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Abstract—The number of devices connected to the Internet of Things (loT) is growing at an enormous rate globally. In the next
generation networks, distributed fog computing deployments at the network edge can provide computing resources to the users,
especially for latency-sensitive applications. Further, the heterogeneous needs of the fifth generation (5G) networks demand the
virtualization of network functions, termed as Network Function Virtualization (NFV). Therefore, an integrated NFV and fog computing
resource allocation framework for loT is of prime importance. Accordingly, in this paper, we model the interactions between the Data
Service Operators (DSOs) and the Authorized Data Service Subscribers (ADSSs) as an Equilibrium Problem with Equilibrium
Constraints (EPEC), and utilize the Alternating Direction Method of Multipliers (ADMM) as a large-scale optimization tool to obtain
solutions. This results in the optimization of resource pricing for the DSOs and the amount of resources to be purchased by the ADSSs.
Moreover, we propose a many-to-many matching based model to allocate the Fog Node (FN) resources according to the VNF resource
requirements of the ADSSs. Simulation results show the effectiveness of our proposed approach in achieving efficient resource

allocation in NFV enabled loT fog computing.

Index Terms—Fog computing, NFV, loT, resource allocation, EPEC, ADMM, many-to-many matching.

1 INTRODUCTION

HE advent of the Internet of Things (IoT)* brings about

massive internetworking of devices that we use in our
everyday lives. This gives rise to the need for storing and
processing tremendous amounts of data efficiently [1]. The
handling of such a large amount of data can be realized
by cloud computing [2], by providing the required resources
for the users to access various applications on demand.
Additionally, the heterogeneity of applications in IoT calls
for the virtualization of wireless networks, which leads to
better flexibility and management through the abstraction
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1. The acronyms used in this paper and their expansions are listed in
Table 1.

TABLE 1: Acronyms used and their expansions

Acronym | Expansion
IoT Internet of Things
5G Fifth generation
NFV Network Function Virtualization
VNFs Virtual Network Functions
CNs Cloud Networks
DSOs Data Service Operators
ADSSs Authorized Data Service Subscribers
FNs Fog Nodes
EPEC Equilibrium Problem with Equilibrium Con-
straints
ADMM | Alternating Direction Method of Multipliers
MVNO | Mobile Virtual Network Operator
NFVO NFV Orchestrator
VM Virtual Machine
CRBs Computing Resource Blocks

and sharing of resources [3]. Wireless network virtualization
involves the sharing of the physical substrate network by
multiple virtual networks, and to facilitate this, both spec-
trum and infrastructure resources are isolated and split into
slices [4], [5].

Virtualization is one of the key driving forces of the fifth
generation (5G) of mobile networks, which aims at deliver-
ing extremely high capacity, low latency, and high device
density per area. Specifically, Network Function Virtualization
(NFV) is a paradigm which decouples the physical network
infrastructure from the network functions that run on it [6].
The different services are disintegrated into Virtual Network
Functions (VNFs), and are placed on top of a virtualization
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platform as software components on Cloud Networks (CNs)
[7], [8]. The increase in the demand for storage and process-
ing capabilities due to the provisioning of 5G services can
be addressed by similar convergence of network and cloud
infrastructures [9].

However, the processing requirements vary according to
the applications, with some applications demanding faster
processing speeds than others [10]. Traditionally, the large-
scale data centers built by the Data Service Operators (DSOs)
to meet the processing needs of the Authorized Data Service
Subscribers (ADSSs) are far from the ADSSs. In the light of
the fast processing demands of next generation networks,
computation resources are being moved to the edge of
the network. This concept is known as fog computing [11],
in which a number of small-scale but flexible computing
devices called Fog Nodes (FNs) are deployed close to the
ADSSs. These micro clouds are also known as edge clouds or
cloudlets, as they have lesser computing resources compared
to data center based clouds and are deployed at the network
edge [12]. Due to their proximity to the ADSSs, the FNs can
provide data services with low latency and low transmission
costs [13].

Considering the heterogeneity and complexity of IoT
applications, an integration of the fog computing technology
with NFV is inevitable for rendering computation flexibility
and scalability in next generation networks. As a result, an
efficient resource allocation solution for a fog enabled NFV
platform needs to effectively model the interactions between
the different sets of entities: DSOs, ADSSs, and FNs, as well
as enable the DSOs to allocate resources from the FNs as per
the VNF requirements of the ADSSs.

The DSOs and ADSSs in a typical fog computing sce-
nario are autonomous entities that try to maximize their
own profits. The DSOs try to allocate resources from the
FNs at prices which favor them, and the ADSSs purchase
these resources according to their own benefits. However,
the maximization of profit for one DSO might affect the
profits of other DSOs. Also, if one ADSS tries to maximize
the amount of purchased resources at a given price, it might
affect the amount of computing resources available to the
other ADSSs. Therefore, in order to reach a stable and social
optimum, we need to model the competition among them,
and find an equilibrium solution.

Modeling this competition results in an Equilibrium Prob-
lem with Equilibrium Constraints (EPEC), which is a hierarchi-
cal optimization problem with equilibria at two levels [14].
Due to the conflicts between them and amongst themselves,
there exist equilibrium criteria at both the level of the DSOs
and at the level of the ADSSs. In order to balance these
conflicting objectives, we use an incentive mechanism as in
[15], and then perform the optimization of their utilities. The
Alternating Direction Method of Multipliers (ADMM), which
is considered an efficient tool for large-scale optimization is
adopted here, due to its decomposition and fast convergence
properties [16].

A large-scale fog computing optimization framework
to achieve this is proposed in [17], which formulates the
interactions between the DSOs and ADSSs as an EPEC. It
is then solved using an ADMM based algorithm, which
provides the optimal values of the resource prices to be
set by the DSOs, and the optimal amount of resources to
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be purchased by the ADSSs, resulting in the simultaneous
optimization of profits for both sets of entities. However,
a fog computing resource allocation framework for the next
generation networks is incomplete without the dimension of
virtualization. We need to efficiently allocate the resources
from FNs as per the resource needs of various VNFs initiat-
ed at the ADSSs, by considering the localized conditions.

Accordingly, in this paper, we propose a resource alloca-
tion framework for next generation networks, by keeping in
mind the flexibility of fog computing and the scalability of
NFV. On that account, we extend the framework proposed
in [17] for large-scale fog computing, to integrate NFV, by
proposing a matching theory based algorithm for the DSOs
to allocate resources from the FNs as per the VNF resource
needs of the ADSSs. Taking all of this into account, we state
the objectives and contributions of this paper as below.

o We model the hierarchical competitions between the
DSOs and the ADSSs in an NFV integrated IoT fog
computing scenario as an EPEC. We use an incentive
mechanism to balance the conflicting objectives of
both sets of entities, i.e., the DSOs which sell re-
sources from the FNs to the ADSSs, and the ADSSs
which purchase these resources as per the demands
of the VNFs that serve them.

e An ADMM based algorithm is invoked to solve the
EPEC and obtain the optimal values of the resource
prices to be set by the DSOs, as well as the optimal
amount of resources to be purchased by the ADSSs,
resulting in profit optimization for both.

o Further, we procure the resource requirements for
different VNFs to be deployed based on the resource
requirements of the ADSSs. This is utilized in a
many-to-many matching algorithm, which efficiently
allocates the computing resources of the many FNs
according to the resource requirements of the many
VNPFs, in a distributed manner.

o The effectiveness of the proposed framework is then
demonstrated through simulations. The simulation
results show that the proposed ADMM based EPEC
algorithm converges within a few iterations to give
optimum pricing for the DSOs and optimum re-
source allocation for the ADSSs. The proposed many-
to-many matching algorithm is observed to outper-
form the centralized approach in terms of the costs
of the FN resources allocated.

The remainder of this paper is arranged as follows. We
discuss some of the relevant previous works in Section 2. In
Section 3, we introduce the system model, and formulate the
problem in Section 4. We analyze the proposed framework
in Section 5, where firstly, we introduce the concept of
ADMM in Section 5.1. Secondly, we discuss the design of
the incentive function in Section 5.2, and then the ADMM
based EPEC algorithm is discussed in detail in Section 5.3.
The many-to-many matching algorithm for VNF resource
allocation is discussed in detail in Section 5.4. We discuss
the performance of our model through simulation results in
Section 6. Finally, the paper is concluded and some future
research directions are provided in Section 7.
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2 LITERATURE REVIEW

Wireless network virtualization resource allocation for next
generation networks has been widely discussed in the liter-
ature [18], [19], [20], [21]. [22] discusses the dynamic alloca-
tion of resources to different network slices in order to max-
imize user satisfaction. [23] proposes an information-centric
wireless network virtualization architecture for 5G mobile
networks, where the end-to-end network performance is
improved by integrating virtualization with Information-
Centric Networking (ICN). A user mobility and service usage
oriented approach for virtual wireless networks is discussed
in [24]. [25] proposes a three-sided matching based frame-
work for wireless network virtualization resource allocation
considering the spectrum and infrastructure resources and
mobile users. The research works in NFV generally deal
with either determining the optimal number of required
VNFs or the placement of VNFs in CNs, and [7] proposes a
solution to address both jointly. [26] proposes a matching
based framework for NFV resource allocation, by jointly
considering both the user requirements for VNFs as well
as their placements in different CNs.

The management of resources in fog computing is chal-
lenging due to a large number of FN deployments, and
is extensively discussed in research areas [13]. A multi-
dimensional framework has been proposed in [27], where
a Quality of Service (QoS) consistent contract providing a
comprehensive payment plan to the FNs, revenue maxi-
mization of the network operators, and incentives to the
FNs has been evaluated. A mathematical framework for
service-oriented heterogeneous resource sharing has been
proposed in [28], and [29] proposes a Distributed Dataflow
(DDF) programming model that coordinates the resources
distributed across hosts in fog computing. [30] proposes
a matching game based joint radio and computational re-
source allocation problem for optimizing system perfor-
mance and improving user satisfaction in IoT fog com-
puting. [31] investigates the formation of stable coalitions
among Fog Infrastructure Providers (FIPs), and proposes a
mathematical model for profit maximization in order to
allocate IoT applications to sets of FIPs.

There are a few recent works that integrate fog com-
puting and virtualization in IoT. [32] proposes Virtual Fog,
which is a complete layered framework for IoT and connects
the layers from fog computing through virtualization. A dy-
namic resource allocation framework for NFV enabled Mo-
bile edge-cloud (MEC) is discussed in [12], in which both low
latency requirements and MEC cost efficiency are addressed.
[9] demonstrates three use cases of an integrated cloud/fog
and heterogeneous networks orchestration through a 5G
NFV experimental platform, and performs testing of end-
to-end IoT and mobile services. Even though these works
perform the indispensable integration of NFV and fog com-
puting for IoT, a resource allocation framework for IoT fog
computing and NFV, by taking into consideration the DSOs,
ADSSs, and FNs, and also the resource requirements of the
various VNFs, has not been proposed.

The fog computing scenario considered in [17] addresses
the competition among multiple DSOs and multiple ADSSs,
which results in an EPEC, as opposed to related previous
works. As discussed in [33], [34], algorithms aimed specifi-
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cally at solving EPECs with a published convergence analy-
sis have not been developed. [33] mentions that engineering
approaches to solve EPECs are diagonalization methods that
are based on nonlinear programs (NLPs) or approaches that
solve each Mathematical Problem with Equilibrium Constraints
(MPEC) individually until an equilibrium is reached. [33]
also proposes a novel sequential nonlinear complementarity
(SNCP) algorithm for solving EPECs. In this paper, the
optimization of the EPEC scenario consisting of a large
number of entities is handled by the convergence properties
of ADMM [35], [36], which is a powerful tool for large-scale
optimization.

In order to bring in the NFV perspective here, we have
to determine the resource requirements for various VNFs
that serve the ADSSs, which are to be deployed in the
FNs operated by different DSOs. To that end, we need to
model the localized preferences of the FNs and the VNF
resource requirements in a distributed manner. A promising
candidate here is matching theory, which has gained popu-
larity in recent years as an efficient distributed framework,
which considers the localized preferences of different sets of
entities [37].

The formation of mutually beneficial relationships be-
tween different sets of entities forms the basis for matching
theory [38], [39], [40], and it overcomes certain limitations of
optimization and game theory [41]. [42] discusses in detail
the advantages of matching theory in wireless resource
allocation. [37] highlights how the distributed nature of
matching takes into account the preferences of users on
resources, and vice versa, based on localized information.
It is also emphasized in [43] that there exists at least one
stable matching for every resource allocation problem, by
means of the deferred acceptance method.

Considering a large number of FN deployments and
VNF initiations, and also the fact that different instances
of the same VNF initiated to serve different ADSSs, can be
deployed in the same FN for ease of management (and also
that many FNs can together host a single VNF instance), in
this paper, we propose a many-to-many matching [44] based
algorithm for NFV enabled IoT fog computing, to perform
VNEF resource allocation in FNs.

3 SYSTEM MODEL

We consider an IoT fog computing scenario consisting of
multiple DSOs, ADSSs, and FNs, as shown in Fig. 1. As
mentioned before, unlike the massive data centers which
are usually located far from the ADSSs, the FNs are de-
ployed closer to the ADSSs, which helps to reduce the
service latency and congestion by computation offloading.
The ADSSs request for computing resources from the DSOs,
and the DSOs serve the ADSSs by allocating computing
resources from the FNs operated by them. At the same
time, the traditional practice in an NFV scenario is that the
Mobile Virtual Network Operator (MVNO) communicates the
resource needs based on the requirements of the users to the
NFEV Orchestrator (NFVO). Then, the NFVO translates these
resource needs into software component requirements that
need to be initiated in the network [26].

In an NFV enabled IoT fog computing scenario, these
software components would be the Virtual Machine (VM)
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¢ in large-scale IoT fog between DSOs and exist at two levels:
computing scenario ADSSs EPEC
Model localized Allocation of FN ) Fast convergence for
preferences of resources as per ’ . large-scale problem:
entities: Matching VNF requirements 4 ADMM
Fig. 2: Proposed NFV resource allocation framework for fog computing in IoT.
Ri,j(ei,j) = $i,j9z‘,j 3)

FN1 FN 2 FNM

Fig. 1: System architecture.

resources available in the distributed network of FNs. Once
the VNF requirements of each ADSS are known to the DSOs,
they can allocate VM resources from the FNs operated by
them. The VM resources in the FNs can then host the
allocated instances of VNFs. Fig. 2 summarizes the proposed
framework. In this paper, we consider the NFVO to be a
centralized entity that coordinates the proposed distributed
resource allocation schemes.

Let us consider a network with K DSOs, N ADSSs, and
M FNs. We denote the computing resources from the FNs
in terms of Computing Resource Blocks (CRBs). The price for
one CRB set by DSO i for ADSS j is denoted by {6; ;| =
1,2,..,K;j = 1,2,...,N}, and 0; is the pricing profile for
DSO i. The number of CRBs purchased from DSO i by ADSS
j is denoted by {z; ;i =1,2,....,K;j=1,2,..., N}.

Therefore, according to the profits and costs of DSOs, we
express the utility function of DSO 4, Vi € {1,2,..., K}, as

N
Pi(0:) =Y Ui (6i;), @
=1
where
Ui,j(0i,5) = Ri j(0ij) — Dij — Oy j, 2

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

is the revenue from the computing resources provided to
ADSS j by DSO i, where z;; is the number of CRBs
purchased from DSO ¢ by ADSS j, and 6; ; is the price for
one CRB purchased by ADSS j from DSO 1.

D;;=mn;;+q; 4)

is the cost due to service delay. Here,

Mg

= vd; ; ()

is the cost incurred by the network delay, which is the delay
from the physical service provider (i.e., FN) to ADSS j.
Consider its value to be a linear function of the distance
from the physical service provider to ADSS j, d; ;, and 7 is
the cost per unit distance.

We consider the workload of ADSS j to follow a Poisson
process, as it is one of the classical models used for traffic
arrival in communication networks, and it can effectively
model the random workload process here, where the points
are stochastically independent to each other. If we were
to consider a non-Poisson model for the ADSS workload
arrival, then the property of independent increment would
no longer hold. As per this property, for mutually disjoint
intervals (t1,t1 |, (t2,t2 |, ..., (tn, tn |, the random variables
At)) — At),Vl € {1,2,...,n} are mutually independent
[45]. We consider the workload rate of ADSS j to be w;, and
the queue length as the workload rate/computing service
rate, and as a result, we get the cost incurred by the queuing
delay at the servers, g; ; as

W
=, ©

M5

where « is the cost per unit queue length, and each CRB can

provide computing service at the rate of p.

gij = K

Oij = @i @)
is the operational and measurement cost for the resources
provided by the FNs to ADSS j, thus helping DSO ¢ in

offloading. Here, 7, ; is the price set by the FNs helping
DSO i serve ADSS j.
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As mentioned before, the number of CRBs purchased
from DSO ¢ by ADSS j is denoted by {z;;|i =
1,2,..,K;j = 1,2,..,N}, and x; is the CRB purchase
profile of ADSS j. According to the profits and costs of
the ADSSs, we express the utility function of ADSS j,
Vje{1,2,...,N}, as

K
Q;(x;) =Y Wi (i), ®)
=1
where
Wi j(@i;) =Tij — Dij — Rij(2i ;). )
Here,
T;; = Bjw; (10)

is the revenue obtained by ADSS j from its workload data,
where (3; is the revenue obtained by ADSS j per unit
workload rate. D; ; is the cost due to service delay, similar
to the case of the DSOs.

R j(xij) = 20 (11)

is the cost of the computing resources provided to ADSS j
by DSO ¢, which is the same as the revenue obtained by
DSO i from the computing resources provided to ADSS j,
and hence, we have used the same notation, R; ;.

4 PROBLEM FORMULATION

As mentioned before, the DSOs and the ADSSs are assumed
to be autonomous entities, that aim to maximize their own
profits. However, the maximization of P;(6;) for one DSO
may affect the utilities of other DSOs and the ADSSs, and
similarly, the maximization of Q;(x;) for one ADSS may
affect the utilities of other ADSSs and the DSOs. Also, the
optimization of the utility functions of the ADSSs should
be performed in such a way that the optimization of the
utility functions of the DSOs are not affected. When the
number of DSOs and ADSSs are large as in a typical IoT
fog computing scenario, a centralized optimization of the
utilities of all the DSOs as in (1), and those of all the ADSSs
as in (8) simultaneously, is a difficult task.

From the utility function discussed in the above section,
we can express the optimization problem of DSO i as

N
max Py = [Ri ;(0i;) — Dij — Oi] 12)
i j=1
N
s.t. ; Aigbij = Biy (13)

‘7_
D; j < Dy,

where 0; = (6;1,0;2,...,0; n) is the row vector that rep-
resents the prices set by DSO i for each of the N ADSSs.
The first linear constraint for DSO i in (13) indicates the
limit on the total price per CRB offered by DSO i, where all
{4; ;|7 =1,2,...,N} and B; are real, scalar constants. Dy,
in the second constraint denotes the upper bound for the
cost of service delay between DSO ¢ and ADSS j.
We can also express the optimization problem of ADSS
j as
K
max Qi=> [Ti;—Dij—

i=1

Ri j(xi ;)] (14)

K
_Zl Xijwi; =Y,

st.q =
D; ; < Dy,

(15)

where x; = |71 j, T2 j, ..., 7k ;| is the vector that represents
the resources purchased by ADSS j from each of the K
DSOs. The first linear constraint for ADSS j in (15) indicates
the total resource requirement of ADSS j in terms of the
number of CRBs purchased from all the DSOs, where all
{Xi,li =1,2,..., K} and Y} are real, scalar constants. The
second constraint is similar to the one in the optimization
problem of DSO <.

Since x; ; denotes the number of CRBs purchased from
DSO i by ADSS j, the values in {z; ;i = 1,2,....,K;j =
1,2,...,N} are decided by the ADSSs. Hence, this matrix
would consist of values which are the optimal values of
%44, 80 as to maximize the utilities of the ADSSs as in (14),
rather than the optimal values of x; ;, so as to maximize
the utilities of the DSOs as in (12). Therefore the DSOs need
to provide incentives to the ADSSs, in order to make the
ADSSs choose values in {z; ;|i = 1,2,..., K;j =1,2,...,N}
favoring the DSOs. To this end, we can formulate the prob-
lem as an incentive mechanism design, which can lead to
an optimum result as per the utilities of the DSOs in (12),
while simultaneously considering the utilities of the ADSSs
in (14).

Here, we can consider §; ; to be the incentive factor
provided by DSO ¢ to ADSS j, as the DSO can influence
the value of z;; by setting the price at a certain 0; ;. By
controlling the incentive factor {0; ;i = 1,2,...,K;j =
1,2,...,N}, DSO i can get each of the ADSSs to choose
the values of z; ; such that its profit, P;(6; ,) is maximized.
0; = (01,02,...,0k ;)7 is the vector of incentive factors
for ADSS j. We can use this to design an incentive function
®,(Q;(x3),6;), which indicates the interactions between the
DSOs and ADSS j.

In summary, the DSOs’ optimization problem can be
formulated as:

N
max Py = [Ri;(0: ;) — Dij — Oi]
i =

N
> Aijbij = Bi,
=1

j=
D; ; < Dy,
st.Q x5 = argmax ®;(Q;(x;),65),
K
ZlXi,jﬂCi,j =Yj,
i=
D; j < Dy,
Vie{l,2,...,K},and Vj € {1,2,...,N}.
This is an example of an EPEC, which is a hierarchical
optimization problem that contains equilibrium problems
at both the upper and lower levels [14]. That is to say, there
exist equilibrium criteria at the upper level as well, rather
than just minimizing the real-valued functions subject to
equilibrium constraints. In our scenario, both the DSOs as
well as the ADSSs have a set of equilibrium constraints, as
shown in (16). As there are two levels of entities with e-
quilibrium constraints, a centralized solution that is feasible
for everyone is difficult. Here, the DSOs are at advantage, as
they make the first move by declaring the prices for the com-
puting resources they provide. They can predict the amount

(16)

s.t.
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of resources going to be purchased by the ADSSs and reach
an optimal price to maximize their utilities. However, we
need a solution that can optimize the utilities of the DSOs,
while simultaneously considering the utilities of the ADSSs.
The ADSSs can only control the values of z; ;, the num-
ber of CRBs purchased from the DSOs, and the DSOs can on-
ly decide the values of §; j, the incentive factors provided to
the ADSSs. As the DSOs can predict the amount of resources
going to be purchased, they can use the incentive factors to
control the resources purchased by the ADSSs. Even though
mechanisms like Stackelberg games [46] can be applied
here, they work well only in scenarios with one leader and
multiple followers. In our case, the coordination of multiple
conflicting utilities might demand high complexity to give
an optimal result. Also, the network size can practically
be very large. Therefore, we need an algorithm that would
converge regardless of the network size. These requirements
point us to the ADMM for the above optimization problem
in an IoT fog computing network. In the next section, the
detailed analysis of ADMM for EPEC is considered.

5 ALGORITHM ANALYSIS

Here, we firstly discuss the basic concept of the ADMM in
Section 5.1. After that, we move on to the design of the
incentive function in Section 5.2. That is followed in Section
5.3 by the detailed explanation of the ADMM based EPEC
algorithm used to optimize the profits of both DSOs and
ADSSs in IoT fog computing. Finally, the many-to-many
matching algorithm for the allocation of FN resources as per
the VNF requirements of the ADSSs is discussed in detail in
Section 5.4.

5.1 Alternating Direction Method of Multipliers

To understand the working of the ADMM, let us consider a
network with one service provider and /N users, where the
provider wants to maximize its utility as

N
max H (y;) = 21 hj(y;)
N = (17)
s.t. Z ijj — D= 0,
j=1

where each h; (y]) is a strongly convex function, y; is a real,
scalar variable, and C'j and D are given real, scalar constants
[15].

Here, the values of y; can be updated by the provider as

N
yi(t+1) = argmax (H (y;)) + Y _ A; ()Ciy; + ¥, (18)
j=1

where

N
P 2
‘1’=§Z||ijj—D||2- (19)
i=1

Here, ||.||, denotes the Frobenius norm, p > 0 is a damping
factor, and ¢ is the iteration step index [15]. A is the dual
variable, and it is updated as

N
N+ =X +p (D> Ciy(t+1) =D

Jj=1

(20)

6

When each h;(y;) is strongly convex, it has been proved
that the ADMM converges quickly [15]. [47] discusses the
global linear convergence of the ADMM even when strong
convexity is absent. Hence, it can be well used for large-scale
optimization problems in big networks.

5.2 Incentive Function Design

DSO ¢ wants to maximize its profit, P;, by providing certain
incentives to the ADSSs. Here, as the DSOs set the prices, 0; ;
per unit of computing resource that the ADSSs purchase, the
incentive factor can be assumed to be a discount from the
initial prices set by the DSOs. Let 0; ; () denote the price set
by the DSOs at the beginning of the p” iteration. Let 6; ;')
denote the value of price that the DSOs have evaluated at
the end of the p!" iteration. Then the incentive factor can be
expressed as

51»’]» = Qi’j(P) _ gi’j’(p). 1)
This would result in an incentive function expressed as
(I)j(Qj(Xj)vej) = Aai,ﬁ (22)

where A is a positive scalar value, which can be the same or
different for each DSO.

5.3 ADMM based EPEC in loT Fog Computing

As mentioned before, the DSOs initially announce the prices
for the CRBs that they provide. This announced set consists
of prices, {6; ;i = 1,2,...., K;j = 1,2,...,N} set by each
DSO i for each ADSS j, that maximize the profit, P;(6;) for
each DSO 1.

Next, we explain the ADMM based EPEC method, which
is an iterative process. Each iteration of the ADMM can be
explained as a two-step process as given below:

1) Optimization Problem of the ADSSs: Each ADSS

J uses the announced prices at the start of each iter-
ation p, 6; ; () to calculate the values of {z; ;)i =
1,2,...,K;j = 1,2,..., N}, the number of CRBs to
be purchased from each DSO i, to maximize its
profit Q;(x;). Here, the superscript (p) denotes the
value at the p** iteration of the method. This is the
inner loop of the ADMM. ¢ is the iteration step index
of the inner loop.
We described x5 in (16) as x;j =
argmax®;(Q;(x;),0;), where &;(Q;(x;),6;) is
the incentive function as described above. For
each ADSS j, maximizing the incentive function is
equivalent to maximizing its profit, ;(x;) to form
a set of values, x; which can in turn maximize the
incentives provided by the DSOs. Hence, the value
of x; is updated at each iteration of the inner loop
by ADSS j as

K
;P (t+1) = arg, , max (Q; (x;)) + ; 2P )Xz + 9,
B (23)
where

N
U= > Xim@im P (1) + Xy - Y

m=1,m#j
(24)

[ MY

1
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andT=t+1lifm<j,7=tif m > j. Here, p >0
is a damping factor as mentioned above, and X is
the dual variable which is updated as

K
)\Z(;D) (t + 1) = )\Z(p) (t) + P (Z X@j.l’i,j(p) (t + 1) — Y}
i=1

(25)
At the end of the inner loop during each iteration
p of the outer loop, the ADSSs arrive at a set of
values, xj, which maximizes their profits. At the
same time, these values are predicted by the DSOs,
and are used to update the values of 6; ;.
2) Optimization Problem of the DSOs: The DSOs
are able to predict the behaviors of ADSSs and the
values of x; ;. The DSOs then invoke ADMM as

N
60,/P)(t + 1) = argy, max (P; (65)) + > NP () A, ;6055 + ¥
i=1

(26)

m,iOm,g ) (T) + Aij0:5 — Bs

=
h S

(27)
and T =t+1ifm <i,7=tif m > i. Here, p > 0is
the damping factor, and A is the dual variable which
is updated as

N
NP+ =N 0 +p | 2 A0, (t+1) = B
j=1

(28)
Thus, the DSOs recalculate the values of §; ; that
maximize their profits. This would result in an up-
dated set of values for the price, 8;’ (), As discussed
in Section 5.2, d; ; denotes the difference between
the updated values of price, 6; ;/® and 6; ;), the
price at the start of iteration p. Based on this dif-
ference in prices, the DSOs calculate the incentive
factor as Ad; ;, which is a discount in the announced
prices. Here, A is a positive scalar value, which can
be the same or different for each DSO. This would
result in the values of 0; ; for the next iteration as

0; ;7T =0, ,P) £ Ag, ;. (29)

The updated values, 0; ; (P+1) are then provided to

the ADSSs for the (p+ 1) iteration. This is the
outer loop of the ADMM. The outer loop terminates
when

K K

Zpi(gz./(p))f ZPi(@i'(’FI))

=1 =1

< g, (30)

where ¢ is a pre-determined small-valued threshold.
The ADMM algorithm is shown in detail in Algo-
rithm 1.

In this paper, we assume that the communications be-
tween the set of DSOs and the set of ADSSs for the inner
and outer loops of the ADMM happen through the NF-
VO as a coordinating entity, and the iterative process of
the ADMM results in the optimization for the DSOs and
the ADSSs. However, these are competing entities who do
not communicate amongst themselves (i.e, there exists no

7

communication amongst the DSOs, and also amongst the
ADSSs, themselves). The communication overhead between
the set of DSOs and the set of ADSSs includes the data
transmission overheads between the NFVO and these enti-
.ties plus the storage and processing overheads at the NFVO
[48], and can be expressed as

K P N K N

O=) 0;+) [2¢) 0;+2x) O,]+) 0;+Onrvo,

i=1 p=1  j=1 i=1 j=1
C2))

where P is the number of ADMM iterations, O; is the
communication overhead between DSO ¢ and the NFVO,
O; is the communication overhead between ADSS j and the
NFVO, On ryo is the total processing and storage overhead
at the NFVO.

7

Lemma 1. The utility function of DSO ¢ as in (1) is linear.

Proof. de{fd Pi(0;) = #ﬂ. > Ui j(0i5)
N X
N Jg:l dG(f,j [ 2%} (91,])] - ]21 dacf b [Rz’j (92’]) Di’j B Oi’j]
N N
= ]21 d(;f,j [®i,0i; — vd; HWJ',_ — Ti M) = 721 Li,j-
dj P4(6~):L%x”=0 Y0, .. O
doz ;"N T dey oy T P

Hence, proved that the utility function of DSO ¢ as in (1)
is linear, which is said to be both convex and concave [49].
For the theoretical proof of convergence of the ADMM in
the case of convex functions which are not strongly convex,
the readers are referred to [47].

Lemma 2. The utility function of ADSS j as in (8) is non-
convex.

Proof. 4-Q;(x;) = - z

= % g Wis(ois)] = 3 2 [T — Dy — Rylai)
= él g [Bjwy — vdig — K= — 2,503 5]

Zél[ ez — 03]

dﬁzj Qi(x5) = X gr—lhimts — 03]

— —2k§1f$u;ﬁj3 #0,Va; ; >0. O

Hence, proved that the utility function of ADSS j as in
(8) is non-convex. For the theoretical proof of convergence of
the ADMM in the case of non-convex functions, the readers
are referred to [35].

5.4 Many-to-Many Matching Algorithm for VNF Re-
source Allocation

After the execution of the ADMM based EPEC algorithm,
once the optimal values for the CRBs to be purchased by
the ADSSs, and the price offered by the DSOs are obtained,
the next step is the allocation of the required CRBs from
the FNs, as per the VNF requirements of the ADSSs. In this
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Algorithm 1 ADMM based EPEC in IoT Fog Computing

Input: {6, ;i =1,2,....K;j=1,2,..,N},p=1
Output: Hi’j(om),xi,j("pt),i =1,2,.,K,7=1,2,....N

K K
> Pi(6/P)— 3 Pi(e,-'@—l))H > ¢ do

(1) Opti}mization for A[%SSS using ADMM (inner loop):
ADSSs use the announced prices, 0; ; (#) to evaluate T
values, and their maximum profits, Q;(x;);
(The incentive function ®;(Q,(x;),0;) = Ad; j, where
0;,; is the incentive factor, which is a discount in the
prices announced by the DSOs. For ADSS j, maximiz-
ing its profit Q;(x;), gives a set of values x;, which can
in turn maximize the incentives provided by the DSOs.)
(2) Optimization for DSOs using ADMM (outer loop):
DSOs predict the behavior of ADSSs and z; ; values,
invoke ADMM to perform maximization of profits,
resulting in new prices, 0; ;/(?), and update the prices
to 6; ;7Y by evaluating incentives;
Gp=pr+1L

end while

Result: Optimal values of CRBs purchased, x(°?*) = x(»)

Optimal values of price, (")) = §()

while

paper, we assume that only one VNF instance is initiated
to serve an ADSS at a given time, and that the CRB re-
quirement of an ADSS at a given time is the amount of VM
resources required by that VNF instance. Also, as already
mentioned, different instances of the same VNF initiated to
serve different ADSSs, can be deployed in the same FN for
ease of management, as well as many FNs can together host
a single VNF instance.

In an IoT fog computing scenario, the DSOs might have
different preferences on the FNs based on the resource prices
set by the FNs. The DSOs would naturally prefer the FNs
offering them the lowest price. Accordingly, the DSOs create
their preference lists by arranging the FNs in the ascending
order of their prices as

PLpso(i) = Mk, (32)

Vie{l,2,...,K},and Vk € {1,2,..., M }.

Similarly, the FNs have preferences on the DSOs based
on the CRB (VM resource) requirements of the ADSSs
served by the DSOs. That is, the FNs consider VNF instances
which require more VM resources (imply needing faster
computation) as of having higher priority. Accordingly,
the FNs arrange each (DSO,ADSS) pair in the descending
order of the CRB (VM resource) requirement to form their
preference lists as

PLFN(k) :l‘i’j, (33)

Vi € {1,2,...,K}, ¥j € {1,2,...,N}, and Vk €
{1,2,..., M}. Hence, the preference list of each FN has
K x N entries.

Once the preference lists are generated, a many-to-many
matching can be generated between the two sets of entities.
A many-to-many matching is a matching problem in which
entities from a set can be assigned to multiple entities in the

TABLE 2: Parameter settings for simulations

Parameter Value
K 5
N 20
M 25
dij U(0,1) km
Din 0.1
0% 1072
K 10
w; Poisson distributed with mean = 1000 s~
1 500 Ks—1
n U(0,1073)
B U(0,1071)
A 0.5
e for ADMM | 10—3
p for ADMM | 1.5

other set, and vice versa, based on their capacity constraints
[39]. The detailed definition of the many-to-many matching
model is given in Definition 1.

Definition 1. Many-to-Many Matching Problem: The objec-
tive of the many-to-many matching problem is to find a matching
M ={(k, (i,7))} with the maximum cardinality:

max | M|, (34)
st N(M, k) < C*, (35)

vk e {1,2,...,M}, Vi € {1,2,...,K}, and Vj €
{1,2,...,N}. (34) represents the cardinality of the match-
ing M (the number of (k,(4,7)) pairs in the matching).
N (M, k) represents the number of (i, j) pairs that FN & is
matched to, and C* is the maximum capacity of FN k. The
many-to-many matching algorithm proposed for our NFV
integrated IoT fog computing scenario is described in detail
in Algorithm 2.

6 SIMULATION RESULTS

This section evaluates the performance of the proposed AD-
MM for EPEC and many-to-many matching based frame-
work with MATLAB. The values of the different parameters
used for the simulations are shown in Table 2. The number
of ADSSs, N, and FNs, M are varied in certain cases; if
either of N or M values is not shown to change in the
simulation figure, then it has the value as shown in Table 2.
The notations in the U (a, b) format in Table 2 denote random
values from continuous uniform distributions in the interval
(a,b).

Fig. 3 demonstrates the convergence of the ADMM based
EPEC algorithm. It shows how the total profit of the DSOs,

K
>~ Pi(0;), behaves during the optimization using ADMM.
i=1

For an error threshold of ¢ = 1073, it takes only p = 4
iterations for the ADMM to converge. Hence, the conflicting
utilities of the DSOs have been optimized in just a few
iterations. It also shows how the error value of the ADMM
converges to the threshold value in those few iterations.
Fig. 4 shows the relation between the total profit of the

N

ADSSs, > Q;(x;), and the mean of the workload arrival
i=1

rate of ADSSs, w; for five cases: 200 s~!, 500 s—*, 1000 s~ ¢,
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Algorithm 2 Many-to-Many Matching Algorithm for VNF
Resource Allocation

1: for FN & do
2:  Construct the preference list PLpy(k) on all (D-
SO,ADSS) according to (33);
3:  One pointer is set as the indicator pointing at the first
(DSO,ADSS) in the preference list.
4: end for
5: for DSO ¢ do
6:  Construct the preference list PLpgo(i) on all FNs
according to (32);
7: end for
8. We set a flagy, Vk € {1,2,..., M}, as an indicator to
show if the CRBs of FN k were selected by the (D-
SO,ADSS) in the previous round, but not in the current
round. The initial value of flagy = 1;
9: while the pointers of all FNs have not pointed at all the
(DSO,ADSS) in their preference list do
10:  FNs propose to (DSO,ADSS) with their prices;
11:  for FN k£ who still has available CRBs do

12: if flagr = 1 then

13: The pointer stays at the current position in the
list;

14: else

15: The pointer jumps to the next position in the list;

16: end if

17: The FN proposes to the pointed (DSO,ADSS) in its
preference list with its available CRBs;

18: We set flagr, = 0;

19:  end for

20:  (DSO,ADSS) determine which FNs to select;

21:  for (DSO,ADSS) z; ; do

22: if The total available number of CRBs proposed by
the FNs exceed its requirements then

23: (DSO,ADSS) w; ; selects the required number of
CRBs from the FNs, and rejects the rest;
24: For CRBs of the FN k which are selected by the

(DSO,ADSS) in the last round, but not in the
current round, we set flagy = 1;

25: end if

26:  end for

27: end while

2000 s!, and 5000 s~ *. It can be seen that as the mean value
of w; increases from 200s~! to 5000s~!, the total profit of
the ADSSs increases.

Fig. 5 to Fig. 8 compare the performance of the proposed
many-to-many matching algorithm with a centralized algo-
rithm. The centralized algorithm is an approach in which the
NFVO, which acts as a centralized entity in NFV enabled
IoT fog computing, performs the resource allocation itself.
The NFVO allocates the resources from the FNs according
to the VNF requirements of the CRBs. Similar to the case of
the many-to-many matching algorithm, we assume that the
largest CRB requirement, i.e., the largest value of x; ; maps
to the VNF instance with the highest priority. However, as
opposed to the distributed approach with preference lists
for the two sets of entities, in the centralized approach, the
NFVO arranges the VNF instances as per their priorities

96.7.
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Fig. 3: Total DSO profit and ADMM error vs. number of
ADMM iterations.
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Fig. 4: Total ADSS profit vs. mean of workload rate, w;.

(CRB requirements or x;; values), and allocates them to
the FNs as per their available resources. Each comparison
has been executed for 50 times, and the average values are
plotted here.

Fig. 5 compares the total cost for the CRBs paid to FNs by
the DSOs, between the proposed many-to-many matching
algorithm and the centralized algorithm. The comparison
is performed for four cases: M = 15, M = 20, M = 25,
and M = 30. It can be observed that in all the four cases,
the total CRB cost is lesser in the proposed approach than
in the centralized approach. It can also be noted that the
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difference is more in the first and last cases. When M = 20
and M = 25, the number of FNs is comparable to that of the
ADSSs, N = 20, and hence, the resource allocation might be
comparable in both the approaches.

Fig. 6 compares the run times of the many-to-many
matching and the centralized algorithms. Again, the com-
parison is performed for four cases: M = 15, M = 20,
M = 25, and M = 30. It is obvious that the algorithm
run times increase with the number of entities, as can be
observed. The proposed algorithm has larger run times
when the number of FNs increases, which is reasonable as
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Fig. 8: Algorithm run time for the allocation of CRBs.

it is a distributed approach.

Fig. 7 analyzes the total cost for the CRBs paid to FNs by
the DSOs for the two approaches, similar to Fig. 5. However,
the number of ADSSs is varied here to study four cases:
N =20, N =25, N =30, and N = 50. It can be observed
again that the proposed many-to-many matching approach
outperforms the centralized approach. It can also be noted
that the difference is small in the first and second cases, since
the number of FNs, M = 25, might be comparable to that of
the ADSSs. However, the difference increases as the number
of ADSSs grows larger.
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Fig. 8 compares the algorithm run times similar to Fig.
6. Here, the number of ADSSs is varied to study four cases:
N =20, N =25, N = 30, and N = 50. Intuitively, the
algorithm run times increase with the number of entities.
Again, the proposed algorithm has slightly larger run times
when the number of ADSSs increases, which is reasonable
as it is a distributed approach.

The system used for executing the simulations has a
small scale Intel(R) Core(TM) i7 — 7500U CPU with a 16
GB RAM. Therefore, the algorithm run time values shown
in Fig. 6 and Fig. 8 are in hundreds of milliseconds. In a
practical IoT fog computing network, the proposed many-
to-many matching can be executed at the NFVO. For the
matching algorithm, once the preference lists are generated,
it can be executed by a centralized entity. With a large-scale
processor in a practical network, the algorithm run times
will decrease tremendously.

The computational complexity of Algorithm 1 is dis-
tributed among the K DSOs and the N ADSSs. For P iter-
ations of the ADMM, which is linearly related to log1o (5_1)
[15], the computational complexity due to the inner loops at
each ADSS can be expressed as O(PK), and that due to the
outer loops at each DSO can be expressed as O(PN). This
is due to the computation of the optimal amount of CRBs to
be purchased, by each ADSS, based on the resource prices
set by the DSOs, in each iteration of the inner loop of the
ADMM. Similarly, for each iteration of the outer loop of the
ADMM, each DSO uses the calculated amount of CRBs to
be purchased by the ADSSs, to compute the resource prices.
In the case of Algorithm 2, the computational complexity

M
can be expressed as O( Y. |PLpn(k)|), which is the sum of

lengths of preference lfs’cs1 of the FNs. From the aforemen-
tioned complexity expressions, it is evident that the model
is easily scalable as per the size and requirements for larger
networks.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a distributed resource allocation
framework for an NFV integrated IoT fog computing sce-
nario. Initially, we propose an ADMM based EPEC algo-
rithm to model the competitions between the DSOs and the
ADSSs, which provides the optimal values of the amount of
resources to be purchased by the ADSSs, and the optimal
values of the resource prices to be set by the DSOs. There-
after, we invoke a many-to-many matching based algorithm
to allocate the computing resources of the FNs according
to the VNF resource requirements of the ADSSs. The sim-
ulation results demonstrate that the ADMM based EPEC
algorithm converges quickly to give optimum results. It is
also observed from the simulation results that the proposed
many-to-many matching algorithm outperforms a central-
ized approach in terms of the cost of the FN resources. The
proposed resource allocation model combining EPEC and
matching can be efficiently used in NFV enabled IoT fog
computing scenarios.

Even though this paper deals with allocating the re-
sources of IoT FNs to ADSSs as per VNF resource needs, the
assumption we have made is that only one VNF instance is

11

initiated to serve an ADSS at a given time. However, in prac-
tice, there can be more than one instance of the same VNF,
or instances of another VNF altogether, that are initiated to
serve an ADSS at a given time. Inclusion of this aspect in our
model can widen the scope of its application. Additionally,
studying initiation patterns of VNF instances based on the
different IoT use cases can make the model more scalable.
Another research direction to explore is the application of
asynchronous distributed ADMM (AD-ADMM) [50], to im-
prove the time efficiency of distributed optimization due to
the asynchrony in such large-scale heterogeneous networks.
These are some reasonable future research directions for this
work.
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