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Abstract— Multi-access edge computing (MEC) can use the
distributed computing resources to serve the large numbers of
mobile users in the next generation of communication systems.
In this new architecture, a limited number of mobile edge servers
will serve a relatively large number of mobile users. Hetero-
geneous servers can provide either single resource or multiple
different resources to the massive number of selfish mobile users.
To achieve high quality of service (QoS) and low latency under
these two cases, we construct two system models and formulate
our problems as two non-cooperative population games. Then we
apply our proposed mean field evolutionary approach with two
different strategy graphs to solve the load balancing problems
under those two cases. Finally, to evaluate the performance of
our algorithms, we employ the following performance indicators:
overall response time (average response time of the whole system),
individual response time (response time of each server), and
fairness index (equality of users’ response time).

Index Terms— Mean field evolutionary approach, load
balancing, dense-user, MEC.

I. INTRODUCTION

AS COMBINATION of mobile computing and cloud com-
puting, mobile cloud computing (MCC) has provided

variety of services, such as computation and storage, to satisfy
the demand of massive mobile users [2]. However, MCC faces
significant challenges in the next generation communication
networks because the total number of mobile devices con-
tinues to grow dramatically with more computation-hungry
applications, such as augmented reality (AR). According to
the Cisco Visual Networking Index (CVNI) report [3], there
will be 12.3 billion mobile-connected devices and the average
mobile network connection speed (8.7 Mbps in 2017) will
reach 28.5 Megabits per second (Mbps) by 2022. It will
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be challenging for MCC to satisfy high Quality of Service
(QoS) and low latency required by those devices with real-
time applications, due to frequent uploading and downloading
between users and remote core clouds [4]. As a result, new
communication architectures are urgently needed.

Multi-access edge computing (MEC) is a promising candi-
date [5] that can handle the challenges currently being faced
by MCC because of the following three characteristics. First,
mobile edge hosts are deployed close to mobile devices, which
means the physical distance for data transmission will be
much shorter than MCC. Second, mobile edge servers can
analyze big data in a local manner and run isolated from
the rest of the MEC network, which means heavy uploading
and downloading traffic generated by millions of mobile users
will decrease sharply. Finally, MEC can provide high QoS
with ultra low latency and high bandwidth. However, to turn
these advantages of MEC into reality, many challenges still
remain [6]. For example, in a dense-user MEC network,
a limited number of servers are serving a relatively large
number of users. These selfish users are only interested in
their own profits such as shorter response time, while limited
servers are working independently without a central controller.
This will result in poor performance of the system. Therefore,
an efficient load balancing algorithm is needed to achieve the
good performance required by MEC [7].

A. Related Work

Many control models can be used to address the challenges
of MEC, and these can be categorized into three main types:
centralized control models, distributed control models and
hybrid control models. Considering the large system scale
and decentralized manner of dense-user MEC systems, our
approach falls into the category of distributed control models.
There are many distributed control models in the recent
literature which can be categorized into the following four
classes [8]:

1) Distributed Optimization Methods: Reference [9] pro-
vided a fully distributed algorithm considering the load bal-
ancing problem as a global optimization problem. In this
distributed algorithm, the whole system is modeled as a
graph where the nodes are the users and they are required to
know which constraint they are involved with. Nevertheless,
this algorithm is only suitable for a convex separable payoff
function over linear inequality constraints.

2) Greedy Heuristics Techniques: In these approaches,
the load balancing problems are modeled as a non-cooperative
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game. Reference [10] formulated the problem as a non-
cooperative game and adopted the Nash Equilibrium as the
user-optimal solution. Reference [11] also regarded the load
balancing problem in the data center as a non-cooperative
game, and constructed a decentralized and low-complexity
load balancing algorithm for computing the Nash equilib-
rium. However, these approaches are mainly based on greedy
heuristics and they can not guarantee the optimality of the
solution [8].

3) Leader-Follower Based Approaches: References [12]
and [13] formulated the load balancing problem as an opti-
mization problem via a Stackelberg game, where one player
is regarded as the leader (centralized authority intrigued in
optimizing the performance of the whole system) and the
rest of players are viewed as the followers (the self-interested
players). In the leader-follower model, the leader has the
ability to influence the task allocation decisions. Neverthe-
less, these approaches are only suitable for non-linear payoff
functions [8].

4) Population Based Approaches: Reference [8] formulated
the load balancing problem in distributed systems as a non-
cooperative population game and viewed the Nash equilibrium
as the user-optimal solution to the game. The authors achieved
an algorithm that has a distributed nature, user optimality,
near-optimal solution, and fair allocation. However, their
analysis of the existence of the Nash equilibrium are mainly
inferred from the simulation results rather than proof by
analysis.

Besides the disadvantages just mentioned, these four cate-
gories of methods have two common weaknesses if we apply
them to dense-user MEC systems: (i) they do not consider
a large scale system with numbers of heterogeneous users;
(ii) and they do not consider the case in which servers can
provide multiple different resources.

B. Motivation and Contribution

In this paper, we apply a mean field evolutionary approach
to solve the load balancing problem in dense-user MEC
for the following reasons: (i) Separately dealing with the
interactions between a large number of users will increase
the computational complexity significantly for other game
theoretic methods, such as the Nash non-cooperative game and
traditional evolutionary game [14], [15]. (ii) Instead of reacting
to other users separately when seeking the optimal strategy for
a generic user, a mean field game (MFG) regards them as a
mean field and reacts only to the collective behavior [16]. This
will reduce the computational complexity significantly [17].
(iii) We consider both the single-resource case and the multi-
resource case of the servers. The single-resource case is the
situation when the server can only provide one type of resource
to the user, such as computation. The multi-resource case
refers to the situation when the server can provide multiple
types of resources to the user, such as computation and storage.
By designing different strategy graphs, our approach can solve
the problem not only in the single-resource case but also in
the multi-resource case. The main contributions of this paper
are as follows:

• We construct two dense-user MEC models for the single-
resource case and multi-resource case.

• We apply a novel mean field evolutionary mechanism and
design two different strategy graphs to solve the problems
under those two different cases.

• We achieve a near-optimal solution in the single-resource
case, and also improve the performance of the whole
system significantly in the multi-resource case.

The rest of this paper is organized in the following way.
In Section II, we model the dense-user MEC network in both
the single-resource case and multi-resource case. Moreover,
we formulate the load balancing problems in those cases as
non-cooperative dynamic population games. In Sections III
and IV, effective mean field evolutionary approaches, with
one-dimensional and two-dimensional strategy graphs, are pro-
posed to solve the problems under the two cases, respectively.
In Section V, we conduct a comprehensive simulation and
Section VI concludes the paper.

II. MODELING AND FORMULATING

We show our general system model in Fig. 1. The mobile
server, which is a small-box data center consisting of several
multi-core computers [2], are considered as the servers in
the dense-user MEC systems. They are working indepen-
dently without a central controller and are denoted as S =
{1, 2, · · · , s}. Furthermore, those servers may provide either
single resource or multiple different resources to the mobile
users. On the other hand, users denoted by U = {1, 2, · · · , u}
are only interested in their own profit. The jobs of all users
are assumed to be homogeneous and indistinguishable without
priorities, deadlines and multiple versions [18], because het-
erogeneous workload needs to be divided into different pop-
ulations, which falls into the framework of multi-population
mean field game [19], [20]. After defining server set S and
user set U , we can construct the system models in both single-
resource case and multi-resource case as follows.

A. Single-Resource Case

User i’s jobs (i ∈ U) are generated according to a Poisson
process with mean rate λi, and λ̂ =

∑u
i=1 λi denotes the

total arrival rate of all users. User i will seek its own best
strategy to allocate its jobs to all servers. Server j (j ∈ S) is
modeled by M/M/1 [21] with a service rate μj . To keep a
stable system, we need to ensure that λ̂ <

∑s
j=1 μj and the

system utilization rate is θ = λ̂�
s
j=1 μj

.
User i’s strategy is denoted as χi ∈ R

s. χij represents
the proportion of user i’s total amount of jobs assigned to
server j. Therefore, user i’s strategy can be considered as
a mixed strategy on the server set S. We record all users’
strategies in one strategy profile X = (χi)u

i=1,X ∈ R
u×s and

each row χi is the mixed strategy of user i. The distribution
of users’ jobs on the servers is the “mean field”.

When users determine their strategies, they want to know
their individual response time. In order to obtain the expected
response time of user i, we should know the response time of
server j to user i first, because user i’s jobs are assigned on
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Fig. 1. System model.

different servers. Under the single-resource case, the response
time of server j is given by:

Rj(X ) =
1

μj −
∑u

n=1 λnχnj
, (1)

where μj is server j’s service rate and
∑u

n=1 λnχnj is total
workload on server j. Then the total expected response time
is given by:

Ti(X ) =
s∑

j=1

χijRj(X )

=
s∑

j=1

χij

μj −
∑u

n=1 λnχnj
, (2)

where χijRj(X ) is the response time of server j to user i
weighted by user i’s probability of selecting server j.

When we try to find the optimal strategies for users to
minimize their expected response time, we need to satisfy the
following constraints according to [10], [22], [23], and [24]:

χij � 0, ∀i ∈ U , ∀j ∈ S, (3)
s∑

j=1

χij = 1, ∀i ∈ U , (4)

u∑
n=1

λnχnj � μj , ∀j ∈ S. (5)

(3) is recommended because χij is the percentage of user i’s
jobs assigned to server j. (4) needs to be satisfied because
user i will allocate his jobs on all or some of the servers.
In (5),

∑u
n=1 λnχnj is the workload on server j. Therefore,

we need to keep the workload less than the service rate μj to
ensure the stability of the system.

We regard the Nash Equilibrium [25], where all users have
no incentive to modify their strategies unilaterally, as the
solution to this non-cooperative population game. When we
seek the optimal strategies to achieve the Nash Equilibrium,
we will update the strategy of user i while keeping strategies of
other users fixed with our mean field evolutionary methodol-
ogy. Considering this, solving the non-cooperative population
game for multi-users is equivalent to solving the following

optimization problem for a single user:

min
X

Ti(X ) =
s∑

j=1

χij

μj −
∑u

n=1 λnχnj
,

s.t. χij ≥ 0, ∀j ∈ S,
s∑

j=1

χij = 1,

u∑
n=1

λnχnj < μj , ∀j ∈ S, (6)

where Ti(X ) is defined in (2) and the three constraints are
(3), (4), and (5), respectively.

B. Multi-Resource Case

For the multi-resource case, each server provides multiple
different resources for users to complete corresponding types
of jobs. Therefore, aside from user set U and server set S,
we need to define the resource set as R = {1, 2, · · · , r}.

User i is generating the jobs of class i requiring r different
resources according to a Poisson process with mean rate λi =
(λi1, λi2, · · · , λir), λi ∈ R

r. The kth entry of λi represented
the rate of generating the kth type of jobs requiring the kth
type of resources. The job profile λ = (λi)u

i=1 records all
users’ job generating rates. These jobs are assigned to all the
servers and each server is modeled by M/M/1 [21]. The
service rate of server j is μj = (μjk)r

k=1 ∈ R
k, with the

kth entry denoting service rate of the kth type of jobs. Thus
μ = (μj)s

j=1 is the s× r matrix recording all servers’ service
rate.

Similar to the single-resource case, each user will allocate
its different types of jobs to the servers. However, under
the multi-resource case, a generic user i not only needs
to determine which server to connect but also which type
of resource to utilize. Therefore, the strategy set for multi-
resource case is the r × s different combinations of server
set S and resource set R, which is defined as follows:

Ŝ = {(j, k) : j ∈ S, k ∈ R}.
Denoting the strategy of user i as πi ∈ R

t, t = r × s, it is the
probability distribution on Ŝ. The j+s(k−1) entry represents
the probability of selecting k type of resource on server j.
πi is recorded in this way because it is convenient for us to
update πi later with gradient matrix and our strategy graph is a
2-D lattice as shown in Fig. 2. Hence, π = (πi)u

i=1 is the
strategy profile recording all users’ strategies.

As user i’s jobs are assigned to all the servers, we need to
compute the response time of each server j in order to obtain
user i’s total response time. Moreover, the response time of
server j should be the total response time of all types of jobs.
Therefore, the derived response time of server j to user i will
be:

Rj(π) =
r∑

k=1

1
μjk −∑u

n=1 λnkπnm
, (7)

where m = j+s(k−1) with j ∈ S, k ∈ R and
∑u

n=1 λnkπnm

is the total kth type of jobs assigned on server j. Consequently,
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Fig. 2. Strategy graphs for the single-resource case and the multi-resource
case.

the total expected response time of user i is computed by:

Ti(π) =
s∑

j=1

πimRj(π)

=
s∑

j=1

r∑
k=1

πim

μjk −∑u
n=1 λnkπnm

, (8)

where πimRj(π) is server j’s response time weighted by the
probability of selecting resource k on server j.

Similar to the single-resource case, certain preferences are
recommended by [10], [22], [23], and [24]. They are given as
follows:

πim � 0, (9)
s∑

j=1

r∑
k=1

πim = 1, (10)

u∑
n=1

λnkπnm < μjk, (11)

where m = j + s(k − 1),i ∈ U , j ∈ S, k ∈ R. The
first and second are suggested because πim is probability
distribution on Ŝ . The third needs to be satisfied for stability
of the whole system.

With the system constraints defined above and the expected
response time Ti(π) as the objective function, we still formu-
late our problem for the multi-resource case as the following
optimization problem for a generic user i:

min
π

s∑
j=1

r∑
k=1

πim

μjk −∑u
n=1 λnkπnm

,

s.t. πim � 0,
s∑

j=1

r∑
k=1

πim = 1,

u∑
n=1

λnkπnm < μjk, (12)

where m = j+s(k−1), j ∈ S, k ∈ R. The objective function
in (12) is the the total expected response time defined in (8)
and the three constraints are (9), (10), and (11), respectively.

III. ONE DIMENSIONAL MEAN FIELD

EVOLUTIONARY APPROACH

In this section, we propose the one dimensional (refer to the
dimension of strategy graph as shown in Fig. 2) mean field

Algorithm 1 1-D Mean Field Evolutionary Approach for
Single-Resource Case
1: random initialization(X , λ, μ)
2: while (25) is not satisfied do
3: for each user i do
4: gradient matrix Λi construction by (21), (22) and (23)
5: update user i’s strategy Xi by (24)
6: end for
7: end while
8: Return: strategy profile X

evolutionary approach for the single-resource case. The core
steps of our approach are manifested in Algorithm 1. Before
the detailed analysis of each step in the next three subsections,
we must mention that (3), (4), and (5) are actually satisfied
after each iteration. Constraints (3) and (4) are satisfied
because our mean field evolutionary dynamic is defined on the
probability space given by (14). As for constraint (5), we only
need to keep the following inequality (13) satisfied during the
iterations:

max

(
u∑

n=1

λnχnj

)
< μj . (13)

Therefore, (5) is satisfied because we can ensure (13) after
initialization and max(

∑u
i=1 λiχij) always decreases as we

observe in the simulation, while the service rate μj is a
constant.

A. Gradient Matrix Construction

In this subsection, we utilize MFG to construct the
Riemannian manifold and then derive the mean field evolu-
tionary dynamics (Theorem 1) on the Riemannian manifold.
Finally, a gradient matrix Λ ∈ R

s×s is constructed based on
Theorem 1.

1) Riemannian Manifold Construction With MFG: We con-
sider a MFG on graph G = (S, E):

• Nodes and Edges: Nodes of this graph are pure strategies
from the discrete strategy set S = {1, 2, · · · , α}. Edges
are connections between nodes. Node i ∈ S and node
j ∈ S are able to form an edge (i, j) ∈ E if players can
directly switch from strategy i to strategy j.

• Neighborhood: The neighborhood of node i is the set of
all nodes which have a direct connection to node i. It’s
defined as follows:

N(i) = {j ∈ S : (i, j) ∈ E}.
• State Space: The state space consists of all available

mixed strategies of the players and it is defined in the
following way:

P(S) = {(ρi)α
i=1 :

α∑
i=1

ρi = 1, ρi ≥ 0, i ∈ S}, (14)

where ρi represents the probability of selecting strategy i.
The interior of P(S) is denoted as Po(S).

In order to measure the distance in the state space, we need
to define the Wasserstein metric.
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Definition 1: Given two discrete probability functions
ρ0, ρ1 ∈ Po(S), the Wasserstein metric W is defined by:

W (ρ0, ρ1)2 = inf

{∫ 1

0

(∇Φ(t),∇Φ(t)ρ(t))dt :

dρ

dt
+ div(ρ∇Φ) = 0, ρ(0) = ρ0, ρ(1) = ρ1

}
,

where ∇Φ : S × S → R is given by:

∇Φ =

{
Φi − Φj , if (i, j) ∈ E,

0, otherwise,

where Φ is a function and Φ : S → R.
Besides the Wasserstein metric, we also need the follow-

ing inner product gW to construct the Remannian manifold
(Po(S), gW ).

Definition 2: For any two tangent vectors σ1, σ2 ∈
TρPo(S), define the inner product gW : TρPo(S)×TρPo(S) →
R by:

gW (σ1, σ2) =
1
2

∑
(i,j)∈E

θij(ρ)(Φ1
i − Φ1

j)(Φ
2
i − Φ2

j), (15)

where σi = −div(ρ∇Φi) for i = 1, 2. TρPo(S) = {(σi)n
i=1 ∈

R
n :
∑n

i=1 σi = 0} is the tangent space at a point ρ ∈ Po(S).
θij is the discrete probability on edge (i, j) which is defined
by:

θij(ρ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
dj

ρj Fj(ρ) < Fi(ρ),

1
di

ρi Fj(ρ) > Fi(ρ),
1
2
(
ρi

di
+

ρj

dj
) Fj(ρ) = Fi(ρ),

(16)

where Fi : P(S) → R is the payoff function and di is the
degree of node i (i.e. the total number of nodes in N(i)).

With the state space in (14) and the inner product in
Definition 2, we finally construct the Riemannian manifold
(Po(S), gW ) [26] on which the mean field evolutionary
dynamic can be defined.

2) Fokker-Planck Equation as Evolutionary Dynamic: In
this subsection, we define the mean field evolutionary dynamic
with the Fokker-Planck equation on the Riemannian manifold
(Po(S), gW ). The mean field evolutionary dynamic is given
by the Theorem 1.

Theorem 1: Suppose that a population game has strategy
graph G = (S, E) and the constant β ≥ 0, the utility function
F : P(S) → R

n are continuous. Then for any initial condition
ρ0 ∈ Po(S), the Fokker-Planck equation

dρi

dt
=

∑
j∈N(i)

1
dj

ρj [Fi(ρ) − Fj(ρ) + β(log ρj − log ρi)]+

−
∑

j∈N(i)

1
di

ρi[Fj(ρ) − Fi(ρ) + β(log ρi − log ρj)]+

(17)

is a well-defined gradient flow in Po(S). β represents the
strength of uncertainty, [·]+ = max{·, 0}, N(i) is the neigh-
borhood of node i, and the degree of node j is denoted as
dj =

∑
i∈N(j) 1.

Remark 1: In (17), the degree of node j, dj and the
neighborhood of node i, N(i) are determined by the structure
of the strategy graph. For instance, as shown in the 1-D
strategy graph in Fig. 2, di = 2, ∀i �= 1, s while d1 = ds =
1, and N(i) = {i − 1, i + 1}, ∀i �= 1, s while N(1) =
{2}, N(s) = {s − 1}. Through dj and N(i), the strategy
graph can determine how users’ strategies are updated during
each iteration and also the final convergence of the mean field
evolutionary dynamics.

Proof: Given the tangent space TρPo(S) = {(σi)n
i=1 ∈

R
n :
∑n

i=1 σi = 0}, there exists Φ such that σ = −div(ρ∇Φ)
for any σ ∈ TρPo(S). As dρ

dt = (dρi

dt )n
i is in TρPo(S), we have

gW

(
dρ

dt
, σ

)
=

n∑
i=1

dρi

dt
Φi, (18)

The noisy potential is given by:

F̄ (ρ) = F (ρ) − β
n∑

i=1

ρi log ρi, β ≥ 0, (19)

which is the summation of the potential and the Shannon-
Boltzmann entropy. Then we have

dF̄ (ρ) · σ =
n∑

i=1

∂

∂ρi
F̄ (ρ) · σi = −

n∑
i=1

F̄i(ρ)div(ρ∇Φ)i

= (∇F̄ (ρ),∇Φ) = −
n∑

i=1

Φidiv(ρ∇F̄ (ρ))i.

(20)

With (18) and (20), and the definition of gradient flow of
−F̄ (ρ) on the Riemannian manifold (Po(S), gW ), we derive

0 = gW (
dρ

dt
, σ) − dF̄ (ρ) · σ

=
n∑

i=1

dρi

dt
+ div(ρ∇F̄ (ρ))iΦi.

As the above is true for all (Φi)n
i=1 ∈ R

n, we finally obtain

dρi

dt
+
∑

j∈N(i)

θij(ρ)(F̄j(ρ) − F̄i(ρ)) = 0.

Replacing θij with (16), the mean field evolutionary dynamic
in Theorem 1 is proved. �

The mean field evolutionary dynamic in Theorem 1 is a
gradient flow starting from any initial ρo in the state space
Po(S) to the optimal ρ�, which can optimize the continuous
utility function F . Therefore, when we utilize Theorem 1 to
solve the optimization problem given in (6), every strategy Xi

is a point in the state space and the total expected response
time will be regarded as the continuous utility function.
Moreover, we need to construct a gradient matrix Λ with
Theorem 1 to update the strategy profile X in an iterative
manner.

3) Gradient Matrix Computation: In this subsection,
we will utilize Theorem 1 to construct the gradient matrix
Λ ∈ R

s×s. First, we need to define the noisy potential F (j) as
required in Theorem 1. F (j), j ∈ S is the first-order derivative
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of user i’s expected response time Ti(X ), which is computed
by:

F (j) =
∂

∂Xij
Ti(X )

=
μj −

∑u
n=1 λnXnj + λiXij

(μj −
∑u

n=1 λnXnj)2
, ∀j ∈ S. (21)

As shown in the 1-D strategy graph in Fig. 2, server 1 and
server s only have connection to server 2 and server s − 1,
respectively, their gradients will be computed by (β = 0):

Λ(1, 1) = −[F (1) − F (2)]+,

Λ(1, 2) = [F (2) − F (1)]+,

Λ(s, s) = −[F (s) − F (s − 1)]+,

Λ(s, s − 1) = [F (s − 1) − F (s)]+. (22)

Denoting the set of all other servers in the MEC systems
as So = {i ∈ S : i �= 1, s}, for any i ∈ So, they have
connections to server i − 1 and server i + 1. Therefore, their
gradients should be computed by (β = 0):

Λ(i, i) = −[F (i) − F (i + 1)]+ − [F (i) − F (i − 1)]+,

Λ(i, i + 1) = [F (i + 1) − F (i)]+, ∀i ∈ So,

Λ(i, i − 1) = [F (i − 1) − F (i)]+. (23)

In (22) and (23), F (i), i ∈ S, is the noisy potential function
given in (21). Apart from the entries specified in (22) and (23),
all the other entries of the gradient matrix Λ ∈ R

s×s are set
to 0.

B. Update Strategy

We update user i’s strategy Xi in an iterative manner
with its gradient matrix Λi constructed after each iteration.
At the beginning of iteration a, the strategy profile X a−1 from
iteration a−1 is preserved to compute user i’s gradient matrix
Λa

i . After constructing Λa
i based on (22) and (23), user i’s new

strategy X a
i after iteration a will be obtained through

X a
i = X a−1

i + Λa
i X a−1

i dt, (24)

where dt is an appropriate time step. This whole updating
process will be stopped when the following condition is
satisfied:

u∑
i=1

| X a
i −X a−1

i |� η, (25)

where η is the threshold we give at the beginning of the
updating process.

C. A Numerical Toy Example

Assume that 2 servers are serving 5 users. The step length
of updating is set as dt = 0.01. As shown in Algorithm 1,
we first initialize the strategy profile as

X =
[
0.4807 0.5403 0.4192 0.3905 0.4913
0.5193 0.4597 0.5808 0.6095 0.5087

]T

,

Algorithm 2 2-D Mean Field Evolutionary Dynamics Mech-
anism for the Multi-Resource Case
1: random initialization(π, λ, μ)
2: while (28) is not satisfied do
3: for every user in the system do
4: gradient matrix construction
5: update all strategies simultaneously by (27)
6: end for
7: end while
8: Return: strategy profile π

the service rate μ = [12.5732 14.7776], and jobs of arrival
rate

λ = [5.8104 3.5951 7.9981 5.2756 1.8264].

Each row of X represents the workload assignment strategy for
the corresponding user. Then we construct the gradient matrix
for each user and update their strategies based on Theorem 1.
For example, the gradient matrix for the 5th user is given by

Λ5 =
[−3.3048 0

3.3048 0

]

Then the new strategy for 5th user is computed in the following
way:

Λ5 ×X5 × dt + X5 =
[−3.3048 0

3.3048 0

] [
0.4913
0.5087

]

× 0.01 +
[
0.4913
0.5087

]

Hence the new strategy for user 5 is X5 = [0.4750 0.5250].
All users’ strategies will be updated in the same way until the
terminal condition is satisfied.

IV. TWO DIMENSIONAL MEAN FIELD

EVOLUTIONARY APPROACH

In this section, we address the multi-resource case with a
two dimensional (refer to the dimension of strategy graph as
shown in Fig. 2) mean field evolutionary approach. The core
procedures of our approach will be given in Algorithm 2 and
detailed analysis of each step will be provided in the next two
subsections.

A. Gradient Matrix Construction

As the MFG motivation and the proof of the mean field
evolutionary dynamic has been given under the single-resource
case, we will directly apply Theorem 1 into the multi-resource
case. Following the same procedure of constructing gradient
matrix in the single-resource case, we give the potential
function for Ti(π) as follows:

F (j, k) =
∂

∂πim
Ti(π),

=
μjk −∑u

n=1 λnkπnm + λikπim

(μjk −∑u
n=1 λnkπnm)2

, (26)

where m = j + s(k − 1), j ∈ S, k ∈ R.
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With potential function F (j, k) and Theorem 1, we can
construct the gradient matrix Λ based on the two dimension
strategy graph in Fig. 2. The nodes in the lattice represent pure
strategies in Ŝ. All strategies in the kth column have chosen
resource k and all strategies in the jth row have selected
server j. In order to assign values through (17), the nodes on
the lattice in Fig. 2 need to be classified into three different
categories (vertices, edge points, and interior points) according
to the number of their adjacent nodes. Each of the four vertex
has two adjacent nodes and each edge point has three adjacent
nodes. As for the interior points on the lattice, they have direct
connections to four nodes.

B. Update Strategy

In order to reduce the computation complexity, we still
update all users’ strategies simultaneously. Therefore, during
iteration a, strategy profile πa−1 from previous iteration
will be preserved for the computation of user i’s gradient
matrix Λa

i . Updating rule of user i’s strategy at iteration a
is given by:

πa
i = πa−1

i + Λa
i πa−1

i dt, (27)

where dt is an appropriate step size. The terminal condition
of this updating process is given by:

u∑
i=1

| πa
i − πa−1

i |� η, (28)

where η is the threshold we give at the beginning of the
updating process.

V. SIMULATION RESULT

To evaluate the effectiveness of our mean field evolution-
ary algorithm, we conduct a comprehensive experiment in
MATLAB R2019a and utilize the following three performance
indicators which are frequently used in the existing literature
such as [8], [10], and [22].

• Individual response time: we randomly select several
users and compute their individual response time by (2)
(single-resource) and (8) (multi-resource)

• Overall response time: a manifestation of the whole MEC
system which is defined by the following equation.

T̂ =
1

λ̂

u∑
i=1

λiTi, (29)

where λ̂i is the total amount of jobs and λi is the entire
amount of user i’s jobs.

• Fairness index: an indicator of equality between users’
individual response time which is computed by:

F(T ) =
(
∑u

i=1 Ti)2

u
∑u

i=1 T 2
i

, (30)

where T = (T )u
i=1 records all users’ response time.

TABLE I

SIMULATION PARAMETERS

A. Parameters Initialization

The basic simulation parameters for both single-resource
case and multi-resource case are given in Table I. We assume
that there are 10 mobile edge hosts serving 100 mobile users.
Users’ jobs arriving rate are initialized as the absolute value
of a Gaussian random variable as shown in Table I. Then we
initialize each entry of the strategy profile as the absolute value
of a Gaussian random variable and normalize the entries row
by row to ensure the constraints (3), (4), (9), and (10). The
service rate under the single-resource case is computed by:

μj =
∑u

n=1 λnχnj

θj
, ∀j ∈ S. (31)

where θj is the utilization rate of server j. The service rate
under the multi-resource case is computed by:

μjk =
∑u

n=1 λnkπnm

θjk
, ∀j ∈ S, ∀k ∈ R, (32)

where m = j + s(k − 1) and θjk is the utilization rate of k
type of resource on server j.

B. Performance Analysis for Single-Resource Case

In this subsection, we evaluate the performance of our 1-D
mean field evolutionary approach in the single-resource case.
Convergence analysis is given firstly. Then we evaluate the
efficiency of load balance. Finally, we compare our approach
with [27] and [24].

1) Convergence Analysis: In Fig. 3, convergence patterns of
three performance indicators have been depicted. Specifically,
Fig. 3a shows the convergence behavior of the overall response
time. Fig. 3b shows the individual response time of three
randomly selected users. Before the adjustment of workload
assignment, the individual response time among users varies
from each other. After the reassigning the workload, the indi-
vidual response time turns out to be close to each other.
In Fig. 3c, convergence patterns of the fairness index are
depicted.

2) Efficiency of Load Balance: When θ = 90% and the
computing resources are quite limited, load disproportion
will influence the performance of the whole system signifi-
cantly as shown in Fig. 4. Fully utilizing the idle computing
resources from some light load users by reallocating users’
jobs is guaranteed to improve the performance of the whole
MEC systems [28].

As shown in Fig. 4, the jobs are randomly assigned to the
servers at first. Some servers receive a heavy workload such as
server No. 5 and No. 8 with only 1 percentage of total capacity
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Fig. 3. Convergence analysis of single-resource case.

Fig. 4. Effect of load balance (θ = 90%).

remaining available. In contrast, server No. 4 and No. 9 receive
a light workload with nearly 19 percentage of total capacity
remained unused. This leads to the unfavourable situation
where some heavy load users like No.5 and No.8 delay the
response time while abundant resources still remain wasted on
some light load serves like No. 4 and No. 9.

As a comparison, users reassign their jobs with their new
strategies obtained from our 1-D mean field evolutionary
approach. Consequently, light load servers like No. 4 and
No. 9 obtain more jobs from users reducing the burden on
heavy load users like No. 5 and No. 8. However, the workload
on servers are not exactly the same because servers have
different total serving capacity.

3) Comparison With Other Algorithms: In this subsection,
we compare our mean field evolutionary approach (MFEA)
with two well-known job scheduling algorithms. They are
proportional scheme (PROP) [27] and global optimization
scheme (GOS) [24]. PROP will assign users’ jobs propor-
tionally to the servers based on their service rate. It has a
low computational cost but not the optimal result. Therefore,
PROP can be regarded as a suitable baseline. GOS tries to
allocate a disproportionately higher fraction of jobs to the more
powerful servers. It has higher computational cost but it can
obtain the optimal strategy to minimize the overall response
time. In Fig. 5a, we see that our approach converges faster
than both GOS and PROP and three methods achieve similar
overall response time with different job scheduling strategy
when θ ≈ 90%. In Fig. 5b, our approach also converge faster

TABLE II

COMPARISON ON UTILIZATION RATE OF SERVERS

than GOS and PROP. However, Gos and PROP achieve better
fairness of the system as shown in the zoom plot of Fig. 5b.

In Table II, we compare the utilization rate of 10 servers
with θ ≈ 90%. As we mentioned above, GOS assign heavier
workload to the more powerful servers, like server No. 4 and
server No. 9. The utilization rate of servers are exactly the
same as the utilization rate of whole system in PROP. The
utilization rate distribution of our approach is very close to
that of GOS as shown in Table II.

C. Performance Analysis for the Multi-Resource Case

In this subsection, we show the efficiency of our 2-D mean
field evolutionary approach in the multi-resource case. The
results are similar to single-resource case so our analysis
becomes more concise and we do not compare our algorithm
with other algorithms here, because, to the best of our knowl-
edge, a multi-resource case in a dense-user network has not
been considered by previous literature.

1) Convergence Analysis: In Fig. 6, similar convergence
patterns of three performance indicators has been shown. The
overall response time converges much slower compared with
the single-resource case because the gradient flow on 2-D
strategy graph, which has been shown in Fig. 2, increases the
computational cost and more iterations are needed to find the
optimal strategies for users.

2) Load Balance Analysis: In Table III, we choose three
representative servers and four representative resources to
show our approach’s efficiency of load balance in the multi-
resource case. Right after initialization, utilization rate of
resource A on server No. 1 is high while much idle
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Fig. 5. Comparison with GOS and PROP.

Fig. 6. Convergence analysis of multi-resource case.

TABLE III

UTILIZATION RATE OF DIFFERENT RESOURCES

resource A is wasted on server No. 4. Besides, utilization rate
of resource B on server No. 1 is low while server No. 4 is
crowded with jobs needed resource B. That is why the overall
MEC system has a bad performance at the beginning. When
mobile users find their new strategies to assign their jobs
to different servers, the workload of different resources on
different servers gradually balanced. They are not exactly the
same because we are considering heterogeneous servers (the
service rates are different) and the difference between them
is small because we are considering a rather limited resource
case.

D. Scalability Analysis

As shown in Algorithm 1, during each iteration, we first
construct the gradient matrix Λi for user i based on the (21),
(22) and (23). For each server (node) in the middle of the
1-D strategy graph in Fig. 2, 3 steps are needed to calculate
the relevant gradient. For the first and the last server (node),
2 steps are needed to calculate the relevant gradient. Therefore,

the total steps to compute the gradient matrix Λi is 3s − 2.
Then we need to calculate the gradient matrix for all u users,
which means the time complexity for Algorithm 1 is O(su).

As shown in Algorithm 2, during each iteration, we also
construct a gradient matrix for Λi for each user i based on
Theorem 1. As shown in the 2-D strategy graph in Fig. 2,
the nodes need to be divided into three types (vertex nodes,
edge nodes, and interior nodes) according to the number
of their neighbors. The total steps for the gradient matrix
construction is 4rs − 16. Then we repeat this for all u users,
which means the time complexity for Algorithm 2 is O(rsu).

From the above analysis, the time complexity for our mean
field evolutionary approach is O(rsu), where r is the number
of resources available on each server, s is the number of
servers, and u is the number of users.

VI. CONCLUSION

In this paper, we have modeled the load balancing problems
for both the single-resource case and multi-resource case in a
dense-user MEC system. Interactions between a large number
of users will result in computational complexity for traditional
games because they usually deal with each user separately.
However, a mean field game will regard these users as a “mean
field” when analyzing the behavior of one generic user. There-
fore, we have formulated these problems as non-cooperative
population games and solved them with a innovative mean
field evolutionary approach. Moreover, to handle the problems
under these two cases, we have designed two different strategy
graphs for our approach. Furthermore, we have conducted a
comprehensive simulation and evaluated the performance of
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our algorithm in terms of three performance indicators: overall
response time, individual response time, and fairness index.
The simulation results show that our approach converges faster
than existing methods and achieves performance very close
to the global optimal solution in the single-resource case.
Moreover, our approach also improves the performance of the
system significantly in the multi-resource case.
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