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Abstract Mobile edge computing is becoming a major trend
in providing computation capacities at the edge of mobile
networks. Meanwhile, unmanned aerial vehicles (UAVs) have
been considered as distinctly important integrated components
to extend services coverage. In order to provide users with
higher and satisfied quality of services, edge computing re-
sources need to be allocated between edge computing stations
(ECSs) and UAVs in mobile networks. However, there are
significant security and privacy problems due to the open
environments of ECSs and UAVs. In this paper, we propose
a resource pricing and trading scheme based on Stackelberg
dynamic game to optimally allocate edge computing resources
between ECSs and UAVs, and blockchain technology is ap-
plied to record the entire resources trading process to protect
the security and privacy. The ECSs control the resources price
of the allocated edge computing resources, where the UAVs
follow the price announced by the ECSs and make optimal de-
cisions on the edge computing resources demands. Blockchain
is integrated in the resource trading process to ensure the
security and privacy. Numerical simulations are given to show
the effectiveness of the proposed scheme.

Keyword edge computing; unmanned aerial vehicles; resource
pricing; resource allocation; blockchain; Stackelberg game

I. INTRODUCTION

Recently, with the rapid development of mobile network,
people’s life has become more convenient. Mobile networks
can provide a variety of customized services according to
user needs. However, with the advances of Internet of Things
(IoT), and the increase of big data, mobile network is facing
a lot of new demands and challenges. The types of mobile
terminals and the quantity of data traffic have been greatly
raised. Even the scenarios of mobile services are gradually
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diversified [1], [2]. The traditional mobile network is not
sufficient in supporting the increasing services requirements,
and cannot support the demands of high bandwidth, low
latency, and real-time communication [3], [4]. Although, cloud
computing has been considered as an effective solution to
deal with the problems brought by the increasing services
requirements [5]-[7], there are still lots of challenges need
to be solved, especially the data transfer latency problem and
the energy consumption problem. As an extension of cloud
computing, mobile edge computing (MEC) can be applied
to mobile networks for data computation and communication
[8], [9]. Compared to the other computing paradigms, MEC
can provide services environment and computation capabilities
at the edge of mobile networks [10]. MEC can transfer the
caching data and computation tasks to the edge computing
stations (ECSs) [11], [12], to make the bandwidth pressure
relieved and the data processing efficiency greatly improved
[13], [14]. Moreover, there is no need to transmit the services
requests to the central computing stations, where it is more
convenient to access the local computation and communication
resources [15]-[17].

Particularly, the existing MEC based mobile networks are
not applicable to the situation where the mobile users are
sparely distributed. In addition, it is hoped that the MEC
based mobile networks can provide assured communication
in some special environments. However, under the extreme
environments, such as typhoon, earthquake and other natural
disasters, the MEC based mobile network will be destroyed
and the communication services will be interrupted. Thus, the
emergency communication techniques are needed [18], [19].
Among the various emergency communication technologies,
unmanned aerial vehicles (UAVs) are becoming a widely
utilized solution to improve the connectivity of mobile users,
and to provide mobile services under the extreme situations,
where the UAVs can solve the communication assurance
issues facing the complex and changeable environments [20]—-
[22]. Moreover, the UAVs-assisted MEC networks can provide
caching and computation services for mobile users, to support
the increasing traffic requirements and the explosively increas-
ing number of mobile users [23]-[25]. UAVs can obtain edge
computing resources from the edge computing stations (ECSs)
to complete more complex computation and communication
tasks for mobile users, to provide mobile users with better
services. The UAV-assisted MEC networks will be more broad,
fast and convenient than the previous networks [26], [27].
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Lots of works have been done in resource allocation prob-
lem of ECSs and UAVs [28]-[30]. However, due to the open
characteristics of UAV communication and MEC paradigm,
there are serious security and privacy issues in achieving
edge computing resources allocation between ECSs and UAV's
[31], [32]. How to maximally protect the security during the
resource allocation is a secure problem needs to be solved.
In the UAV-assisted MEC networks, the UAVs are always
scattered distributed. Then it will be difficult to protect the
security during the resource allocation using the traditional
methods. The distributed digital cryptocurrency, such as the
blockchain [33], can be used to protect the security and
privacy for these kinds of distributed security problems. The
blockchain technology has the characteristics of decentraliza-
tion, unchangeable data, and high transparency, which can
ensure the credibility and traceability of data information [34],
[35], which has significant effect on network security and has
attracted many scholars to conduct extensive research in recent
years [36]-[38]. The emergence of blockchain technology
provides new ideas and directions for effectively solving the
security problems in the UAV-assisted MEC networks.

In this paper, we construct a UAV-assisted MEC network
with blockchain applications. We mainly study the resource
trading interactions between ECSs and UAVs to achieve opti-
mal edge computing resources allocation. The ECSs allocate
the edge computing resources and receive profits from the
UAVs. The UAVs request the edge computing resources from
the ECSs to provide mobile users with satisfied QoS. The edge
computing resources trading interactions will be formulated as
a Stackelberg game. Specially, using the blockchain technol-
ogy to protect the security and privacy, the ECSs should pay
rewards to issue the mining tasks in the blockchain, to record
the trading interactions between ECSs and UAVs. The main
contributions are as follows,

o We formulate the trading interactions between ECSs and
UAVs as a Stackelberg game, where the ECSs are the
leaders and the UAVs are the followers. The ECSs control
the unit price of edge computing resources to maximize
the profits earned from the UAVs. The UAVs control
the amount of requested edge computing resources to
maximize their objectives.

« We propose a blockchain based secure resources trading
scheme in the proposed network. The ECSs work as
the edge computing resources providers and the mining
tasks issuers in the blockchain based network, where
the UAVs are the edge computing resource requesters.
The transactions information about the edge computing
resources trading, including the resources demands and
resources price, would be recorded in the blockchain.

o We formulate the objectives of ECSs as utility maxi-
mization problems. We employ the Lagrangian to obtain
the equilibrium solutions of ECSs for resources pricing
problem.

« We formulate the optimal resources demands problem of
UAVs using differential game. We employ the Bellman
dynamic programming to obtain the equilibrium solutions
of UAVs under two situations, open loop situation and

feedback situation, respectively.

o We conduct numerical simulations to evaluate the per-
formance of the proposed scheme. The results show that
the objectives optimization of ECSs and UAVs can be
achieved.

The remainder of the paper is organized as follows. Section
IT presents a brief review of related works. System model is
given in Section III, and resource allocation scheme is given
in Section IV. In Section V, we analyze the solutions of the
proposed Stackelberg game model. Numerical simulations are
given in Section VI. Finally we conclude the work in Section
VIIL.

II. RELATED WORK

With lower cost and higher mobility, UAVs are playing
an important role in auxiliary mobile networks. Meanwhile,
reasonable resource allocation of UAV-assisted mobile net-
works is becoming a key role in improving the quality of
communications [39]-[41]. In [39], a drone-assisted cellular
network is proposed where every users can share UAVs to
improve their individual uplink rates. Uplink resource allo-
cation in terms of power and time allocation among users
is investigated to optimize the uplink sum-rate. However, it
is assumed that the AG channel experiences quasi-static flat
fading and does not consider subcarrier allocation. In [40],
a joint subcarrier and power allocation algorithm is given to
solve the resource allocation problem of OFDMA uplink in
UAV-assisted emergency communications. The subcarriers can
be allocated among users according to the optimal solutions.
However, it does not take latency and consumption into
consideration. In [41], a fog computing-based drone cluster
(FCSD) structure is investigated. Considering the energy con-
sumption of UAVs, a task allocation problem that minimizes
FCSD energy consumption under the constraints of delay and
reliability is defined. But the algorithm does not take into
account information security issues.

Now, the researchers pay attentions to the UAV-assisted
MEC networks, because the UAVs can act as computation and
communication relays for mobile users [42]-[44]. In [42], the
UAV can collect and process the computation tasks of users.
Given the services requirements of users, the energy efficiency
of UAV is maximized and the energy consumption of UAV is
maximized. In [43], a UAV is properly deployed to facilitate
the MEC service provisioning to a set of IoT devices. Service
delay of all IoT devices and UAV energy consumption are
jointly optimized. However, most of the current works did not
consider the security issues while deploying the UAV-assisted
mobile networks. Due to the open environment of wireless
transmission, the security performance in UAV-assisted MEC
is important and needs to be considered [44], [45]. In [44],
a secure UAV-enabled MEC system is proposed and a low-
complexity iterative algorithm is designed to maximize the
minimum secrecy capacity subject to latency, minimum of-
floading and total power constraints. In [45], the security
problems for dual UAV-assisted MEC systems are investigated,
where one UAV works as the offloading node to provide com-
puting services to the devices, and the other UAV is a jammer
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to suppress the vicious eavesdroppers. The communication
and computation resources are jointly optimized based on the
proposed minimum secure computing capacity maximization
problems.

Recently, there are several works attempting to apply
blockchain into UAV-assisted MEC networks [46]-[48]. In
[46], a blockchain based secure spectrum trading system is
proposed. A pricing-based mechanism is given to motivate
the spectrum trading between mobile network operators and
UAVs, and blockchain is utilized to improve the security and
privacy during the trading process. In [47], a blockchain based
data acquisition process is proposed in the UAV-enabled MEC
networks. The collected data is stored securely in blockchain
at mobile edge computing servers. In [48], the pricing and
resource management in IoT system with blockchain-as-a-
service (BaaS) and MEC is studied. A stochastic Stackel-
berg game with multiple leaders is proposed to the resource
management and pricing problems. However, secure resource
trading between the ECSs and UAVs based on blockchain
technology is not considered in all the previous works. In
addition, there are few researches considering the dynamic
variations of users services demands in modeling the secure
resources trading problem. Then, in this paper, we try to
construct a blockchain based secure edge computing resources
allocation scheme for the edge computing station and UAVs
using Stackelberg dynamic game, considering the users ser-
vices demands as the system state.

III. SYSTEM MODEL

In this section, we firstly give out the system model in
Section III-A. Then we analyze the security threats in the
proposed system in Section III-B. Finally, we propose a
blockchain based security framework in Section III-C.

A. System Model

We consider a UAV-assisted mobile edge computing net-
work consisting of a number of ECSs and UAVs. The set of
the ECSs is denoted by M, M = {1,2,..., M}, and the set
of the UAVs served by ECS m is denoted by N,,, N,, =
{1,2,..., N, }, as shown in Figure 1. The whole network can
be divided into three layers, ECS layer, UAV layer, and user
layer, respectively. In ECS layer, there are multiple ECSs that
are responsible for allocating edge computing resources for
UAVs. They can control the trading price of the allocated edge
computing resources. In UAV layer, each UAV can provide
computation services for mobile users. In order to improve
the quality of services (QoS) provided to mobile users, the
UAVs with limited on-board resources should request edge
computing resources from the ECSs. In user layer, each mobile
user would upload the services requirements to the UAVs.
The services requirements include the computation tasks, the
communication requests, and so on. Assuming every UAV
accesses to its nearest ECS, and every mobile user accesses
to its nearest UAV. Then all the services requirements of
mobile users can be transmitted to the UAVs, and all the UAVs
can provide satisfied services to mobile users using the edge
computing resources obtained from the ECSs.
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Fig. 1: System model

In the proposed system, since the UAVs should use the
obtained resources from ECSs to provide the computation
services to mobile users, we assume there are enough re-
sources available in the ECSs for resources allocation. In
the communication model, we assume that the up-link and
down-link channels between ECSs and UAVs are symmetrical.
The available transmission capacity calculated by the Shannon
theorem for the allocated resources is assumed to be enough.
Each UAV is responsible for gathering users services require-
ments from its coverage. Then, according to the amount of the
services requirements gathered from the mobile users, UAVs
make decisions on the edge computing resources requirements
to the ECSs. In order to obtain the edge computing resources
from the ECSs, the UAVs have to pay a certain amount
revenue to the ECSs, The ECSs can earn profit by allocating
the edge computing resources to the UAVs, through setting
a appropriate trading price for the allocated edge computing
resources. In the above process, the trading price of edge
computing resources is an important factor in determining the
resources trading behaviors and is controlled by ECSs.

B. Security Analysis

In the proposed system, we mainly focus on the edge com-
puting resources trading between ECSs and UAVs. However,
there are security and privacy issues that needs to be consid-
ered. The UAVs need to upload the resources requestments
to the ECSs, which may cause security issues due to the
open environment of UAVs. Meanwhile, some of the ECSs
may refuse to acknowledge the receipt of the requests, which
will lead to serious privacy issues. In addition, some UAVs
may pretend that they haven’t obtained the edge computing
resources from the ECSs. In order to guarantee the security and
privacy in resources trading process between UAVs and ECSs,
the blockchain technology is utilized in this paper. With the
blockchain technology, the resources trading between UAVs
and ECSs can be written to the blockchain. Then the UAVs
can obtain the edge computing resources from the ECSs in
a decentralized but trustful way. Simultaneously, when the
trading occurs, the optimal trading price for the allocated
resources and the optimal amount of requested resources
would be executed.
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Based on the blockchain technology, a trusted scheme is
designed for the edge computing resources trading between
ECSs and UAVs. Integrated with the blockchain function into
the proposed system, a “transaction” will be posted to the
blockchain to announce that the trading relations are existing
between ECSs and UAVs. However, as there are no sufficient
resources with the UAVs to run the blockchain applications,
the ECSs are chosen to run the blockchain functions. The
ECSs are considered as the consensus nodes in the proposed
network to run the blockchain applications, and they will
record the resources trading transactions. The ECSs in the
blockchain check the trading actions between ECSs and UAVs,
update the transaction records, and share the transactions over
the blockchain. Based on the blockchain, the system does not
require a centralized process or a central unit for the resource
trading between the ECSs and UAVs.

C. Blockchain based Resources Trading

Integrated the blockchain function, there will be four roles
in the proposed system, i.e., the edge computing resources
requesters, the edge computing resources allocators, the min-
ing tasks publishers and the trading block miners. The UAVs
are the edge computing resources requesters in the proposed
system, which control the resources requirements and obtain
the edge computing resources from the ECSs. The ECSs are
the edge computing resources allocators to control the trading
price and to allocate the edge computing resources to the
UAVs. The ECSs also work as the mining tasks publishers
and the trading block miners in the blockchain system. In the
blockchain based system, after controlling the resources prices
and allocating the edge computing resources, the ECSs act as
the blockchain nodes, submitting the trading information to the
blochchain system. Based on the consensus mechanisms, the
blockchain nodes verify the trading information and record the
unchanged trading information in the system. The computation
tasks for blockchain mining are only executed by the ECSs,
because of the high computing power requirements. More
details of the blockchain based resources trading scheme are
given as follows.

1) Step 1: As the resources requesters, UAVs generate the
edge computing resources demands d;(t). Given an initial
resources price, UAVs generate the resources demands based
on the services requirements from mobile users, and upload
the resources demands message to ECSs.

2) Step 2: Received the resources demands from UAVs,
ECSs control the resources price p;(t) to optimize the prof-
it earned from edge computing resources allocation. ECSs
broadcast the resources price and allocate the requested edge
computing resources to UAVs.

3) Step 3: ECSs collect all the resources trading infor-
mation {d(t),p(t), N} at time ¢ and issue mining tasks on
the blockchain. All the transactions are structured into blocks.
Each block contains a cryptographic hash to the prior blocks
in the blockchain.

4) Step 4: A public blockchain among ECSs under the
proof of work (PoW) based Nakamoto consensus protocol
is considered. The ECSs use the credits coins to release the
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Fig. 2: Blockchain structure

mining tasks, and the other ECSs in the blockchain compete
to accomplish the mining tasks to write a “transaction” into
the blockchain. The credits coins can be obtained from the
successful mining tasks.

Based on blockchain, distributed consensus can be estab-
lished before the trading records between ECSs and UAVs
are written into a digital ledger. It is executed by all the
collaborative ECSs based on timestamps and hash algorithms.
The structure of the proposed blockchain is given in Figure
2. Each block in the proposed blockchain system contains a
cryptographic hash value to the prior block. To participate in
the consensus process, the ECSs are working as the miners in
the proposed blockchain system. Following the works in [4],
[33], [35], [48], the PoW based Nakamoto consensus protocol
is considered and achieved based on the block mining of ECSs.
Here, credits coins are defined as new cryptocurrency for the
edge computing resources trading. Once the ECSs successfully
solve the PoW puzzle, they will win the credits coins. During
edge computing resources pricing and allocation, the trading
records are stored in the blockchain, and the blockchain-
inspired distributed consensus mechanisms are achieved. The
edge computing resources trading records will be encrypted
and structured into the blocks based on distributed consensus
mechanisms.

IV. RESOURCES ALLOCATION SCHEME

In this section, we firstly propose a resources leasing
mechanism for ECSs and UAVs in Section IV-A. Then we
give out the dynamic state of services demand from mobile
users in Section IV-B. Finally, a blockchain based framework
is proposed for secure resources trading problem in Section
IV-C and a Stackelberg dynamic game framework is presented
for resources allocation problem in Section IV-D.

A. Resources Leasing Mechanism

In this section, we will design a resources leasing mech-
anism to motivate the ECSs to allocate the edge computing
resources to the UAVs. Based on the proposed scheme, the
UAVs can obtain the edge computing resources form the ECSs
to provide mobile users with enhanced QoS, and the ECSs can
obtain a certain amount of profit from the allocated resources.
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Here, the UAVs, which are responsible for the payments
of edge computing resources, are stands for the UAVs, the
UAV operators or the operators. Then we can say that the
UAVs should pay the ECSs for the allocated edge computing
resources. Therefore, a mechanism is given in this section to
facilitate the trading of edge computing resources between
ECSs and UAVs.

For the ECSs, they can receive the edge computing re-
sources requirements from the UAVs. The ECSs provide the
edge computing resources to the UAVs based on requirements,
and obtain the payments for the allocated resources from the
UAVs. Let p;(t) denote the unit price of the edge computing
resources provided to UAV 4 at time ¢, d;(t) denote the
resources demands from UAV ¢ € N at time ¢. Then, the
objective of each ECS is to maximize the profit obtained from
the edge computing resources trading, which can be denoted
by the following function,

N
Upcs(t) = Z vipi(£)di (1), (1)

where +y; is the possibility that the resources trading between
UAVs and ECSs can be written into a valid block. Through
setting an appropriate trading price p;(t) for UAV ¢ € N
at time ¢, each ECS can attract more UAVs to require edge
computing resources.

For the UAVs with limited on-board resources, they require
the edge computing resources from the ECSs based on the
services requirements of mobile users. They can earn revenue
for the services provided to the mobile users. The revenue
function of UAV ¢ at time ¢ is given as follows,

UZ‘ (t) =T (t)(I}Z‘ (t) — YiPi (lf)dz (t) (2)

Based on (2), we can find that the revenue function of
each UAV is composed by two parts. The fist part is given
by r;(t)x;(t), which is the revenue earned from the provided
services, where r;(t) is the price of services, and x;(t) is the
services requirements of mobile users. The services require-
ments are the services demands of mobile users that need
to be completed by the UAVs, which include the computing
tasks, communication requests, and so on. The second part of
revenue function is p;(t)d;(t), which is the payments for the
allocated edge computing resources from ECSs.

As the UAVs use the edge computing resources from the
ECSs to provide services to the users, the UAVs should
increase the edge computing resources requirements as the
users’ demands increase. The payments of the allocated edge
computing resources will become very high for UAVs, if there
are massive demands need to be satisfied. Then, the objective
function of UAV 4 during the observation time [0, 7] can be
expressed as,

Ji(t
wey o

T
{ [ b0 - toyiseea

= Imax
d; (t

)

3)

where g;x;(T) is the terminal cost of each UAV at the final
observation time 7. e~ "¢ is the discount factor, and 7 is the
discount rate.

B. Dynamic Services Requirements of Mobile Users

As given in the above subsection, we use z;(t) to denote
the services requirements of mobile users. For each UAV i €
N, it trys to provide the services to mobile users with the
edge computing resources from the ECSs. The UAVs which
have more computing resources can served more mobile users.
Meanwhile, the services requirements of mobile users will be
affected by the unit price of services. Based on the above
assumptions, we use a differential equation to describe the
evolution of users services demands in UAV i [49], which is
given as follows,

di(t) = [,uirfi (t) + vd? (t) + iz (D) | dt, (@
where r;(t) is the unit price of services, with the weighted
parameter u;. As the linear pricing mechanism is an effective
policing mechanism that influences users’ behaviors towards
a more efficient operating point, we use the linear pricing
mechanism to formula the relationship between the unit price
r;(t) and the services requirements x;(t). Then the unit price
of services could be a linear function of services requirements
x;(t), ie., ri(t) = p;x;(t). Based on the linear pricing
relationship, the method of income calculation is more simple,
intuitive and convenient. d;(t) is the edge computing resources
of UAV ¢ obtained from ECS, with the weighted parameter
v;, which can be considered as the resources capacity of
UAV i at time ¢t. The users services demands are defined
referring to the Cobb-Douglas function [49] that models well
these elasticity aspects. It is assumed that mobile users can
obtain the information of services price 7;(¢) and services
capacity d;(t) provided by UAV i. Compared to the UAV
with lower resources capacity, there will be more mobile users
accessing the UAV with larger resources capacity. J; is the
users departure rate. «; and [3; are elasticity coefficient of
services demands state. Based on (4), the evolution of users
services demands are mainly influenced by two factors, the
unit price r;(t) of the provided services and the capacity d;(t)
of edge computing resources.

C. Miners Cost

In this subsection, we will discuss the blockchain-based
framework for the proposed system, as given in Figure 2. In
order to motivate the ECSs to run the mining function and to
execute the blockchain application, mining rewards are given
to the ECSs. The ECSs compete against each other in the
mining to be the first one to solve the PoW puzzle and receive
the mining rewards. Based on the blockchain technology, if
the transaction is validated and written into a block, the ECS
that firstly completes the mining task can obtain the mining
rewards. The ECS that firstly mines the mining tasks collects
the real-time information of transactions between ECSs and
UAVs. It records the payments given by the UAVs, the price
of allocated resources and the amount of allocated resources by
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the ECSs. It transmits the trading-related information among
all the nodes in the blockchain. Then, the transaction is written
into the blockchain, and the ECS that successfully mines
the mining tasks can win the mining rewards. Meanwhile,
the ECS winning the mining rewards can also obtain some
transaction coins, which can be considered as credits coins in
the blockchain system. The ECSs need to pay a certain amount
of credits coins to publish the mining tasks every time. Without
the credits coins, the ECSs cannot publish the mining tasks in
the blockchain and the transactions between ECSs and UAVs
cannot be conducted. Let ¢(t) denote the cost of ECS for
publishing the mining tasks in the blockchain, which is given

as follows,
9(t) ;Zl [w ] (5)

In (5), the cost function is composed by two components.
The first component is the mining rewards denoted by 2.
The second part, wLiTEig, is the payment of credits coins
for publishing the mining tasks, where 7; is the coefficient
between the credits coins and task scale, and d?(? is the
task scale of ECS for the transactions with UAV i. During
the trading process, if the price is high, the willingness to
require the edge computing resources of ECSs will be reduced
and the transactions need to be recorded will be decreased.
Meanwhile, if more resources are purchased by the UAVs,
more transactions need to be recorded in the blockchain.
Then we use d’f(i) to denote the task scale of ECS for the
transactions with UAV i. Then the objective function of ECS
given in (1) should be changed to a function of profit minus

payment, as follows,

, al al di(t)
Ugcs(t) =Y vipi(t)di(t) = > [¢ + i — } . (6
= pt pi(t)

In (6), the objective function of ECS mainly consists of two
parts. One part is the profit obtained from the allocated edge
computing resources, which is denoted by (1). The second
part is the cost of ECS for publishing the mining tasks in the
blockchain, as given in (5). As the control variable for (1) and
(5) are both the unit price p;(t), the control variable of (6) is
the same.

D. Stackelberg Game Framework

In Section IV-A, a resources leasing mechanism to motivate
the ECSs to allocate the edge computing resources to the
UAVs. Based on the proposed scheme, the ECSs can obtain
a certain amount of profit from the allocated resources, and
the UAVs can obtain the edge computing resources form the
ECSs to provide mobile users with enhanced QoS. Setting
an appropriate resources price, the ECSs try to optimize their
profits from the allocated resources. With the allocated edge
computing resources, the UAVs try to optimize their utilities
earned from the provided services. It is obvious that game
theory can be used to analyze the optimized problems of ECSs
and UAVs, where ECSs and UAVs can be both considered as
rational game players during the resources trading process.
During the trading process, the ECSs firstly broadcast the

reless Communiitap
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resources price to the UAVs, and the UAVs control their
resources requirements according to the price. Thus, the re-
sources trading between ECSs and UAVs can be formulated
using Stackelberg game.

In this paper, the resources trading between ECSs and UAVs
is modeled as a two-stage Stackelberg game, where the ECSs
are the leaders, which control the unit price of the edge
computing resources provided to the UAVs. The ECSs also
work as the mining tasks publishers and the trading block
miners in the blockchain system. The UAVs are the followers,
which optimize the resources requests to the ECSs, limited
by resources price controlled by the ECSs. The optimization
problems for ECSs and UAVs are given as follows.

1) Optimization problems of ECSs: For the ECSs, they
should make decisions on the resources price p;(t) to max-
imize the profit function, which is given as follows,

Upcs(t) = Ugos(t) — o(t), (7N

where the unit price p;(t) is the control variable for the ECSs.
The game problem of ECSs can be written as follows,
Problem 1: (Leader’s Game):

max U;?CS(t)
pi(t) (8)
0 < pi(t) < pi-

2) Optimization problems of UAVs: For the UAVS, they
should control their edge computing resources demands d; ()
to optimize their objectives. The objectives of the UAVs are
given by (3), with a dynamic system state given by (4).
Therefore, the game problem for UAVs can be given as
follows,

Problem 2: (Follower’s Game):

S. t.

max  J;(t)
d;(t) (9)
s. t. dx;(t) = fi(t,x)dt,

where f;(t, @) = pirf" () + vid] (t) + ;i (¢).

UAVs tend to achieve their maximum utilities while ECSs
focus on getting the most profits. Hence, to adjust the demand
of edge computing resources and the price for the allocated
edge computing resources, a Stackelberg dynamic game can
be formed. The ECSs who are the leaders first announce the
unit price of the allocated edge computing resources to the
UAVs (followers). Based on the price declared by the ECSs,
the followers make decisions on the expected edge computing
resources. After the demands are uploaded to the ECSs,
the ECSs decide the optimal price to obtain the maximum
profit. The Stackelberg equilibrium ensures the utilities of
ECSs are maximized given that the UAVs generate their
resources requirements to maximize the profit. The objectives
of the proposed Stackelberg game are to find Stackelberg
equilibriums for both ECSs and UAVs. The UAVs can find
their optimal resources demands and the ECSs can optimally
set a proper resources price. The Stackelberg equilibrium can
be written as follows.

Definition 1: For the edge computing station, the service
price pf(t) is the Stackelberg equilibrium, if the following
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inequality holds for all service price p;(t) # pi(t),

Upcs(Pr(t),di(8),8) > Upes(pi(t), di (),8).  (10)

Definition 2: For the UAV i, the resource demands d; (t) is
the Stackelberg equilibrium, if the following inequality holds
for all service price d;(t) # d}(t),

Ji(‘ﬁ(t)ap*(t)vt) Z Ji(di(t)ap*(t)at)' (11)

V. EQUILIBRIUM ANALYSIS

In this section, on the basis of the Stackelberg game model
proposed in Section IV-D, we analyze the performance of the
game model and calculate the Stackelberg equilibriums for
ECSs and UAVs to obtain the optimal resources price and
demands between ECSs and UAVs. Based on the proposed
framework, we will firstly analyze the equilibrium of UAVs in
Section V-A, then the optimal resources price will be given to
maximize the ECSs utilities in Section V-B.

A. Equilibrium of UAVs

We first consider the equilibrium solutions of UAVs, in
which the UAVs pay the ECSs for the allocated edge com-
puting resources at a price level p(t) to maximize their
own individual utilities non-cooperatively. In this section, the
resources price is uniform, which means the ECSs charge
the UAVs with the same price. Given the resources price
p(t), we can find the optimal resources demands of UAVs
using Bellman dynamic programming. Before analyzing the
equilibrium solutions, one definition is first given for Bellman
dynamic programming, as follows.

Definition 3: The optimal resource demand {d} (t)} of UAV
i is an open-loop equilibrium to the problem in (3), and
{z}(t),0 < t < T} is the corresponding optimal trajectory
of users’ demand, if there exists a costate function A;(t) such
that the following equations are satisfied,

d; (t) = argmax {J;(t) + A; ()2 (t) }, (12)
o O[T + A (8)]
A; (t) = 81‘1' (t) s (13)
where ;(t) = dmét(t) and A;(t) = dAdit(t)'

In order to simplify the expression of Definition 3, we
replace (12) with Hamiltonian function as follows,

d; (t) = arg max{H;(t,x;(t))}, (14)
Ai(t) = —w (15)

where,
Hi(t,zi(t)) = Ji(t) + Ai(t)Zi(t). (16)

Based on Definition 3, each UAV controls its resources
demands to maximize its individual utility function. Next,
we analyze the existence and uniqueness of the open-loop
equilibrium for each UAV.

Theorem 1: There exists a unique open loop equilibrium
for each UAV in Problem 2.

Proof: Based on Definition 3, in order to get the open
loop equilibrium solutions for UAVs, we first need to calculate

pidde.doi.org/10.1109/TWC.2020.3047496

the partial derivative to the Hamiltonian function, and let the
partial derivative to be zero. We have the partial derivative of
Hamiltonian function as follows,

ad;(t)

Based on (15) and (16), A;(t) can be given by the following
differential equation,

= —yipi(t) + A (D) Barid? (). (A7)

—Ai(t) = 2p;x;(t) + A (t) [aiuiw?ixf‘ﬁl(t) + 6z-] . (18)

Then the optimal resources demands of UAVs can be ob-
tained using the above differential equations (17) and (18). The
optimal resources demands of each UAV is controlled by the
resources price announced by the ECS. The optimal resources
demands of each UAV is also a function of users services
requirements. Especially, under the open-loop situation, the
optimal resources demands of each UAV depend on the initial
services requirements of mobile users z; (¢ = 0) and vary with
the time ¢. Now we have proved that there exists a unique open
loop equilibrium for each UAV. [ ]

Further, based on the partial derivative of the Hamiltonian
function, we have,

—ipi(t) + Ai(8) Bivid) () = 0,

and we can obtain the equilibrium solutions for UAVs to
control their resources demands by solving (19). The unique e-
quilibrium solution for UAV : to control its resources demands
is given as follows,

di(t) = {Av(zto)g)yr

To eliminate information non-uniqueness in the derivation of
Nash equilibrium, we can also obtain the equilibrium solutions
of UAVs to satisfy the feedback equilibrium property. In the
feedback situation, the information structures of UAVs follow
closed-loop perfect state pattern, and the optimal strategies of
UAVs become the functions of initial users services demands
x;(t = 0), the current users services demands z;(t) at time
t, and the current time t. A definition of value function for
analyzing the equilibrium solutions of UAVs under feedback
situation is given as follows. _

Definition 4: The optimal resource demand {d} (t)} of UAV
1 is a feedback equilibrium to the problem in (3), if there exists
a continuously differentiable value function V;(t, x) such that
the following equations are satisfied,

19)

(20)

_ W = {@ﬂf(t) — %pz(t)g;(t)} ot
oVi(t,x) - (21)
T # [Hﬂ’? (t) + vi(d; (1) + 5z$1(t)] )

Calculating the partial derivative for d;(¢) in (21), we can
obtain the optimal resource demands of UAV ¢ under feedback
situation as follows,

1
Yipi(t)

Bi—1
I L7 < AN ) (22)
3‘/:-9(;,1) ertﬂil/i‘|

d; () = [
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The existence and uniqueness of equilibrium solutions under
feedback situation for the proposed game can be given as
follows.

Theorem 2: The value function Vi(t,x) admits a solution

that satisfies,
Vi(t,x) = [Ai(t)x + B(t)] e, (23)

where A;(t) and B;(t) are given by,

dA;(t _
MO [k ot mptat O] A + o), 24
dBi(t) _vipi(t)(BiAi(t) — 1) ( Yipi(t) =
dt BiAi(t) Bivi Ay(t) (25)
+ TBi(t).
Proof: Based on the value function given in (23), we have,
OVilt, z) et :dAi(t) x—TA;(t)
dB;(t) B.(1
+ dt - T l( )7
Vi(t, ) -
Tt _ A, 27
o A;(t). (27

Then, we have the optimal resources demands of UAV 3
under feedback situation as follows,

T\ Yipi(t) o (28)
4it) = [ﬁiViAi(t):l .
and the differential value function in (21) can be given as
follows,
dA;(t) dB;(t)
-~ _Q:Z(t) + TA; () (t) — 7 + 7B;(t)
o Yipi(t) | &
=A; ir; (T i(—— <)% ! i (T
() [t )+ i ST G
[N Vipi(t) |51 ]
= A,(t) _uww% (t) + U(M)% + 0;(t)
’ L e ’ BiViAi(t) o
+ _@lxi (t) %pl(t)(ﬂzl/lAz(t)) |
If the above equation is satisfied, we have,
dA;(t _
% = (146 + pip®a ()] Ai(t) + gi(t), (30)
dBi(t) pi(t) B
B — = A (L7 \B;—1
Yipi(t) 1
=i 7)) %,
Yipi( )(ﬁiViAi(t))
Hence, Theorem 2 follows. [ |

Based on the outcome of Theorems 1 and 2 obtained
above, we present a dynamic game based algorithm for UAVs
to control their resources demands, which is sketched in
Algorithm 1. The proposed algorithm returns the open-loop
equilibrium solutions and feedback equilibrium solutions for
UAVs on the basis of resources demands as their output.
First, we initialize and calculate all the necessary parameters.
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Algorithm 1: Dynamic Resource Demands Control Algo-
rithm
Input: Unit price p;(t) for the allocated edge computing
resources controlled by ECSs
Output: The optimal resources demands d;(t) of each
UAV
1 Initialization: The initialization parameters in objective
function (3) and system state function (4);
2 The ECSs set the initial price for the allocated edge
computing resources, and send the price for all UAVs in
its coverage;
3 The UAVs compute the resources demands based on the
initial price set by the ECSs;
4 for j € M do
for i € V do
Obtain the optimal resources demands under
open-loop situation using (20);

7 Obtain the optimal resources demands under
feedback situation using (28);

end

9 end
0 Return the optimal resources demands of UAVs;

[y

Then, we compute the optimal resources demands in terms
of open-loop solutions and feedback solutions according to
the proposed game framework. Finally, the optimal resources
demands for UAVs under two kinds of situations are obtained.
The main computational complexity of Algorithm 1 lies in
obtaining the open loop equilibrium solutions and feedback e-
quilibrium solutions for UAVs. The total number of operations
for obtaining the optimal strategies under open-loop situation
and feedback situation is both M N. Thus, the complexity
order is calculated as O(MN).

B. Equilibrium of ECSs

In this section, the equilibrium solutions to Problem 1 will
be discussed. As the optimal strategies to Problem (1), p*(¢)
are a set of resources price for UAVs to control their resources
demands. Every UAVs will be announced an rational price
for the allocated edge computing resources controlled by the
ECSs. In order to find the equilibrium solutions of ECSs, we
first try to prove the optimization problem given in Problem
1 is a concave function.

Theorem 3: The objective function for ECSs in Problem 1
is a concave function.

Proof: Please refer to Appendix A. [ ]

We consider the uniform pricing model for ECSs. Based on
the uniform pricing model, the resources price is uniform, and
the ECSs charge the UAVs with the same price. Therefore, the
purchase of each ECS is to set up an optimal resources price
for UAVs to maximize its profit. The optimal resources price
of each ECS can be given as follows.

Theorem 4: A set of control vectors p*(t) for ECSs in
Problem 1 exists.

Proof: Based on Theorem 3 given in the above, the
optimization problem in Problem 1 is a convex optimization
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problem. Thus, we can deal with the optimization problem by
solving its dual problem. The Lagrangian for the optimization
problem in Problem 1 can be written as,

N N

L(t) = v (Ddi(t) =
=1 i=1
— A6 - 7],

where A is the dual variable associated with the constraint
0 < p*(t) < p. By taking the derivative of (32), we have,

o) & al [ d;(t) ]
o)~ 2 O 2 M
Let the partial derivative to be zero, we have,
1
Yo midi(t) ]2
A= S vidi(t)

Substituting the constraint 0 < p*(¢) < p into the above
equation, we can find that the dual variable follows the below

equation,
N o
A:}2(é+¢0dﬁ)
i=1

Substituting (35) into the partial derivative of Lagrangian,
we can find the optimal price for the allocated edge computing
resources, which is denoted as follow,

P+m@@]

p*(t) (32)

(34)

ﬁ@Z[

(35)

N 3
. 1d2 t
p(t) = l N iz i) N 1 . 36)
> iz (B +ya)ds(t) — 252, vids(t)
Hence Theorem 4 follows. [ |

Algorithm 2: Dynamic Optimal Price Control Algorithm

Input: The optimal resources demands d;(t) of each
UAV;
Output: The optimal price p;(t) for the allocated edge
computing resource controlled by ECSs;

1 Initialization: The initialization parameters in objective
function (8);

2 The ECSs receive the resources demands from all UAVs
in its coverage;

3 The ECSs compute the optimal price for the allocated
edge computing resources with the resource demands
from all UAVs;

4 for j € M do

5 Obtain the optimal price for the allocated edge

computing resources using (36);

6 end

7 After that, the ECSs send the optimal price to the miners.
The miners update the price and broadcasts the price to
the UAVs. The transactions information between ECSs
and UAVs are recorded on the blockchain.

Based on Theorems 3 and 4, we present a dynamic optimal
price control algorithm for ECSs to maximize the profit
function given in (8). Given the dynamic resources demands of
UAVs based on Algorithm 1, the ECS can control the resources

User Demand Variation under Open-loop Situation
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Fig. 3: Users demands variations with 3 UAVs under open-
loop situation

User Demand Variation under Feedback Situation
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Fig. 4: Users demands variations with 3 UAVs under feedback
situation

price for the allocated edge computing resources to maximize
its profit earned from UAVs. As every UAV has two kinds
of resources demands, the open-loop situation and feedback
situation, respectively, there will also be two optimal price
for ECSs to allocate the edge computing resources. The main
computational complexity of Algorithm 2 lies in obtaining the
optimal pricing strategies for the allocated edge computing
resources using (36). The total number of operations for
obtaining the optimal price is M. Thus, the complexity order
is calculated as O(M).

VI. NUMERICAL SIMULATIONS

In this section, we conduct simulation experiments and
evaluate the performance of the proposed dynamic resource
allocation scheme. Firstly, we introduce the simulation scene
and specific experimental parameters. Then, the optimal solu-
tions for UAVs to control their resources demands are analyzed
under open-loop situation and feedback situation, respectively.
And the optimal strategy of ECS to control the price for the
allocated edge computing resources is also discussed.

A. Simulation Setting

A UAV-assisted mobile network with one ECS and multiple
UAVs is considered in this section. In the proposed system,
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Fig. 5: Users demands variations with 6 UAVs under open-
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Fig. 6: Users demands variations with 6 UAVs under open-
loop situation

the UAVs require the edge computing resources from the
ECS to provide mobile users with satisfied services. The
ECS allocates the edge computing resources to the UAVs
to earn profit. Meanwhile, the ECS should pay the mining
reward for the transactions between ECS and UAVs. The
optimal strategies of requested resources for UAVs will be
given under two different situations, open-loop situation and
feedback situation, respectively, which are mainly affected by
the services demands from mobile users. As the followers
of the Stackelberg game, the optimal strategies for requested
resources of UAVs will be analyzed with a initial price of
edge computing resources announced by the ECS, where
the resources price is assumed to be constant and same for
all UAVs. In this simulations, the resources price is set to
be 2 unit/resources. After the UAVs make decisions on the
required resources, the ECS will control the resources price
to maximize its profit, where the possibility that the resource
transactions between ECS and UAVs can be written into a
valid block is assumed to be 100%. The other parameters
setting for simulations are given in TABLE 1.

B. Performance Discussion

Firstly, we investigate the variations of users services de-
mands under two kinds of situations, open-loop situation

piddx.doi.org/10.1109/TWC.2020.3047496
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Fig. 7: Required resources of 3 UAVs under open-loop situa-
tion

UAVs Demand Variation under Feedback Situation
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Fig. 8: Required resources of 3 UAVs under feedback situation

and feedback situation, respectively. The variations of users
services demands are given by the state variable x;(t), and are
shown in Figures 3, 4, 5, and 6. The services demands under
open-loop situation are given in Figures 3 and 5, where Figures
4 and 6 are the services demands under feedback situation.
Figures 3 and 4 are the services demands in the proposed
UAV-assisted MEC network with 3 UAVs. We can find that,
at the beginning of the game, the mobile users increase their
services demands to obtain the relevant services from UAVs.
As more and more users services are satisfied, the services
demands decrease and converge to an equilibrium value. Under
the feedback situation, the services demands first increase and
then quickly drop to zero. In Figures 5 and 6, we double the
number of UAVs from 3 to 6, and obtain the services demands
under open-loop situation and feedback situation, respectively.
We can find that the number of UAVs will not affect the

TABLE I: Simulation Parameters Setting

Parameters UAV1 UAV2  UAV3
; 2 2 2
Bi 2 2 2
i 0.5 0.4 0.3
v; 0.5 0.6 0.7
0; -0.5 -0.4 -0.3
©i 0.001  0.0015  0.002
[ 0.2 0.3 0.5
Di 5 10 15
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Fig. 9: Required resources of 6 UAVs under open-loop situa-
tion
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Fig. 10: Required resources of 6 UAVs under feedback situa-
tion

services demands in the proposed system, where the services
demands of UAV1, UAV2 and UAV3 are the same with the
previous results.

Next, we analyze the strategies of UAVs for the required
edge computing resources. Because the unit price for the
allocated edge computing resources is assumed to be a fixed
value, the impact of price on UAVs decision-making is tem-
porarily ignored. Based on the services demands, the UAVs
would require the edge computing resources from the ECS
to provide satisfied services to mobile users. The variations
of required resources for each UAV are shown in Figures 7,
8, 9 and 10, respectively. Figures 7 and 9 show the required
edge computing resources of UAVs under open loop situation,
where Figures 8 and 10 are the equilibrium strategies under
feedback situation. Since the UAVs don’t know how much
resources are needed to meet the services demands from
mobile users at the beginning of the game, each UAV requires
a large amount of edge computing resources from the ECS
to meet the possible services demands. As the game goes
on, the amount of the required edge computing resources by
each UAV would be decreased to a stable equilibrium value
based on the actual needs of mobile users. The amount of
required edge computing resources vary according to the users
services demands. More edge computing resources are needed
by the UAVs with more users services demands. As we assume
there is enough edge computing resources in the ECS for

Unit Price Variation under Open-loop Situation
T T T

—&— Price with 3 UAVs
—*— Price with 6 UAVs
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Fig. 11: Optimal pricing strategy of ECS under open-loop
situation

Unit Price Variation under Feedback Situation

Unit Price for Edge Computing Resource

Iteration

Fig. 12:
situation

Optimal pricing strategy of ECS under feedback

resource allocation, when we double the number of UAVs in
the proposed system, we can find that the number of UAV's will
not affect the amount of required edge computing resources,
as given in Figures 9 and 10.

As the leader of the proposed Stackelberg dynamic game,
after the UAVs make decisions on the requirements of edge
computing resources, the ECS would re-allocate the unit price
of the allocated edge computing resources to maximize its
profit based on (8). The equilibrium solutions of ECS are
shown in Figures 11 and 12, which are the optimal pricing
strategies under open-loop situation and feedback situation,
respectively. For the optimal pricing strategy of ECS under
open loop situation, the price goes down at the beginning.
After 5 iterations, the unit price increases and converges to
a stable value. Because the number of UAVs can affect the
profit obtained from the allocated edge computing resources
and the payments for the miners, the number of UAVs could
affect the pricing strategies of ECS, as shown in Figure 11.
When the number of UAVs are doubled, the unit price given
in the blue line is higher than the unit price in red line, which
means the ECS would set a higher price for the allocated edge
computing resources, when the number of UAVs are increased.
Under the feedback situation, the optimal pricing strategies of
ECS with 3 UAVs keeps going down until it converges. When
the number of UAVs is doubled to 6, the ECS reduces the unit
price at the beginning. After 5 iterations, the ECS’ strategy is
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UAVs Objective Variation under Open-loop Situation
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Fig. 13: Objective of 3 UAVs under open-loop situation

UAVs Objective Variation under Feedback Situation
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Fig. 14: Objective of 3 UAVs under feedback situation

to raise the resources price to earn more profit.

Given the equilibrium strategies of UAVs and ECS, we can
obtain the optimal objectives of UAVs, and the optimal profit
of ECS, respectively. Figures 13 and 14 are the objectives
of UAVs under open-loop situation and feedback situation,
where the number of UAVs is 3. Under open loop situation,
it is shown that the objectives of UAVs can quickly converge
to a stable value. Under the feedback situation, the objectives
can keep steady at the beginning, and then quickly increase
to a maximum value. When the number of UAVs is increased
from 3 to 6, the objectives of UAVs are decreased, as shown
in Figures 15 and 16. When the number of UAVs is increased,
the ECS will set a higher price value for the allocated edge
computing resources, then the UAVs would cost more for the
same amount of edge computing resources and the objectives
would be decreased.

The profit of ECS for allocating the edge computing re-
sources are given in Figures 17 and 18. As shown in the
Figures, the profit of ECS would converge to a stable value
quickly under two kinds of situations. But under the feedback
situation, the profit would decrease to zero, because the UAVs
decrease their resources demands to zero. The value of rewards
paid for the miners would also affect the profit of ECS. If the
ECS set a larger value for the rewards, the profit earned by
the ECS would be lower. We can also find that the number of
UAVs in the system will affect the profit of ECS. When the
number of UAVs is increased, the ECS can obtain more profit
from the UAVS.

UAVs Objective Variation under Open-loop Situation
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Fig. 15: Objective of 6 UAVs under open-loop situation

5 «10* UAVs Objective Variation under Feedback Situation
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Fig. 16: Objective of 6 UAVs under feedback situation

Finally, we show the convergence of payments to the miners
under two kinds of situations. For different payments, we
consider that the reward 1) paid for the miners are 1, 10,
20. From Figure 19, we first observe that the payments to
the miners with different reward under open-loop situation.
We can observe that the payment to the miners after the
convergence is larger when the reward is higher. The payment
with reward value 20 is the highest as it has the largest reward
value compared with other situations. From Figure 20, we
can also observe the same phenomenon. Under the feedback
situation, as the reward value is higher, the payment to the
miners is greater.

VII. CONCLUSION

In this paper, a UAV assisted mobile edge computing net-
work is researched, and a novel resource pricing and allocation
scheme is proposed to solve the edge computing resource
allocation problem in the proposed network. The resource
pricing and allocation problem is formulated as a Stackelberg
game, where the leader is the ECS and the followers are
the UAVS. Based on the proposed framework, the ECS can
achieve optimal edge computing resource pricing, where the
resources can be optimally allocated among the UAVS. The
security problem during the resource allocation process is also
considered and solved through the blockchain techniques.
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APPENDIX A
PROOF OF THEOREM 3
Assuming there are two sets of resources price that can
satisfy the objective function given in Problem 1, which are

denoted by {p;(t)} and {¢;(t)} respectively. For a constant
A, (0 < A < 1), we have,

(1= XN)ai(t))

= A)gi(t)] vidi(t)

U]/E‘CS (Api(t) +

N

= Dwilt)
1;1

-3 {zﬁ + iy

=1

(37)

d;i(t)
i) + (1= Nai(t)

Substituting {p;(¢)} and {g;(¢)} into the objective function,
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we have,
)‘UECS pz =)\ Z 'szz
(33)
_ )\Z [1/)+7r di(t)}
i=1 pi(t)]”
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- 39
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Then we have,
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Calculating (37) and (40), we have,
Upes(Api(t) + (1= N (t)
— [Nes@i(®) + (1 = Wges(a(t)]
N
N

[Api(t) + (1 = N)gi(t)] vidi(t)

~

4 di(t)
; {w T Api(t) + (1 — )‘)Qi(t)}
)\
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N
—(1=X Z%‘Qi(t)di(t)

3 [w+widi(t)} >0,

%

(41)

Yipi(t)d;(t) 4+ A Z
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o]

pi(t)

+(1_/\)Z a(t)

i=1
which means the objective function is a concave function.
Hence, Theorem follows.
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