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ABSTRACT

Recent years have witnessed a rapid prolifera-
tion of smart Internet of Things (IoT) devices. loT
devices with intelligence require the use of effective
machine learning paradigms. Federated learning
can be a promising solution for enabling loT-based
smart applications. In this article, we present the
primary design aspects for enabling federated
learning at the network edge. We model the incen-
tive-based interaction between a global server and
participating devices for federated learning via a
Stackelberg game to motivate the participation of
the devices in the federated learning process. We
present several open research challenges with their
possible solutions. Finally, we provide an outlook
on future research.

INTRODUCTION

Emerging Internet of Things (loT) applications
such as augmented reality, autonomous driving,
surveillance, and industry 4.0 generate signifi-
cant amounts of data. The effective deployment
of such applications is thus reliant on the use of
advanced machine learning techniques so as to
properly exploit the generated data. However, tra-
ditional machine learning schemes use centralized
training data at a data center, which requires data
transfer from a massive number of distributed loT
devices to a third-party location, which raises seri-
ous privacy concerns and can be inefficient in its
use of communication resources. To overcome
these privacy and communication concerns, it is
important to introduce distributed, edge-deployed
learning algorithms such as federated learning
(FL). FL allows privacy preservation by enabling
distributed training without raw data transfer [1].
An overview of how FL can enable loT-based
applications is presented in Fig. 1. To benefit from
FL at the network edge, several challenges must be
addressed that include resource management and
incentive mechanism design to motivate the partici-
pation of users in the learning of a global FL model.
Learning in loT has been studied in [2-6]. Refer-
ences [2, 3] rely on centralized learning solutions
that have limited scalability and privacy preserva-
tion. In [4], the authors presented the challenges of
FL along with its existing solutions and applications
in mobile edge network optimization. In [5], the

authors proposed an FL framework to provide effi-

cient resource management at the network edge.

However, [5, 6] do not discuss the important chal-

lenges pertaining to incentive design and network

optimization under edge-based FL. In contrast, the
overarching goal of this article is to comprehen-
sively review a resource optimization and incen-
tive mechanism for FL. In contrast to [4], which
focuses only on high-level challenges, we present

a new perspective related to the development of

incentive-based FL over edge networks using game

theory. We also identify new challenges and open
problems, different from [4]. Our key contributions
include:

+ We present the key design aspects for imple-
menting FL in edge networks.

« We present a Stackelberg-game-based
approach to develop an FL incentive mech-
anism. In this game, FL users can strategically
set the number of local iterations to maxi-
mize their utility. Meanwhile, the base station
(BS), acting as leader, uses the best response
strategies of the users to maximize the FL
performance. The BS’s utility is modeled as
a function of key performance metrics such
as the number of global iterations and global
accuracy level in the FL setting.

+ Finally, we present some key open research
challenges along with guidelines pertaining
to FL in edge networks.

FEDERATED LEARNING AT THE EDGE:
KEY DESIGN ASPECTS

RESOURCE OPTIMIZATION

Optimization of communication and computa-
tion resources is necessary to enable the main
phases of FL local computation, communication,
and global computation. When optimizing FL
computational and communication resources, the
original problem whose goal is to minimize the FL
cost function can have a dual formulation with-
out constraints. Moreover, if the original problem
is convex, the dual problem has the same solu-
tion. Thus, the dual problem can be decoupled
for obtaining a distributed solution in FL. Com-
putation resources can be either those of a local
device or of an edge server, whereas communica-
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tion resources are mainly radio resources of the
access network. In the local computation phase,
every selected device iteratively performs a local
model update using its dataset. The allocation
of local device computational resources strongly
depends on the device energy consumption, local
learning time, and local learning accuracy. Fur-
ther, the heterogeneity of the local dataset sizes
significantly affects the allocation of local compu-
tational resources. Device energy consumption
and local learning time are strongly dependent
on CPU capability. Increasing the device CPU
frequency can increase the energy consumption
and decrease the learning time. Similarly, the local
computing latency increases for a fixed frequen-
cy with an increase in local learning accuracy.
Evidently, there is a need to study the trade-off
between computation energy consumption, com-
putational latency, learning time, and learning
accuracy. Moreover, the access network and core
network resources must be allocated optimally
during the communication phase.

LEARNING ALGORITHM DESIGN

FL uses local and global computation resources
along with communication resources. Several
machine learning techniques, such as long short-
term memory, convolutional neural network, and
Naive Bayes schemes can be used at each local
device. To enable FL, numerous optimization
schemes, such as federated averaging (FedAvg)
and FedProx can be used to train non-convex
FL models [7]. FedProx is a modified version of
FedAvg that captures both statistical and system
heterogeneity among end devices. FedAvg runs
stochastic gradient descent (SGD) on a set of
devices to yield local model weights. Subsequent-
ly, an averaging of the local weights is performed
at the edge computing server located at the BS.
FedProx has similar steps as FedAvg, but the dif-
ference lies in local device minimizing of objec
tive function that considers the objective function
of FedAvg with an additional proximal term. By
doing so, FedProx limits the impact of non-inde-
pendent and identically distributed (non-i.i.d.)
device data on the global learning model. Fed-
Avg does not guarantee theoretical convergence,
while FedProx shows theoretical convergence.

In FedAvg and FedProx, all devices are weight-
ed equally in global FL model computation with-
out considering fairness, despite the differences
in the device capabilities (e.g., hardware). To cap-
ture such fairness among devices, a so-called fair-
ness-enabled FedAvg algorithm was proposed [8].
Fairness-enabled FedAvg assigns higher weights
to devices with poor performance by modifying
the objective function of the typical FedAvg algo-
rithm. To introduce potential fairness and reduce
training accuracy variance, local devices having
a high empirical loss (local loss function) are
emphasized by assigning higher relative weight in
the fairness-enabled FedAvg. Meanwhile, in [9], an
adaptive control scheme was proposed to adapt
the global FL aggregation frequency. This adaptive
control scheme offers a desirable trade-off between
global model aggregation and local model update
to minimize the loss function with resource budget
constraint. All of the above-discussed methods are
used for a single task global FL. model. In real-world
loT systems, it is also of interest to use multi-task

Smart Smart Augmented Smart
Healthcare Transportation Reality Grid
Smart loT
Applications
Remote
Cloud
- i-‘ - :
Global Local Models :2EE
Model  Aggregation
Edge-based Fetlemled l.eurmn;, Model
' 6G, 5G, Z-Wave,
I gEE 6 LowPAN, ZigBee, NFC.
i E 4 Wi-Fi. Bluetooth, LTE-
EE Advanced, BLE, Visible
Global Local Models Light Communication
Model Aggregation  ZEEE
Access
Network

:sggz 4_8

Local
Dataset

e .._8

Local  Local
Model  Dataset

Local
Model

Figure 1. An overview of FL in enabling loT-based smart applications.

FL for handling multiple tasks, whose data is dis-
tributed among multiple edge nodes. A federated
multi-task learning scheme was proposed in [10]
by modifying the so-called communication-efficient
distributed dual coordinate ascent (CoCoA) frame-
work. To enable a wide variety of machine learn-
ing models, CoCoA supports objectives for linear
regularized loss minimization [11]. In CoCoA, par-
tial results from local computation are effectively
combined using optimization problems primal-dual
structure. In each round, CoCoA enables the use
of any arbitrary optimization algorithm on a local
dataset to solve a local learning problem by using
distributed optimization for coping with system-lev-
el and statistical heterogeneity.

HARDWARE-SOFTWARE CO-DESIGN FOR
FEDERATED LEARNING

For a fixed hardware design, one can find opti-
mal software design by searching for different
architectures. However, this approach poses lim-
itations on the design because neural network
design is strongly dependent on the used dataset.
Therefore, there is a need to jointly consider both
hardware design space and neural architecture
search space for a more flexible design of the end
device for FL [12]. One promising approach for
efficient design of end devices involved in FL is
hardware-software co-design. Several approaches
such as high-level synthesis, co-verification-based
embedded systems, and virtual prototyping can
be used for hardware-software co-design of loT
devices. A design based on virtual prototyping
uses computer-aided engineering, computer-au-
tomated design, and computer-aided design for
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The design of mecha-
nisms that incentivize
users to participate in
FL is a key challenge.
Incentives are possible
in different forms,
such as user-defined
utility and money-based
rewards. Several frame-
works such as game
theory and auction the-
ory can be used in the
design of FL incentives.

11,

. 1 =P\
Local Computation IoT
Energy Sensor|

Local Computation
|«—| Local
Data set

Latency

%
)

FedAvg 2 A5 5
FedProx " g s|lg 2
q-FedAvg E| g§ ”; g o E .
FML =25 E|[555 8
4 2253 || E2E% 2
EEEZ||lESER
QG E (¥
£ z ||.E =
Federated s ElE =
Optimization Algorithms = lyv> D

G and
4 o° .:;\0?‘?(.6 5 o
PO ‘\\\(\‘6 S5 Trap,
W oo\g’@“ o Local Models s
< ° Aggregation

Smart i Energy

Long Short-term Memory
Convolutional Neural Network
Support Vector Machines

S oo
Global Computation Upljnk lT;”ergy ISslon P g‘f“
Latency D Lf‘;”lsml-ssio ﬁ % g 2
Global Computation ) ay " ¢ !

Naive Bayes

iy

Local Learning

Model Schemes
Local Model

CZ Aggregation

. LOCaI
Local Model /1% Derce M,
Computati Oder
putation
\
Mode!
et O
iy

b,

Figure 2. FL sequence diagram.

the validation of a design before prototype imple-
mentation, whereas a high-level synthesis offers
an automated design process by creating digital
hardware based on the algorithmic description
for the desired behavior. The prominent challeng-
es of high-level synthesis-based design are wired
signal and multiplexer delays. Moreover, co-veri-
fication-based embedded systems enable concur-
rent testing and debugging of both software and
hardware design; however, such designs require
successful interactions between hardware and
software teams.

INCENTIVE MECHANISM DESIGN

The design of mechanisms that incentivize users
to participate in FL is a key challenge. Incentives
are possible in different forms, such as user-de-
fined utility and money-based rewards. Several
frameworks such as game theory and auction
theory can be used in the design of FL incentives
[13, 14]. One can design an incentive mechanism
using game theory while considering both com-
munication and computation costs. The commu-
nication cost can be defined as the total number
of rounds used for the interactions between the
edge server and end devices, whereas the compu-
tational cost can be the number of local iterations
required to compute the local learning model
[4]. For synchronous aggregation, given a fixed
number of global FL rounds between end devic-
es and edge server, the convergence rate of the
global FL. model has a proportional relationship
with the number of local iterations. An increase
in the number of local iterations minimizes the
local learning model error, and thus, few global
FL rounds are required to reach a certain global
FL model accuracy. Therefore, for a fixed global
FL model accuracy, an increase in computational
cost reduces communication cost and vice versa.
For instance, consider an incentive mechanism
game whose players are the edge server and edge
users. The edge server announces a reward as an
incentive to the participating users while maxi-
mizing its benefits in terms of improving global

FL model accuracy. Meanwhile, the edge users
maximize their individual utilities to improve their
benefit. One example of a user utility could be
the improvement of local learning model accura-
cy within the allowed communication time during
FL training. An improvement in the local learn-
ing model accuracy of the end user increases its
incentive from the edge server and vice versa.
This process of incentive-based sharing of model
parameters continues until convergence to some
global model accuracy level.

INCENTIVE-BASED
FEDERATED LEARNING OVER EDGE NETWORKS

SYSTEM MODEL

Consider a multi-user system comprising a BS and

a set of user devices with non-i.i.d. and hetero-

geneous data sizes. Enabling FL over such edge

networks involves the use of the computational
resources at both device and cloud levels, as well
as network communication resources. In a typi-
cal FL environment, participating user equipment

(UE) must iterate over their local (possibly non-

i.i.d.) data to train a global model. However, UEs

are generally reluctant to participate in FL due to

limited computing and communication resources.

Thus, enabling FL requires some careful design

considerations:

+ First, to motivate UEs for participation, it is
necessary to model the economic interac-
tion between the BS and the UEs. With-
in each global iteration, the BS can offer a
reward rate (e.g., iterations) to the UEs for
selecting the optimal local iteration strate-
gy (i.e., CPU-frequency cycle) that can min-
imize the overall energy consumption of FL,
with a minimal learning time.

+ The set of resource-constrained UEs involved
in FL has numerous heterogeneous param-
eters: computational capacity, training data
size, and channel conditions. This heteroge-
neity significantly affects the local learning
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model computation time for a certain fixed
local model accuracy level. For a synchro-
nous FL setting, the local learning model
accuracy will be different for different UEs
due to both data and system heterogeneity.
Therefore, it is necessary to tackle the chal-
lenge of heterogeneous local learning model
accuracy for the UEs in synchronous FL.

+ One approach for handling the communi-
cation-computation trade-off in FL is via an
appropriate client selection strategy. Select-
ing the loT devices with sufficient computing
power and training data jointly improves FL
model accuracy and training costs [4]. In our
previous work [15], we jointly optimized the
computing time and energy consumption of
FL over wireless networks. The problem stud-
ied in [15] captures two trade-offs: UE ener-
gy consumption and FL time via variations in
device CPU cycles per second, and compu-
tational and communication latencies for FL
accuracy. However, here, we use a Stackel-
berg-game-based incentive mechanism to
select a set of loT devices willing to join the
model training process. Then the selected
set will collaboratively train a global model
while minimizing the overall training costs
(i.e., computation and communication cost).

STACKELBERG GAME SOLUTION

The BS employs an incentive mechanism for
motivating the set of UEs to participate in global
FL model training. However, heterogeneous UEs
have different computational and communica-
tion costs for training, and thus, they expect differ-
ent rewards. Moreover, the BS seeks to minimize
the learning time while maximizing the accuracy
level of the learning model. This complex inter-
action between the BS and the UEs can be cast
as a Stackelberg game with one leader (BS) and
multiple followers (UEs). For the offered reward,
the BS maximizes its utility modeled as a function
of key FL performance metrics such as the num-
ber of communication rounds needed to reach a
desirable global FL model accuracy level. Corre-
spondingly, the UEs will respond to the BS-offered
reward and choose their local iteration strategy
(i.e., select a CPU-frequency cycle for local com-
putation) to maximize their own benefits [14].
Evaluating the responses from the UEs, the BS
will adjust its reward rate, and the process repeats
until a desired accuracy level is obtained. To this
end, the BS must design an incentive mechanism
to influence available UEs for training the global
model. In this framework, the sequence of inter-
actions between the BS and the UEs to reach a
Stackelberg equilibrium is as follows:

+ Initially, each UE submits its best response
(i.e., optimal CPU-frequency) to the BS for
the offered reward rate to maximize its local
utility. Specifically, each UE considers the
viability of the offered reward rate for their
incurred computational and communication
costs in FL.

« Next, the BS evaluates these responses,
updates the global model, and broadcasts its
offered reward rate to the UEs to maximize
its own utility function. The utility of the BS is
modeled as a strictly concave function of key
FL performance metrics such as the number

of global iterations required to reach global
accuracy for a given local relative accuracy.

+ Given the optimal offered reward, the UEs
will correspondingly tune their strategy and
update response that solves their individual
utility maximization problem. This iterative
process continues in each round of interac-
tion between the BS and UEs.

In summary, we follow the best response algo-

rithm to achieve the Stackelberg equilibrium. For

this, with the first-order condition, we first find

a unique Nash equilibrium at the lower-level

problem (among UEs), and then use a backward

induction method to solve the upper-level BS
problem.

PERFORMANCE EVALUATION

We now evaluate the performance of our incen-
tive-based FL model by examining the contribu-
tions of each FL-participating UE. We investigate
the impact of communication channel conditions
and local computational characteristics on the
accuracy of the global FL model. We evaluate the
impact of the offered reward in terms of commu-
nication cost vs. local relative accuracy to char-
acterize the system performance in FL. For FL,
we adopt a classification task using multinomi-
al logistic regression and distribute the MNIST
dataset among participating UEs [1]. For feder-
ated optimization, we use the modified CoCoA
framework [10]. The distributed federated opti-
mization scheme of [10] allows us to tackle both
system-level and statistical heterogeneity efficient-
ly. We consider five participating UEs having dif-
ferent channel conditions and an equal local data
size. At each UE, we define the mean square error
of the learning problem (i.e., the local relative
accuracy metric). For the UEs utility, we choose
a concave function of the local relative accuracy
and the BS-offered reward.

In Fig. 3a, the impact of the offered reward
rate on the relative accuracy for five UEs is shown.
The accuracy improves when the relative accuracy
value (x-axis) is smaller. Intuitively, an increase in
the offered reward rate will motivate UEs to iterate
more within one global iteration, resulting in better
accuracy. The heterogeneous UE responses is the
result of individual computational limitations, local
data size, and communication channel conditions.
The impact of the communication channel condi-
tions on local relative accuracy for a randomly cho-
sen UE with defined computational characteristics
and local data size is illustrated in Fig. 3b. For clar-
ity, we use a normalized communication time to
quantify the adversity of channel conditions. Here,
a unit value for the normalized communication
time signifies poor channel conditions. As the com-
munication time increases, the UEs perform more
local iterations to avoid expensive communication
costs. Figure 3¢ presents the relationship between
the offered reward rate and the local relative accu-
racy at the UEs. The offered reward rate reveals the
optimal response of the UEs that maximizes their
own utilities for given channel conditions. Here,
we have consistency in the normalized BS utility
function for various response behaviors of the UEs
to the offered reward rate. Thus, it is crucial to
have an appropriate incentive design to align the
responses of the participating UEs for improving
the FL performance.

In a typical FL environ-
ment, participating user
equipment (UE) must
iterate over their local
(possibly non-i.i.d.) data
to train a global model.
However, UEs are
generally reluctant to
participate in FL due to
limited computing and
communication resourc-
es. Thus, enabling FL
requires some careful
design considerations.
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OPEN RESEARCH CHALLENGES

RESOURCE OPTIMIZATION FOR
BLOCKCHAIN-BASED FEDERATED LEARNING

An attacker might attack the centralized FL serv-
er in order to alter global model parameters. In
addition, a malicious user might alter FL param-
eters during communication. To cope with such
security and robustness issues, blockchain-based
FL (BFL) can be used. BFL does not require central
coordination in the learning of the global model,
which yields enhanced robust operation. In BFL,
all users send their local model parameters to
their associated miners, which are responsible for
sharing local model updates through a distribut-
ed ledger. Finally, local model updates of all the
devices involved in learning are sent back by min-
ers to their associated devices for the local mod-
els aggregation. Although BFL provides benefits
of security and robustness, it faces a significant
challenge of computational and communica-
tion resource optimization to reach a consensus
among all miners. Static miners can be implement-
ed at the BS, whereas wireless mobile miners can
be implemented using drones. However, drone-
based mobile miners pose more serious resource
allocation challenges than static miners at the BS.

CONTEXT-AWARE FEDERATED LEARNING

How does one enable more specialized FL
according to users’ contextual information? Con-
text awareness is the ability of a device/system to
sense, understand, and adapt to its surrounding
environment. To enable intelligent context-aware
applications, FL is a viable solution. For instance,
consider keyboard search suggestion in smart-
phones in which the use of FL is a promising
solution. In this type of design, we must consider
context awareness for enhanced performance. A
unique globally shared FL model must be used
separately for regions with different languages to
enable more effective operation. Therefore, the
location of the global model must be considered
near that region (i.e., micro data center) rather
than a central cloud.

MOBILITY-AWARE FEDERATED LEARNING

How does one enable seamless communication
of smart mobile devices with an edge server
during the learning phase of a global FL model?
Seamless connectivity of the devices with a cen-

tralized server during the training phase must be
maintained. Mobility of devices must be consid-
ered during the device selection phase of FL pro-
tocol. Deep-learning-based mobility prediction
schemes can be used to ensure the connectivity
of devices during FL training.

CONCLUSIONS AND
FUTURE RECOMMENDATIONS

In this article, we have presented the key design
aspects, incentive mechanism, and open research
challenges for enabling FL in edge networks. We
have identified four key design aspects: resource
optimization, incentive mechanism, learning
algorithm design, and hardware-software co-de-
sign-based end devices for FL at the network
edge. We have shown that game-theoretic incen-
tive mechanisms can be used to effectively model
interaction between devices and edge server for

FL. This work can potentially make FL amenable

for implementation in diverse 5G-enabled smart

loT applications such as intelligent transportation
systems, Industry 4.0, and digital health care.

Finally, we present several recommendations for

future research:

+ Generally, FL involves training of a global FL
model via an exchange of learning model
updates between a centralized server and
geographically distributed devices. Howev-
er, wireless devices will have heterogeneous
energy and processing power (CPU cycles
per second) capabilities. Some of the devic
es might have noisy local datasets. There-
fore, there is a need for novel FL protocols
that will provide criteria for the selection of a
set of local devices having sufficient resourc
es. The selection criteria of the devices must
include long-lasting backup power, sufficient
memory, accurate data, and higher process-
ing power.

+ A set of densely populated devices involved
in FL might not be able to have real-time
access to the edge server located at the BS
due to a lack of communication resources.
To cope with this challenge, one can devel-
op new FL protocols based on socially aware
device-to-device (D2D) communication.
Socially aware D2D communication has an
advantage of reusing the occupied band-
width by other users while protecting them
by keeping the interference level below the
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maximum allowed limit. Initially, multiple
clusters based on social relationships and the
distance between devices should be creat-
ed. Then a cluster head is selected for every
cluster based on its highest social relation-
ship with other devices. Within every cluster,
a sub-global FL model is trained iteratively by
exchanging the model parameters between
the cluster head and its associated devices.
Then the sub-global FL model parameters
from all cluster heads are sent to the BS for
global model aggregation. Finally, the global
FL parameters are sent back to cluster heads,
which in turn disseminate them to their asso-
ciated cluster devices.

+ Exchange of learning model updates via
blockchain offers enhanced security. Howev-
er, reaching consensus via traditional consen-
sus algorithms among blockchain nodes can
add more latency to the learning time. There-
fore, it is recommended to design novel con-
sensus algorithms with low latency.
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We have shown that
game-theoretic incen-
tive mechanisms can
be used to effectively
model interaction
between devices and

edge server for FL. This

work can potentially
make FL amenable
for implementation in
diverse 5G-enabled
smart loT applications
such as intelligent
transportation systems
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