contributions of this paper can
be summarized as follows:

e An ultra-dense NOMA-MEC system is proposed, where
each SBS is equipped with one MEC server and serves
multiple users. In this system, all users served by each
SBS are divided into different clusters, in which the

users in each cluster adopt the NOMA transmission
scheme. Moreover, the TDMA transmission scheme is
used between different clusters to avoid the NOMA inter-
cluster interference.

e A novel resource allocation algorithm is designed to
reduce the energy consumption and task delay of users
in this paper. Since the prime problem is a mixed integer
nonlinear programming (MINLP), which is non-convex
and difficult to solve, we decompose it into two sub-
problems of user clustering as well as of jointly power
and computing resource allocation. For the user clustering
problem, a user clustering matching (UCM) algorithm
based on the differences in channel gains of users is
proposed. And for the second sub-problem, it is modeled
as a MFG theoretical framework considering the intensive
deployment of users, and then proposes the mean-field-
deep deterministic policy gradient (MF-DDPG) algorithm
to obtain the equilibrium solution of MFG considering the
continuity of the action space.

e In order to obtain a high-quality suboptimal solution, a
jointly iterative optimization algorithm (JIOA) of UCM
and MF-DDPG is proposed to minimize the computation
cost of users. Due to the non-convexity of the objective
function, the optimal solution cannot be obtained in
polynomial time. However, as the number of iterations
increases in the proposed algorithm, the objective func-
tion is always updated toward the optimal direction, and
at least a suboptimal solution close to the global optimum
will be obtained. Simulation results show that the pro-
posed algorithm can effectively reduce the computation
cost by comparing with the benchmark algorithms.

The rest of the paper is structured as follows. The related
works are introduced in Section II. In Section III, the system
model is introduced and the formulation of the optimization
problem is demonstrated. In Section IV, a joint optimization
algorithm is proposed for the resource allocation problem. The
simulation results are discussed in Section V. Finally, Section
VI concludes the paper.
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Fig. 1: An illustration of the NOMA-MEC system in the UDN, where a large number of users are covered by N SBSs.
Each SBS is equipped with an MEC server. Users may opt for offloading a fraction of their tasks to the MEC server, if their

computational task is intensive.

II. RELATED WORKS

At present, MEC has made great progresses in the field of
communications. In [17], the authors studied the joint task
and resource allocation based on MEC in small cell networks,
and proposed a novel multi-stack Q-learning method to reduce
the total delay of the system. In [18], a heuristic greedy task
offloading method was proposed to solve the dynamic task
offloading problem for the MEC system in the UDN. The
allocation of task and resource were discussed in [19], which
aimed for minimizing the energy consumption on the mobile
terminals under the constraints of the application delay.

In the past years, OMA technologies such as time division
multiple access (TDMA) and frequency division multiple
access (FDMA) have been applied to solve the problem of
resource allocation with MEC. In [20], the authors proposed an
efficient joint optimization algorithm to reduce computational
delay with the TDMA transport protocol. In [21], the authors
proposed a numerical analysis method under the condition of
considering the FDMA scheme to optimize the system energy
consumption in the multi-user MEC system. However, with the
ultra-dense deployment of devices, the OMA technology can
hardly meet the demand for spectrum resources of devices. As
an emerging multiple access method, NOMA can effectively
improve the spectral efficiency of the system by allocating
the same resources to multiple devices compared with OMA
[22]. Exploiting this advantages, MEC systems have employed
NOMA to reduce energy consumption and task computation
delay. More explicitly, in [23], both NOMA uplink and down-
link can be applied to MEC. It is further proved that the delay
and energy consumption of MEC offloading can be effectively
reduced by using the NOMA method. [24] and [25] studied
the offloading process of NOMA-MEC, and achieved energy-
efficient offloading performance by jointly optimizing transmit
power, time, and task offloading policy.

Nowadays, RL methods have been applied to various com-
munication systems to solve the optimization problems. In
[26], the authors proposed an effective resource management
algorithm based on RL, which learned the optimal offloading
policy online. In [27], the authors designed an uncoordinated
DRL algorithm to reduce the interference and increase the
network throughput in the uplink grant-free NOMA system.

In [28], the authors studied a NOMA-MEC system of a multi-
user and single MEC server, which employed DQN to select
users that are offloaded and minimize the offloading delay of
the whole system.

Moreover, the MFG method is proposed to solve the
complex collective behavior in UDNSs. In [31], the authors
proposed a power control method based on the MFG to
improve the energy efficiency in a wireless power transmission
system. In [29], the authors modeled an ultra-dense D2D
network as a MFG framework and proposed a distributed
power control algorithm to improve the spectrum efficiency
and energy efficiency of the system. In [30], the authors
formulated the downlink power problem as a MFG problem to
reduce the energy consumption in dense small cells underlying
microcells system. Nowadays, extensive research contributions
have been devoted to combine RL with MFG for reducing
the complexity of solving the MFG. In [32], the author
investigated the cell association problem between SBSs and
users in dense wireless networks, which described it as a MFG,
and then proposed neural Q-learning algorithm to optimize the
user’s data transmission rate. In [33], the authors used ML
and MFG methods to optimize the beamforming and beam-
steering respectively, which aimed to increase the transmission
rate of users in the MIMO communication system. Different
from these works, this paper uses DDPG method to obtain
the equilibrium solution of MFG, which solves the problem
that DQN cannot handle continuous actions and obtains more
accurate equilibrium solution.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a NOMA-MEC communi-
cation system in an UDN with N = {1,2,--- ,|N|} SBSs,
where each SBS is equipped with an MEC server for the
users to compute the offloading computing tasks and serves
K ={1,2,--- ||K|} users in a certain area. In this network,
K users are grouped into M NOMA clusters with K, users
in each cluster. For each user £ € K, we assume that it has
very limited computing power, and therefore, it may opt for
offloading its tasks to the MEC server via the wireless channel
according to the designed offloading policy when its comput-
ing task is intensive. The channel state information (CSI) is
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S8 ER I R T E2 CRE -7 N R R 7 N 7 Algorithm 1 UCM algorithm for NOMA-MEC system
« R e The second time slot > 1: Initialize the user’s clustering by randomly matching the users
e fme T oo N 2: for each SBS n € N do
3: Sort the channel gains of users in descending order
Fig. 2: An illustration of the considered TDMA scheme. 4: Select the first m users as the first user in each cluster
5: for each cluster m =1 to M, do
6: for each user k € K do
assumed to be perfect. As a benefit, the computing pressure  7: Calculate the difference in channel gain
of the user is slowed down by offloading the computing task % Find user k to satisfy (20)
. 9: Add user k to cluster m
to the MEC server, and the energy consumption by users for 10: end for
task computing can be reduced. 11: end for
12: if M is not an integer then
13: The remaining users are randomly assigned to the NOMA
o clusters
A. Transmission Model " end if
15: end for

Let us continue by elaborating on the transmission model
of the NOMA-MEC uplink system. For each NOMA cluster
m (m € M), each user k (k € K) sends its signal z,,; to the
SBS n (n € N) with complementary correlation power, so the
total received signals y,, of the nth SBS is

M K,
Yn = Z Z \/pmkhmkxmk + Zn, (D
m=1 k=1

where p,,i is the transmit power of the kth user in the mth
cluster, and h,, is the channel gain of the kth user in the mth
cluster. z,, is the additive noise at the nth SBS.

In each NOMA cluster, the channel gain of the user is sorted
in descending order. Therefore, users with large channel gains
will be interfered by users with smaller channel gains in the
same cluster. Moreover, users with the smallest channel gain
will not be interfered by other users in the cluster. Therefore,
the interference among users within a cluster can be expressed

as:
K

Inoma =Y Dmslhmsl?, 2)
f=k+1

where p,,r is the transmit power of the fth user in the mth
cluster, and h,,r is the channel gain of the fth user in the
mth cluster.

Using only the NOMA transmission scheme will add ad-
ditional NOAM inter-cluster interference. Therefore, in order
to reduce the interference suffered by users, the TDMA
transmission scheme is used in different NOMA clusters. As
shown in Fig. 2, the TDMA technology divides time 7' into
periodic non-overlapping frames, and then divides each frame
into a plurality of mutually non-overlapping slots. And then,
these time slots will be allocated to the different NOMA
clusters, and users in each cluster take up the total bandwidth
in the proportion of z; to offload the task. Therefore, each
user is assigned the time of x;T. In the UDN, however, users
served by different SBSs transmit tasks in the same time slot,
which causes interference each other, which is expressed as:

N Kn
Irpara = > pjmklhymil, 3)
Jj#n k=1

where p; i is the transmit power of the kth user in the jth
SBS, and A ., is the channel gain of the kth user in the jth
SBS. Thus, the signal to interference plus noise ratio (SINR)

of the kth user in the mth cluster is

2
pmklhmk|
Inoma + Itpya + o2

pmk|hmk|2
N K

LS 2
> Pmf |th| + >
Fokt1 j#n k=

Tmk =

b
Pkl hjmi]” + 02
1

4)
where o2 is the additive white Gaussian noise (AWGN). So
the data rate of the kth user in the mth NOMA cluster is
defined as:

Tmk = WlOgQ(l + ka)» (5

where W is bandwidth of system.

B. Computational Model

For each user’s computing task, it can be defined as: A,,,x 2
(dmk, Cmke, T22). Here d,, indicates the amount of input
data (bits) required by the kth user in the mth NOMA cluster
to transfer the computing task from the user to the MEC server.
cmi denotes the number of CPU cycles required by user k
to calculate the input data, i.e., the amount of computation
required to complete the computing task, 7,-2* represents the
deadline that the kth user takes to complete the computing
task. We consider the data-partitioning based computational
tasks, which can be addressed relying on the so-called partial
offloading policy [34]. Specifically, each task can be divided
into two parts, some of which can be executed locally and the
other part offloaded to the MEC server for execution.

1) Local computing model: Upon using f,x > 0 to
represent the computing capacity for local computing of the
kth user in the mth cluster in terms of CPU cycles per second,
it is readily to formulate the time for local computing as

th, = ok

m f mk .

According to the dynamic voltage and frequency scaling
(DVES) techniques [36], the energy consumption of local
consumption can be expressed as 0,k = K ffnk, where £ is
the energy coefficient which depends on the integrated chip
structure. Hence, the energy consumption for local computing

(6)
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is given by

eink = CrnkOmk; (7

where 9,5 is the energy consumed by each CPU unit.
According to (6) and (7), the overall cost of the kth user

in the mth NOMA cluster for selecting the local computing

policy can be written as

@i = Akt Ak €k (®)
where X!, + X¢, = 1. XL, and X\¢, represent the weight

coefficients of the task delay and energy consumption for each
user, respectively. Obviously, we have ! , > 0 and \¢, > 0.
Note that X!, > A¢ , implies that the user is sensitive to delay
and we should pay more attention to its calculation time, while
AL < XS, means that the users pay more attention to the
energy consumed by computing tasks compared to the task
delay.

2) Offloading Computing Model: At the edge node, the
calculation of tasks is completed in two steps: data transmis-
sion and execution calculation. Upon assuming that the kth
user offloads the task to the mth SBS, the total calculation
offloading time can be divided into the transmission time
tn . of the calculation task and the calculation time ¢, of
the calculation performed on the MEC server, which can be
respectively written as

dmk
mk = T )
b Tmk
and -
ex m
mk = 5 (10)
S

where f,, denotes the computing capacity of the MEC server.
It is readily to formulate the total time consumed on the edge
computing as

bk = ke T Lo

(1)

Similarly, the energy consumption of the offloading process
is composed of the energy consumption e}, of the transmis-
sion task and the energy consumption e;>; of the calculation
process, which can be expressed as

dmk

n .
€mk = Pmk ;
mk

12)

and

ersy = Cmk fn- (13)

Then, the total energy consumption of the kth user in the mth
NOMA cluster during the calculation of the offloading process
is readily given by

(14)

c _.n ex
Cmk = Emk + Cmk-

To this end, the overall cost of the computing task of the
kth user in the mth NOMA cluster on the MEC server can be
written as
e =\t

” mk + Afnk/efnk' (15)

C. Problem Formulation

Considering the user’s dual needs for low task delay and
low energy consumption, the computation cost of the kth user

in the mth NOMA cluster is defined

Qi = plmkq)lmk"'pfnkq)fnk? (16)

where pﬁnk and p; . are the weight coefficients of the local
computing and offloading computing for each user, respective-
ly.

In this paper, we aim for minimizing the computational
cost of the NOMA-MEC system in an UDN, by controlling
the user’s transmit power, the offloading decision factor and
the weight coefficient of delay and energy consumption. The
pertinent problem is formulated as

N M K

PO : min® = min Z Z Z Bmk(pink(l)ink+pfrzk¢)$71k)’

n=1m=1k=1

s.t. C1l: plmktf”k + pfnktfnk < T
pmkhmk
C2: Wlo (1+ )Zka,
&2 Inoma + Irpya + o2
C3:0 <Yk <dnk,
C4:0 < ppmi < Pk,
C5 2 g+ Pt = L Pl >0, plp >0,
C6 : /\ink + A(;Lk = 1’ Alrnk; > Oa Apfnk > 07
K
CT7: Zﬁmk = anﬁmk = {07 1})
k=1

a7
where [, represents the association between the kth user
and the mth NOMA cluster in the nth SBS. To be specific,
Bmi = 1 indicates that the kth user in the nth SBS is assigned
to the mth NOMA cluster. As for the constraints, C1 is
the maximum task delay allowed by the user. C2 represents
the minimum transmission rate required by the user. C3 is
the user’s transmission rate constraint. C4 restricts the user’s
transmit power. C5 gives the bounds of pl , and p¢,. C6
imposes the bounds to Al , and ¢ ,. C7 details the bounds
of ﬂml«

IV. ALGORITHM FORMULATION

It can be seen from formula (17) that the C5 and C6 are
continuous variables, and the C7 is a binary discrete variable,
so the problem P0 can be regarded as a MINLP problem [35].
To solve this non-convex problem, we decompose it into two
sub-problems: user clustering and resource allocation. In the
first subproblem, K users are clustered with the aid of the
UCM algorithm, for reducing the computation complexity. In
order to address the issue of the intensive user deployment, the
resource allocation problem is modeled relying on the MFG
framework, where the MFE is found by our proposed MF-
DDPG algorithm. Finally, we may obtain a locally optimal
solution, by stopping the iterations of these two algorithms
once the objective function converges. To elaborate a little
further, the objective function is non-convex and we cannot
obtain the optimal solution in polynomial time. However, in
each iteration, the objective function is always updated towards
a smaller value. When the objective function converges, at
least one suboptimal solution close to the global optimal
solution can be obtained.
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A. Clustering Matching Algorithm

In the NOMA-MEC system, multiple users share the same
spectrum resources at the same channel for transmission.
However, too many users will increase interference among
users, thereby affecting the energy consumption and time delay
of the system. Therefore, in the NOMA system, how to use
different user channel conditions to cluster users to maximize
system benefits for multiple users in the SBS is a realistic and
important issue. Given a fixed resource allocation, we may
simplify Problem P0 as

min @,

pmkhmk

s.t. C1: Wlog, (H—

C2O§ ka: Sdmka

K
k=1

(18)

It is readily seen that the objective function of (18) is
directly determined by the channel gain of users when the
resources are identified, including power of users and weight
coefficient variables. Specifically, provided that the channel
gains difference among different channels is large, a better
performance can be achieved by increasing the transmit power
of each user. In other words, the differences in channel gains
among different users in the same cluster determines the upper
limit of NOMA performance. At present, some studies have
shown that dividing users with large channel gain differences
into a cluster can effectively improve the performance of
NOMA [38]. More explicitly, when the differences in channel
gains of users in the cluster is larger, it is easier for the re-
ceiving terminal to detect the superposed signals. As such, the
computing cost of the system can be reduced, by maximizing
the channel gain difference of the users in the NOMA cluster.

Based on this observation, we propose a novel UCM al-
gorithm based on the differences of channel gains as shown
in Algorithm 1. The basic idea of the UCM algorithm is to
select users with different channel qualities to multiplex the
same resources, which are detailed as follows.

In the system, U users are randomly distributed in each
SBS, and the Rayleigh fading gains of the users are denoted
as h2, h3,---, and h%, respectively, ic., |hi|} > |hi]3 >
> |§( It is assumed that there is no users with the same
channel gain. Without loss of generality, K users are grouped
into M NOMA clusters, in where there are each with K,
users.

The difference in channel gains between adjacent users in
the mth cluster can be defined as

K
Alnl? =D 1hm i
i=1

2 - |h’m;i+1|27

19)

where A2, ; and hZ, ;| are the channel gains of two adjacent
users in the mth cluster, respectively. The difference of the
channel gains for all clusters needs to be considered to opti-
mize overall system performance, so the optimization objective

> Tm b
Inoma+ Itprva + 02) = Sk

6
function in (18) of this sub-problem can be rewritten as
M M
2 2 2
max Z A|h7n| = mmax Z |hm,i+1‘ - |h'rn,’i| 5
m=1 m=1 (20)

s.t. 1] > (il

As for the initial settings of the resource allocation, we
allocate resources to the user’s equally. Specifically, in the
matching process, all users in each SBS are sorted according
to the size of their channel gains, and then the users with the
first M channel gains are sequentially selected as the first user
in the cluster. Next, we select the user with the largest sum
of channel gain differences in the cluster from the remaining
users satisfied (20) to add the cluster.

Note that since there is relatively large co-channel inter-
ference among users in the same NOMA cluster, it is not
appropriate to reuse too many users in each cluster. Otherwise,
if there are more users in each cluster, the users with the
previous decoding order are subject to severe co-channel
interference, which will cause the computation cost of the user
to increase.

B. Jointly Power and Computation Resource Allocation
Given a specific user clustering scheme, the optimization
goal can be rewritten as

N M K,

min &’ = min Z Z Z Dk,
n=1m=1 k=1

st. phtl +phtt <

mk —

max
mk >

m hm

Pk b 2) 2 kaa
Inoma+Irpyma+o
0 S ka S dmkv

0 S Pmk S Pmk7
Pk & Pone = 1, phas > 0, p501 > 0,
Nk X = 1, X, > 0, A5y, > 0.

C1: Wlog, <1 +

C2:
C3:
C4 .

Ch:
21

When many users transmit data simultaneously in the
NOMA-MEC system, the interference among devices becomes
very serious. This severely reduces the data transmission
rate of the user, and hence increases task delay and power
consumption when offloading computing tasks. Each user
needs to make corresponding decisions based on its received
interference and its state, which is in line with the game theory.
However, the classic game theory is mainly to describe the
individual-to-individual interactions. Each individual needs to
weigh the influence of other individuals to make the optimal
decision. Therefore, when the number of individuals is very
large, the analysis of the system will be very complicated to
cause a huge amount of calculation.

Based on the above analysis, the problem in (21) is re-
formulated with the aid of the MFG theoretical framework
considering the intensive deployment of users in the NOMA-
MEC system. The MFG transforms a large amount of interac-
tion information among individuals into interactions with the
mass, which greatly reduces the complexity of the system.
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Algorithm 2 MF-DDPG algorithm for NOMA-MEC system

1: for each user k € K do

2 Initialize channel gain for all devices

3 Initialize the number of the users

4: Initialize the experience replay buffer D
5

6

7

: end for
: for each episode 1,2, ..., do
Update the simulation parameters from NOMA-MEC system
environment
8: Obtain the initial state s for each user k € K
9: for each time slot ¢t =, do
10: for each cluster m € M, where M is determined by 1
do
11: for each user k € K, do
12: Choose the action af, = p(s}, |04 )+Ap according
to the local observation information of user, where Ay is the
exploration noise

13: Implement the action af, and obtain reward r},
and next state s’,;“ from the environment

14: Save tuple (s;, ai, s, Si+1) into D

15: Randomly sample a mini-batch from D

16: Compute the gradient of the critic network to

minimize the loss L

B
1 ’ 2
L= 5 Z (ri + max Q(si+1,al02 ) — Q(si, a:|6%))
i=1
17: Compute policy gradient of the actor network
1 &
Vopd = 55 > VaQ(si, ald)|a=a, Vopp(si|0f)
i=1
18: Update the target network
19: end for
20: end for
21: end for
22: end for

Specific to in the framework of the MFG, the behavior of the
large-scale agents is described as the mean-field term, which
is a statistical function use to characterize the distribution
of the mass. In this case, the complexity of the system can
be drastically reduced, if the associated large number of
information interactions with other agents is converted into
the interaction with the mass.

Firstly, we define the essential elements in the MFG:

e Player set K: I = {1,2,--- ,|K|} is the set of users in
the NOMA-MEC system, where || = K x N. The number
of agents /C is arbitrarily large.

e State Space S;: In practice, the overhead of the system
is increased to collect global information of all users at the
SBS and then distribute the global information to the user,
which reduces the computing performance. Therefore, we
assume that the state of each user is only derived from its
own local observations. In this paper, the state of the ith user
si(t) = {mi(t),hi(t)}, where 7;(¢t) and h;(t) represent the
SINR and channel gain of the ith user, respectively. So the
state space can be expressed as

Se=1[nt), 7)) ha(t), -+ by (B)].

e Action space A;: Each user chooses the action from the
action space based on the current state s; € S;. The action
space is composed of the user’s allocated power, the offloading

(22)

Mean Field Game (MFG)

!

Markov Decision Process (MDP)

!

Agent
Hamilton-Jacobi-Bellman (HJB)
The Value Function
Action State
Environment
Fokker-Planck-Kolmogorov (FPK)
e l —_—

State Transition Equation

l

Mean Field Equilibrium (MFE)

Fig. 3: The interaction process between MFG and RL.

decision and the resource allocation decision, which can be
defined as

A = [pl(t)7' ’ '7pUC|(t); /\1(t)" ) )‘lK\ (t); pl(t)v' *5 PIK| (t)]7
(23)
where \;(t) = (AL(t),A°(t)) is the weight coefficient of
resource allocation of the ith user. p;(t) = (pl(t),pc(t)) is
the weight coefficient of task offloading of the ith user.
e Reward function R(aq,s:): In this paper, we consider
to minimize the computing cost of the system. Therefore, the
reward function of user according to (21) is

R(ay, s;) = —min ®", (24)

where a; € A;. Note that, according to the mean-field theory,
all users are equal and identical, so they use the same policy.

When the wuser in state s; chooses the action
(p(t), A(t), p(t)), the evolution of the system, also is
the FPK equation, can be expressed as

7Tt+1(8t) = Pij(at|5t)7rt(5t)a (25)

where 7 (s;) denotes the distribution of the state space at ¢
time. P;;(a¢|s:) represents the probability that the agent in
state ¢ transits to state j, which depends on the actions of the
user.

According to (25), the value function of the system on the
state s,,; in the tth slot when user chooses u policy, also
called the HJB equation, is defined as

T
V4 =E, | Y ' Rlar, ms:) (26)
t=0
Next, we define the Nash equilibrium solution of the MFG.
Definition 1: (The solution of the MFG) For each k € I,
the optimal policy p* is defined as

p* = argmax V' (sy). (27)
Based on this policy, for all policies u:
Vi (se) < VI (s0). (28)

So according to the optimal policy p*, the Nash equilibrium
solution of the MFG can be obtained to meet (25) and (26).
Finally, we prove the uniqueness of MFE in Lemma 1.
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Fig. 4: The schematic framework of DDPG.

Lemma 1: There is a unique equilibrium solution for the
MFG.

Proof 1: The value function is a continuous function of
reward functions and policy, and assumes that each user has a
corresponding optimal policy p*. Let the reward function be
monotonous about the distribution of the state based on the
uniqueness of the optimal policy,

N
Do =)t w?) = r(pt, 7)) 2 0,

i=1

(29)

and then we can obtain the uniqueness of the MFE. It should
be noted that proof of the existence of the MFG solution and
the uniqueness of the equilibrium have been given in [39]. B

In usual, the solution of MFG is obtained by the finite
difference method, which divides the solution domain into a
differential mesh and replaces the continuous solution domain
with a finite number of mesh nodes. However, the complexity
of this method is very high. The MDP is often used to
solve the optimization problems, which the derive between
the MDP and the MFG has given in Lemma 2. Therefore, the
resource allocation problem for the NOMA-MEC system can
be transformed into the optimization problem of the MDP,
which means we can reduce the constraints of mean-field
solution and simplify the solution process. Fig. 3 also shows
the interaction process between MFG and RL.

Lemma 2: The value function of MFG satisfies the dynam-
ic programming equation of the MDP.

Proof 2: The value function in (26) can be rewritten as

T
[R(a,T,s) + ZVtR(at,ﬂ't,sAst,m]. (30)
=1

V' =E,

Separating the two terms inside the expectation and taking
outside the expectation, we get

T
Vt'u - E#[R(avﬂas)} +7E# Z’YtR(atvﬂt”stﬂrt) EY

t=1
Given the current action a; and state s, the system turns to the
next state s;1 with probability P(s;y1|s¢, a;) when following

policy u
V' =R(a,m, )]+
T
0 Z P(sit1lst,a1)Ey Z’YtR(at77Tt|St,7Tt)
St+1ES t=1

(32)
From (32), the value function of MFG satisfies the dynamic
programming equation of MDP. ]

Different from other works to discretize the action space,
such as DQN and Q-learning methods, this paper uses the
DDPG algorithm to obtain the equilibrium solution of MFG.
Specifically, it selects actions based on the learned policy in
a continuous action space, which makes it possible to obtain
excellent performance in complex environments. Therefore,
considering that the action space is continuous of the NOMA-
MEC system, we use the DDPG method to optimize the task
delay and energy consumption of the users.

The schematic framework of the resource allocation in the
NOMA-MEC system using the DDPG algorithm is shown in
Fig. 4. It is well known that the DDPG algorithm is mainly an
actor-critic framework, which comprises the actor part and the
critic part. Specifically, the actor part is to minimize Q(s,a)
and output specific actions a through a deterministic policy
1 under the premise of input observation s, the critic part
is to output Q(s,a) updated by the Bellman equation on the
premise of input observation s and specific actions a. Then,
the objective function of the DDPG algorithm can be defined
as

N
J(0") = Epu |> 4" 'Ri|, (33)
i=1
where 6* is the parameters of the policy network that generate
deterministic action, and #* is updated by the policy gradient.
In the actor part, there are mainly two networks, namely online
policy network and target policy network. The deterministic
policy w is used to directly obtain the determined value of each
step of action a; = p (s¢ |0* ). Similarly, the critic part also has
two networks, i.e., the online Q network and target Q network.
The Q function (i.e., the action-value function) is defined
through the Bellman equation as the reward expectation value
of the selection action under the deterministic policy u, and
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the Q network used in the DQN is also used in the DDPG to
fit the Q function, i.e.,

Q" (st,at) = E[R+vQ (st41, 1t (5t41))] 5

where Q¥ (s, a;) indicates the expected value of the return
obtained by selecting the action a; using the deterministic
policy p in state s;. To measure the performance of a policy
1, we define the performance objective as

Is = [ 07(50Q" su. (o)) ds
S
—Es s [Q" (50, pls0))],

where /3 denotes a behavioral policy, p” is the probability
density function of S. The goal of training is to maximize the
performance objective .Jg (1) and minimize the loss function
of Q network. In critic part, the mean square error (MSE) [40]
is used as the loss function, i.e.,

(34)

(35)

L(69) =E[R + Q' (5031, 1 (s64110")109) — Q(s4, a4|09)].

(36)
Therefore, the gradient of L for the 69 can be obtained based
on the standard back-propagation method,

AL(0% 109
% =E[R +7Q' (st41, ' (s141/0")|09")

Q
—Q(st,ath)%].

Note that the Adam optimizer [41] is adopted to update 6+
and 69, respectively, in the actor part and critic part.

Due to a large number of user and the complicated actions,
the network structure is continuously deepened during the
learning process. In the MF-DDPG algorithm, users choose the
action according to the current state in each step to form the
training data set. The large number of users and the sufficient
training steps make the samples of the training data very
large, which ensures the convergence of the neural network
and makes users to effectively learn the optimal policy. In
addition, the setting of the learning rate also affects the
convergence of the network. A lager learning rate may cause
overfitting problems, which leads to convergence divergence
of the neural network. Therefore, we set a lower learning
rate, which makes users learn more experiences. The process
of resource optimization using the DDPG algorithm in the
NOMA-MEC system is shown in Algorithm 2.

(37

C. Jointly Iterative Optimization Algorithm of UCM and MF-
DDPG

According to the introduction of the first two parts in this
section, the optimal resource allocation policy of the NOMA-
MEC system can be obtained by optimizing one of the variable
blocks while keeping the other variables unchanged, and both
sub-problems can be effectively solved. However, in order to
further obtain a high-quality suboptimal solution, UCM and
ME-DDPG are iterated with each other and jointly optimized,
as summarized in Algorithm 3. During each iteration, update
user clustering and resource allocation until convergence.
Since the objective function is updated toward the optimal

Algorithm 3 Jointly Iterative Optimization Algorithm (JIOA)
of UCM and MF-DDPG

1: Initialized:
: Equal power distribution for all users
: plmk = por. = 0.5, )‘lmk = Ak =05
: for each episode 1,2, ..., do
According to the initialized resource allocation scheme, the
UCM algorithm is executed to obtain the user clustering scheme
According to the obtained user clustering scheme, the MF-
DDPG is excuted to obtain the resource allocation scheme
7: Obtain the computation cost of users
8: end for

TN RN

24

TABLE II: Table of symbols

Symbol Definition
Number of SBSs 20
Number of users in each SBS 64
Maximum transmit power of each user 10dBm
Noise power —168dBm/Hz
System bandwidth 5MHz

Pass loss model
Maximum task delay

126.8 4 36.5log, od
300ms-1000ms

Computing capability of kth user 0.8GHz
Computing capability of nth MEC server 6GHz
Number of CPU cycles required 600Megacycle
Input data size required 100Kbits

direction in each iteration, a suboptimal solution close to the
global optimum can be obtained, once the objective function
converges.

D. Complexity of the proposed algorithm

In this section, the computational complexity of the pro-
posed algorithm is analyzed as follows. For the user clustering,
theoretically, all users can be clustered using an exhaustive
method, and then a clustering scheme that minimizes the
computational cost of system is selected. The computational
complexity of the exhaustive method is O (N ﬁ), where
as the UCM algorithm proposed in this paper firstly sorts
the user’s channel gains, so the algorithm complexity is
O(N(MK + Klogy)). It can be seen that the computational
complexity of the UCM algorithm is much smaller than that of
the exhaustive method. Moreover,, the computational complex-
ity is Q(|A| x |S|) when the factor of the neural network is not
considered, where | A| is the number of the actions and |S] is
the number of the states. When a deep neural network is added,
the computational complexity is closely related to the system
environment and parameter settings, and it is often difficult
to make specific estimates. Therefore, this paper attempts to
find the optimal combination of parameters through a large
number of simulations. Finally, the computational complexity
of the jointly iterative optimization algorithm of UCM and
MF-DDPG is O(E(N(MK + Klogy) + |A| x |S])), where
E is the number of iterations. By analyzing the complexity
of the algorithm, it can be found that the proposed algorithm
possesses low computational complexity.

V. NUMERICAL SIMULATION AND DISCUSSION
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In this section, numerical results are presented to evaluate
the performance of the proposed algorithm for NOMA-MEC
systems in UDN. We commence with the system setup and
network architecture. Following this, the performance of the
proposed algorithm is discussed along with other benchmark
schemes.

A. Simulation Setup

In this paper, we consider an UDN, where 20 SBSs are
randomly distributed in a large area of 10 km x 10 km. The
coverage radius of each SBS is 20 m. 64 users are randomly
distributed around each SBS. Refering to the commonly used
simulation parameters in MEC systems [37], we summarize
the default parameters in Table II.

To implement the MF-DDPG algorithm, the actor network
and critic network use the fully-connected neural network with
three hidden layers, where each hidden layer contains 300
neurons. In the actor network, the last output layer uses the
Sigmoid activation function to ensure that the probability of
the final action output is between 0 and 1, while in the critic
network, each layer uses the ReLU activation function. The
learning rates of the Actor-network and Critic-network ranges
from 0.0001 to 0.001, respectively.

Moreover, in order to better verify the performance of the
proposed algorithm, we compare it with DQN, which is one
of the classic algorithms in RL. For the fair comparison, the
DQN algorithm uses the same environment as our proposed
ME-DDPG algorithm. In addition, we compare the proposed
NOMA scheme with the pure OMA scheme to verify the
improved performance of the NOMA scheme.

B. Numerical Results

Fig. 5 (a) shows the comparison of computational cost
when the number of users in a NOMA cluster is different.
It can be observed that the calculation cost increases along
with the value of K. This is because when the number of
users in the NOMA cluster is larger, the calculation cost
is increased due to the increasing in mutual interference of
users. Fig. 5 (b) demonstrates the comparison results of the
overall computation cost with different numbers of SBSs.
We can see that the computational cost of the proposed
algorithm is always the smallest under different SBS numbers.
Furthermore, the difference between the proposed algorithm
and other algorithms is increasing with the increase of the
number of SBS, which implies the superior performance of
our proposed algorithm.

Fig. 5 presents the comparison results of the overall compu-
tation cost versus different numbers of SBSs. As the number
of SBS increases, the overall computational cost of the system
increases. This is because the interference of the system
increases along with the number of SBS increases, and hence
users have to consume more energy and time to suppress the
interference for offloading tasks.

Fig. 6 (a) shows the energy consumption versus the number
of users, while Fig. 6 (b) is the trend of the task delay
with respect to the number of users. Again, we can see that
when the number of users increases, both energy consumption

Computing Cost

25 30

35 40 45
the number of SBS

(a) Comparison of calculation costs when the number of users
in NOMA cluster is different: k =2, k=3, k=4

800
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[ the proposed algorithm OMA
[ the proposed algorithm NOMA

700
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-
o
=3
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(b) Comparison results of the overall computation cost with
different algorithms.

Fig. 5: The overall computation cost versus the number of
SBSs.

and task delay are on the rise. In addition, the performance
of the proposed algorithm is better than the performance
of DQN, and the performance of NOMA is better than the
performance of OMA. When the same number of SBSs, the
energy consumption and task delay of the proposed algorithm
are always the smallest.

Fig. 7 shows the trend of the reward function under the
settings of different learning rates. As expected, it can be seen
that the value of the learning rate imposes a very large impact
on the convergence of the reward function. To elaborate, in the
training process, higher learning rate may cause overfitting,
which makes the reward function to fluctuate greatly or even
difficult to converge. However, the reward function converges
slowly when the learning rate is too small. As can be observed
in Fig. 7, the reward function is optimal when the learning rate
is 0.0001.

Fig. 8 portrays the convergence of the reward function using
different algorithms and different multiple access methods. It
can be seen that upon increasing the number of iterations, the
four schemes gradually converge. Meanwhile, the convergence
speed of the proposed algorithm is significantly faster than
other schemes. This is because DQN discretizes the huge
continuous action space, which leads to an increase in the
amount of calculation and a slower convergence speed. More-
over, compared with the pure OMA scheme, the system adopts
the NOMA scheme to obtain more superior performance.
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(a) The energy consumption versus the number of users.
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(b) The task delay versus the number of users.

Fig. 6: The energy consumption and task delay variation using
different algorithms.
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Fig. 7: Convergence performance of MF-DDPG algorithm
under different learning rates.

Fig. 9 demonstrates the effect of the maximal transmit
power under different algorithms and multiple access modes.
In Fig. 9 (a), it can be observed that the energy consumption
of the system gradually increases along with the maximal
transmit power. When the maximal transmit power is fixed,
the NOMA scheme can obtain lower energy consumption. This
is because users in the NOMA cluster can use the complete
spectrum resources to send information at the same time,
which may reduce the energy consumption of the system. In
addition, as seen from the Fig. 9b, the system delay decreases
as the maximal transmit power increases. This is because when
the maximal transmit power is of a large value, both the user’s
calculation speed and the data transmission rate become large,

Reward Function

the proposed algorithm with NOMA
the proposed algorithm with OMA
the DQN algorithm with NOMA
the DQN algorithm with OMA

0 500 1000 1500 2000
Iterations

Fig. 8: Convergence performance of reward functions using
different algorithms and different multiple access modes.
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(a) The energy consumption versus the transmit power.
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(b) The task delay versus the transmit power.

Fig. 9: The energy consumption and task delay variation using
different algorithms.

thereby leading to a reduced calculation delay.

Fig. 10 shows the trend of energy consumption of the system
versus the CPU capacity in different algorithms and different
multiple access schemes. As the CPU capacity increases,
the computing ability of the system increases, resulting in a
reduced energy consumption of the system. In practice, the
CPU performance of MEC may be adjusted in accordance with
the user’s computing task requirements, for achieving reduced
energy consumption.

Fig. 11 demonstrates the energy consumption versus the
delay requirement. As the delay requirement increases, energy
consumption of the system gradually declines. The reason is
that as the delay requirement increases, the system can slow
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Fig. 10: The CPU capacity versus energy consumption relying
on different algorithms and multiple access schemes.
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Fig. 11: The delay requirement versus energy consumption

using different algorithms and multiple access schemes.

down the task calculations and consume less energy, resulting
in reduced energy consumption.

VI. CONCLUSION

In this paper, the computation cost of the system is mini-
mized for the NOMA-MEC system in an UDN, by optimizing
its task and resource allocation. Due to the non-convexity of
the original problem, we decouple it into two sub-problems:
user clustering and jointly power and computation resource al-
location. In order to solve the user clustering problem, a UCM
algorithm based on user channel gain difference is proposed.
Upon fixing the user clustering scheme, the NOMA-MEC
system is modeled as the MFG theoretical framework for the
intensive user deployment. Then, a low-complexity MF-DDPG
algorithm is conceived for attaining the equilibrium. Finally,
JIOA is proposed to jointly iterate UCM and MF-DDPG, for
minimizing the computational cost of the system. Compared
to the benchmark algorithms, the proposed algorithm can
efficiently reduce the energy consumption and task delay of
the system, and improve convergence speed. Moreover, the
simulation results also show that the number of users in the
NOMA cluster directly affects the computation cost of the
system. Particular to the ultra-dense network environment, the
proposed algorithm has an improved performance along with
the increase in the number of SBSs.

Further, we will compare with more algorithms to verify the
superior performance of the MF-DDPG algorithm and extend
it in various wireless communication scenarios, such as data

caching, task migration, and so on. Moreover, the channel
estimation model is also one of the research directions to
improve the practicality of the proposed algorithm considering
that CSI is not perfect in practice.
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