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Abstract—The data requirements of a large number of
users incur significant delay to base stations/small base sta-
tions (BSs/SBSs) in edge caching networks (ECNs). Specially,
in certain special scenarios, such as sports events, parades
and nature disasters, it is a great challenge to deploy fixed
BSs/SBSs. Thus, a kind of flexible replacement of BSs/SBSs,
unmanned aerial vehicles (UAVs), are considered as the
caching platform to serve users. Hence, this paper proposes
a distributed delay optimization algorithm by using the
massive UAVs to cache the request contents of users. The
purpose of each UAV is to facilitate BSs/SBSs to minimize
user delay in downloading content based on the popularity
of content and the flight strategy. In addition, we consider
the main disturbance caused by the atmospheric turbulence.
For the control of large-scale UAVs, we take the robust mean
field game theory to model this kind of caching and dynamic
flight strategy problem, in which the atmospheric turbulence
is described by the disturbance term in the drift function.
The simulation results show that the proposed algorithm
can reduce the download delay under the limited energy
consumption and finally achieve the equilibrium.
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I. INTRODUCTION

THE amount of user data has exploded with the
rapid development of 5G technology, which brings

a great challenge to the traditional cellular networks [2].
Therefore, the ultra dense network (UDN) technology is
proposed in order to solve this problem. Specifically, the
UDN core idea is to deploy massive base stations/small
base stations (BSs/SBSs) to increase the system capac-
ity and mitigate the pressure on the traditional cellular
networks. However, when a large number of BSs/SBSs
simultaneously request contents from the core network,
serious network congestion can be caused due to the
limited backhaul capacity of the BSs/SBSs in the UDN
[3]. Meanwhile, most of these requested contents are the
repeated downloads of a large number of popular content
(for example, popular video and audio), which can be
averted by predicting and preloading.

The caching technology is a kind of method to predict
and preload the popular contents, which becomes widely
adopted as the storage equipment with the capacity in-
creasing and the cost decreasing. Recently, the use of
distributed caches at the edge of the network has become
an effective solution, which can alleviate network conges-
tion by mitigating backhaul congestion. Specifically, data
can be transmited to the requesters by using high-speed
and low-cost mobile edge networks during off-peak hours,
and then is storaged during the off-peak hours [4]–[10].
With the file stored in advance, the BSs/SBSs can directly
send the requested contents to the users (cache-hit user).
Therefore, the BSs/SBSs are not required to download and
transmit to the users through the backhaul links repeatedly,
which reduces the pressure of the backhaul links and the
response time to fetch the contents greatly.

In order to achieve edge caching with limited storage ca-
pacity, two issues should be considered: (i) what contents
the SBS should cache, and (ii) how to cache. Specifically,
the first issue means that each cache unit should cache
the popular contents to increase the cache hit ratio. This
usually requires estimating the short or the long term con-
tent requests of the users [11]–[13]. The other issue means
the effective caching strategy should be optimized, which
can also improve cache efficiency [14], [15]. These two
issues are more challenging in 5G ultra-dense networks
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because of the more intensive information interaction and
more complex content distribution. As a potential solution,
distributed caching is to cache the content file requested by
the users to the BSs/SBSs, which can reduce the load of
the backhaul link in the ultra-dense network. By jointly
considering the content requirements the users in spatio
and temporal as well as the interference management of a
large number of BSs/SBSs, works [11]–[15] proposed the
distributed cache control strategies under the ultra-dense
edge cache networks.

However, in certain special situations (such as disasters,
large events, etc.), the number of user devices have in-
creased dramatically or moved constantly, which is a great
challenge to deploy BSs/SBSs. Moreover, on one hand,
with the temporal and spatial changes of data traffics,
the networks are likely to be overloaded with handling
bursty geographic traffic. On the other hand, the network
traffics are wasted when the traffic is low. To overcome
the above challenge, the unmanned aerial vehicles (UAVs)
is a promising method to meet the download requirements
of matching users by equipping the storage units and
the transceivers [23]–[27]. Applying the aerial UAV small
cells to the edge caching network (ECN), the performance
can be improved by leveraging the low-cost, flexibility
and ease of deployment of the UAV. However, the existing
UAV caching strategies just model single or several UAVs,
which cannot satisfy the scenario of a large number of
users and interactions in the ultra-dense edge caching
networks. Thus, a new method, mean-field game (MFG)
with large-scale agents, is considered to solve this ultra-
dense removable scenario [28].

In recent years, the applications of MFG in commu-
nication scenarios have been increasing rapidly [29]–[36].
This credit that a huge amount of users in the 5G network.
In the ultra-dense network, due to the existence of a large
number of agents, it brings the complexity of computing.
The MFG is especially suitable for this dense network
because the number of players can toward infinity. In
this game, the competition between the common agent
and all other agents is simplified to the competition
with the mass (mean field). Moreover, it is distributed,
and each player can make decisions only through the
influence from the mass without controls or policies of
other players. Therefore, the number of agents in the MFG
is independent of the performance, which is suitable for
ultra-dense scenarios, especially.

In summary, the flexibility and dynamic flight charac-
teristics of the UAVs make the interaction of inter-UAVs
particularly complicated, which is mainly reflected in the
intricate interference between UAVs. Furthermore, the low
latency and high reliability are the main challenges of
UAV communications. Thus, this paper reduces the total
delay of the system by adjusting the position of each
UAV. There are two methods to decrease the download

delay: one is to improve the hit rate of content cache
by describing the popular dynamics of contents; and the
other approach is to increase the backhaul capacity by
controlling the flight of UAVs to reduce the interference
among internal UAVs, thereby reducing the delays. Thus,
we formulate this flight control problem of the multi-UAVs
as a stochastic differential game (SDG), where the popular
dynamics of contents are described by Chinese Restaurant
Process (CRP) and the Ornstein-Uhlenbeck (OU) process.
In this game, each UAV can consider the states of other
UAVs to determine the flight state of itself. Meanwhile, we
consider the effect of the atmospheric turbulence, which is
the vital factor in UAV flight. Then we formulate a robust
MFG model to reduce the computational complexity,
where the interference of inter-UAVs are simplified. In
additon, we give the position distributions of all UAVs at
the initial and the final time, which show the variation of
the UAV mass. Besides, we study the average download
delay with a specific energy consumption under the limited
time, and finally obtain the equilibrium.

The main contributions of this paper are summarized as
follows:
• We model a dynamic flight network with multiple

UAVs in ECN. Meanwhile, considering the popularity
of contents and the flight energy consumption, each
UAV can dynamically adjust its space position to
minimize the download delay of corresponding users.

• The problem of delay optimization is modeled as
SDG, which contains the dynamic of UAVs flight
and the contents popularity. In the part of contents
managements, the CRP and the OU process are
used to model the long-term changes and short-term
dynamics of contents popularity, respectively.

• In this paper, the flight energy consumption of
UAVs and the download delay of the corresponding
users are constructed as cost functions. Specifically,
the download delay is constituted by two stages:
BSs/SBSs-UAVs links and UAVs-users links. And
considering the simplification of this problem, the
caching and flight strategy of UAVs is remodeled as
the MFG framework.

• The robust performance is considered in the pro-
posed framework, in which the atmospheric turbu-
lence, a critical influence factor for UAV flighting,
is designed as the disturbance term in the drift
function of stochastic differential equation (SDE).
Therefore, the MFG framework is redesigned as the
robust MFG framework, which contains the novel
Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-
Kolmogorov (FPK) equations.

The rest of this paper is organized as follows. Section
II introduces the related works of this paper. In Section
III, the system models including the basic scenario model,
the caching model, the UAV flight dynamic model and

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 01:37:27 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.3045509, IEEE
Transactions on Vehicular Technology

JOURNAL OF LATEX CLASS FILES, VOL. **, NO. **, **** **** 3

the air-to-ground (A2G) channel model are presented. The
SDG and problem formulation are provided in Section IV.
Section V investigates the robust MFG frameworks and
calculates the equilibrium. Section VI shows the numerical
results. The conclusions are summarized in Section VII.

II. RELATED WORKS

The edge caching in ultra-dense networks has been a
popular topic recent years [16]–[22]. In [16], the author
studied the distributed caching problem of a dense wireless
small cellular networks, where the goal of each SBS
was to reduce the load on the capacity-limited backhaul
link by controlling its own caching strategy. In [17],
[18], game theory was used to solve the wireless cache
problem. In [19] and [20], the authors proposed a cache
algorithm based on random geometry to maximize the
local cache gains of users. It is worth mentioning that
these works utilized MFG theory to describe the dynamic
characteristics of content popularity. Moreover, in [21],
the authors investigated prediction of users mobility and
the contents popularity in cache-enabled device-to-device
(D2D) networks by using two potential recurrent neural
network methods. In [22], the authors proposed a algo-
rithm based on the asynchronous advantage actor-critic
to minimize total transmission cost from the neighbors
in caching networks. Meanwhile, they compared with
other classical caching strategies. These policies solved
the problem of contents management effectively without
users high mobility and great density.

In addition, the UAVs are widely used in the edge
caching networks. In [23], the authors proposed an air-
ground integrated mobile edge network architecture and
introduced the method of UAV-assisted edge caching and
computation in the proposed architecture. However, [23]
summarized these new conceptions, which were not illus-
trated in detail. In [24] and [25], the authors proposed
a UAV-assisted secure transmission method based on in-
terference alignment for ultra-dense small cell network
caches, which can reduce the pressure on the backhaul link
and ensure the secure transmission of the information. In
[26], the authors investigated the problem of optimizing
quality of experience (QoE) of the wireless devices by
deploying cache-enabled UAVs in cloud wireless access
networks, where the QoE of users is the measure of data
transfer rate, delay and device type. In addition, they pro-
posed a machine learning algorithm, which was based on
the echo state networks to predict the distribution of each
users content request and their mobility. However, this
work only adapted several UAVs and did not consider the
effects from the fronthaul link caused by a large number of
UAVs. In [27], the author proposed an effective method
to make UAVs can actively perform content caching in
order to solve the problem of weak endurance of UAVs.
Moreover, they discussed the trade-off between the file

Fig. 1: The multi-UAVs in ECNs

caching cost and the file retrieval cost, which were the two
stages of their proposed scheme. Similarly, the number of
UAVs cannot satisfy the content demands of ultra-dense
networks.

III. SYSTEM MODEL

In this section, we present the system models including
the basic scenario model, the caching model, the UAV
flight dynamic model with disturbance and the A2G chan-
nel model. Firstly, we give the summary of the parameter
symbols in Table I.

A. Basic scenario model

According to the scenario, we consider an ultra-dense
ECN. In the circular area A with a radius rA, U users
are served by N UAVs. Meanwhile, there are K radio
assess stations in area A. These radio assess stations
can be WiFi or femtocell network access points, even a
macrocell base stations. For simplicity, the radio assess
stations in our model are SBSs without loss of generality.
Moreover, we assume that the user distribution density λu

and UAV distribution density λn are much larger than the
distribution density of SBS λk, i.e. λu ≫ λk, λn ≫ λk.
It is obvious that the number of UAVs and users can be
expressed as N = λnπr

2
A and U = λuπr

2
A, respectively.

Fig. 1 shows the distribution of these U users and N
UAVs in the ultra-dense ECN, which follow independent
homogeneous Poisson point processes (PPPs) [37].

In Fig. 1, the kth SBS (k ∈ K) has a coverage area
bk(ck, rk) with the coverage radius rk, where ck is the
coordinate of SBS k. To simplify the model, we assume
that the SBSs are uniformly distributed and can cover
the entire area. In addition, within the area of content
requestion bu(cu, ru), the mathing UAV transmits the
contents to the uth users, where ru and cu are the radius
and the center of circle, respectively. In this area, the
request radius represents the average distance of the signal
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TABLE I: List of parameters

Parameter Description Parameter Description
N Number of UAVs λn Density of UAVs
U Number of users λu Density of users
K Number of SBSs λk Density of SBSs
bk Coverage area of SBS k bu Content request area of user u
bi Coverage area of UAV i σ1,σ2 Volatility
M Number of contents W1t, W2t Wiener process
m Number of contents stored on the UAV fc Carrier frequency

P(1)LoS
i,u , P(1)NLoS

i,u Probability of LoS/NLoS c Speed of light
Pr(T ) Average probability of content request during time T ai Atmospheric turbulence
U (i) Number of the user in bi γ Disturbance attenuation
X

(i)
j Probability of requesting content j from UAV i nLoS, nNLoS Free space path loss exponent

xi, vi Flight state/control of UAV i ςLoS, ςNLoS Gaussian random variables
d
(1)
i,u , d(2)k,i Distance from UAV i to user u/SBS k to UAV i σ2

i,u, σ2
k,i Noise power

L
(1)LoS
i,u , L(1)NLoS

i,u LoS/NLoS path loss from the UAV i to user u C Size of each content
L
(2)LoS
k,i , L(2)NLoS

k,i LoS/NLoS path loss from the SBS k to UAV i PU , PS Transmit power of UAVs/SBSs

B
(1)
i,u , B(2)

k,i Bandwidth of two links Ei Flight energy consumption
Ph
i , Pm

i Probability of cache hit/miss Dh
i , Dm

i Delay of cache hit/miss

power larger than the noise power. For ease of exposition,
we assume that all M contents are stored in each SBS,
where the size of each content is equal to L. Moreover,
each UAV can store m contents, and m < M .

In addition, we assume that during a period of time
T , U users more likely request the same set of M
contents. This assumption is realistic because in practice
the contents popularity update period of users is long,
usually in days [27]. In general, UAV i downloads the
contents for users from the SBS via a backhaul link with
limited capacity. User u is associated with any UAV in the
content requesting area, which has cached the requested
content. If all the UAVs in the content request area do not
cache the requested content, user u will connect with the
nearest idle UAV, which needs to download the requested
content from the matching SBS through the backhaul link.

B. Caching model
In the ECN, the requirements of the users are changed

according to the contents popularity. Here, the dynamic
of the contents popularity is the spatial and temporal
dynamic, because the contents popularity in different
geographical regions is different. Therefore, in any region,
the contents popularity dynamically changes with time.
Besides, we assume that the ith UAV (i ∈ N ) has a cover-
age area bi(ci, ri), where ci and ri represent the coordinate
and the radius of UAV i, respectively. Meanwhile, this cov-
erage area is the contents popularity searching area, called
community. In these communities, there are U (i) users
with dynamic content requests, where U (i) represents the
number of users covered by the ith UAV. Specifically,
U (i) varies with the number of requesting users, but is

regarded as a constant in an optimization period. In each
community, we divide the time dynamics of users content
request probabilities (i.e., contents popularity) into long-
term and short-term dynamics [20], [39]. Specifically, the
long-term dynamic describes the long-term variation of the
contents popularity, and the short-term dynamic describes
the instantaneous variation of the contents popularity.

In this paper, we use the Chinese Restaurant Process
(CRP) to describe the long-term changes in contents
popularity [20]. In other words, CRP captures the inde-
pendent random requests of the users at each UAV during
each time period T , where the users and the contents
can be viewed as the customers and the table in CRP,
respectively. Therefore, following [40], we formulate the
average probability of user u requests content j from UAV
i during time period εT (ε is a positive integer), which
can be represented as

Pr
(i)
u,j(εT )=


U(i)

j
(εT )

U
(i)
c (εT )+κ

for j ∈ Ji+
κ

U
(i)
c (εT )+κ

for j ∈ Ji−
, u=1, ..., U,∀i,

(1)
where the U (i)

j
(εT ) represents the number of existing

users requesting content j in the current time period τT

in bi. The U
(i)
c (εT ) = u − 1 explains the number of

users in bi who have requested the content prior to the
requesting of user u. Ji+ and Ji− are the set consisting of
contents who have and have not requested at least once by
users in bi, respectively. κ is a constant in CRP indicating
the skewness of the distribution of the popularity. As it
increases, the distribution of contents popularity becomes
more diverged. Here we assume that the inter-arrival time
of content request is smaller than T and the number

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 01:37:27 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.3045509, IEEE
Transactions on Vehicular Technology

JOURNAL OF LATEX CLASS FILES, VOL. **, NO. **, **** **** 5

of request is sufficiently large. Compared to the classic
description model of contents popularity Zipf model, CRP
can generate exchangeable UAV assignments [40].

For the short-term dynamics of contents popularity
over a time period εT , we use an Ornstein-Uhlenbeck
(OU) process {X(t) : t > 0} of mean regression model
to describe [41]. This process is a mean regression ran-
dom process that is commonly used to describe contents
popularity [19], [20] and [39]. The SDE of this process is
as follows:
dX

(i)
j (t) = λ

(
Pr

(i)
u,j(εT )−X

(i)
j (t)

)
dt+ σ1dW1t, (2)

where λ > 0 denotes the mean reversion rate. X(i)
j (t) is

UAV i ’s request probability of content j at time t ∈ T .
Pr

(i)
u,j(εT ) is the long-term average probability shown in

(1). σ1 is the volatility and W1t represents the Wiener
process (also known as the Brownian motion, and satisfied
dW1t/dt = 0 and d2W1t = dt [41]). It is precisely
because of the randomness of the Wiener process W1t that
the request probability X

(i)
j (t) deviates from the long-term

average value Pr
(i)
u,j(εT ).

C. UAV flight dynamic model with atmospheric turbulence

The aim of this paper is to minimize the system delay
of each UAV by adjusting its 3D position. Moreover,
the atmospheric turbulence is one of important factors
affecting the smoothness of UAV flight [42]. That means
the disturbance from the atmospheric should be well
described, instead of simply treated as background noise
when designing the flight dynamic. Therefore, in this sub-
section, we consider the disturbance into the UAV flight
dynamic to analyze the effects of atmospheric turbulence.
Then, to describe the behavior of the UAVs flight, we
formulate the dynamic equation of xi(t) ,where xi(t) is
the distance between the UAV i and the who user severed
by UAV i. Specifically, in order to describe flight dynamic
of the UAVs, the common UAV (i, i ∈ N ) is also adopted.
The SDE of UAVs flight dynamic can be represented as
follows,

dxi(t) = (vi(t)− ai(t)) dt+ σ2dW2t,
xi(t+ 1) = xi(t) + dxi(t),

(3)

where dxi(t) and vi(t) are the flight distance and the
flight control of UAV i, respectively. ai(t) represents the
atmospheric turbulence, which determines the worst case
risk neutral cost function of agent i. σ2 is the volatility
and W2t is the Brownian motion, which represents the
influence from the size, weight and the wing area of the
UAV. W1t in (2) and the W2t are independent of each
other. The dynamic function in (3) describes the flight of
general UAV i, where the flight state xi(t) represents the
distance of UAV i and user u who served by UAV i. Flight
control vi(t) is the flight velocity.

D. A2G channel model

The position control of the cache-enabled UAV makes
modeling the A2G channel important. In this paper, we
mainly investigate the downlink from the SBSs to the
UAVs and the downlink from the UAVs to the users. For
the ground-to-air (G2A) links from the SBSs to the UAVs,
we adapt the line-of-sight (LoS) and the non-line-of-sight
(NLoS) links over the licensed band. For the A2G links
from the UAVs to the users, we leverage the mmWave
frequency spectrum because the high altitude of the UAVs
can dramatically reduce the blocking effect of obstacles.

1) UAV-user links: For the closer mmWave propagation
channel, the LoS and the NLoS path loss of UAV i which
transmits a content to user u at time t can be repersented
as (in dB) [26], [43]:

L
(1)LoS
i,u (t) = LF (d0)+10nLoS log

(
d
(1)
i,u(t)

)
+ςLoS, (4a)

L
(1)NLoS
i,u (t) = LF (d0) + 10nNLoS log

(
d
(1)
i,u(t)

)
+ ςNLoS,

(4b)
where

LF (d0) = 20log (4πfcd0/c) , (4c)

in which nLoS and nNLoS represent free space path loss
exponent of LoS and NLoS, respectively. d

(1)
i,u(t) is the

distance between UAV i and user u. ςLoS and ςNLoS

are the Gaussian random variables, which represent the
shadowing random variables. And (4c) denotes the free
space path loss, where fc, d0, and c represent carrier
frequency, the free space reference distance, and the speed
of light, respectively. In addition, the probability of LoS
is shown in [43]:

P(1)LoS
i,u =

1

1 + a exp
[
−b

(
θ
(1)
i,u − a

)] , (5)

where a and b indicate the environmental parameter de-
pending on the height and the density of buildings. θ(1)i,u

represents the elevation angle. Similarly, the probability
of NLoS is expressed as P(1)NLoS

i,u = 1− P(1)LoS
i,u . Conse-

quently, the average path loss can be described as:

L
(1)

i,u(t) = L
(1)LoS
i,u (t)× P(1)LoS

i,u (t)

+ L
(1)NLoS
i,u (t)× P(1)NLoS

i,u (t).
(6)

2) SBS-UAV links: In this model, the distance between
SBSs and UAVs is not as close as the link of UAVs and
users. Besides, there are more obstructions between the
SBSs and the UAVs. Therefore, we adopt the cellular band
to satisfy the reliability of the link and reduce the path loss.
The LoS and the NLoS path loss of SBS k transmitting
a content to UAV i at time t ∈ T can be respectively
expressed as (in dB):

L
(2)LoS
k,i (t) = d

(2)
k,i(t)

−α,

L
(2)NLoS
k,i (t) = βd

(2)
k,i(t)

−α,
(7)
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where d
(2)
k,i(t) is the distance between SBS k and UAV

i. α represents the path loss exponent. β is a positive
constant because the NLoS experiences more shadows
and diffraction. Meanwhile, the probabilities of LoS and
average path loss of SBS-UAV links are identically with
those two probabilities in UAV-user links.

IV. PROBLEM FORMULATION AND ROBUST
STOCHASTIC DIFFERENTIAL GAME

The goal of UAV i is to determine its flight policy,
which can be represented as the flight speed vector ui in
order to minimize the cost of the system. Specifically, the
cost function contains two main parts, the aviatic energy
consumption and the total delay of system. In addition,
this minimzing problem is formulated as a dynamic SDG.

A. Cost function

The cost of total delay is determined by two parts. One
is caused by the probability of the cache hit, and the other
is the backhaul capacity. Moreover, we consider the effect
of UAVs flight energy consumption.

1) The cost of delay: The cache hit probability Ph
i (t)

(Ph
i (t) ∈ [0, 1]), which belongs to UAV i, is designed as

follows in accordance with (2),

Ph
i (t) =

m∑
j=1

X
(i)
j (t), (8)

where m represents the storage of each UAV. In this paper,
we do not consider the optimization of cache content,
which can be investigated in the future works. Thus,
the probability of the cache miss can be expressed as
Pm
i (t) = 1 − Ph

i (t), which relates to the delay of the
transmission. Specifically, if the request content j of user u
has been cached by UAV i, it can directly transmit content
j to user u, which is regarded as cache hit; otherwise, the
situation is named as cache miss, where UAV i has to
request content j from SBS k and then send it to user u.

Then the delay of cache hit is defined as

Dh
i (t) = C

/
R

(1)
i,u(t), (9)

where R
(1)
i,u(t) represents the backhaul capacity among

UAV i and user u which is defined as follows:
R

(1)
i,u(t) = B

(1)
i,u log2

(
1 + η

(1)
i,u(t)

)
= B

(1)
i,u log2

1 +
PU − L

(1)

i,u(t)

Ii(t,u−i) + σ2
i,u

 ,
(10)

where B
(1)
i,u and ηi,u

(1)(t) are the bandwidth and signal-
to-interference-plus-noise ratio (SINR), respectively. PU

is the transmit power with constant value. σ2
i,u is

the power of the white Gaussian noise. Ii(t,u−i) =

∑
l∈N,l ̸=i

(
PU − L

(1)

l,u(t)
)

is the influence from other
A2G links. Therefore, the cost of delay is given by:

Di(t) = Ph
i (t)×Dh

i (t) + Pm
i (t)×Dm

i (t). (11)

For simplicity, we ignore the delay of the request from
UAV i to SBS k. Therefore, the cache miss Dm

i (t) in
(11) is formulated as

Dm
i (t) =

C

R
(1)
i,u(t)

+
C

R
(2)
k,i (t)

, (12)

where R
(2)
k,i (t) represents the backhaul capacity among the

SBS k and the UAV i , which can be calculated by refering
to the equation (10).

2) The flight energy consumption: In this part, the cost
of the flight energy consumption is considered, which is
formulated as [45]:

Ei(t) = vi(t)
(
c1S

2 +
c2
S2

)
, (13)

where c1 and c2 are the parameters according to the UAV
wing area, weight and air density, etc. S is the speed of
each UAV, and we assume it’s a constant. vi(t) denotes
the distance that the UAV flight. In (13), these two items
represent the air resistance and lift of UAV i, respectively.
Then, combine the (11) and (13), the global cost function
is constructed as

Ji (vi(t),v−i(t)) = w1Di(t) + w2Ei(t), (14)

where v−i(t) is the control vector from other UAVs. w1

and w2 are the weights of Di(t) and Ei(t), respectively.
Thus, the average cost of common agent i over time [0, T ]
can be obtained according to (14), which is formulated as

J γ
i (vi,v−i, ai) = E

[
T∫
0

Ji (vi(t),v−i(t)) dt

+Ji (T )−
T∫
0

γ2a2i (t)dt

]
,

(15)

where Ji (T ) represents the cost at the finial time T . γ is
the disturbance attenuation parameter, which satisfied the
constrained as [45]:

γ2 ≥ Ji (vi,v−i)

a2i + Ji(0)
, (16)

where Ji (ui,u−i) can be expressed as

Ji (vi,v−i) =

∫ T

0

Ji (vi(t),v−i(t)) dt+ Ji (T ) . (17)

B. Robust Stochastic Differential Game and Problem For-
mulation

The control strategies for UAVs vary as time according
to the dynamic equations in (2) and (3). The goal of
each UAV is to find an equilibrium point in minimizing
delay and minimizing energy consumption, which means
that the UAV needs to reduce delay with as little energy
consumption as possible. Thus, the process of minimizing
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the delay and energy cost in (14) can be modeled as a
SDG. So, the SDG is formilated as:{

N ,S(i)
j ,Ui,J γ

i

}
.

The collection consists of four components:
• N is the number of agents (i.e. UAVs).
• S(i)

j are the set of states including popularity state
and flight state.

• U represents the control space of UAVi.
• J γ

i is the cost function of UAVi.
Then we define the control problem as P1, where the

UAV i minimizes the average cost by obtaining its own
flight strategy v∗i (t). The state of UAV i with content j

is represented as s
(i)
j (t) =

{
X

(i)
j (t), xi(t)

}
, ∀i ∈ N ,

∀j ∈ M. P1 is expressed as:
P1: Vi(t) = inf

vi(t)
Jγ
i (vi,v−i, ai) , t ∈ [0, T ] , (18a)

subject to:

dX
(i)
j (t) = λ

(
Pr

(i)
u,j(εT )−X

(i)
j (t)

)
dt+σ1dW1t, (18b)

dxi(t) = (vi(t)− ai(t)) dt+ σ2dW2t,
xi(t+ 1) = xi(t) + dxi(t),

(18c)

where Vi(t) represents the value function.
In order to find out the solution of P1, N coupled

differential equations with the same form of the following
HJB equation, need to be computed.

∂tVi(t) +H
(
Ji, vi, s

(i)
j , ai

)
= 0, (19)

where the Hamiltonian H
(
Ji, vi, s

(i)
j , ai

)
can be defined

as
H

(
Ji, vi, s

(i)
j , ai

)
= inf

vi(t)
[Ji(vi(t),v−i(t))− γ2a2i (t)

+
σ2
1

2
∂2
XXVi(t) + λ(Priu,j −X

(i)
j (t))∂XVi(t)

+
σ2
2

2
∂2
xxVi(t) + (ui(t)− ai(t))∂xVi(t)].

(20)
The detail derivation process can be seen in [49].

Moreover, the existence of the Nash equilibrium (NE) for
the differential game can be obtained as follows.

Firstly, all order derivatives of Hamiltonian
H(Ji, vi, s

(i)
j , ai) exist because of the continuity of the

cost function Ji(vi(t),v−i(t)). Therefore, Hamiltonian
H(Ji, vi, s

(i)
j , ai) is smooth, which means that exists a

solution to the HJB equation.
We can obtain the unique joint solution V ∗

i (t) by
solving these N equations together, which indicates that
P1 reaches the NE. In practice, when N ≥ 2, the compu-
tational complexity increases exponentially owing to the
fact that the control strategy vi for each agent is affect
with the influence of all the others’ control strategy v−i.
In addition, the acquisition of other agent’s strategic infor-
mation requires a large number of information interaction,

which is almost impossible in UDNs. Therefore, MFG
is considered to deal with this problem in the following
section.

V. ROBUST MEAN FIELD GAME AND EQUILIBRIUM

In this section, we construct the robust SDG as the ro-
bust MFG framework and obtain the equilibrium solution
and its proof. The MFG describes mass behavior as a
mean field term. Therefore, the interactions of individual
agent and other agents are expressed as the interaction
with mass, which reduces the complexity significantly.
Specifically, the agent’s interaction with the mean field can
be characterized by satisfying the following assumptions.

Assumption 1.
1) The number of agent N is large enough, even N →

∞;
2) The exchangeable of each agent is ensured;
3) There are finite mean filed interactions.

The mean field interactions Ii(t,u−i) =∑
l∈N,l ̸=i

(
PU−L

(1)

l,u(t)
)

in equation (10) should
converge to a finite value according to the assumption 3),
where PU is a constant and L

(1)

l,u(t) is the average path

loss obtained from equation (6). When L
(1)

l,u(t) is greater

than a certain value, the interference (PU − L
(1)

l,u(t))
of the lth agent can be negligible. So, the mean field
interactions are finite, although N tends to infinity.

If the agents’ control is constant by their index and
determined only by their own states, then the agents in the
SDG are said to be exchangeable or indistinguishable. It
means that the index of replacement agents cannot change
their control strategy. With this interchangeability, we can
omit the index i and focus on an ordinary UAV.

Then the mean field term m (t,Xj(t), x(t)) can be
defined as the state density of the mass at time t. As a
consequence, the empirical distribution of the mass can be
given as follows,

M (t,Xj(t), x(t)) =
1

NM

N∑
i=1

M∑
j=1

δ{xi(t),Xj(t)}, (21)

where δ represents the statistic function of the dis-
tribution of state. As the number of agents increases,
M (t,Xj(t), x(t)) will converge to m (t,Xj(t), x(t)). Ac-
cordingly, the dynamic of the mass can be described by
the FPK equation,

∂tm(t,Xj(t), x(t))−
σ2
1

2
∂2
XXm(t,Xj(t), x(t))−

σ2
2

2
∂2
xxm(t,Xj(t), x(t)) + λ(Prj −Xj(t))∂Xm(t,Xj(t), x(t))

+ (v(t)− a(t))∂xm(t,Xj(t), x(t)) = 0.
(22)

In (22), index i has been omitted because Assumption 1
is satisfied.
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Algorithm 1 Obtaining the MFE

1: Initialization:
2: m(0): initial mean-field distribution;
3: X(0), x(0): initial state;
4: Compute the optimal distribution of the mean field

m∗ (t,X, x) and the value V ∗(t) by solving the equa-
tions of HJB (24) and FPK (22)

5: Repeat: Until the system obtain the MFE
6: Calculate the optimal control strategy v∗(t) by using

Proposition 1
7: Compute the value of the state Xj(t) and x(t) by

using the SDEs (2) and (3)

The optimal mass distribution m∗ (t,Xj(t), x(t)) can
be obtained by solving the FPK equation in (22). There-
fore, the interaction between agent i and the mass
Ii(t,u−i) can be redefined as

I (t,m∗ (t,Xj(t), x(t))) =∫
X

∫
x

PU −m∗ (t,Xj(t), x(t))L
(1)

l,u(t)dXdx.
(23)

That means we no longer need the policy information
of other agents. Hence, each agent only need to joint
solve two coupled equations, HJB equation (24) and FPK
equation (22), which greatly reduces the complexity of
calculations and interactions. HJB equation (19) can be
redefined as follows,

∂tV (t) + inf
v(t)

[J (v(t), I (t,m∗ (t,Xj(t), x(t))))

−γ2a2(t) + λ (Prj −Xj(t)) ∂XV (t) +
σ2
1

2
∂2
XXV (t)

+
σ2
2

2
∂2
xxV (t) + (v(t)− a(t)) ∂xV (t)

]
= 0.

(24)

Therefore, we can obtain the V ∗(t) and the m∗ (t,X, x)
by solving HJB equation (24) and FPK equation (22),
respectively. And it can reach mean field equilibrium
(MFE) when having solved these two partial differential
equations. Then we define the MFE of this model as
follows.

Definition 1: The MFE with the generic flight policy
v∗(t) can be expressed as

J (v∗(t),m∗ (t,Xj(t), x(t))) 6
J (v(t),m∗ (t,Xj(t), x(t))) .

(25)

Then the optimal policy v∗(t) can be obtained by uti-
lizing the Karush-Khun-Tucker (KKT) conditions, which
is given in Proposition 1 as follows.

Proposition 1: The optimal flight policy v∗(t) of the
generic agent is calculated by getting the critical point as:

∂

∂v(t)

[
C
/
R

(1)
t (I (t,m∗ (t,X, x)))

]
+
(
c1S

2 +
c2
S2

)
− ∂xV

∗(t) = 0.

(26)

TABLE II: Parameters in numerical analysis

Parameter Value Parameter Value
λn 0.5 UAV/km2 nLoS, nNLoS 2, 2.4
λu 0.4 UAV/km2 fc 38 GHz
C 1 MB c 3× 108 m/s

σ2
i,u, σ2

k,i −95 dBm ςLoS, ςNLoS 5.3, 5.27
B

(1)
i,u , B(2)

k,i 1 MHz a, b 11.9, 0.13
γ 3 α, β 2, 100
rA 10 UAV/km2 PS , PU 30dBm, 20dBm
d0 5 m h0 1km

Proof: See Appendix A. �
Thus, we can obtain the MFE of the flight policy

when the initial state X (0), x (0) and initial mean-field
distribution m (0) are given. The optimal flight algorithm
is shown in Algorithm 1. Specifically, the value V (t)
can be obtained by calculating the backward equaition,
HJB equation in (24) with the mean field m(t), which is
obtained by calculate the forward equation, FPK equation
in (22). Thus, this iteration terminates as the MFE is
acquired, and then the optimal control v∗(t) is obtained
by using Proposition 1.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical results show the superior-
ity of the proposed algorithm. Firstly, we give the mainly
parameters settings. Then, the numerical results are shown
to verify the effectiveness of the proposed algorithm.
In this paper, we assume that users are distributed in
a circular area with a radius of rA = 10km, and the
area of the circle is recorded as A. In the total area A,
the UAVs and the users are distributed in PPP, which
means the initial state distribution of UAVs m0 is known.
Considering the user’s low speed and short optimization
period, all users are regarded as fixed in each optimization
period. Moreover, we assume that we have three SBSs
normally distributed in the total area A to covering more
areas, which is shown in Fig. 2 .

A. Parameter setting

For comparison, the parameter settings are shown in
Table II. Besides, we set that the constant transmit power
of SBSs and UAVs are PS = 30dBm and PU = 20dBm,
respectively. The free-space reference distance d0 is 5m.
The initial altitude h0 of each UAV is set to 1km. Then
we give the numerical results and the analyses as follows.

B. Distribution of the mass and the mean field

Firstly, we show the variation of the distribution of
the N UAVs in the total area A. Fig. 2 and Fig. 3
show the initial and the final distribution of U users, N
UAVs and K SBSs, respectively, which demonstrates the
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Fig. 2: The distribution of U users, N UAVs and K SBSs at
t = 0

Fig. 3: The distribution of U users, N UAVs and K SBSs at
t = 23

flight changes of the mass. Specifically, Fig. 2 represents
the total area A at time t = 0, which is a circular
area with the radius as 10km. In this area A, there are
three SBSs normally distributed, which are represented
as the green triangles. Moreover, the blue starts and the
red plus signs represent the U users and the N UAVs,
respectively. At the initial time, the masses of UAVs and
users are distributed randomly following the independent
and homogeneous PPPs. To illustrate the evolution of the
mass under the control obtained by Algorithm 1, we
provide the distribution of the mass DSCs with the users
and SBSs fixed at the final time t = 23, as shown in Fig.
3. In Fig. 3, each UAV has reached the optimal location
to facilitate matching user downloading the contents. The
optimality can be verified as follows.

As shown in Fig. 4, we can observe that the distribution
of the mean field which is regarded to the time and the
distances between the UAVs and matching users. Since

Fig. 4: The distribution of the mean field

the user’s content request area is bu, where the users and
the UAVs are initially randomly distributed. The distance
between the UAVs and the matching users are between 2
km and 3 km. Therefore, a stable trend of the mean field
over time can be observed.

C. Performance analysis

In this paper, the optimization objective is the delay
of the users downloading with the fewer flight energy
consumption. Therefore, Fig. 5 and Fig. 6 demonstrate
the average delay of all pairs of the UAVs-users and the
average flight energy consumption of all alive UAVs, re-
spectively. Specifically, the average download delay of all
users based on proposed algorithm is demonstrated in Fig.
5, where the content downloaded by each UAV depends
on the contents popularity of users in the covered area bi.
Meanwhile, the comparison between proposed algorithm
and the other two flight manners of UAVs: hovering at
initial position, approaching the matching users is imple-
mented, which is shown as Fig. 5. The delay reduction of
these two flight manners is obviously smaller than that of
the proposed algorithm. In addition, it is unrealistic that
UAVs can access users indefinitely. Moreover, we show
the delay performance with the perfect information, which
can be called the theoretical performance because each
agent knows the information of others based on the local
information. The red square curve in Fig. 5 shows the
delay performance of the perfect information, which is
similar to the proposed algorithm.

In Fig. 6, we give the average flight energy consump-
tion of N UAVs over time, where the hovering energy
consumption is considered as a constant disregarded in
this paper. That means we only foucs on the moving
energy consumption of flight. Meanwhile, those three
flight strategies and the perfect information which is
mentioned above are also demonstrated. In Fig. 6, the
flight energy consumption by using the proposed algorithm
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Fig. 5: The average delay of U users as the time varies

Fig. 6: The average flight energy consumption of N UAVs as
the time varies

is represented by the blue circular curve. Moreover, each
UAV find the its optimal position at the initial time, which
results in the higher flight energy consumption. But after
t = 5, the flight energy consumption of the proposed
algorithm decreases gradually and gets lower than the
uniform flight manner after t = 12 , which is shown as
the black diamond curve. Finally, those N UAVs arrive the
optimal positions, which makes the average flight energy
consumption converges to zero. Moreover, the red square
curve show the flight energy consumption with the perfect
information, which is similar with the proposed algorithm.
In addition, although the lower flight energy consumption
of the hovering flight manner, which is shown as the
blue start curve, the delay performance is not improved
as shown in Fig. 5.

Fig. 7 shows the average flight energy efficiency (EE)
of the proposed algorithm and the uniform speed flight
manner. Here, the flight EE is define as the delay reduction
normalized by the flight energy consumption in an unit
time. The blue and red curve in Fig. 7 represent the flight

Fig. 7: The flight EE of N UAVs as the time varies

EE by using the proposed algorithm and the uniform speed
flight manner, respectively. Clearly, the proposed algo-
rithm has a higher flight EE, which means the proposed
algorithm has the larger delay reduction with the similar
energy consumption. In this numerical result, the flight EE
at the initial time t = 0 does not be shown due to the fact
that the flight energy consumption at the initial time is
zero. In summary, Fig. 5, Fig. 6, and Fig. 7 demonstrate
the effectiveness of the proposed algorithm.

D. Robust performance analysis

In this subsection, we verify the robust performance
of the proposed algorithm by showing the comparison
of the delay and the EE variations in the presence of
the atmospheric turbulence or not. In this paper, we set
the distribution of the atmospheric turbulence following
the Gausssian. The numerical results in Figs. 8. (a) and
(b) show the average delay and the EE changes, where
two red square curves represent the condition without the
atmospheric turbulence, and two blue rhombic curves are
normal condition. We still can not give the EE at the time
t = 0 and after t = 17 of the red square curve in Fig. 8 (b)
because the energy consumption is zero at those time. We
can see that the system can reach the MFE earlier without
the atmospheric turbulence. However, when the system
reaches the MFE with the atmospheric turbulence, the
delay and the EE are almost the same as the performance
without the atmospheric turbulence, which lie in the robust
performance of the proposed algorithm.

VII. CONCLUSION

This paper builds an ECN with a massive number of
UAVs and investigates a delay optimization algorithm. The
UAVs are considered as air cache units which can adjust
the aerial position according to their own flight energy
consumption and the popularity of downloaded content,
thereby reducing the download delay of matching users.
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(a) The comparison of the average delay

(b) The comparison of the EE

Fig. 8: The comparison of the robust performance

Meanwhile, we consider the effect of the atmospheric
turbulence, which is the significant factor in UAV flight.
Therefore, we formulate a robust MFG framework to
solve this dynamic flight problem, where the atmospheric
turbulence is described by the disturbance term in the
drift function. The numerical results show the position
variations of all UAVs. Furthermore, we show the average
download delay of the ground users with the limited flight
energy consumption of matching UAVs during t ∈ [0, T ].
It can be seen that in a limited time, the flight energy
consumption have reached the equilibrium and so do
the average download delay. Compared with the other
two flight strategies, the proposed algorithm can have a
larger delay reduction, while consuming the same energy.
In addition, we discuss the robust performance of the
proposed method. With the atmospheric turbulence, the
proposed method achieves the similar performance to the
case without the atmospheric turbulence.

APPENDIX

A. Proof of Proposition 1
We firstly calculate the worst case of the disturbance by

getting the critical point as
∂

∂a(t)

[
J (v(t), I (t,m∗ (t,Xj(t), x(t))))− γ2a2(t)

+
σ2
2

2
∂2
xxv(t) + (x(t)− v(t) + a(t)) ∂xV (t)

+
σ2
1

2
∂2
XXV (t) + λ (Prj −Xj(t)) ∂XV (t)

]
= 0.

(27)
The strict convexity of the disturbance term a(t) and the

smoothness of the drift function in the dynamic equations
(18b) and (18c) make the unique solution a∗(t) of (27) as
follows

a∗(t) =
∂xV (t)

2γ2
, (28)

where the value function V (t) satisfies the HJB equation
(24). Then the worst case robust HJB (24) is given by

∂tV (t) + inf
v(t)

[J (v(t), I (t,m∗ (t,Xj(t), x(t))))

+
σ2
2

2
∂2
xxV (t) + (x(t)− v(t)) ∂xV (t) +

∂2
xV (t)

4γ2

+
σ2
1

2
∂2
XXV (t) + λ (Prj −Xj(t)) ∂XV (t)

]
= 0.

(29)

Therefore, due to the convexity of the HJB equation
for control u(t), the unique optimal solution u∗(t) can be
obtained in (26) by calculating the ∂ inf (·)/∂v(t) = 0,
inf (·) represents the part in (29).
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