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Abstract—Cooperative multiaccess edge computing (MEC) is
a promising paradigm for the next-generation mobile networks.
However, when the number of users explodes, the computational
complexity of the existing optimization or learning-based task
placement approaches in the cooperative MEC can increase sig-
nificantly, which leads to intolerable MEC decision-making delay.
In this article, we propose a mean field game (MFG) guided
deep reinforcement learning (DRL) approach for the task place-
ment in the cooperative MEC, which can help servers make
timely task placement decisions, and significantly reduce aver-
age service delay. Instead of applying MFG or DRL separately,
we jointly leverage MFG and DRL for task placement, and let
the equilibrium of MFG guide the learning directions of DRL.
We also ensure that the MFG and DRL approaches are consis-
tent with the same goal. Specifically, we novelly define a mean
field guided Q-value (MFG-Q), which is an estimation of the
Q-value with the Nash equilibrium gained by MFG. We eval-
uate the proposed method’s performance using real-world user
distribution. Through extensive simulations, we show that the
proposed scheme is effective in making timely decisions and
reducing the average service delay. Besides, the convergence
rates of our proposed method outperform the pure DR-based
approaches.
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I. INTRODUCTION

N RECENT years, with the continuous prosperity of the

mobile Internet industry and Internet of Things, the advance
of widely used mobile terminals spurs the development of
smart and media applications with high CPU power require-
ments, such as live video, virtual reality, and intelligent image
recognition. Those CPU-hungry applications further promote
the emergence of multiaccess edge computing (MEC) [1], [2]
architecture, which deploys cloud-like computing servers,
called MEC servers, at the edge of the cellular networks.
This MEC architecture, which pushes computational capabil-
ities closer to end users, is a promising solution to the long
latency and backhaul bandwidth limitation problem.

Due to the heterogeneity of resource availability among
MEC servers, the cooperative MEC architecture is proposed
to take the excellent usage of the computational resources.
Through scheduling to do tasks uploaded by end users among
multiple MEC servers, the integration of service delay and
power consumption for the system can potentially be reduced,
while how to appropriately place the tasks poses significant
challenges. Especially, when the number of end users grows
explosively, making timely task placement decisions is very
difficult.

In the literature, many efforts have been devoted to the task
placement in the cooperative MEC, and most of them are
optimization-based methods. Although they can make proper
task placement decisions, their approaches have many criti-
cal limitations, e.g., computational complexity explodes with
the number of users increasing, the optimization needs to be
resolved whenever the distribution of the new task is com-
ing, etc. These deficiencies may lead to the intolerable MEC
decision-making delay. Recently, many scholars apply the rein-
forcement learning (RL) approach in the cooperative MEC.
RL [3], as a type of the machine learning method, has been
widely applied in many applications of artificial intelligence,
e.g., Alpha Go [4], playing video games [5], scheduling TNC
vehicles [6], [7], and solving communication problems [8].
As for RL, the agent constantly interacts with the learning
environment and makes decisions according to the Markov

2327-4662 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Houston. Downloaded on February 08,2021 at 01:43:41 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-9219-5516
https://orcid.org/0000-0002-0973-1614
https://orcid.org/0000-0003-2138-4413
https://orcid.org/0000-0002-6606-5822
https://orcid.org/0000-0002-2062-131X

SHI et al.: MEAN FIELD GAME GUIDED DEEP REINFORCEMENT LEARNING FOR TASK PLACEMENT

process. Leveraging the RL approach can eliminate the restric-
tion on dynamic changes for task distribution, but the learning
speed and convergence rates, which have a great impact on
decision-making delay, are non-negligible for task placement
in the MEC. Meanwhile, a relatively new concept in the game
theory domain, called mean field game (MFG) [9], has been
applied in many engineering problems [10], [11]. It models
the game as one player interacting with the collective behav-
ior of all other players, and provides equilibrium solutions.
Thus, MFG is typically fit for a large number of players’ sce-
nario, such as multiple tasks scheduling and placement among
edge servers in the cooperative MEC. However, it still needs to
face some similar limitations to the optimization approaches.
In other words, the MFG problem has to be reformulated and
solved whenever the task distribution changes.

To address the above issues, in this article, we propose an
MFG-guided deep RL (DRL) approach for task placement in
the cooperative MEC. Different from the existing researches
considering the combination of MFG and RL [12], [13], which
they apply the pure RL method to solve the problem modeled
by MFG or draw lessons from the mean field theory to model
the action profile in RL, we provide the explicit MFG solution
to guide the RL process. With the guidance of the Nash equi-
librium solved by the MFG, the RL agent conducts the learning
with guided directions. Based on the evolutionary dynamics
in the MFG, the mean field guided Q-value (MFG-Q) can be
gained and be used for updating the components in the DRL
scheme. The proposed approach has the potential to reduce
the average service delay and ensure that energy consumption
does not increase significantly in the cooperative MEC archi-
tecture. Besides, with the guidance of the Nash equilibrium
for the MFG, our DRL approach can obtain the clear learning
directions, which effectively reduce task placement decision-
making delay and improve users’ Quality of Service (QoS).
Our salient contributions are summarized as follows.

1) To the best of our knowledge, we are the first one to
apply the DRL with the guidance of MFG equilibrium
in the cooperative MEC architecture. The task place-
ment decisions can be obtained by solving the MFG and
the DRL problem jointly. Briefly, we define an MFG-Q,
which replaces the target Q-value with the Nash equilib-
rium obtained from evolutionary dynamics in the MFG.
Based on this MFG-Q, our approach can greatly enhance
the efficiency in exploring the environment in the early
stages and significantly improve the convergence speed
of the learning process.

2) Compared to the existing task placement solution in
the cooperative MEC, our MFG-guided DRL approach
can handle a large number of users’ task placement
problems without increasing computational complexity.
This is because we ensure the same goal of the MFG
and the DRL approach when establishing the system
model. Accordingly, our approach can better deal with
the dynamic task distribution in practice.

3) We illustrate our proposed model based on the real-
world users’ distribution data set from the Internet
service provider. By using our proposed approach, aver-
age service delay can be significantly reduced. The
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performance evaluation shows the advantages of our
MFG-guided DRL task placement approach over the
pure DRL or MFG based ones in terms of timely
decision making.

The remainder of this article is organized as follows.
Section II introduces the related works of the cooperative
MEC, RL, and MFG. Section III describes the system model
of the task placement problem. Section IV provides a detailed
description of the solution based on the RL and evolutionary
dynamics in the MFG. The simulation results and performance
evaluation are shown in Section V. Finally, the conclusion
remarks are made in Section VL

II. RELATED WORKS
A. Cooperative Multiaccess Edge Computing

Due to the highly distributed deployment, each MEC
server is endowed with the limited computational and storage
resources comparing to remote cloud centers. Thus, pro-
cessing a large amount of workload locally may result in
long queuing delay and degradation in QoS. To solve this
issue, cooperation among MEC servers to jointly process the
tasks is proposed to improve service efficiency. A strategy of
clustering servers for cooperative computing was developed
in [14] by modeling as a cooperative game. Ning et al. [15]
proposed an iterative heuristic MEC resources allocation algo-
rithm to solve the mixed-integer linear programming problem.
Liu et al. [16] implemented a cooperative game-based schedul-
ing method COOPER-SCHED to guarantee the expected
deadline. Wang et al. [17], [18] proposed the resource alloca-
tion strategy for cellular users. Moreover, a socially motivated
cooperative MEC framework was developed where the graph
model was related to the social relationship among the devices
in [19], while Li et al. [20] put forward a novel method to
optimize the offloading decision and computational resources
allocation based on the DRL. However, most existing works
offer solutions based on optimization methods. These methods
can tackle the stage-based problem very well, which means
they can solve the task placement problem in a fixed time
period. When the number of users is large, this approach
becomes complicated and time consuming. That limits the
application of the above methods in dynamic communication
environments. Although pure RL frameworks are suitable for
dynamic environments, they still face the problems of unstable
training and difficulty in convergence.

B. Deep Reinforcement Learning With Game Theory

RL, as a type of machine learning methods, can efficiently
solve the model-free MDP problem. It has been applied in sev-
eral applications as its good performance recently. Different
from the pure RL problem, some scholars have opened up a
new way for the development of the RL, jointly considering
RL and game theory. Littman [21] described a Q-learning-like
algorithm for finding optimal policies in two-player zero-sum
stochastic games. Furthermore, Hu and Wellman [22], [23]
proposed a general-sum case in stochastic games by learn-
ing a Nash Q-value. Moreover, the n-agent general sum game
can be transformed into a zero-sum game of two agents by
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applying the Friend-or-Foe Q-Learning [24] solution, while
Bowling and Veloso [25] applied the dynamic learning rate to
speed up the convergence.

With the rapid development of the MFG [9], [26], some
works focus on the integration of the MFG and the RL very
recently. Yang et al. [12] converted the MFG problem to a sin-
gle agent MDP scheme and employed the inverse RL approach
to solve it. Yang et al. [13] proposed a new mean field Q-value
as an estimation of the optimal Q-value and analyzed the
convergence to the Nash equilibrium, and Li ef al. [27] also
applied mean field Q-value to the multicritic one-actor network
framework. A method for calculating the optimal strategy in a
multiagent system is proposed in [28], which can be applied
to a case where the number of agents is extremely large. This
article follows the same direction with [12] and [23], we estab-
lish the relationship between the MFG and the RL, and find
the optimal policy for each stage in the RL. Inspired by the
Nash Q-value defined in [23], we consider the MFG problem
formulation and define the MFG-Q. Moreover, different from
the framework proposed in [12], we consider the specific MFG
solution to guide the learning process, rather than just estab-
lishing the MFG model and applying the pure RL solution.
We propose an MFG-Q as the estimation of the optimal Q-
value, which can be gained according to the solution in the
MEFG problem.

We consider the task placement problem in the coopera-
tive MEC by applying the RL approach with the guidance
of MFG. Different from the existing solutions listed above,
our method does not increase the computational complexity
in the case of an extremely large number of users compared
to the traditional optimization methods. Moreover, after the
agent learned the MEC environment, the task placement deci-
sions can be obtained very quickly, rather than doing complex
calculations each time due to different user distributions.

III. TASK PLACEMENT SYSTEM MODEL

In this section, we establish the system model of the task
placement problem in the cooperative MEC. Due to the lim-
ited and unbalanced distribution for computational resources
of MEC servers, the tasks that end users upload to the MEC
servers need to be reassigned and scheduled between the MEC
servers to improve the system performance and meet user
needs.

A. Task Placement Problem Formulation

Consider a basic cooperative MEC system which consists
of multiple end users and multiple MEC servers, and all of the
end users (e.g., smartphones, laptops, and Internet of Vehicles)
are covered by MEC servers (e.g., small base stations and
wireless access points) at their current locations, as shown in
Fig. 1. End users have their tasks to deal with, and they will
upload the tasks to the MEC server for executing over wireless
communication. After completing the tasks, the servers will
return the results of the tasks to the end users. Once a user’s
task is uploaded, the task may be placed to be executed on
the current server or an adjacent server by the guidance of the
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Fig. 1. Cooperative MEC.

cloud server, which means the task can be transferred among
the MEC servers.

We consider a scenario consisting of the number of D(j €
D = 1,2,...,D) MEC servers and the number of U(i €
U=1,2,...,U) end users covered by servers. Each server is
modeled by M /M /1 queue. We assume that each user has only
one task, so the index of the user equals the index of the task.
Different users can run different applications, and different
applications may contain different amounts of computations.
Furthermore, each task can only be run on one server at one
time. In this case, the computational generation rate for user
i is defined as A;, which means that user i generates A; com-
putation units (CPU cycles) per second. Assume that all of
the users are generating the number of computations accord-
ing to a Poisson process with the same mean rate A. Thus, if
the task of user i is executed in MEC server j, the expected
service delay in server j can be defined as

t : (1

T = 2L gk
where p; is the service rate of MEC server j, and x; ; is defined
to describe the connection situation between user i and server
J. If the task of user i is executed in server j, x;; = 1; oth-
erwise, it is set to be 0. The time consumption #; contains
both the waiting and execution delay. The denominator is the
stable processing speed (the amount of computations executed
per second), i.e., the frequency for server j. We can find that
the processing speed (frequency) decreases as the tasks load
increasing in the server.

Accordingly, the expected energy consumption for the user’s
task executed in server j is

& = 15(1)° 2)

where «; is defined as the effective capacitance coeffi-
cient that depends on the chip architecture at the MEC
server. Due to the different computational capacity and CPU
architectures of different MEC servers, service rate w and
effective capacitance coefficient « are different for each
MEC server.

Our goal is to reduce the service delay of the entire system
by properly placing the servers that handle users’ tasks. In the
meantime, we do not want to sacrifice too much energy while
reducing latency. Therefore, the balance factor ¢ is introduced,
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and the cost function of users in each server can be defined as
li =1+ e 3)

¢ is a factor to balance the two components in the cost
function, and e; can be considered as a penalty. Thus, we
have the cost function of the system, which can be defined as
the expected service delay and energy consumption per user.
We try to reduce the average service delay and do not want
to increase too much energy consumption during the process.
Therefore, the cost function can be described as

1 D U
L:EZZXI'J)LU?
j=1 i=1
1 &L Xijh 1 Y
- L +—¢ wjxi jhi (147)
U;;:MJ—ZZ-U—M:]M U ];;/ ijhi(
D - D
1 N1
= — =+ —C KiN;A (L
U]_ZII"L]_I\]])" j_zl ) (])
D ;, D 5
= §ji——— + sikcid ()", “4)
;g; S — N 4';?; ikir (1)

U is the number of end users in the system and N is the
number of users whose tasks are executed in server j. s; is
the proportion of tasks in server j, which is equal to N;/U.
Our object is to minimize the cost function L by scheduling
the user’s pending task on different servers with the following
constraints. The minimization problem can be formulated as

mm L= Zs] +§ZSJK] ,u] (@)

s.t. A; > 0 VieU (6)
U
> xijhi < VjeD. (7)
i=1

B. Mean Field Game on Graph

The MFG theory can be efficiently applied to the prob-
lems where there are a large number of players or agents.
More specifically, it can reduce the computational complex-
ity of the problem, especially, when the number of players
is extremely large compared with the traditional game the-
ory framework, such as the classical evolutionary game or
Nash noncooperative game. The single player can update its
strategy through interacting with the collective behavior (i.e.,
mean field) of other players in the game. Since the MEC can
be implemented by a large number of users or tasks in which
the individual user or task can have an impact on the whole
system, we propose the MFG to formulate the task placement
problem as described in Section III-A in the cooperative MEC.
The detailed presentation of MFG on the graph is shown as
follows.

Each user is an individual agent in the MFG. Assume that
all of the MEC servers make up a graph, and the tasks can be
scheduled to the adjacent MEC servers from the current server
in one scheduling step. Let G(V, £) be a strategy graph. In the
strategy graph, the vertex set V = {1,2, ..., D} represents all
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possible states (MEC servers in Section III-A) of the users,
which means each task can be allocated to D different servers;
the edge set £ consists of all possible transition paths between
servers [the task can be scheduled from servers m to n only if
(m, n) € £]. For each vertex m, we define the possible trans-
action situation as V,, := {n: (n, m) € £}. By considering the
current vertex itself, we have V,, := V,, U {m}. This means
the task can be placed to the servers n € V,, on the next time
step if the current server is m. Let s, be the proportion of
users in state m, i.e., the proportion of users who are assigned
to run the task in server m. Additionally, s :== (s1, 52, ..., Sp)
is same as the proportion s in (5). According to the optimal
strategy (transition probability) found by MFG, the task dis-
tribution s will change to minimize cost L. In this way, the
major components of MFG on the graph can be defined as
follows.

1) Population Distribution s': s', represents the fraction of
users whose tasks are executed on MEC server m at time
step t.

2) Transition Probability a': a',, is the probability that the
task in server m is transferred to server n for execu-
tion at time #. Furthermore, a, is the action of users in
server m. da,;, is equal to O if servers m and n are not
connected. The forward Fokker—Planck (FPK) equation
for each server n can be defined as

sih=" dhst,. ®)

meV,

3) Reward rp(s', d,) = — Znefm a . rmn(s’, a.,): This is
the instant reward received by the users whose tasks are
executed on servers m with population distribution s* and
choose action aﬁn. The reward r;,;, can be defined as the
negative of the average cost for users whose tasks are
placed from server m to n at time ¢ according to (3), and
rn can be seen as the negative of the expected cost for
the users in server m. Moreover, the reward r of all the
users in the system is the negative of the cost function
—L as shown in (5) at time t.

4) Value Function V': The value function represents
expected cumulative rewards at time ¢. The value func-
tion of each server m is defined as follows, which is also
the backward Hamilton—Jacobi—Bellman (HJB) equation
in MFG:

t
szmax rms a,
al

t+1
+ D GV,

m
neVu

+ Y Vit 1@

= max E amnr,,m s, a
n neVy,

nEVm

According to the major components shown above, the Nash
equilibrium can be obtained as the solution of our MFG on
the graph.

Definition 1: In the above description, the Nash equilibrium
can be defined as follows with the optimal action a*:

~L(s.a") = ~L(s. A(d*))
L(s,a*) <

L(s. A(a¥)).

(10)
(1)
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A(a*) is the action space of all possible actions except
optimal action a*. This means at distribution s, the rewards of
all users (cost L) with optimal action a* cannot be decreased
by changing to other actions a* € A. The solution of this MFG
is to find the optimal action at each step, which is satisfied
with FPK (8) and HIB (9).

C. Mean Field Model to Markov Decision Process

In this section, we prove that the above MFG problem on
the graph can be converted to the single-agent MDP. State
trajectory achieved by a series of actions in the MDP is in
accordance with the state dynamics in the MFG, that is, FPK
equation in (8). This can lead to the conclusion that the MDP
and the MFG have the same goal, and solving the above MFG
is equivalent to find the optimal solution for the MDP. For
this MFG on the graph, it can be changed to an RL problem
that fits within the Markov properties. It is important to note
that in the above MFG problem, the generic users obtain their
optimal strategy with the information of population density.
Therefore, it can be converted to a single-agent RL problem,
which means our proposed task placement system is a central
assisted. We will prove that the above MFG problem can be
converted to a single-agent RL model in the following parts
of this section. The definition of the RL problem is given as
follows.

1) State s' € S: The distribution of all the users at time ¢

st = (s’l,stz, s’D)
D is the number of MEC servers.

2) Action a' € A: The transaction probability at time 7.
The action is the proportion of the users whose tasks in
the current server switching to other servers (include the
current server itself) at the next moment. It can represent
the flow of tasks among the servers

12)

t

a :(atl,atz,..., (13)

ay).
There will be N strategies in each action at time 7. We
redefine the index of each strategy for a more convenient
way to explain the physical meaning of the action. It is
related to the shape of the graph and the connection rela-
tionship between the servers. Specifically, N is equal to
the number of undirected connection paths (edges) in the
graph. For instance, if D servers are linearly arranged,
which means each server has two adjacent servers. In
this case, N is equal to D — 1, i.e., there are N kinds of
connections (edges) in our graph.

3) Reward r(s', a’): It is the reward received by all the users
with the state s and action a’, which is equal to the neg-
ative of the cost —L at time ¢. Our goal is to maximize
the reward, that is, minimize the cost L

D
! t
— E S E amnrmn(s

m=1 neVy

L) =—L'. (14)

We now define V*(s) as the weighted sum of all the value
functions defined in MFG for the servers. Similar to [12], we
show that it is the value function of the above MDP problem,
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which will be satisfied with the Bellman optimally equation.
Once V*(s") can be proved to satisfy the Bellman optimally
equation, we can say that the proposed MFG problem can be
converted to the above single-agent MDP. The proof can be
described as follows:

15)

D

V* (s’) = Z stV
=1
D

= st max Z amnrm,, , m Z amnV,'1+l
m=1 neVm, neV,

(16)

D D D
1

= n;e}x{Zsinrm )+ >0 d,s, Vit } (17)
m=1 m=1 n=1

= max{r(s a) + Z "HVIH} (18)

= max{ ( ) + V*( H'l)} (19)

Ll

Therefore, from the above proof, V*(s') satisfies the
Bellman optimally equation for the single-agent MDP problem
defined in this section. It should be noted that the above MFG
on the graph model cannot be converted to a multiagent MDP.
In multiagent MDP, the value function for one agent is defined
only in terms of itself, but the value function for the agent in
an MFG explicitly depends on the value functions of other
agents [12]. As a result, the state dynamics with the optimal
policy solved by the MDP is equivalent to the state trajectory
obtained by the Nash equilibrium in MFG. More specifically,
at state s, the actions a under the optimal policy in the MDP are
the same as the optimal policy a* with the Nash equilibrium
in the MFG.

IV. MEAN FIELD GAME GUIDED DEEP REINFORCEMENT
LEARNING APPROACH

In this section, an approach combining the RL and the MFG
is proposed. More specifically, the RL approach that does not
need to know the state transition function is given to solve the
MDP. Then, MFG-Q that can be obtained by leveraging the
evolutionary dynamics in the MFG is defined to solve the task
placement problem in the cooperative MEC.

A. Reinforcement Learning With Nash Equilibrium

First, the general RL problems with the Nash equilibrium in
game theory are introduced. Subsequently, MFG-Q is defined
based on the Nash equilibrium strategies gained in MFG.

In the RL or the MDP problem, with the policy m= :=
{al, a, ..., d }, the agent will take action « in state s at each
time step ¢. For one stage, policy 7 is a probability of choos-
ing an action, which can be represented as m(als) € [0, 1].
After taking the action a, the agent will move to the next state
s" and receive the reward r. The agent’s object is to maximize
the state value function, which can be written as the sum of
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the expected discounted rewards

(0.¢]
Vz(s) = Z y’E[rt|7t, S0 = s] (20)
=0
where y € (0, 1] is the discount factor, and sg is the initial
state. It represents the value of state s under the policy .
For the Q-learning algorithm, the state—action value (Q-
value) can be defined as the value function, which follows
the Bellman equation. The optimal Q-value which is the sum
of the expected discounted reward by following the optimal
policy 7*, which can be represented as:

Q*(s,a) = r(s,a) + VES/[VN* (s/)]

where r(s, a) is the reward for taking action a at state s and
s" is the state of the next time step. The value function can be
expressed as the expected of the Q-values in (21), which is

Va(s) = EalQn (s, @], Vir(s) = Eg[Q* (s, @)].  (22)

The optimal policy 7* can be found by applying value-
based frameworks [such as Q-learning and deep Q-network
(DQN)] or policy-based frameworks (such as the actor—critic
approach) if we know the optimal Q-value Q*(s, a). The def-
inition of optimal Q-value establishes a relationship between
the current time step and the next time step. Moreover, the
action is the deterministic policy not the stochastic policy in
the O-learning algorithm. Hence, the optimal state value can be
redefined as Vi=(s) = max, Q(s, a). According to this prop-
erty, Q-learning initializes its Q-value, and update the Q-value
by the following equation:

21

0*(s,a) = (1 — )0/ (s, a) + a[r’ + y max o'(s', a’):|

= Q'(s,a) + oz[r’ + y max 0'(s',d) — 0'(s, a)i|
(23)

where « is the learning rate. ' + y max, Q'(s', @) is known
as the temporal difference (TD) target, where max, Q'(s’, a’)
is called the target Q-value. It takes the difference between
the actual and predicted values, and we call it the TD error.
Moreover, it can be proved that the Q-value will converge to
the optimal Q-value if all the states and actions can be visited
infinitely.

Combining game theory with the RL framework, the
optimal policy 7* can be seen as the Nash equilibrium in
game theory. Therefore, the Nash equilibrium is the policies
*, which can be defined as

Vax(s) = Vi (s) for all # € T1 24)

where IT is the set of all possible policy in state s.

By considering the Nash equilibrium in game theory.
Hu and Wellman [22] proposed a new optimal Q-value estima-
tion method, where they replace the target Q-value with Nash
equilibrium solved by the game theory at each stage. This
update estimation is called Nash Q-value, which is defined by
the following equation:

Nash Q*(s, a) = r(s, a) + yEy[Nash Vo« (s')].  (25)
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The optimal policy 7* is the Nash equilibrium which can be
gained through the game theory solution. Hu et al. [22] also
proved the convergence of the Q-value to an equilibrium Nash
Q-value.

Similar to the Nash Q-value, we define the MFG-Q
OMmr(s, @) which can be obtained by solving the MFG
problem. We have both the MFG and RL approach in our
scheme. In the learning process, the agent takes the action a,
gets the reward r and moves to the new state s'. After that,
the mean field Nash equilibrium 7*(s’) is calculated accord-
ing to the MFG for computing the mean field guided state
value (Vmg(s")) in the RL approach. Based on this mean field
guided state value (Vpr(s')), the learning agent will select the
action according to the RL approach. Thus, the new update
rule which considers the mean field Nash equilibrium for the
Q-value and TD error can be defined as

0 (s,a) = (1 —)Q' (s, @) + [ + ¥y Vmr'(s')] (26)

where
VMF (S/) = Ea/ [TL’*QMF (S/, a’)]

= Zn*(a/ls’)QMp(s/, d).

In each time step, the agent will update the Q-value accord-
ing to (26) and (28). In this way, the key target of the RL
problem is how to find the optimal policy 7*, which can be
seen as the learning guide of the agent. Since optimal policy
7 is the mean field equilibrium point in the game theory, we
will provide a solution of how to get this equilibrium in the
next section.

Like (21) and (25), we define the MFG-Q QOwmr(s, a) in the
form of

27)
(28)

OME(s, a) = r(s,a) + )/ES/[VMF(S/)].

It is also an improvement of the estimation for the optimal
Q-value. Different from the general RL problem where the
estimation of the optimal Q-value is gained according to the
existing action patterns, our MFG-Q is gained by assuming the
equilibrium the agent can reach with the learning environment.
By the guidance obtained from the MFG, the direction for
updating the Q-value is more clear. Therefore, the convergence
rates of the learning process will be significantly improved.
More specifically, our MFG-Q is more suitable for the prob-
lems that follow the mean field property, i.e., the model can
be formulated with a large number of populations, such as the
task placement in this article.

(29)

B. Mean Field Evolutionary Dynamics Approach

Section IV-A provides the framework for the DRL solution.
Moreover, it needs the Nash equilibrium obtained by the MFG
solution. Thus, the problem is converted to find the optimal
policy based on the MFG solution for the RL in each stage. In
this section, based on the problem formulation in Section III-B,
we leverage evolutionary dynamics in the MFG to find the
Nash equilibrium.

In Section III-B, each user’s task will be assigned to one
of the servers to execute. Thus, the population distribution,
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which is the strategy of users in the MFG can be defined as

D
PO = ()l s=1 =0 jeD
j=1

(30)

where s; is the proportion of users’ tasks placed in server j.
Based on the knowledge of the population game and the MFG,
the mean field evolutionary dynamics (MFED) [29] is defined
by the following theorem.

Theorem 1: Suppose that a population MFG on the graph
GV, E), the constant B > 0 and the payoff function
F : P(S) — R”" are continuous. The evolutionary dynamics
is given by

ds; 1
@ = 2 796 — Fa) + plogsn — log) ]
neV;
1
=" s[Fa®) = F(9) + Bllogs — logs,)]* 3
nev;

where 8 > 0 is the strength of uncertainty, [ - ]* = max{-, 0}.
Same as the definition in Section III-B, n is the index of the
neighboring servers of server j. d; = v, 1 is the number of
the neighboring servers, which represents the degree of graph
on vertex j. It can be seen as the FPK equation in MFG, which
is also the dynamics of the users’ distribution.

Considering the scenario of our task placement in the coop-
erative MEC problem, we regard the potential as L which is
given in (5). Accordingly, the payoff function F of the potential
L can be defined as
My 5+ cii(wy)’ VjeD.

F(j) =
(/Lj — SjU)\,

(32)

Chow et al. [29] proved that minimizing each player’s pay-
off is equivalent to minimizing the potential. As the MFG
model described in Section III-B. Our goal is to achieve a
better state of user distribution s by finding an optimal action
(transaction probability a), which can minimize the cost L. To
obtain the optimal distribution s, a gradient matrix A € RP*P
is constructed to identify the action a, which helps the users
make up the new distribution.

We consider the scenario that MEC servers are arranged on
the side of the road. In this situation, the MEC servers are
linearly arranged, i.e., the tasks in the current server can only
be placed to the neighboring two servers in the next time step.
Thus, our strategy graph is a one-dimension graph, and each
vertex node (server) only has two edges (connection relation-
ship) to the adjacent servers. In each time step, the distribution
of users will change based on the task placement in adjacent
servers. We define that the gradient matrix A € RP*P is a
population flow matrix, and Adt represents the proportion of
the flows, which can be seen as the action a as described in
Section III-B, where dt is the size of the step. For example,
amn = A(m,n)dt = p means that p percent of the tasks in
server m will be placed to server n according to our strategy.

More specifically, through Theorem 1, gradient matrix A €
RP*P will be computed according to the following equa-
tions. Due to server 1 and server D are only connected to
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state action

Fig. 2. Framework of the proposed MFG-guided DRL approach.

one neighboring server, the gradients related to them can be
given as
AL = —[F(1) — F)I*
A(1,2) =[F2) = F()I*
A(D, D) = —[F(D) — F(D — 1)]*

AD,D—1)=[F(D - 1) — F(D)]*. (33)

For the other servers j : {j € D : j # 1, D}, they have connec-
tions to server j — 1 and j+ 1. Therefore, the related gradients
can be computed as

AGH) = —[FG) —FG+ D] = [FG) —FG—D]"
AGj+ D =[FGi+1D-F@]
AGj=D=[FG—1)—F{]".

During iteration 7, the new distribution s’ is updated by
distribution s'~! from the previous iteration and the gradient
matrix A in the following way:

(34)

st=s"1 4 Al ar. (35)

This solution is called the MFED solution. Back to our RL
problem described in Section IV-A, the MFG-Q Omrp(s, a) can
be obtained from this MFG solution. In (27), s’ is the new
distribution we get, and o’ can be represented as A'dr.

C. Implementation and Overall Architecture

From the perspective of the RL approach, due to the high
dimension of action space (the task placement strategies are
unlimited) and state space (users’ distribution status are unlim-
ited) for our task placement in the cooperative MEC, the DRL
framework is considered to solve the dimensional explosion
problem. We exploit a new DRL approach with the deep deter-
ministic policy gradient (DDPG) [30] approach, an actor—critic
scheme as our foundation. The framework of our MFG-guided
DRL approach is shown in Fig. 2. In one state, the servers
interact with the MEC environment (transferring the users’
tasks among the servers) and get the instant reward. After
that, the critic network calculates the TD error according to
the instant reward and the optimal action through the MFG
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solution. The MFG solution can also be obtained from the
existing MEC environment. This TD error guides the actor
network to update its parameters and generate a new action.

In the critic network, we apply the neural network with the
parameter w as the function approximator to represent the Q-
value. The updated rule in (26) can be reformulated with the
parameter w. Similar to the DQN [31], the Loss function of
the critic network with the MFG-Q can be defined as

L=(y—0"G.a) (36)

where y = r(s, a) + yVMp“’/ (s') is the target mean field value
with the parameter «’. We can minimize the Loss function by
applying the gradient-based optimization method, i.e., mini-
batch stochastic gradient descent.

Different from the value-based framework, we can obtain
the policy from the actor network €2(s) with parameter 6
directly. The target of the actor network is to find the pol-
icy which can maximize the objective function J. The actor
network is trained by using sampled policy gradient, and the
gradient can be calculated as

Vo (Q) = VaQ? (s, @)la=a(s) Vo R (5). (37)

Different from DDPG, we only have one actor network, which
means we do not have the target actor network. We do not need
the target action from the target actor network to update the
critic network. We directly apply the TD error with the Nash
equilibrium solved by the MFG as described in (26) to update
the actor and critic networks.

The pseudocode for our MFG-guided DRL solution is man-
ifested in Algorithm 1. First, the users’ population interacts
with the MEC environment from step 1 to step 6. Moreover,
we introduce the noise process N to balance the exploration
and explanation, and  is the Gaussian noise. In step 9, we set
the label of critic network according to (28) with the parameter
o'. Furthermore, the optimal policy for calculating label can be
gained by solving the (35), which is related to the solution of
the MFG. In this situation, different from the DDPG method,
the process of calculating TD error in our approach contains
the contribution of MFG as shown in Fig. 2. Parameters updat-
ing for the critic and actor network are shown in steps 10 and
11. Finally, the parameters of the target network Q" are updated
by copying from the critic network Q according to a “soft”
way [30]. 7 is the soft parameter, and this can make the target
value change slowly.

V. PERFORMANCE EVALUATION

To ascertain the performance of our proposed method, we
perform the following comprehensive simulations. We con-
sider the problem that MEC servers are linearly arranged, and
each server is connected to two adjacent servers. This problem
is very applicable to the scene of the base station arranged
along the road. Accordingly, we obtain the real-world user dis-
tribution along the road from 4G eNBs data set of the Internet
service provider. The data set contains network traffic data
collected from 3072 4G eNBs in a southern city of China in
2015.
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Algorithm 1 MFG-Guided DRL Algorithm
Initialization: Randomly initialize the critic network Q% (s, a)
and actor network Q7(s) with parameter w and 6 sep-
arately. Initialize the replay memory M and set the
parameters of target network Q' with the parameter o’
by copying from Q.
Output: the selected action for all of the tasks.
1: for episode =1, ..., N do
2 Initialize the noise process N for action exploration.
3: The users’ distribution at the state sy.
4
5

for r=1,..,T do
Select action a; = Q(s") + N; according to the
actor network and the noise process.

6: The population executes the action d’, gets the
immediate reward /, and observes the next state s'1.
7: Store transition (s*, a’, 7/, s'*!) in memory.

Randomly sample mini-batch size M of transitions
(sj, aj, rj, Si+1) in memory.

9: Set Q value as y; = rj + yVMp‘”/(s,'H) by (28),
where the optimal policy can be obtained by (35).
10 Update the Critic network by minimizing the Loss

function L = Al/[ Z/(yj - 0°(s;, aj))2 according to Adam
Algorithm.

11: Update the actor network by sampled policy gra-
dient with VyJ(2) = % Zj V.0% (s, a)|a:Q(sj)V9 Qf (Sj).

12: Update the parameter ' in target networks Q' in
“soft" way: o < tw+ (1 — 1)’

13: end for

14: end for

We select one month period and obtain the users’ dis-
tribution at different times from the data set as our initial
users’ distributions. At this time, the performance of the task
placement with the initial users distribution can be seen as
the baseline. All of the users are generating the computa-
tions according to the Poisson process with the mean rate
% = 3 x 107 cycle. Assume that there are around 1 x 10*
users, and we place ten MEC servers along the road for ser-
vice where the service rate for each MEC server belongs to
© € (300,400) GHz. We set the effective capacitance coef-
ficient «;j belongs to (0.8, 1.2) (10720 J.s2/cycle®) due to the
different CPU architectures of servers. In our implementation,
we adopt the fully connected neural networks with two hid-
den layers for our actor and critic networks, where each hidden
layer has 128 nodes. For the neural network training process,
we set the experience replay memory size as 2000, the batch
size as 32, and the learning rate as 0.001. For the RL part, dis-
count factor y is 0.9 and soft parameter t is 0.01. Particularly,
all of the parameters of the learning approach are got from
parameter tuning.

Our goal is to reduce the average service delay. In the
process of reducing the delay, the energy consumption will
increase. Therefore, we want to ensure that energy consump-
tion does not increase too much according to our approach.
The balance factor ¢ in (5) is adjusted to achieve this goal. To
choose the best value of the balance factor ¢, we evaluate the
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Fig. 3. Adjust balance factor ¢. (a) Service delay reduction. (b) Energy
consumption enhancing.

performance during changing the different values of ¢ under a
fixed-time user initial distribution. We set ¢ as 1,2, 3x 1078 to
ensure that delay and energy are on the same scale. To avoid
the high variance of the learning process, we take five experi-
ments and the average evaluation results are shown in Fig. 3.
Each step represents one iteration. We find that when ¢ is
equal to 2, the service delay in Fig. 3(a) reduces significantly,
and the energy consumption in Fig. 3(b) does not increase too
much. When ¢ is equal to 1, the delay reduction 19.16% is
very similar to 18.75% when ¢ = 2, but the increase in energy
consumption is huge, and this imbalance also happens when
¢ = 3. Therefore, we select ¢ = 2 for further evaluation.

We compare our MFG-guided DRL approach with other
approaches to verify the effectiveness of our proposed scheme.
To facilitate display performance, we temporarily ignore
the penalty term “energy consumption” and only show the
performance of service delay. The evaluation results are shown
in Fig. 4. We mainly focus on the service delay reduction.
Comparing to the pure DRL method DDPG and pure MFG
solution [32] MFED, our approach (MFRL) has faster conver-
gence rates and less decision-making delay. We show four
stages of the training process in Fig. 4, that is, at time
step (0, 1.5,2,2.5) x 107, we have the new user distribution
to do the task placement. Different from the DDPG which
is not stable and cannot converge to the optimal solution
(MFED solution), our MFRL approach converges quickly and
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approaches the optimal value easily. Even though at the ini-
tial stage of the training, our approach still converges quickly,
which can speed up the learning process effectively. Besides,
the MFED (or other optimization approaches) can only solve
the problem when the initial distribution is certain. As shown
by the yellow line in Fig. 4, MFED needs to resolve the
problem from scratch when the new distribution is coming.
However, our approach has the memory of the existing com-
munication environment. When the stage comes to the new
distribution, the learning agent can make the decision quickly,
and will not lead to intolerable decision-making delay. At the
same time, our MFRL approach can converge to the point
which is very similar to the MFED solution.

One of our main contributions is that the proposed MFRL
approach can converge faster and more stable than the pure
DRL approach DDPG. We implement these two approaches
in the dynamic environments, which means we provide the
task placement strategy for different user distributions over
time, and the comparison results are shown in Fig. 5. Each
episode represents one new user distribution, and we train
1000 steps (iterations) for each episode. We take the exper-
iments ten times and the average service delay and variance
bound are shown in Fig. 5. We find that our proposed MFRL
approach can converge only after 50 episodes, but the DDPG
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TABLE I
COMPARISON OF SERVICE DELAY AND ENERGY CONSUMPTION

Initial DDPG MFRL MFED

Service Delay(us) 123.53 100.32 97.42 97.15
RRD - 18.79% | 21.14% | 21.35%
Energy Cost (1037]) 149.83 179.21 176.03 172.12
IRE - 19.61% | 17.49% | 14.88%
Reward -153.50 | -136.16 | -132.62 | -131.57

IRR - 11.30% | 13.60% | 14.29%

method does not converge until after 100 episodes. Moreover,
the variance bound of MFRL is decreasing with the increasing
of the episodes, and the variance is almost zero after the con-
vergence. Thus, comparing to the DDPG, the proposed MFRL
can achieve a lower service delay with a very small variance.
This means our training process is stable and effective.

We implement our MFG-guided DRL approach for the
dynamic MEC environment. We calculate the average results,
and the comparison is shown in Table I. The reward is the
integration of service delay and energy consumption accord-
ing to (5) with ¢ = 2. “RRD” represents the “reduction rate of
delay,” “IRE” represents the “improvement rate of energy,” and
“IRR” represents the “improvement rate of reward.” “Initial”
can be seen as the baseline, that is, tasks have not been
assigned among servers. By comparing the service delay
reduction, we find that our MFRL approach has much delay
reduction than the DDPG approach, and the reduction rate
is very close to the optimal results (MFED results). More
specifically, compared to the initial state, our proposed MFRL
approach reduces the service delay by 21.14%, and it is
very close to the MFED results (21.35%). Furthermore, when
comparing the improvement of reward, our proposed MFRL
method (13.60%) is much better than the DDPG method
(11.30%), and it is very close to the MFED method (14.29%).
Therefore, our proposed MFRL approach can achieve a similar
performance as the optimal MFED approach, and adapt to the
dynamic user distribution environment at the same time. When
compared with the DDPG approach, service delay reduces
more and energy consumption increases less in our proposed
MFRL approach.

In summary, our MFG-guided DRL approach can sig-
nificantly reduce the average service delay for cooperative
MEC. Besides, both the learning performance and conver-
gence rates of ours are better than the pure DRL approach.
At the same time, the MEC server can make timely task
placement decisions based on our approach. This can avoid
the unbearable decision-making delay caused by the MFG
(optimization) method, which needs to resolve the problem
when the distribution of the tasks changing.

VI. CONCLUSION

To reduce the service delay in the cooperative MEC, we
have developed an MFG-guided DRL approach to do the
task placement. We have ensured that the MFG and the DRL
approach had the common objective. Furthermore, based on
the mean field guided Q-value (MFG-Q) obtained from the
Nash equilibrium in the MFG, the learning directions were
clearer of our approach compared to the pure DRL approach.
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The multiple simulations have shown that our MFG-guided
DRL approach was able to reduce service delay by more than
20% and had a significant performance improvement over pure
MEG or pure DRL approach. On the one hand, in comparison
with the pure DRL approach, apart from reducing much ser-
vice delay, our approach was more stable and had the faster
convergence rates during learning. On the other hand, different
from the MFG where we need to resolve the problem for each
tasks distribution, our approach could make task placement
decisions directly when training is enough. Consequently, we
could make the task placement decision timely.
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