
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 4, APRIL 2020 4417

Energy-Efficient Robust Computation
Offloading for Fog-IoT Systems
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Abstract—As the computing nodes of a fog computing system
are located at the network edge, it can provide low-latency and
reliable computing services to Internet of Things (IoT) mobile de-
vices (MDs). By wirelessly offloading all/part of the computational
tasks from MDs to the infrastructure fog nodes, it addresses the
contradiction between the limited battery capacity of MDs and
their long-lasting operation requirement. Different from previous
works, the uncertainty caused by the channel measurements is
taken into account in this paper, which yields a robust offloading
strategy against realistic channel estimation errors. For this sys-
tem, we design an energy-efficient computation offloading strategy,
while satisfying the delay constraint. By using the Conditional
Value-at-Risk (CVaR) framework, the original offloading prob-
lem is transformed into a Mixed Integer Nonlinear Programming
(MINLP) problem, which is complicated and very challenging to
solve. To overcome this issue, we apply Benders decomposition to
find the optimal offloading solution. Numerical results show that
proposed offloading strategy efficiently achieves obtain the optimal
solution of the MINLP problem, and is robust to channel estimation
errors.

Index Terms—Internet of Things, offloading, robust, conditional
value-at-risk, benders decomposition.

I. INTRODUCTION

ACCORDING to the forecast of CISCO, there will be explo-
sive growth in the data traffic and the data transmission rate

of mobile devices in future mobile communication networks.
From 2017 to 2022, the amount of data transmitted over the
wireless network will increase by about 7 times, soaring to about
1 terabyte per year. The average speed of terminal data transmis-
sion will increase rapidly from 8.7 Mbps to 28.5Mbps [1]. This
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trend is mainly driven by emerging communication paradigms,
such as Internet of Things (IoT), which impose several signif-
icant challenges on the current mobile networks, including a
very low individual energy consumption [2]. On the other hand,
Mobile Devices (MDs) become computing platforms within the
IoT ecosystem, and may potentially consume a considerable
amount of energy in computing-intensive applications, such
as Virtual Reality (VR) and Augmented Reality (AR). As the
battery capacity of MDs cannot be improved significantly [3],
there exists contradiction between the limited battery lifetime
and the long-lasting operation requirement of MDs [4].

Fog computing is a promising technology to reduce the energy
consumption of the MDs. By deploying fog nodes (FNs) at the
edge of networks, fog computing provides computation service
to IoT MDs served by the corresponding FNs [5], [6]. In order
to increase the battery life of MDs and guarantee the delay
requirement of certain delay-sensitive IoT applications, IoT
MDs may offload the energy-consuming local computation tasks
to the nearby FNs, which have more relaxed energy constraints.
Therefore, it is essential to design proper task offloading strategy
in the fog-enabled IoT networks.

A large body of research has focused on the fog comput-
ing [4], [7]–[11]. More explicitly, the authors in [4] proposed
a hierarchical fog-cloud computing paradigm for IoT systems,
where a computation offloading game was formulated with the
aim of maximizing the Quality of Experience (QoE) of each
MD. The existence of Nash equilibrium was proven and a sub-
optimal resource allocation strategy was proposed. In order to
reduce the service delay for IoT-fog-cloud networks, the authors
of [7] developed a collaboration and offloading framework for
IoT applications. They innovatively considered queue length
and different request types with variant processing times in
load sharing. In [8], the offloading problem was investigated
from the view of multi-objective optimization. The optimal
offloading probability and transmit power were calculated for
each MD to jointly minimize energy consumption, execution
delay, and payment cost. In [9], the authors solved the de-
lay and fairness guaranteed offloading problem in a fog-cloud
system by optimizing the computation and wireless resources.
A low-complexity suboptimal algorithm relying on semidefi-
nite relaxation, randomization, fractional programming theory,
and Lagrangian dual decomposition was proposed to solve the
Mixed-Integer Non-Linear Programming (MINLP) problem.
In [10], the authors investigated the power-delay trade off in
the fog-cloud system. The workload allocation problem was
decomposed into three subproblems, and those subproblems
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were solved by interior-point methods, generalized Benders
decomposition (GBD), and Hungarian algorithm, respectively.
In [11], the social relationships of energy harvesting MDs were
considered in the design of offloading strategy in IoT networks
with fog computing. The proposed problem was transformed to
a classical Nash equilibrium problem, and then be solved by
semi-smooth Newton method with Armijo line. However, to the
best of our knowledge, previous works barely take the channel
estimation errors into account, which harms the robustness of
those offloading strategies.

Against this background, we in this paper consider offloading
all or part of the computation tasks of MDs to FNs in the mobile
IoT systems, where the offloaded tasks are conveyed via wireless
channels. Different from previous works, the channel estimation
errors are taken into account when designing the the offloading
strategy while satisfying certain delay constraint. Moreover, we
aim to guarantee the robustness of the offloading strategy when
the probability density functions of channel estimation errors
are unknown. Conditional Value-at-Risk (CVaR) [12], [13] is
introduced to handle the nondeterminacy of those errors, and
Benders decomposition [14] is adopted to handle the trans-
formed problem. The effectiveness of the proposed strategy is
proved by the numerical simulation results.

The rest of this paper is organized as follows. The system
model and problem formulation is detailed in Section II. In
Section III, we detail the proposed algorithm based on CVaR
and Benders decomposition. Section IV presents the simulation
results. In Section V, we conclude this paper.

Notation: Vectors and matrices are denoted by bold text and
bold uppercase text, respectively. ∇ denotes the first order
derivation. R denotes the space of real numbers. φ[k] is the
k-th element of vector φ, and Φ[ki] is the kth row and ith
column element of matrix Φ. AT means the transposition of
A. diag(A) denotes the diagonal matrix of which the elements
of main diagonal are composed of the elements of vector A.
[a]+ means max(a, 0). O is a complexity notation. A list of the
notations used throughout the paper is given in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network, Task, and Offloading Model

As shown in Fig. 1, an IoT-fog architecture is considered in
this work. There areK FNs randomly deployed in a given area to
serveU IoT MDs. FNs are indexed byk, and MDs are indexed by
i. The sets of FNs and MDs are denoted byK andU , respectively.
For the ith MD, only one corresponding indivisible computation
task i needs to be computed in each time slot, and the maximum
tolerable latency introduced by task computing is set to be T .
Moreover, we assume the situation that the latency i exceeds T
is tolerable if the probability of this situation is strictly limited.
The tasks can be either computed locally at the MD, or uploaded
to the serving FN and transmitted back via wireless interface,
and ith task is described by (Li, Ci, εi), where Li and Ci denote
the length of the task and the estimated CPU circles needed to
compute the task, respectively. As for εi, it means the maximum
tolerable probability of the violation of the maximum latency
constraint.

TABLE I
PARAMETER NOTATIONS

Fig. 1. System model.

B. Communication Model

In this IoT-fog architecture, each MD can upload the compu-
tation task to nearby FNs via wireless channel. The set of FNs
serving the ith MD are denoted as Ki, and the cardinality of Ki

is denoted as |Ki| = Ki. Without loss of generality, we assume
the number of serving FNs {Ki}1≤i≤U are equal for all MDs.
The set Ki can be determined as those serving FNs, where the
distance between those FNs and ith MD is shorter than a given
threshold. Similarly, define Uk as the set of MDs that can be
served by the kth FN. Assume the interferences are avoided
by orthogonal wireless resource allocation, the Signal to Noise
Ratio (SNR) of the uplink channel between the ith MD and the
kth FN is given as

SNRki(ΔGki) =
Pi(Gki +ΔGki)

σ2
i

, (1)

where Pi is the transmission power of the ith MD, σ2
i is the

power of the additive white Gaussian noise, Gki is the estimated
channel gain between the kth FN and the ith MD, and ΔGki is
caused by the channel estimation error. We assume that the esti-
mation errorΔGki follows an unknown distribution PΔGki

with
mean E[ΔGki] = μΔGki

and variance Var[ΔGki] = ΣΔGki
.

The achievable data rate between the ith MD and the kth FN
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is calculated as the Shannon rate of the wireless channel as

Rki(ΔGki) = B log (1 + SNRki(ΔGki)) . (2)

where B denotes the transmission bandwidth. The power con-
sumption for uploading the ith task from the ith MD to the kth
FN is calculated as

ptki(ΔGki) =
PiLi

Rki(ΔGki)
. (3)

C. Local Computing Model

Let the indicator xi denote whether the ith task is computed
locally at the ith MD, i.e.,

xi =

{
1, if ith task is computed locally in ith MD,

0, otherwise.
(4)

Let fMD
i denote the local computational rate (CPU cycles/s) of

ith MD in the given time slot, which is limited by the maximum
computational rate of ith MD, namely FMD

i . The latency due to
the local computation at the ith MD can be calculated as

tMD
i (fMD

i ) =
Ci

fMD
i

. (5)

The corresponding energy consumption is given by [15]

pMD
i = ξiCi, (6)

where ξi denotes the power consumption of per CPU cycle.

D. Fog Computing Model

Let the indicator xki denote whether the computation ith task
is offloaded to the kth FN, defined as

xki =

{
1, if ith task is computed inkth FN,

0, otherwise.
(7)

The total delay caused by offloading the ith task from the ith
MD to the kth FN includes the transmission delay and the FN’s
computing time. That is,

tFNki (fFN
ki ,ΔGki) =

Li

Rki(ΔGki)
+

Ci

fFN
ki

, (8)

where fFN
ki is the computational rate of the kth FN allocated

to the ith task. The first term of (8) is the transmission delay
for uploading the computation task from the ith MD to the
kth FN, and the second term is the corresponding computation
time at the FN. Note that we assume the output of each task is
very short compared to the task itself. This assumption holds
for many scenarios such as video processing, feature extraction
and pattern recognition algorithms, where the program codes
and input parameters size are much bigger than the output data.
Therefore, the transmission delay for downloading the output
from FN to MD is omitted. The computational rate of the kth
FN is limited by FFN

k , which is the maximum computational
rate. We summarized the notations used in this paper in Table I.

E. Computation Offloading Problem

The total latency of the computation ith task is calculated as

ti(xi,f i,ΔGi) = xit
MD
i (fMD

i ) +
∑
k∈Ki

xkit
FN
ki (fFN

ki ,ΔGki),

(9)

where f i = [fFN
1i , fFN

2i , . . ., fFN
Ki , f

MD
i ]T , xi = [x1i, x2i, . . .,

xKi, xi]
T , and ΔGi = [ΔG1i,ΔG2i, . . .,ΔGKi]

T . It is worth
noting that zeros are inserted as elements of the vectors f i,
xi, and ΔGi for notation convenience. For instance, xli = 0,
∀l ∈ K \ Ki. The latency of the ith task is constrained in a
probabilistic manner such that the probability of the latency
ti(xi,f i,ΔGi) within the maximum tolerable delay T should
be larger than a threshold 1 − εi, i.e.,

Pr [ti(xi,f i,ΔGi)− T ≤ 0] ≥ 1 − εi, (10)

Note that the randomness of the delay ti is due to the channel
estimation error ΔGk. The power consumed for the ith task in
ith MD is formulated as

pi(xi,ΔGi) = xip
MD
i +

∑
k∈Ki

xkip
t
ki(ΔGki), (11)

In the IoT systems, the battery capacity of MDs are typically
limited. Therefore, we consider the minimizations of the total
power consumption of MDs by jointly configuring the task
offloading specified by the vectors {xi}1≤i≤U and allocating
the computation resource specifying by the vectors {f i}1≤i≤U .
Therefore, the task offloading problem can be formulated as

min
{xi∈Xi},{fk∈Fi}

E

[∑
i∈U

pi(xi,ΔGi)

]
(12a)

s.t. xi +
∑
k∈Ki

xki = 1, ∀i ∈ U , k ∈ Ki, (12b)

∑
i∈Uk

fFN
ki ≤ FFN

k , ∀i ∈ U , (12c)

Pr [ti(xi,f i,ΔGi)− T ≤ 0] ≥ 1 − εi,
(12d)

where Xi = {xi : xi[k] ∈ {0, 1}, 1 ≤ k ≤ K + 1}; Fi = {f i :

0 ≤ f i[k] ≤ FFN
k }, 1 ≤ k ≤ K, 0 ≤ f i[K+1] ≤ FMD

i }; (12b)
means each task can be computed either in local or in fog;
(12c) is the constraint of the calculation ability of FN; (12d)
is the probability constraint of the violation of the maximum
tolerable delay. It is worth noting that we assume FNs are
powered by external power system, and the battery lives of MDs
are considered preferentially. Therefore, the power consumption
of FNs are not considered in (12).

III. ALGORITHM DESIGN

As the distribution of the channel estimation error PΔGi
is

generally unknown, it is hard to solve the task offloading problem
(12) directly. Considering the fact that ΔGki is relatively small
compared to Gki, we adopt the first order Taylor expansion to
approximate (12a) and (10), which yields explicit formulations.
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In particular, the first order Taylor expansion of ptki(ΔGki) is
written as

p̂tki(ΔGki) = ptki(ΔGki = 0) + ptki
′
(ΔGki = 0)ΔGki, (13)

where

ptki
′
(ΔGki = 0)

= − LiP
2
i

B ln 2

(
log

(
1 +

PiGki

σ2
i

))−2

(σ2
i + PiGki)

−1.

(14)

Moreover, let

p̃tki = E
[
p̂tki(ΔGki)

]
= ptki(ΔGki = 0)

+ ptki
′
(ΔGki = 0)μΔGki

. (15)

Then, (12a) can be approximated by

E [pi(xi,ΔGi)] ≈ p̃i(xi) = xip
MD
i +

∑
k∈Ki

xkip̃
t
ki. (16)

Similarly, the first order Taylor expansion of the induced delay
ti(xi,f i,ΔGi) can be written as

t̂i(xi,f i,ΔGi)

= ti(xi,f i,ΔGi = 0) +∇ΔGi
ti(xi,f i,ΔGi = 0)TΔGi,

(17)

where

∇ΔGi
ti(xi,f i,ΔGi = 0)[k]

= −xkiLiPi

B ln 2

(
log

(
1 +

PiGki

σ2
i

))−2 (
σ2
i + PiGki

)−1
.

(18)

Therefore, the distribution function (10) can be approximated
by

Pr
[
t̂i(xi,f i,ΔGi)− T ≤ 0

]
≥ 1 − εi. (19)

The set of all possible distributions of ΔGi can be defined by

𝒫ΔGi
= {PΔGi

|EPΔGi
[ΔGi] = μΔGi

,

EPΔGi

[
(ΔGi − μΔGi

)(ΔGi − μΔGi
)T

]
= ΣΔGi

},
(20)

where μΔGi
= [μΔG1i , μΔG1i , . . ., μΔGKi

]T ; PΔGi
is a distri-

bution of ΔGi, where the mean and the covariance of ΔGi are
fixed to μΔGi

and ΣΔGi
, respectively. It is worth mentioning

that we assume the gains of different channels are independent.
Therfore, ΣΔGi

is a diagonal matrix, and ΣΔGi
= diag(ΔGi).

In order to guarantee the performance of proposed algorithms
in different distributions of ΔGi, we consider that (10) should
hold in the worst case [16], [17]. Therefore, we assume

inf
PΔGi

∈𝒫ΔGi

Pr
[
t̂i(xi,f i,ΔGi)− T ≤ 0

]
≥ 1 − εi, (21)

Then, we solve the following problem instead

min
{xi∈Xi},{fk∈Fi}

∑
i∈U

p̃i(xi)

s.t. (12b), (12c), (21). (22)

Evidently, (22) is a non-convex nonlinear optimization prob-
lem, and it is hard to solve directly. Conditional Value-at-Risk
(CVaR) and Value-at-Risk (VaR) (see e.g., [12] and [13]) are
risk measures, which were widely used in economy and have
been applied in communications [18], [19]. VaR can be used
to describe the “risk” of violating the constraint. It is, in fact,
equivalent to (19) [20]. CVaR is more conservative than VaR
which is the “average risk” of violating the constraint [20].
However, as shown in [18], [19], [21], CVaR is equivalent to
(19) under the distributionally robust setting, which is (21). Al-
ternatively, we adopt the CVaR framework to transform (21) into
a tractable formulation. Then, solve the problem (22) with the
transformed version of the constraint (21) using the by Benders
decomposition. As CVaR have different forms, we adopt the
definition detailed in [13]. The CVaR of ΔGi with loss function
t̂i(xi,f i,ΔGi)− T and tolerance εi can be defined as

PΔGi
− CVaRεi

(
t̂i(xi,f i,ΔGi)− T

)
= inf

β∈R
{β +

1
εi

E[
(
t̂i(xi,f i,ΔGi)− T − β

)+
]}, (23)

where β is an auxiliary variable. It is worth noting that the CVaR
detailed in (20) can provide a tight convex approximation to (21).
According to Sec. 4.3.3 of [22], it can be proved that

inf
PΔGi

∈𝒫ΔGi

Pr
[
t̂i(xi,f i,ΔGi)− T

≤ PΔGi
− CVaRεi

(
t̂i(xi,f i,ΔGi)− T

)]
≥ 1 − εi.

(24)

We further restrict PΔGi
− CVaRεi(t̂i(xi,f i,ΔGi)− T ) ≤ 0,

and (24) can be rewritten as

inf
PΔGi

∈𝒫ΔGi

Pr
[
t̂i(xi,f i,ΔGi)− T ≤ 0

]
≥ 1 − εi. (25)

Therefore,

PΔGi
− CVaRεi

(
t̂i(xi,f i,ΔGi)− T

)
≤ 0

⇒ inf
PΔGi

∈𝒫ΔGi

Pr
[
t̂i(xi,f i,ΔGi)− T ≤ 0

]
≥ 1 − εi.

(26)

As (26) should hold for different PΔGi
, it can be derived as [18],

[19], [21]

sup
PΔGi

∈𝒫ΔGi

PΔGi
− CVaRεi

(
t̂i(xi,f i,ΔGi)− T

)
≤ 0

⇒ inf
PΔGi

∈𝒫ΔGi

Pr
[
t̂i(xi,f i,ΔGi)− T ≤ 0

]
≥ 1 − εi.

(27)

As t̂i(xi,f i,ΔGi) is linear about ΔGi, the feasible region of
{xi,f i} defined by the left hand side of (27) is equivalent to
that defined by the following inequality system [18], [19], [21]

Ψi 
 0, (28a)

βi +
1
εi

Tr(ΩiΨi) ≤ 0, (28b)

Ψi −Θi(xi,f i) 
 0. (28c)
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where Ψi and βi are introduced as auxiliary variables; Ωi and
Θi(xi,f i) are defined as[

ΣΔGi
+ μΔGi

μT
ΔGi

μΔGi

μT
ΔGi

1

]
(29)

and⎡
⎢⎣ 0 1

2∇ΔGi
t̂i(xi,f i,ΔGi = 0)

1
2∇ΔGi

t̂i
(xi,f i,ΔGi = 0)T t̂i(xi,f i,ΔGi = 0)− T − βi

⎤
⎥⎦ ,

(30)

respectively. Substituting the implicit delay constraint (21) with
the explicit expressions (28b) and (28c), the problem (22)
becomes

min
{xi∈Xi},{fk∈Fi},{βi},{Ψi}

∑
i∈U

p̃i(xi)

s.t. (12b), (12c), (28a), (28b), (28c). (31)

Since the optimizing variablexi is a binary integer vector and the
constraint (28) is nonlinear, (31) is an MINLP problem, which
is difficult to solve directly. Evidently, if the integer vector x is
given, (31) becomes a convex optimization problem. Therefore,
it is suitable to apply Benders decomposition [14] to decompose
(31) into two relatively simple subproblems, namely the primal
problem and the master problem. According to [24], the primal
problem is given by

Primal problem:

min
{fk∈Fi},{βi},{Ai}

δp =
∑
i∈U

p̃i(xi) (32a)

s.t. xki = xn
ki : λki, ∀i ∈ U , k ∈ Ki, (32b)

xi = xn
i : φi, ∀i ∈ U , (32c)

Ψi −Θi(xi,f i) 
 0 : Φi, ∀i ∈ U
(12c), (32d)

where λki, φi, and Φi are Lagrangian multipliers, and δp is
the minimum value of the objective function of the object in
primal problem, which is a lower bound of (31). By centralized
solvers such as CVX, we can solve (32), and obtain the optimal
values of f i, βi, Ψi and Φi, ∀i ∈ U . As those multipliers of
integers are needed in the master problem, they can be expressed
in closed-form expressions.

The Lagrangian of (32) can be expressed as

L =
∑
i∈U

p̃i(xi) + φi(xi − xn
i )

+ Tr ((Θi(xi,f i)−Ψi)Φi) +
∑
k∈Ki

λki(xki − xn
ki)

s.t. (12c). (33a)

According to the the Karush-Kuhn-Tucker (KKT) condi-
tion [27], we obtain

∇xki
L =

PiLi

Rki(ΔGki = 0)
+Qki + λki

+∇xki
Tr ((Θi(xi,f i)−Ψi)Φi) = 0, (34a)

∇xi
L = ξiCi + φi +∇xi

Tr ((Θi(xi,f i)−Ψi)Φi) = 0.
(34b)

where

Qki = − LiP
2
i

B ln 2

(
log(1 +

PiGki

σ2
i

)

)−2

(σ2
i + PiGki)

−1μGki
.

(35)

In order to obtain λki and φi, we need to solve
∇xki

Tr((Θi(xi,f i)−Ψi)Φi) and ∇xi
Tr((Θi(xi,f i)−

Ψi)Φi). Evidently,

∇xki
Tr ((Θi(xi,f i)−Ψi)Φi)

= ∇xki
Tr (Θi(xi,f i)Φi)

= ∇xki
1T (Θi(xi,f i)�Φi) 1

=

(
Li

Rki(ΔGki = 0)
+

Ci

fFN
ki

)
Φi[K+1,K+1]

−

× LiPi

2B ln 2

(
log

(
1 +

PiGki

σ2
i

))−2 (
σ2
i + PiGki

)−1

×
(
Φi[k,K+1]

+Φi[K+1,k]

)
. (36)

Similarly,

∇xi
Tr ((Θi(xi,f i)−Ψi)Φi)

= ∇xi
Tr (Θi(xi,f i)Φi)

= ∇xi
1T (Θi(xi,f i)�Φi)1

=
Ci

fMD
i

Φi[K+1,K+1]
. (37a)

Hereby, we acquire ∇xki
Tr((Θi(xi,f i)−Ψi)Φi) and

∇xi
Tr((Θi(xi,f i)−Ψi)Φi). By substituting (36) and (37)

into (34a) and (34b), λki and φi can be calculated.
Note that the primal problem (32) may be infeasible due to the

Benders decomposition. To avoid this situation, a penalty term
can be introduced and the following problem is solved instead:

min
{xi∈Xi},{f i∈Fi},{βi},{Ψi}

δp = c (38a)

s.t. Ψi −Θi(xi,f i) + cIK+1 
 0, ∀i ∈ U ,
(12c), (23a), (23b). (38b)

The rationality of solving (38) in the infeasible situation is
detailed in [24]

The master problem due to the Benders decomposition is
given as

Master problem:

min
{xi∈Xi},δm

δm (39a)

s.t. δm ≥
∑
i∈U

p̃i(x
ν
i ) + μν

i (xi − xν
i ) (39b)

+
∑
k∈Ti

λν
ki(xki − xν

ki), ν ∈ Vn
fea
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Algorithm 1: The Proposed Algorithm for Solving (31).

1: Initialize ε; n = 0; solve (40) to initial x0, δ0
m

2: repeat
3: if (32) is feasible then
4: Solve (32) and acquire {fn+1

i } and δn+1
p

5: else if (32) is infeasible then
6: Solve (38) and acquire {fn+1

i } and δn+1
p

7: end if
8: Solve (39) and acquire {xn+1

i } and δn+1
m

9: n = n + 1
10: until |δn+1

m − δn+1
p | < ε

11: Output {xi} and {f i}

0 ≥ cν +
∑
i∈U

μν
i (xi − xν

i )

+
∑
k∈Ti

λν
ki(xki − xν

ki), ν ∈ Vn
unf ,

(12b), (39c)

where Vn
fea (Vn

unf ) denotes the set of feasible (infeasible) it-
eration numbers. In Benders decomposition, the purpose of
solving the master problem is to find suitable {xi ∈ Xi}, which
approaches the optimal solution of (31) iteratively. Therefore,
infeasible solutions and nonoptimal solutions should be taken
out via solving the master problem. The constraints (39b) and
(39c) are Benders cuts and feasibility cuts [23], respectively. For
the solutions which do not satisfy (39b), they can be proven to
be non-optimal solution of integer variables in (31). Similarly,
those solutions which cannot satisfy (39c) can be proven to be
unfeasible solutions of those integers. The detailed proof can
be found in [24]. When initializing the Benders decomposition
algorithm, the following problem is solved [14]

min
{xi∈Fi},δm

δm (40a)

s.t. δm ≥ δmin

(12b), (40b)

where δmin is a constant which can be set as a lower bound of
the optimization objective of (31). In this paper, δmin can be any
negative value. The problem (40) ensure that the initial solution
of the integer variables of Benders decomposition locates in the
feasible region of (31).

The master problem (39) is a mixed-integer linear program-
ming (MILP) problem, which can be efficiently solved by
solvers such as YALMIP [28], the branch-and-bound (BB) algo-
rithm [29] or the simplex method [30]. The proposed Benders
decomposition (BD) algorithm for task offloading is summa-
rized in Algorithm 1. Note that the computational complexity of
the BD algorithm isO(KU

i ), which is equal to the computational
complexity of solving the master problem.

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-
posed BD algorithm. In the numerical Monte-Carlo simulations,

TABLE II
MAIN PARAMETERS OF SIMULATION

Fig. 2. A convergence example of the BD algorithm when P = 20 dB.

4 FNs are deployed to serve 3 MDs, and each MD can offload
its task to any FN. In order to facility the simulation, we
assume Pi and sigma2

i are equal for different MDs, and let
P = 10log10Pi/σ

2
i . In each simulation, results are averaged over

one hundred channel realizations. Main parameters of our sim-
ulation are summarized in Table II. The proposed BD algorithm
is compared to the existing algorithms without considering the
channel estimation errors, which can be summarized as follows:
� Exhaustive Search CVX (ES-CVX): Firstly, we enumer-

ate all x in the feasible region of (22). When x is given,
solve (32) by CVX [31] in Matlab. As (32) is a convex
optimization problem, CVX can obtain the optimal f and
the corresponding value of the objective function in (22).
Compare all those values, and we can obtain the global
optimal value and the corresponding (x, f ). The computa-
tional complexity of solving the primal problem by CVX
is O((UKi)

3.5), and that of enumerating all possible x is
O(KU

i ). Therefore, the computational complexity of the
ES-CVX algorithm is O(KU

i (UKi)
3.5)

� Local Computing (LC): In this algorithm, all tasks are
computed locally.

� No Robust Benders Decomposition (NRBD): This algo-
rithm is proposed in [32]. Compared to the proposed BD
algorithm, no robust strategy is considered in the NRBD
algorithm, which may be subject to the channel estimation
errors when offloading the computational tasks.

Fig. 2 shows an example of offloading the computational tasks
using the proposed BD algorithm when P = 20 dB. The BD
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Fig. 3. The power consumption given by different algorithms in terms of
different P .

Fig. 4. The proportion of tasks which are computed locally in terms of
different P .

algorithm converges to the optimal power consumption found
by the ES-CVX algorithm in only a few iterations. It is also
shown that θp, namely the value of the objective function of
primal problem, is always higher than the optimal value. This
phenomenon is reasonable, as (32) can be treated as a special
case of (31).

Fig. 3 demonstrates the power consumptions given by dif-
ferent algorithms in terms of different P . It can be observed
the the power consumption of LC algorithm is always higher
than other algorithms. Moreover, it is also evident that the
result given by the BD algorithm can approach the result of
the ES-CVX algorithm quite well. When P increases, the power
consumptions given by the BD and ES-CVX algorithms increase
after an initial decrease. This phenomenon can be explained
according to the results demonstrated in Fig. 4.

We detail the proportion of tasks which are computed locally
in terms of different P in Fig. 4. Evidently, there is a decreasing
tendency when P increases. It is reasonable because the power
consumed for task transmission is much less compared to that
of local computation. If the channel condition is better (or the
transmission power becomes larger), the time consumed for task
transmission becomes less, and more tasks tend to be computed

Fig. 5. The violation probability of the delay constraint in terms of
different P .

Fig. 6. The proportion of tasks which are computed locally in terms of different
ΣΔGi

.

in FNs. Therefore, the initial decreasing tendency is reasonable
in Fig. 3. When P increases further (e.g. from 20 dB to 30 dB),
the power consumption of transmission also increases signif-
icantly. Therefore, the power consumption of MDs increases
after initial decreasing in Fig. 3. Moreover, it is also evident
that the performance of the BD algorithm is equal to that of the
ES-CVX algorithm.

In Fig. 5, we demonstrate the violation probability of the
delay constraint in terms of different P . As detailed in Table II,
we assume the distribution of ΔGi is CN (0, 0.01diag(Gi)).
According to Fig. 5, it is clear that when P is low (e.g. 5dB), the
violation probabilities of the delay constraint of both algorithms
are near-zero. The main reason is that almost all tasks tend to
be computed locally when P is low, which is also demonstrated
in Fig. 4. When P increases, the violation probability of the
delay constraint of the NRBD algorithm is around 50%, as the
probability of ΔGki > 0 or ΔGki < 0 is 50%. It is also evident
that the violation probability of the delay constraint of the BD
algorithm is always near-zero, which shows the effectiveness of
CVaR.

Fig. 6 demonstrates the proportion of tasks which are com-
puted locally in terms of different ΣΔGki

if the BD algorithm
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is adopted. It is evident that when ΣΔGki
increases, more tasks

tend to be computed locally. It is worth mentioning that the
delay constraint of each task can be satisfied if it is computed
locally. As the uncertainty of the channel estimation may cause
the violation of the delay constraint, it is reasonable that more
tasks should be computed locally when ΣΔGki

increases.

V. CONCLUSION

In this paper, we designed a robust computation offloading
strategy where the error of channel estimation was considered.
To minimize the power consumption of MDs, the offloading
decisions and computing resources are jointly optimized with the
latency requirements. With the help of CVaR, we transformed
the original problem into an MINLP problem, and solve it by
Benders decomposition. The computational complexity of the
BD algorithm was much less when compared to the conventional
algorithm based on exhaustive searching. Simulation results
showed that the proposed BD algorithm can converge quickly,
and the results approach the global optimum value quite well
with the satisfactory delay constraint.
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