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Joint Optimization Strategy of Computation
Offloading and Resource Allocation in Multi-Access
Edge Computing Environment

Huilin Li"¥, Haitao Xu

Abstract—In order to help user terminal devices (UTDs) ef-
ficiently handle computation-intensive and time-delay sensitive
computing task, multi-access edge computing (MEC) has been
proposed. However, due to the differences among the performance
of UTDs, and the resource limitation of MEC servers, the joint
optimization between the offloading decisions of UTDs and the
allocation of resources in network is still a focus of the research.
This paper studies the joint computation offloading and resource
allocation strategy in multi-user and multi-server scenarios. Firstly,
we formulate the joint optimization problem of computation of-
floading and resource allocation as a mixed integer nonlinear pro-
gramming (MINP) problem to minimize the energy consumption
of UTDs, by constraining the offloading decision, channel selection,
power allocation and resource allocation. Secondly, we propose a
two-stage heuristic optimization algorithm based on genetic algo-
rithms, which divides the joint optimization problem of compu-
tation offloading and resource allocation in two stages. Based on
the coupling relationship between the offloading decision and the
resource allocation scheme, we iteratively update the solution of
the problem, and finally obtain the stable convergence solution of
the optimization problem. Finally, the proposed algorithm is com-
pared with other classical methods to prove the effectiveness.

Index Terms—Computation offloading, resource allocation,
MEC, MINP, genetic algorithm.

I. INTRODUCTION

ITH the rapid development of communication technol-
W ogy, the way of communication is undergoing great
changes. On the one hand, a series of brand-new communication
concepts, such as Internet of everything and mass machine
communication, have been put forward. Along with these new
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communication concepts came an influx of networking devices.
Smart phones, smart sensors, wearable smart devices and other
kinds of user terminal devices (UTDs) all need to be connected
to the network, and will undoubtedly have a huge impact on the
existing network [1]. On the other hand, a variety of new commu-
nication services are beginning to enter people’s daily life, such
as driverless technology, virtual reality technology, augmented
reality technology, natural language processing technology, and
so on [2], [3]. Different from the traditional communication
services, these coming technologies all require real-time and
rapid processing of a large amount of data generated by the
applications, and have relatively strict requirements on the time
delay performance [4]-[6]. However, due to the requirements for
mobility, most of the networking devices are lacking in terms of
physical size, battery power, and computing power [7]. There-
fore, it is still a huge challenge to execute the communication
and computation tasks perfectly on UTDs.

Multi-access edge computing (MEC) is considered as an
effective method to solve the limited resources problems in
UTDs [8]. In MEC environments, servers with certain comput-
ing capabilities are deployed on the edge of the network, which
are closer to the UTDs and can provide computing services for
the UTDs [9]-[11]. Meanwhile, UTDs can offload the compu-
tation tasks to the MEC servers to achieve better performance.
When the UTDs execute some computing tasks with a large
amount of calculation and strict delay limitations, they can
choose to offload the computing tasks to the MEC servers. In the
upload process, the UTDs only need to upload some necessary
parameters to the MEC servers for the computing tasks. After
the calculation process which is executed by the MEC servers,
the final results will be returned to the UTDs. In these way, the
idle resources of the network can be effectively used. Moreover,
the energy consumption of UTDs and the delay in executing
computing tasks are reduced, the quality of service (QoS) can
be improved.

However, the computing energy of MEC servers and the
computing resources in the MEC network are not unlimited,
which has caused some problems [12]. For UTDs, the purpose
of using MEC mainly includes two aspects: reducing the energy
consumption and reducing the task execution delay. In order
to achieve these two goals, offloading decisions of UTDs and
resources allocation in the network need to be jointly optimized.
The offloading decisions of UTDs solve the problem of whether
or not the UTDs perform computation offloading, and where to
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offload [13]. When the offloading decisions change, the energy
consumption and delay of the UTDs in executing computing
tasks also change. If a large number of UTDs offload computing
tasks to the same MEC server at the same time, there may
be interference problems among the UTDs. It also may lead
to increased task execution delay and poor quality of service
(QoS) [14]. In addition, although the MEC servers are located
at the edge of the network that is closer to the UTDs, the
distances between different UTDs and different MEC servers
are still different. If the offloading decisions of the UTDs are not
restricted, it may happen that the UTD selects a remote MEC
server for computation offloading, and the final performance is
not optimal. Furthermore, the transmission power and channel
selection of the UTDs, and the resources provided by the MEC
servers will also affect the performance [15]. When the trans-
mission power of the UTDs increases, although the information
transmission rate can be increased and the communication delay
can be reduced, it will cause the energy consumption of the
UTDs to increase. Therefore, how to balance the optimization
between energy consumption and time delay, and to formulate an
optimal offloading strategy and resource allocation strategy are
the key issues of research. Therefore, we need a joint optimiza-
tion strategy for computation offloading and resource allocation
in the MEC environment.

Unfortunately, the joint optimization problem for computa-
tion offloading and resource allocation in the MEC environment
is a mixed integer nonlinear programming (MINP) problem,
which is difficult to solve directly using the conventional mathe-
matical methods. The global optimal solution can be obtained by
using exhaustive methods, nevertheless, the time complexity is
too high to be accepted. Although many scholars have studied the
computation offloading strategy and resource allocation strategy
in the MEC environment, there is currently no universal solution
method with high popularity. Based on the above situation, this
paper proposes a two-stage heuristic optimization algorithm
based on the genetic algorithm called THOA, which decomposi-
tions the joint optimization problem of computation offloading
and resource allocation into two stages. The main work of this
paper is summarized as follows,

® We investigate a scenario of multiple users and multiple

servers in the MEC environment. Then we formulate the
joint optimization problem of computation offloading and
resource allocation as a MINP problem. The object of the
problem is to minimize the overall energy consumption
of the UTDs by constraining system variables such as
the UTDs’ offloading decisions, channel selection, power
allocation, and resource allocation, while the delay require-
ment of each UTD is satisfied.

¢ To solve the proposed MINP problem, this paper proposes

a two-stage heuristic optimization algorithm based on the
genetic algorithm, which decomposes the joint optimiza-
tion problem of computation offloading and resource al-
location into two stages. In the first stage, the genetic
algorithm is used to solve the offloading decisions of the
UTDs under the initial situations. In the second stage, the
allocation of computing resources is updated through a my-
opic optimization method based on the current offloading
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decision. After several iterations according to the coupling
relationship between offloading decision and resource al-
location, a stable convergent solution can be obtained.

e Extensive experiments have been carried out on specific
parameter settings. We compare the proposed algorithm
with other baseline methods, and numerical results show
that our scheme has a better performance. Furthermore,
the impact of changes in the communication environment
on UTDs’ offloading behavior and algorithm performance
have also been fully studied.

The remainder of the paper is organized as follows: Section II
introduces the related works. The system model and problem
formulation are given in Section III. Section IV provides the
approach for the proposed optimization problem, includes opti-
mization algorithm and complexity analysis. Simulation results
and discussions are given in Section V. Finally we conclude the
work in Section VL.

II. RELATED WORKS

At present, many experts and scholars have carried out de-
tailed research on computation offloading and resource alloca-
tion in MEC environments. From the original single-user, single-
server network to the current multi-user, multi-server network,
mobile edge computing technology is developing rapidly [16].
The related research work will be briefly introduced below.

Focusing on single-user MEC scenarios, [17] proposed an
adaptive classification framework to solve the problem of
whether UTDs execute computation offloading. To pursue the
ultra-low latency in 5G cellular networks, [18] proposed the
concept of the fog-radio access network (F-RAN) and provided
a cooperative task computing operation algorithm to solve the
problem of communication resource allocation and computing
task assignment. Based on the proposed algorithm, the ultra
low-latency services can be achieved by F-RAN via cooperative
task computing. With the continuous expansion of the network
scale, the research on multi-user and multi-server communica-
tion scenarios is also deepening. As an extension of the research
in [18], [19] utilized the F-RAN to achieve the ultra-low latency,
and proposed a latency-driven cooperative task computing algo-
rithm with one-for-all concept based on dynamic programming.
It is proved that the low latency services can be achieved by
the proposed cooperative task computing algorithm. [20] com-
prehensively considered the system energy consumption and
delay, and developed a multi-user, single-server computation
offloading and resource allocation strategy in the vehicular net-
work. In single-cell and multi-user scenarios, Bi and Zhang [21]
considered the energy supply of UTDs and jointly optimized
the computing mode and system time allocation of UTDs. For a
multi-cell environment with multiple small cells, a joint frame-
work for computation offloading and interference management
was proposed in [22]. However, this article does not take into
account the problem of different computing capabilities of UTDs
caused by the diversity of UTDs.

The optimization goals of computation offloading and re-
source allocation in the MEC environment mainly include en-
ergy consumption and delay. In order to minimize the energy
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consumption, a joint optimization strategy for computation
offloading, subcarrier allocation, and resource allocation was
proposed in [23]. Guo et al. [24] studied the energy-saving
offloading scheme of MEC systems and proposed a new op-
timization algorithm based on genetic algorithm and particle
swarm algorithm. In [25], the authors designed the algorithm
with time delay as part of the optimization goal. [26] optimized
the cost of computation offloading and content caching, and
maximized system utilization through convex optimization, but
only considered the case of one edge server. [27] aimed to
reduce the computation overhead of the offloading problem in
5G HetNets and proposed a game-theoretical offloading scheme
to reduce the energy consumption and the processing delay. Al-
though the proposed scheme can achieve offloading performance
when the number of computation tasks increase, the offloading
decision and the resource allocation were not considered jointly.
[28] studied the optimal task offloading and resource allocation
problem and proposed a bi-section search method to obtain the
optimal resource allocation. A reduced-complexity Gibbs Sam-
pling algorithm was proposed to obtain the optimal offloading
decisions. But the access selection problem were not studied in
the multi-server scenario.

Computing tasks can also be partially offloaded. [29] offered
an approach for computation offloading and considered fixed
CPU frequency and elastic CPU frequency two cases for the
UTDs. A SDR-based algorithm was utilized to find the optimal
solution. [30], [31] adopted the method of partial offloading,
which allows the UTDs to divide the computing task into two
parts and execute them at the local or MEC servers, respectively.
With the help of modern technology, [32] and [33] achieved
the goal of minimizing the weighted sum of offloading latency
and energy consumption by using deep reinforcement learning
methods. But the network model needs to be trained before the
algorithm is executed, which may take a long time. In [34], the
UTDs can offload computing tasks to multiple MEC servers,
which provides a new idea for solving the problem of insufficient
computing resources on the MEC server—collaborative offload-
ing. [35], [36] applied device to device (D2D) communication
technology to MEC networks, but only considered the single-
server scenario. [37] considered a multi-user, multi-server com-
munication scenario, and maximized the benefits of the system
through collaboration between MEC servers. Except from the
collaboration within the edge layer, edge layer devices can also
collaborate further with cloud layer devices. [38] proposed a
method that integrates fog and cloud computing. UTDs can
collaboratively offload a series of applications to nearby fog
nodes or cloud centers.

Different from the existing research work, this paper mainly
studies the problem of computation offloading and resource
allocation in multi-user, multi-server scenarios. The superior-
ities of this paper are as follows. Firstly, the communication
scenario studied in this article is multi-user and multi-server,
which is in line with the current communication environment of
mass intelligent terminal equipment and multiple base stations.
Secondly, we comprehensively analyze the interaction between
the offloading decision and resource allocation, and jointly op-
timized the two. Finally, the algorithm proposed in this paper
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Fig. 1. System Model.

divides the optimization problem into two parts to solve, which
greatly reduces the complexity of the algorithm, and can obtain
the stable convergent optimal solution of the problem in a short
time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The communication scenario studied in this paper is shown
in Fig. 1. Within a certain rectangular area, there are S MEC
servers and N UTDs. The MEC servers are evenly distributed in
the area, the set of which is denoted by S = {1,2,3,...,S}. The
coverage of each MEC server is assumed to include the entire
rectangular area. UTDs are randomly distributed in the rectan-
gular area, and is represented by a set N = {1,2,3,...,N}.
Each UTD has a pending computing task that can be executed
locally or offloaded to any MEC server. The offloading decisions
of the UTDs are represented by a matrix A = a,,,n € N, and
the values of element in matrix are as follows,

® , = 0, which means UTD n chooses to execute the com-

puting task locally.

® a, =s,s € .5, which indicates UTD n chooses to offload

the computing tasks to the MEC server for execution.

Due to different offloading behaviors of UTDs, there are two
execution model that will be described in detail in the following
subsection.

A. Local Computing

When choosing to execute the computing tasks locally, the
computing tasks of UTD n can be described by three items:
the amount of input data in bits, express as D,,, the number of
computer cycles required to calculate unit datain CPU cycles/bit,
denoted as C,,, and the maximum tolerance time, presented as
Tn- When a UTD executes the computing task locally, it needs
to allocate computing resources to the task, and the computing
capacity allocation matrix is denoted as F'L = {fl,,,n € N},
where fl,, represents the computing capacity of UTD in Hz.
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The time required for UTD to execute the computing task
locally is,
7l = DnCn.
R
The energy consumption of executing tasks locally depends

on the number of computer cycles required [39], which is given
as,

(D

E! = kofI2D,Cy, 2)

where ko > 0 is the effective capacitance coefficient.

B. MEC Server Computing

When the UTDs offload computing tasks to the MEC servers,
the UTDs need to send input parameters required for calculation
to the servers first. Then the MEC servers calculate tasks based
on the received data. After the calculation, the MEC servers
return the results to the UTDs. It is worth noting that the amount
of results data will be greatly reduced compared to the input
data. Hence, this article does not discuss the task execution time
and energy consumption during the results return phase. We only
analyzes the data transmission phase and task execution phase
under the MEC server computing situation.

1) Data Transmission Phase: Assuming that the data trans-
mission process between the UTDs and the MEC servers uses
orthogonal frequency division multiple access (OFDMA) tech-
nology, then the interference among the UTDs can be ignored.
Let K denote the total number of channels in the MEC envi-
ronment, and B denote the bandwidth. The channel selection of
the UTDs is represented by a matrix W = {w,,,n € N}, and
@, in the matrix represents the number of channels occupied by
UTD n. The transmission power matrix of the UTDs is denoted
by P = {pn,n € N}. Thus, the transmission rate can be given
by,

R, = Bw,log, (1 + gnpn) ,

o2

3)

where g,, is the channel gain, and o is the variance of Gaussian
white noise. Based on (3), the time delay during data transmis-
sion is denoted by,

D, D,,

o : “)

Tt’l“ — —
" R,  Bw,log, (1 + %)

Then the energy consumption during the data transmission
phase can be expressed as,

D,
pann log, (1 + %) '

Ey =paT = 5)

2) Task Execution Phase: It is assumed that the computing
capacity of each MEC server is the same, and is denoted by
F'. The computing capacity of each MEC server is evenly
distributed to all UTDs that select this server. In this case, the
execution time of computing task is as follow,

D, C,

ere __
Tn - I )
n

(6)
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where F), represents the computing resource obtained by the
UTD n. Since the energy consumption during the task execution
is borne by the MEC servers, it is not considered as a part of the
optimization goal.

C. Problem Formulation

Based on the above descriptions, it can be known that for UTD
n, the time required to execute the computing task is as follows,

T, (A, W, P, FL)

= (1= plan) T4 + plan) (T +T5)
nCn

= (1 pla) 5

D, D,C,
+sa<an)( + ) @

B, logy (1 + 224~) F,
The energy consumption is denoted by,

E, (A, W,P,FL)

= (1 = @(an)) By, + @(an) By

= (1= @(an))ko 15 DnCy,

oD,
B, log, (1 + —9’;12" )

+ ¢(an) ()
In the above formulas, the function ¢(a,) is an indicated
function and can be defined as follows,

0, if a, =0,
‘P(an) = )

1, if a,=1.

In summary, the joint optimization problem of computation
offloading and resource allocation can be modelled as follow,

i ey B (A WP FL)
st. C1:T,(A,W,P,FL) <T,,Vn € N,
C2:Y,enFin) < F,
C3: Spenw, < K, (10)
C4:ay € {{O}Us},Vn €N,

5
6 :

OSPn Spmax;vnENa
nglngflmaX7vn€N~

In the above formulation, the objective function is the energy
consumption of all UTDs. Constraint C1 guarantees that the
delay of each UTD is within a tolerable range. C2 requires
that each MEC server’s computing resource allocated to the
UTDs does not exceed the total computing resource capacity.
C3 indicates that the number of channels occupied by all UTDs
does not exceed the total number of channels in the network. It
should be mentioned that each channel can only be allocated to
one UTD. C4 is the range of the UTDs’ offloading decisions,
and a UTD can only offload the computing tasks to one MEC
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server at the same time. Constraints C5 and C6 state the range
of the variables.

IV. PROPOSED APPROACH

A. Problem Analysis

According to the problem formulation in the previous section,
it can be seen that the optimization problem studied in this
paper is a MINP problem. Moreover, there is a strong coupling
relationship among the optimization variables. In order to obtain
the optimal solution of the optimization problem, an effective
solution method is needed.

Further analyze the objective function given in the previous
section, we take part the joint optimization problem of compu-
tation offloading and resource allocation into two stages. The
first stage is to determine the UTDs’ offloading behavior, i.e.,
to decide the UTDs’ offloading decision A, channel selection
W, and power allocation P. We can use heuristic algorithms
such as the genetic algorithm to solve this stage of the problem.
The detailed flow of the algorithm is shown in Section IV-C.
The second stage is to solve the resource allocation problem,
i.e., to determine the calculation frequency of CPU F'L allo-
cated by the UTDs for the calculation of the task. When the
UTDs’ offloading behavior is determined, there is a quadratic
relationship between the energy consumption of the UTDs and
the calculation frequency of CPU. We can obtain the lower
bound of the calculation frequency of CPU by the maximum
tolerance time of UTDs, thereby obtaining the optimal solution
of the resource allocation problem. The transformed problem
formulation and the detailed flow of the algorithm are shown in
Section IV-D. Furthermore, there is a strong coupling between
the optimal solution of UTDs’ offloading behavior and resource
allocation. The optimal solution of one will be used as input
to participate in the parameter solving process of the other.
Therefore, after several iterative updates of the solution, we
can obtain the stable convergent optimal solution of the original
optimization problem. Observing the objective function given
in the previous section, it can be found that when the UTD’s
offloading decision, channel selection, and transmission power
are constant, the energy consumption of the UTD is a monotonic
function about the computing capacity under the conditions of
constraints C1 and C6. It is easy to get the optimal solution for
computing capacity. Furthermore, other optimization variables
can be updated through the computing capability matrix. After
multiple iterations, the optimal solution to the optimization
problem can be obtained.

B. Two-Stage Heuristic Optimization Algorithm

Based on the above ideas, we propose a two-stage heuristic
optimization algorithm called THOA, the two-stage heuris-
tic optimization algorithm. The algorithm flow is shown in
Algorithm 1. We use random initialization to initialize the vari-
ables according to the constraints in the proposed problem. In
particular, because the penalty term mechanism is introduced
in the implementation of the genetic algorithm in this paper,
constraints C1 and C3 may not be satisfied when the variables
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Algorithm 1: General Framework of THOA
Input: Set the maximum number of iterations gen,,qz,
initialize the current number of iterations gen to
0, randomly initialize A, W, P and F'L of UTDs
Output: The optimal solution of the problem and its
corresponding optimal objective function value
1 while gen < gen,,q, do
2 Compute the optimal offloading decisions A, W,
P, under the given F'L via algorithm 2;

3 Calculate the optimal resource allocation F'L, based
on A., W,, P, via algorithm 3;
4 Calculate the energy consumption of the UTDs using

A, W, P, and FL,, update the minimum energy
consumption record, and update the optimal solution
record;

5 FL=FL,, gen =gen+1;

6 end

are initialized. The initialization of variables is as follows:

a, = randi({0}_J 9) (11)
randInt(K), ifa, #0
@y = _ (12)
0, otherwise
rand(pmax), ifan, #0
Pn = . (13)
0, otherwise
rand(flmax), ifa, #0
fln = (14)
0, otherwise

where the function randi(Set) is used to randomly select one
of the values from the given set Set. The function randInt(z)
and rand(x) are used to randomly obtain an integer and a
real number from the range of [0, x], respectively. After the
initialization is completed, the main iterative process of the
algorithm begins. Except for the first iteration, the input of
the subsequent iteration process is determined by the result
of the previous iteration. During each iteration, the offloading
decision and resource allocation are solved, and the minimum
energy consumption of the UTDs and the corresponding optimal
offloading decision and resource allocation scheme are updated.
Until the number of iterations reaches the set value, the algorithm
stops and the final result is obtained.

C. Offloading Decision Optimization

To solve the offloading decision optimization problem, the
offloading decision, channel selection and power allocation of
the UTDs need to be optimized. However, since there are both
integer and non-integer variables, the problem is difficult to solve
by traditional methods. In this section, genetic algorithm is cho-
sen to optimize the offloading decision. The genetic algorithm
does not require that the optimization problem to be solved is
continuous or differentiable, and the execution direction of the
algorithm does not need to be controlled. The algorithm flow is
shown in Algorithm 2.
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Algorithm 2: Genetic Algorithm

Input: Population size L, Crossover probability p.,
Mutation probability p,,

Output: The optimal offloading decisions A., W, P.

Initialization: Use the initialization parameters in

Algorithm 1 if it is the first iteration, otherwise use the

results after the last iteration. Define an empty set GG to

represent the individuals of the next generation;

-

2 for i € L do

3 if I; is feasible then

4 ‘ mortality; = E;(I;, FL;);

5 else

6 ‘ mortality; = E;(I;, FL;) + p;;
7 end

8 end

9

Record the optimal offloading decisions A,, W, and P,
according to the chromosomal information /; of the best
individual of this generation, which has the minimum
mortality value;

10 while the size of G is below than L do

11 Randomly select L/2 individuals from the
contemporary generation;

12 Select the two individuals with the smallest mortality
value to join the set G}

13 Perform crossover operations on them under the
crossover probability, as shown in Fig.2;

14 end

15 for j € G do

16 Perform mutation operations on I; under the

mutation probability according to (18) and (19), as
shown in Fig.3

17 end

At the first iteration, we randomly initialize a set of feasible
solutions as individuals in the population, and thereafter the
output of each iteration is used as the input for the next iteration.
Then we calculate the mortality value of all individuals in the
population and record the best individuals in this iteration. Next,
we use the tournament method to screen the next generation
of individuals, similar to the natural selection process, this
selection makes it easier for individuals with lower mortality
value to survive to the next generation, that is, individuals with
lower energy consumption of UTDs are more likely to survive.
Finally, we perform crossover and mutation operations on the
next generation of individuals to prevent the algorithm from
falling into a local optimum during the iteration process. With
the increase of the number of iterations, the feasible solutions
that cause excessive energy consumption of UTDs are gradually
eliminated. After a limited number of iterations, we can get the
optimal solution for the offloading decision problem.

The following section will introduce some related knowledge
of genetic algorithm.

1) Chromosome and Fitness: Drawing on the idea of natural
selection [40], the genetic algorithm introduced the concept
of chromosomes. In the genetic algorithm, the chromosome
corresponds to the solution of the optimization problem. The
offloading decision, channel selection, and power allocation of
the UTDs constitute the individual’s chromosome information.
For an individual i(¢ € [1, L]), its chromosomal information can
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be represented by a matrix with the following structure,
aidbal, . dl
T S .
I’L' - [A’Lle;Pl] = wiawéawga"vw; (15)
7i7p57p§7 A '7p:Ln,

Fitness is used to measure how well an individual adapts
to the environment. Individuals with poor adaptability will be
eliminated. Because the problem of minimization is studied in
this article, this article defines the mortality as a measure of
the quality of the solution. In addition, while calculating the
mortality, a penalty term p is added to ensure that the final
solution of the algorithm is within the constraints. The mortality
of individual (i € [1, L]) is computed as follows,

E(I;,FL;), ifiisfeasible

mortality; = (16)

Eyorst + 045 otherwise

If the solution corresponding to this individual is a feasible
solution, the mortality is the value of the objective function.
Otherwise, the mortality is the objective function value of the
worst feasible solution in the current population plus a penalty
term. If there is no feasible solution in the current population,
Sfworst 18 set to zero. The penalty terms are defined as follows,

0i = Z[Tn(AiaWivpivFLi) = Tl
neN

+ Z w, — K.

nen,
wnGWi

a7)

After adding a penalty term to the mortality, the following can
be guaranteed [41],

e The mortality of feasible solutions is lower than the mor-
tality of infeasible solutions.

e Between two feasible solutions, the mortality of feasible
solution with a smaller value of the objective function is
lower.

® Between two infeasible solutions, the mortality of infeasi-
ble solution with smaller constraint deviations is lower.

2) Select, Crossover, and Mutation: In order to select the

parental group of the next generation, this paper uses the tour-
nament method to screen the contemporary individuals. When
the population size is L, half of the individuals are randomly
taken from the population at each time. Then the two individuals
with the lowest mortality are selected from the tournament.
This process is repeated until the number of parental candidate
populations reaches the original population size. Through the
chromosomal crossover operation between the parents, the su-
perior genes of the parents can be inherited, so that the solution
of the problem can be developed in a direction that can make the
value of the objective function smaller. Two parental individuals
selected in each round of the tournament conduct chromosomal
crossover with probability p., and two offspring individuals are
generated to participate in the next round of iteration. Taking the
offloading decision information of the UTD in the chromosome
information as an example, the crossover operation is shown in
Fig. 2.
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In order to prevent the genetic algorithm from quickly falling
into a local optimal solution, the diversity of solutions needs to
be increased. Then the concept of mutation is introduced. The
following part uses the offloading decision (integer value) and
power allocation (real value) of the UTD as examples to explain
the mutation process, as shown in Fig. 3.

The mutation principle is shown as follows,

round(a; + a(amax — a;)), if5>0.5
al = (18)
round(a; — a(a; — Gmin)), if8 <0.5
" Di + a(pmax - pi)7 1f/8 >0.5
p; = . (19)
Pi — a(pi - pmin)a lfﬂ <0.5

where function round(+) is used to round the variables. « and
are random numbers in the range of (0, 1), where « determines
the step size of the mutation and S determines the direction of
the mutation.

D. Resource Allocation Optimization

The resource allocation optimization is given as follows,

g(FL) = min (1~ @(an))ko(f1a)* DnCr

nenN
PnDn
n 20
M =R B
D’ﬂ n
st. Cl:(1—¢(ay)) flf
a’ﬂ — n
¥ Bw,log,(1 + 222) " " F, 7

C2:0< fl, < flyax,Vn € N

When the offloading decision, channel selection and power
allocation of the UTDs are constant, the energy consumption of
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Algorithm 3: Myopic Optimization Method

Input: Optimal offloading decision A, channel selection
W, and power allocation P obtained by genetic
algorithm

Output: Optimal computing resource allocation F'L

1 for n € N do

2 if a,, # 0 then

3 | fla=0;

4 else

s if 2282 > fl,,, then
6 ‘ fln = flmaxs

7 else

8 \ fln = DnCh/Tn;

9 end

10 end

11 end

the UTDs is a quadratic function of the calculation frequency
of CPU F'L, as shown in (20). Since the calculation frequency
of CPU assigned by the UTDs for the calculation of the task is
a non-negative number, as it increases, the energy consumption
of the UTDs also increases. In order to minimize the energy
consumption of UTDs, the calculation frequency of CPU needs
to be reduced as much as possible. However, a low calculation
frequency of CPU can cause long calculation delays, even
exceeding the maximum tolerance time of UTDs. Therefore,
the lower bound of the calculation frequency of CPU can be
obtained by the maximum tolerance time of UTDs. When this
value exceeds the maximum computing frequency that the UTDs
can provide, the optimal solution for resource allocation is the
maximum computing frequency of the UTDs, otherwise the
optimal solution is the lower bound of the calculation frequency
of CPU. In summary, the optimal computing resource allocation
solution can be obtained through a myopic optimization method.
The algorithm is as follows. When the UTDs have certain
strategies for offloading decision, channel selection, and power
allocation, the energy consumption of the UTDs will be a strictly
monotonous function of the computing resource. The problem
under these situations is shown as in (20). Therefore, the optimal
computing resource allocation scheme can be obtained through
a monotonic optimization method. The algorithm is as follows.

E. Computation Time Complexity of THOA

In the initialization phase, the input parameters of the al-
gorithm need to be initialized, and the time complexity is
O(L x N). In the genetic algorithm, the time complexity of
calculating the individual mortality is O(L x N), the time com-
plexity of the tournament selection process and the crossover
process is O(L?), the time complexity of the mutation process
is O(L x N). Because L > N, the time complexity of genetic
algorithm is O(L x N). The time complexity of the myopic
optimization method is O(N). The time complexity of updating
the optimal solution and the optimal value is O(N).In each
iteration, the genetic algorithm, the myopic optimization method
and the update of optimal solution and optimal value will be
executed once. Assume the total number of iterations are 1", the
time complexity of the algorithm proposed is O(T x L x N).
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V. NUMERICAL RESULTS AND DISCUSSION

In this section, we conduct simulation experiments and ana-
lyze the performance of the proposed algorithm. The proposed
algorithm is also compared with other methods. Firstly, we in-
troduces the simulation scene and specific experimental param-
eters. Then, the influence of various parameters of the genetic
algorithm on the experimental results is analyzed. And the influ-
ence of parameters, such as the number of channels, the number
of UTDs, and the number of MEC servers, are discussed. In
order to clearly quantify the algorithm performance, we mainly
considers two performance indicators: user terminal energy
consumption and the number of users performing offloading. In
addition, to improve the reliability of the experimental results, all
data are the average of the results of 10 independent experiments.

A. Simulation Setting

The communication scenario in the simulation is set to a
rectangular area of 1000 m x 1000 m, which contains several
MEC servers and UTDs. The MEC servers are evenly distributed
in the area, and the UTDs are randomly distributed. In order to
study the effect of the number of UTDs, the number of MEC
servers, and the number of channels on the performance of the
algorithm, the number of UTDs is set from 50 to 150, the number
of servers is set to [4, 8, 16,24, 32| and the number of channels
is set from 50 to 150. Other simulation parameters such as the
computing capacity of UTDs, the input data size, the number of
CPU cycles required for unit data, maximum transmission power
of UTDs, the channel bandwidth, and white Gaussian noise are
similar to those in [23] and [24]. According to [24] and [38],
the computing capacity of the server is usually 2-5 times that
of the UTDs, so the computing capacity of the server is set to 3
times that of the UTDs. Unless otherwise specified, the default
simulation parameters are shown as follows.

To verify the performance of the algorithm, this paper com-
pares the proposed algorithm with the following three methods,

e Local execution algorithm (LEA): All of the UTDs do not
perform computation offloading, and all computing tasks
are executed locally.

e Nearest offloading algorithm (NOA): Ensure that as many
UTDs as possible perform computation offloading. When
the channel is sufficient, all UTDs perform computation
offloading, otherwise, UTDs are randomly selected for
computation offloading until the channel resources are
exhausted. UTDs offload computing tasks to the nearest
MEC server, and computing resources in the network are
randomly allocated.

¢ Random offloading algorithm (ROA): The UTDs randomly
decide to perform a computing task locally or offload it to
arandom MEC server, and the computing resources in the
network are randomly allocated.

B. Performance Discussion

Depending on the population size, crossover probability, and
mutation probability, the execution results of the genetic al-
gorithm may be different, and thus the performance of the
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Fig. 5. The energy consumption versus the crossover probability.

algorithm proposed in this paper will also be affected. Fig. 4
shows how the energy consumption of UTDs changes with the
size of the genetic algorithm population. It can be seen from the
figure that the energy consumption of UTDs decreases first and
then increases as the population size increases. This is because
the individual diversity is insufficient when the population is
small, and it is difficult to obtain the optimal solution within a
limited number of iterations. However, when the population is
too large, elimination of bad individuals is too slow. The effect of
the crossover probability on the performance of the algorithm
is shown in Fig. 5. When the crossover probability is 0.6, the
algorithm performs the best. This is because when the crossover
probability is low, the superior genes of the parents cannot be
inherited to the next generation of individuals. Too high cross
probability will lead to too many non-optimal individuals, which
is also not conducive to the implementation of the algorithm.
According to Fig. 6, we can know that the most appropriate
mutation probability is 0.02.

In order to measure the effectiveness of the algorithm pro-
posed in this paper, we compared the algorithm proposed in
this paper with the exhaustive method. The exhaustive method
can obtain the global optimal solution of the optimization prob-
lem by traversing and comparing all feasible solutions, but the
complexity of the algorithm will increase exponentially as the
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TABLE I
SIMULATION PARAMETERS SETTING

Simulation Parameters Value
The number of MEC servers 36
The number of UTDs 100
Computing capacity of UTDs 1-2GHz
Computing capacity of MEC servers 6 GHz
The input data size of UTDs 200-400 KB
The computer cycles required for unit data 500-1000 cycles/bit
The channel bandwidth 12.5kHz
Background noise 10-18
The maximum tolerance time of UTDs <=0.5s
The maximum transmission power of UTDs 1w
The number of channels 128
The maximum number of iterations 1000
The probability of crossover 0.6
The probability of mutation 0.02
The pass loss exponent 3
TABLE II

THE RUNNING TIME OF TWO ALGORITHMS UNDER DIFFERENT
NUMBER OF UTDs

No. of Users THOA Exhaustive method
2 0.118133s 0.008335s

3 0.149898s 0.034804s

4 0.174045s 0.208324s

5 0.173756s 1.291033s

6 0.177355s 8.108498s

7 0.178620s 51.733513s

8 0.202556s 336.257382s

9 0.207990s 2085.578411s
10 0.209620s Over 2 hours

problem size increases. In a 50 m x 50 m rectangular com-
munication scenario with two MEC servers and ten channels,
when the number of UTDs increases, the running time of the
algorithms proposed in this paper and the running time of the
exhaustive methods are shown in Table II. It can be seen from
Table II that when the number of UTDs is 9, the running
time of the exhaustive method is 2085.578411 s, which has
far exceeded the delay requirements of actual communication
scenarios. When the number of UTDs reaches 10, the run time
of the exhaustive method even exceeds two hours. In order to
avoid the algorithm execution time being too long, we reduced
the simulation scene to arectangular area of 50 m x 50 m, which
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exhaustive method.

contains two MEC servers, up to nine UTDs and ten chan-
nels. The other simulation parameters are default, as shown in
Table I. The performance difference between the two algorithms
is shown in Fig. 7 and Fig. 8.

Fig. 7 shows the changes in the energy consumption of UTDs
with the number of UTDs when two different algorithms are
applied respectively. As can be seen from the figure, the per-
formance of the proposed algorithm is excellent, and the gap
between the results obtained and the global optimal solution
obtained by the exhaustive method is extremely small. Fig. 8
shows the execution time of the two algorithms. It can be seen
from the figure that the execution time of the algorithm proposed
in this paper increases linearly, while the execution time of the
exhaustive method increases exponentially. Although the exe-
cution time of the algorithm proposed in this paper is relatively
long at first, as the number of UTDs increases, the execution time
of the exhaustive method rapidly exceeds the execution time
of the algorithm proposed in this paper. Therefore, in today’s
large-scale networks, applying the algorithm proposed in this
paper can significantly reduce the algorithm execution time and
improve execution efficiency.
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The comparison of the four algorithms under the default
simulation parameters is shown in Fig. 9. In LEA, all UTDs
execute computing tasks locally and consume much more en-
ergy than the other three algorithms. Some of UTDs in ROA
offload computing tasks to the MEC servers, which reduces the
energy consumption. All UTDs in NOA perform computation
offloading, but there is no appropriate optimization strategy, so
the optimal energy consumption situation cannot be achieved.
The algorithm proposed in this paper has jointly optimized
offloading decision and resource allocation, and its performance
is better than the other three algorithms. The energy consumption
of UTDs decreases with the number of iterations, and eventually
converges to the optimal value.

The influence of the number of channels on the energy con-
sumption of the UTDs and the number of UTDs performing
computation offloading is shown in Fig. 10 and Fig. 11. As
the number of channels increases, the energy consumption of
the UTDs decreases, the number of the UTDs for computation
offloading increases, and eventually both tend to stabilize. Note
that the performance of the proposed algorithm is always better
than other algorithms. With the increase of the number of chan-
nels, the average number of available channels of the UTDs
increases, so the information transmission rate with the MEC
servers increases, thereby reducing the energy consumption of
the UTDs. In addition, the increase in the number of channels
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enables more UTDs to perform computation offloading. How-
ever, due to the limited computing resources of the MEC servers,
too many UTDs entering the network will increase the execution
delay of computing tasks, so the system will eventually reach a
stable state.

Fig. 12 and Fig. 13 respectively show the changes in the energy
consumption of UTDs and the number of UTDs performing
computation offloading as the number of MEC servers increases.
In order to ensure the simulation effect when the number of MEC
servers is small, the number of UTDs in this simulation is set to
30. With the increase of the number of MEC servers, the energy
consumption of UTDs in ROA and the algorithm proposed in this
paper decreases, and the number of UTDs performing compu-
tation offloading increases, and eventually remains stable. The
reason is that when the number of MEC servers increases, the
average number of UTDs served by each MEC server decreases.
UTDs can get more energy consumption and delay benefits
through computation offloading, so more UTDs tend to perform
computation offloading instead of executing computing tasks
locally. However, due to the limitation of the number of channels,
the number of UTDs performing computation offloading will
reach saturation. The offloading decisions of the UTDs in LEA
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and NOA does not change with the number of servers, thus the
performance of the algorithm is basically unchanged.

As the number of UTDs increases, so does the energy con-
sumption. It can be seen from Fig. 14 that the energy consump-
tion of the UTDs has a linear relationship with the quantity. The
algorithm proposed in this paper has the best performance and
always keeps the energy consumption of UTDs to a minimum
value. It does not make sense to simply consider the number
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of UTDs performing computation offloading when the number
of UTDs changes, the offloading rate needs to be studied, as
shown in Fig. 15. When the number of UTDs is small, the
offloading rate is high. As the number of UTDs increases, due
to the limited network resources, some UTDs can only choose
to execute computing tasks locally, resulting in a reduction in
the offloading rate.

VI. CONCLUSION

In this paper, the joint optimization strategy of computing
offloading and resource allocation in a multi-user terminal de-
vice and multi-edge server scenario under the multi-access edge
computing environment is studied. In order to achieve the goal
of minimizing the energy consumption of user terminal devices,
the joint optimization problem of computation offloading and
resource allocation is modeled as a mixed integer nonlinear
programming problem by restricting the offloading decisions,
channel selection, power allocation, and resource allocation.
Then a two-stage heuristic optimization algorithm based on
genetic algorithm is proposed, which decomposes the joint opti-
mization problem into two stages for solving. Finally, simulation
experiments are performed to verify the performance of the
proposed algorithm. Under the same simulation parameters, the
algorithm proposed in this paper fully considers the interaction
between the offloading decision and resource allocation, thus can
achieve lower energy consumption of user terminal devices than
other algorithms. Moreover, our algorithm has high calculation
efficiency and can quickly converge in fewer iterations. When
the number of available channels and the number of edge servers
increase, the energy consumption of user terminal devices tends
to decrease, and the number of users performing calculation
offload increases. When the number of user terminal devices in
the network increases, the sum of the energy consumption of
the user terminal devices increases, and the proportion of user
terminal devices performing computation offloading decreases.
Compared with other algorithms, the algorithm proposed in this
paper can always make the energy consumption of user terminal
devices the lowest and has good performance.
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